Home | History | Annotate | Line # | Download | only in ffs
      1 /*	$NetBSD: ffs_alloc.c,v 1.174 2025/06/27 19:55:38 andvar Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Wasabi Systems, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 2002 Networks Associates Technology, Inc.
     34  * All rights reserved.
     35  *
     36  * This software was developed for the FreeBSD Project by Marshall
     37  * Kirk McKusick and Network Associates Laboratories, the Security
     38  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     39  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     40  * research program
     41  *
     42  * Copyright (c) 1982, 1986, 1989, 1993
     43  *	The Regents of the University of California.  All rights reserved.
     44  *
     45  * Redistribution and use in source and binary forms, with or without
     46  * modification, are permitted provided that the following conditions
     47  * are met:
     48  * 1. Redistributions of source code must retain the above copyright
     49  *    notice, this list of conditions and the following disclaimer.
     50  * 2. Redistributions in binary form must reproduce the above copyright
     51  *    notice, this list of conditions and the following disclaimer in the
     52  *    documentation and/or other materials provided with the distribution.
     53  * 3. Neither the name of the University nor the names of its contributors
     54  *    may be used to endorse or promote products derived from this software
     55  *    without specific prior written permission.
     56  *
     57  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     59  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     60  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     61  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     62  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     63  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     64  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     65  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     66  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     67  * SUCH DAMAGE.
     68  *
     69  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     70  */
     71 
     72 #include <sys/cdefs.h>
     73 __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.174 2025/06/27 19:55:38 andvar Exp $");
     74 
     75 #if defined(_KERNEL_OPT)
     76 #include "opt_ffs.h"
     77 #include "opt_quota.h"
     78 #include "opt_uvm_page_trkown.h"
     79 #endif
     80 
     81 #include <sys/param.h>
     82 #include <sys/systm.h>
     83 #include <sys/buf.h>
     84 #include <sys/cprng.h>
     85 #include <sys/kauth.h>
     86 #include <sys/kernel.h>
     87 #include <sys/mount.h>
     88 #include <sys/proc.h>
     89 #include <sys/syslog.h>
     90 #include <sys/vnode.h>
     91 #include <sys/wapbl.h>
     92 #include <sys/cprng.h>
     93 
     94 #include <miscfs/specfs/specdev.h>
     95 #include <ufs/ufs/quota.h>
     96 #include <ufs/ufs/ufsmount.h>
     97 #include <ufs/ufs/inode.h>
     98 #include <ufs/ufs/ufs_extern.h>
     99 #include <ufs/ufs/ufs_bswap.h>
    100 #include <ufs/ufs/ufs_wapbl.h>
    101 
    102 #include <ufs/ffs/fs.h>
    103 #include <ufs/ffs/ffs_extern.h>
    104 
    105 #ifdef UVM_PAGE_TRKOWN
    106 #include <uvm/uvm_object.h>
    107 #include <uvm/uvm_page.h>
    108 #endif
    109 
    110 static daddr_t ffs_alloccg(struct inode *, u_int, daddr_t, int, int, int);
    111 static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t, int, int);
    112 static ino_t ffs_dirpref(struct inode *);
    113 static daddr_t ffs_fragextend(struct inode *, u_int, daddr_t, int, int);
    114 static void ffs_fserr(struct fs *, kauth_cred_t, const char *);
    115 static daddr_t ffs_hashalloc(struct inode *, u_int, daddr_t, int, int, int,
    116     daddr_t (*)(struct inode *, u_int, daddr_t, int, int, int));
    117 static daddr_t ffs_nodealloccg(struct inode *, u_int, daddr_t, int, int, int);
    118 static int32_t ffs_mapsearch(struct fs *, struct cg *,
    119 				      daddr_t, int);
    120 static void ffs_blkfree_common(struct ufsmount *, struct fs *, dev_t, struct buf *,
    121     daddr_t, long, bool);
    122 static void ffs_freefile_common(struct ufsmount *, struct fs *, dev_t, struct buf *, ino_t,
    123     int, bool);
    124 
    125 /* if 1, changes in optimalization strategy are logged */
    126 int ffs_log_changeopt = 0;
    127 
    128 /* in ffs_tables.c */
    129 extern const int inside[], around[];
    130 extern const u_char * const fragtbl[];
    131 
    132 /* Basic consistency check for block allocations */
    133 static int
    134 ffs_check_bad_allocation(const char *func, struct fs *fs, daddr_t bno,
    135     long size, dev_t dev, ino_t inum)
    136 {
    137 	if ((u_int)size > fs->fs_bsize || ffs_fragoff(fs, size) != 0 ||
    138 	    ffs_fragnum(fs, bno) + ffs_numfrags(fs, size) > fs->fs_frag) {
    139 		panic("%s: bad size: dev = 0x%llx, bno = %" PRId64
    140 		    " bsize = %d, size = %ld, fs = %s", func,
    141 		    (long long)dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
    142 	}
    143 
    144 	if (bno >= fs->fs_size) {
    145 		printf("%s: bad block %" PRId64 ", ino %llu\n", func, bno,
    146 		    (unsigned long long)inum);
    147 		ffs_fserr(fs, NOCRED, "bad block");
    148 		return EINVAL;
    149 	}
    150 	return 0;
    151 }
    152 
    153 /*
    154  * Allocate a block in the file system.
    155  *
    156  * The size of the requested block is given, which must be some
    157  * multiple of fs_fsize and <= fs_bsize.
    158  * A preference may be optionally specified. If a preference is given
    159  * the following hierarchy is used to allocate a block:
    160  *   1) allocate the requested block.
    161  *   2) allocate a rotationally optimal block in the same cylinder.
    162  *   3) allocate a block in the same cylinder group.
    163  *   4) quadratically rehash into other cylinder groups, until an
    164  *      available block is located.
    165  * If no block preference is given the following hierarchy is used
    166  * to allocate a block:
    167  *   1) allocate a block in the cylinder group that contains the
    168  *      inode for the file.
    169  *   2) quadratically rehash into other cylinder groups, until an
    170  *      available block is located.
    171  *
    172  * => called with um_lock held
    173  * => releases um_lock before returning
    174  */
    175 int
    176 ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size,
    177     int flags, kauth_cred_t cred, daddr_t *bnp)
    178 {
    179 	struct ufsmount *ump;
    180 	struct fs *fs;
    181 	daddr_t bno;
    182 	u_int cg;
    183 #if defined(QUOTA) || defined(QUOTA2)
    184 	int error;
    185 #endif
    186 
    187 	fs = ip->i_fs;
    188 	ump = ip->i_ump;
    189 
    190 	KASSERT(mutex_owned(&ump->um_lock));
    191 
    192 #ifdef UVM_PAGE_TRKOWN
    193 
    194 	/*
    195 	 * Sanity-check that allocations within the file size
    196 	 * do not allow other threads to read the stale contents
    197 	 * of newly allocated blocks.
    198 	 * Usually pages will exist to cover the new allocation.
    199 	 * There is an optimization in ffs_write() where we skip
    200 	 * creating pages if several conditions are met:
    201 	 *  - the file must not be mapped (in any user address space).
    202 	 *  - the write must cover whole pages and whole blocks.
    203 	 * If those conditions are not met then pages must exist and
    204 	 * be locked by the current thread.
    205 	 */
    206 
    207 	struct vnode *vp = ITOV(ip);
    208 	if (vp->v_type == VREG && (flags & IO_EXT) == 0 &&
    209 	    ffs_lblktosize(fs, (voff_t)lbn) < round_page(vp->v_size) &&
    210 	    ((vp->v_vflag & VV_MAPPED) != 0 || (size & PAGE_MASK) != 0 ||
    211 	     ffs_blkoff(fs, size) != 0)) {
    212 		struct vm_page *pg __diagused;
    213 		struct uvm_object *uobj = &vp->v_uobj;
    214 		voff_t off = trunc_page(ffs_lblktosize(fs, lbn));
    215 		voff_t endoff = round_page(ffs_lblktosize(fs, lbn) + size);
    216 
    217 		rw_enter(uobj->vmobjlock, RW_WRITER);
    218 		while (off < endoff) {
    219 			pg = uvm_pagelookup(uobj, off);
    220 			KASSERT((pg != NULL && pg->owner_tag != NULL &&
    221 				 pg->owner == curproc->p_pid &&
    222 				 pg->lowner == curlwp->l_lid));
    223 			off += PAGE_SIZE;
    224 		}
    225 		rw_exit(uobj->vmobjlock);
    226 	}
    227 #endif
    228 
    229 	*bnp = 0;
    230 
    231 	KASSERTMSG((cred != NOCRED), "missing credential");
    232 	KASSERTMSG(((u_int)size <= fs->fs_bsize),
    233 	    "bad size: dev = 0x%llx, bsize = %d, size = %d, fs = %s",
    234 	    (unsigned long long)ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    235 	KASSERTMSG((ffs_fragoff(fs, size) == 0),
    236 	    "bad size: dev = 0x%llx, bsize = %d, size = %d, fs = %s",
    237 	    (unsigned long long)ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    238 
    239 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    240 		goto nospace;
    241 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    242 	    kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
    243 	    NULL, NULL) != 0)
    244 		goto nospace;
    245 #if defined(QUOTA) || defined(QUOTA2)
    246 	mutex_exit(&ump->um_lock);
    247 	if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
    248 		return (error);
    249 	mutex_enter(&ump->um_lock);
    250 #endif
    251 
    252 	if (bpref >= fs->fs_size)
    253 		bpref = 0;
    254 	if (bpref == 0)
    255 		cg = ino_to_cg(fs, ip->i_number);
    256 	else
    257 		cg = dtog(fs, bpref);
    258 	bno = ffs_hashalloc(ip, cg, bpref, size, 0, flags, ffs_alloccg);
    259 	if (bno > 0) {
    260 		DIP_ADD(ip, blocks, btodb(size));
    261 		if (flags & IO_EXT)
    262 			ip->i_flag |= IN_CHANGE;
    263 		else
    264 			ip->i_flag |= IN_CHANGE | IN_UPDATE;
    265 		*bnp = bno;
    266 		return (0);
    267 	}
    268 #if defined(QUOTA) || defined(QUOTA2)
    269 	/*
    270 	 * Restore user's disk quota because allocation failed.
    271 	 */
    272 	(void) chkdq(ip, -btodb(size), cred, FORCE);
    273 #endif
    274 	if (flags & B_CONTIG) {
    275 		/*
    276 		 * XXX ump->um_lock handling is "suspect" at best.
    277 		 * For the case where ffs_hashalloc() fails early
    278 		 * in the B_CONTIG case we reach here with um_lock
    279 		 * already unlocked, so we can't release it again
    280 		 * like in the normal error path.  See kern/39206.
    281 		 *
    282 		 *
    283 		 * Fail silently - it's up to our caller to report
    284 		 * errors.
    285 		 */
    286 		return (ENOSPC);
    287 	}
    288 nospace:
    289 	mutex_exit(&ump->um_lock);
    290 	ffs_fserr(fs, cred, "file system full");
    291 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    292 	return (ENOSPC);
    293 }
    294 
    295 /*
    296  * Reallocate a fragment to a bigger size
    297  *
    298  * The number and size of the old block is given, and a preference
    299  * and new size is also specified. The allocator attempts to extend
    300  * the original block. Failing that, the regular block allocator is
    301  * invoked to get an appropriate block.
    302  *
    303  * => called with um_lock held
    304  * => return with um_lock released
    305  */
    306 int
    307 ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bprev, daddr_t bpref,
    308     int osize, int nsize, int flags, kauth_cred_t cred, struct buf **bpp,
    309     daddr_t *blknop)
    310 {
    311 	struct ufsmount *ump;
    312 	struct fs *fs;
    313 	struct buf *bp;
    314 	u_int cg, request;
    315 	int error;
    316 	daddr_t bno;
    317 
    318 	fs = ip->i_fs;
    319 	ump = ip->i_ump;
    320 
    321 	KASSERT(mutex_owned(&ump->um_lock));
    322 
    323 #ifdef UVM_PAGE_TRKOWN
    324 
    325 	/*
    326 	 * Sanity-check that allocations within the file size
    327 	 * do not allow other threads to read the stale contents
    328 	 * of newly allocated blocks.
    329 	 * Unlike in ffs_alloc(), here pages must always exist
    330 	 * for such allocations, because only the last block of a file
    331 	 * can be a fragment and ffs_write() will reallocate the
    332 	 * fragment to the new size using ufs_balloc_range(),
    333 	 * which always creates pages to cover blocks it allocates.
    334 	 */
    335 
    336 	if (ITOV(ip)->v_type == VREG) {
    337 		struct vm_page *pg __diagused;
    338 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    339 		voff_t off = trunc_page(ffs_lblktosize(fs, lbprev));
    340 		voff_t endoff = round_page(ffs_lblktosize(fs, lbprev) + osize);
    341 
    342 		rw_enter(uobj->vmobjlock, RW_WRITER);
    343 		while (off < endoff) {
    344 			pg = uvm_pagelookup(uobj, off);
    345 			KASSERT(pg->owner == curproc->p_pid &&
    346 				pg->lowner == curlwp->l_lid);
    347 			off += PAGE_SIZE;
    348 		}
    349 		rw_exit(uobj->vmobjlock);
    350 	}
    351 #endif
    352 
    353 	KASSERTMSG((cred != NOCRED), "missing credential");
    354 	KASSERTMSG(((u_int)osize <= fs->fs_bsize),
    355 	    "bad size: dev=0x%llx, bsize=%d, osize=%d, nsize=%d, fs=%s",
    356 	    (unsigned long long)ip->i_dev, fs->fs_bsize, osize, nsize,
    357 	    fs->fs_fsmnt);
    358 	KASSERTMSG((ffs_fragoff(fs, osize) == 0),
    359 	    "bad size: dev=0x%llx, bsize=%d, osize=%d, nsize=%d, fs=%s",
    360 	    (unsigned long long)ip->i_dev, fs->fs_bsize, osize, nsize,
    361 	    fs->fs_fsmnt);
    362 	KASSERTMSG(((u_int)nsize <= fs->fs_bsize),
    363 	    "bad size: dev=0x%llx, bsize=%d, osize=%d, nsize=%d, fs=%s",
    364 	    (unsigned long long)ip->i_dev, fs->fs_bsize, osize, nsize,
    365 	    fs->fs_fsmnt);
    366 	KASSERTMSG((ffs_fragoff(fs, nsize) == 0),
    367 	    "bad size: dev=0x%llx, bsize=%d, osize=%d, nsize=%d, fs=%s",
    368 	    (unsigned long long)ip->i_dev, fs->fs_bsize, osize, nsize,
    369 	    fs->fs_fsmnt);
    370 
    371 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    372 	    kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
    373 	    NULL, NULL) != 0) {
    374 		mutex_exit(&ump->um_lock);
    375 		goto nospace;
    376 	}
    377 
    378 	if (bprev == 0) {
    379 		panic("%s: bad bprev: dev = 0x%llx, bsize = %d, bprev = %"
    380 		    PRId64 ", fs = %s", __func__,
    381 		    (unsigned long long)ip->i_dev, fs->fs_bsize, bprev,
    382 		    fs->fs_fsmnt);
    383 	}
    384 	mutex_exit(&ump->um_lock);
    385 
    386 	/*
    387 	 * Allocate the extra space in the buffer.
    388 	 */
    389 	if (bpp != NULL &&
    390 	    (error = bread(ITOV(ip), lbprev, osize, 0, &bp)) != 0) {
    391 		return (error);
    392 	}
    393 #if defined(QUOTA) || defined(QUOTA2)
    394 	if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
    395 		if (bpp != NULL) {
    396 			brelse(bp, 0);
    397 		}
    398 		return (error);
    399 	}
    400 #endif
    401 	/*
    402 	 * Check for extension in the existing location.
    403 	 */
    404 	cg = dtog(fs, bprev);
    405 	mutex_enter(&ump->um_lock);
    406 	if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
    407 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    408 		if (flags & IO_EXT)
    409 			ip->i_flag |= IN_CHANGE;
    410 		else
    411 			ip->i_flag |= IN_CHANGE | IN_UPDATE;
    412 
    413 		if (bpp != NULL) {
    414 			if (bp->b_blkno != FFS_FSBTODB(fs, bno)) {
    415 				panic("%s: bad blockno %#llx != %#llx",
    416 				    __func__, (unsigned long long) bp->b_blkno,
    417 				    (unsigned long long)FFS_FSBTODB(fs, bno));
    418 			}
    419 			allocbuf(bp, nsize, 1);
    420 			memset((char *)bp->b_data + osize, 0, nsize - osize);
    421 			mutex_enter(bp->b_objlock);
    422 			KASSERT(!cv_has_waiters(&bp->b_done));
    423 			bp->b_oflags |= BO_DONE;
    424 			mutex_exit(bp->b_objlock);
    425 			*bpp = bp;
    426 		}
    427 		if (blknop != NULL) {
    428 			*blknop = bno;
    429 		}
    430 		return (0);
    431 	}
    432 	/*
    433 	 * Allocate a new disk location.
    434 	 */
    435 	if (bpref >= fs->fs_size)
    436 		bpref = 0;
    437 	switch ((int)fs->fs_optim) {
    438 	case FS_OPTSPACE:
    439 		/*
    440 		 * Allocate an exact sized fragment. Although this makes
    441 		 * best use of space, we will waste time relocating it if
    442 		 * the file continues to grow. If the fragmentation is
    443 		 * less than half of the minimum free reserve, we choose
    444 		 * to begin optimizing for time.
    445 		 */
    446 		request = nsize;
    447 		if (fs->fs_minfree < 5 ||
    448 		    fs->fs_cstotal.cs_nffree >
    449 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    450 			break;
    451 
    452 		if (ffs_log_changeopt) {
    453 			log(LOG_NOTICE,
    454 				"%s: optimization changed from SPACE to TIME\n",
    455 				fs->fs_fsmnt);
    456 		}
    457 
    458 		fs->fs_optim = FS_OPTTIME;
    459 		break;
    460 	case FS_OPTTIME:
    461 		/*
    462 		 * At this point we have discovered a file that is trying to
    463 		 * grow a small fragment to a larger fragment. To save time,
    464 		 * we allocate a full sized block, then free the unused portion.
    465 		 * If the file continues to grow, the `ffs_fragextend' call
    466 		 * above will be able to grow it in place without further
    467 		 * copying. If aberrant programs cause disk fragmentation to
    468 		 * grow within 2% of the free reserve, we choose to begin
    469 		 * optimizing for space.
    470 		 */
    471 		request = fs->fs_bsize;
    472 		if (fs->fs_cstotal.cs_nffree <
    473 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    474 			break;
    475 
    476 		if (ffs_log_changeopt) {
    477 			log(LOG_NOTICE,
    478 				"%s: optimization changed from TIME to SPACE\n",
    479 				fs->fs_fsmnt);
    480 		}
    481 
    482 		fs->fs_optim = FS_OPTSPACE;
    483 		break;
    484 	default:
    485 		panic("%s: bad optim: dev = 0x%llx, optim = %d, fs = %s",
    486 		    __func__, (unsigned long long)ip->i_dev, fs->fs_optim,
    487 		    fs->fs_fsmnt);
    488 		/* NOTREACHED */
    489 	}
    490 	bno = ffs_hashalloc(ip, cg, bpref, request, nsize, 0, ffs_alloccg);
    491 	if (bno > 0) {
    492 		/*
    493 		 * Use forced deallocation registration, we can't handle
    494 		 * failure here. This is safe, as this place is ever hit
    495 		 * maximum once per write operation, when fragment is extended
    496 		 * to longer fragment, or a full block.
    497 		 */
    498 		if ((ip->i_ump->um_mountp->mnt_wapbl) &&
    499 		    (ITOV(ip)->v_type != VREG)) {
    500 			/* this should never fail */
    501 			error = UFS_WAPBL_REGISTER_DEALLOCATION_FORCE(
    502 			    ip->i_ump->um_mountp, FFS_FSBTODB(fs, bprev),
    503 			    osize);
    504 			if (error)
    505 				panic("ffs_realloccg: dealloc registration failed");
    506 		} else {
    507 			ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
    508 			    ip->i_number);
    509 		}
    510 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    511 		if (flags & IO_EXT)
    512 			ip->i_flag |= IN_CHANGE;
    513 		else
    514 			ip->i_flag |= IN_CHANGE | IN_UPDATE;
    515 		if (bpp != NULL) {
    516 			bp->b_blkno = FFS_FSBTODB(fs, bno);
    517 			allocbuf(bp, nsize, 1);
    518 			memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
    519 			mutex_enter(bp->b_objlock);
    520 			KASSERT(!cv_has_waiters(&bp->b_done));
    521 			bp->b_oflags |= BO_DONE;
    522 			mutex_exit(bp->b_objlock);
    523 			*bpp = bp;
    524 		}
    525 		if (blknop != NULL) {
    526 			*blknop = bno;
    527 		}
    528 		return (0);
    529 	}
    530 	mutex_exit(&ump->um_lock);
    531 
    532 #if defined(QUOTA) || defined(QUOTA2)
    533 	/*
    534 	 * Restore user's disk quota because allocation failed.
    535 	 */
    536 	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
    537 #endif
    538 	if (bpp != NULL) {
    539 		brelse(bp, 0);
    540 	}
    541 
    542 nospace:
    543 	/*
    544 	 * no space available
    545 	 */
    546 	ffs_fserr(fs, cred, "file system full");
    547 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    548 	return (ENOSPC);
    549 }
    550 
    551 /*
    552  * Allocate an inode in the file system.
    553  *
    554  * If allocating a directory, use ffs_dirpref to select the inode.
    555  * If allocating in a directory, the following hierarchy is followed:
    556  *   1) allocate the preferred inode.
    557  *   2) allocate an inode in the same cylinder group.
    558  *   3) quadratically rehash into other cylinder groups, until an
    559  *      available inode is located.
    560  * If no inode preference is given the following hierarchy is used
    561  * to allocate an inode:
    562  *   1) allocate an inode in cylinder group 0.
    563  *   2) quadratically rehash into other cylinder groups, until an
    564  *      available inode is located.
    565  *
    566  * => um_lock not held upon entry or return
    567  */
    568 int
    569 ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred, ino_t *inop)
    570 {
    571 	struct ufsmount *ump;
    572 	struct inode *pip;
    573 	struct fs *fs;
    574 	ino_t ino, ipref;
    575 	u_int cg;
    576 	int error;
    577 
    578 	UFS_WAPBL_JUNLOCK_ASSERT(pvp->v_mount);
    579 
    580 	pip = VTOI(pvp);
    581 	fs = pip->i_fs;
    582 	ump = pip->i_ump;
    583 
    584 	error = UFS_WAPBL_BEGIN(pvp->v_mount);
    585 	if (error) {
    586 		return error;
    587 	}
    588 	mutex_enter(&ump->um_lock);
    589 	if (fs->fs_cstotal.cs_nifree == 0)
    590 		goto noinodes;
    591 
    592 	if ((mode & IFMT) == IFDIR)
    593 		ipref = ffs_dirpref(pip);
    594 	else
    595 		ipref = pip->i_number;
    596 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    597 		ipref = 0;
    598 	cg = ino_to_cg(fs, ipref);
    599 	/*
    600 	 * Track number of dirs created one after another
    601 	 * in a same cg without intervening by files.
    602 	 */
    603 	if ((mode & IFMT) == IFDIR) {
    604 		if (fs->fs_contigdirs[cg] < 255)
    605 			fs->fs_contigdirs[cg]++;
    606 	} else {
    607 		if (fs->fs_contigdirs[cg] > 0)
    608 			fs->fs_contigdirs[cg]--;
    609 	}
    610 	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, 0, ffs_nodealloccg);
    611 	if (ino == 0)
    612 		goto noinodes;
    613 	UFS_WAPBL_END(pvp->v_mount);
    614 	*inop = ino;
    615 	return 0;
    616 
    617 noinodes:
    618 	mutex_exit(&ump->um_lock);
    619 	UFS_WAPBL_END(pvp->v_mount);
    620 	ffs_fserr(fs, cred, "out of inodes");
    621 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    622 	return ENOSPC;
    623 }
    624 
    625 /*
    626  * Find a cylinder group in which to place a directory.
    627  *
    628  * The policy implemented by this algorithm is to allocate a
    629  * directory inode in the same cylinder group as its parent
    630  * directory, but also to reserve space for its files inodes
    631  * and data. Restrict the number of directories which may be
    632  * allocated one after another in the same cylinder group
    633  * without intervening allocation of files.
    634  *
    635  * If we allocate a first level directory then force allocation
    636  * in another cylinder group.
    637  */
    638 static ino_t
    639 ffs_dirpref(struct inode *pip)
    640 {
    641 	register struct fs *fs;
    642 	u_int cg, prefcg;
    643 	uint64_t dirsize, cgsize, curdsz;
    644 	u_int avgifree, avgbfree, avgndir;
    645 	u_int minifree, minbfree, maxndir;
    646 	u_int mincg, minndir;
    647 	u_int maxcontigdirs;
    648 
    649 	KASSERT(mutex_owned(&pip->i_ump->um_lock));
    650 
    651 	fs = pip->i_fs;
    652 
    653 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    654 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    655 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
    656 
    657 	/*
    658 	 * Force allocation in another cg if creating a first level dir.
    659 	 */
    660 	if (ITOV(pip)->v_vflag & VV_ROOT) {
    661 		prefcg = cprng_fast32() % fs->fs_ncg;
    662 		mincg = prefcg;
    663 		minndir = fs->fs_ipg;
    664 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
    665 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    666 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    667 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    668 				mincg = cg;
    669 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    670 			}
    671 		for (cg = 0; cg < prefcg; cg++)
    672 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    673 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    674 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    675 				mincg = cg;
    676 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    677 			}
    678 		return ((ino_t)(fs->fs_ipg * mincg));
    679 	}
    680 
    681 	/*
    682 	 * Count various limits which used for
    683 	 * optimal allocation of a directory inode.
    684 	 * Try cylinder groups with >75% avgifree and avgbfree.
    685 	 * Avoid cylinder groups with no free blocks or inodes as that
    686 	 * triggers an I/O-expensive cylinder group scan.
    687 	 */
    688 	maxndir = uimin(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
    689 	minifree = avgifree - avgifree / 4;
    690 	if (minifree < 1)
    691 		minifree = 1;
    692 	minbfree = avgbfree - avgbfree / 4;
    693 	if (minbfree < 1)
    694 		minbfree = 1;
    695 	cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
    696 	dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
    697 	if (avgndir != 0) {
    698 		curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
    699 		if (dirsize < curdsz)
    700 			dirsize = curdsz;
    701 	}
    702 	if (cgsize < dirsize * 255)
    703 		maxcontigdirs = (avgbfree * fs->fs_bsize) / dirsize;
    704 	else
    705 		maxcontigdirs = 255;
    706 	if (fs->fs_avgfpdir > 0)
    707 		maxcontigdirs = uimin(maxcontigdirs,
    708 				    fs->fs_ipg / fs->fs_avgfpdir);
    709 	if (maxcontigdirs == 0)
    710 		maxcontigdirs = 1;
    711 
    712 	/*
    713 	 * Limit number of dirs in one cg and reserve space for
    714 	 * regular files, but only if we have no deficit in
    715 	 * inodes or space.
    716 	 */
    717 	prefcg = ino_to_cg(fs, pip->i_number);
    718 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    719 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    720 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    721 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    722 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    723 				return ((ino_t)(fs->fs_ipg * cg));
    724 		}
    725 	for (cg = 0; cg < prefcg; cg++)
    726 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    727 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    728 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    729 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    730 				return ((ino_t)(fs->fs_ipg * cg));
    731 		}
    732 	/*
    733 	 * This is a backstop when we are deficient in space.
    734 	 */
    735 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    736 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    737 			return ((ino_t)(fs->fs_ipg * cg));
    738 	for (cg = 0; cg < prefcg; cg++)
    739 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    740 			break;
    741 	return ((ino_t)(fs->fs_ipg * cg));
    742 }
    743 
    744 /*
    745  * Select the desired position for the next block in a file.  The file is
    746  * logically divided into sections. The first section is composed of the
    747  * direct blocks. Each additional section contains fs_maxbpg blocks.
    748  *
    749  * If no blocks have been allocated in the first section, the policy is to
    750  * request a block in the same cylinder group as the inode that describes
    751  * the file. If no blocks have been allocated in any other section, the
    752  * policy is to place the section in a cylinder group with a greater than
    753  * average number of free blocks.  An appropriate cylinder group is found
    754  * by using a rotor that sweeps the cylinder groups. When a new group of
    755  * blocks is needed, the sweep begins in the cylinder group following the
    756  * cylinder group from which the previous allocation was made. The sweep
    757  * continues until a cylinder group with greater than the average number
    758  * of free blocks is found. If the allocation is for the first block in an
    759  * indirect block, the information on the previous allocation is unavailable;
    760  * here a best guess is made based upon the logical block number being
    761  * allocated.
    762  *
    763  * If a section is already partially allocated, the policy is to
    764  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    765  * contiguous blocks and the beginning of the next is laid out
    766  * contiguously if possible.
    767  *
    768  * => um_lock held on entry and exit
    769  */
    770 daddr_t
    771 ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int flags,
    772     int32_t *bap /* XXX ondisk32 */)
    773 {
    774 	struct fs *fs;
    775 	u_int cg;
    776 	u_int avgbfree, startcg;
    777 
    778 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    779 
    780 	fs = ip->i_fs;
    781 
    782 	/*
    783 	 * If allocating a contiguous file with B_CONTIG, use the hints
    784 	 * in the inode extensions to return the desired block.
    785 	 *
    786 	 * For metadata (indirect blocks) return the address of where
    787 	 * the first indirect block resides - we'll scan for the next
    788 	 * available slot if we need to allocate more than one indirect
    789 	 * block.  For data, return the address of the actual block
    790 	 * relative to the address of the first data block.
    791 	 */
    792 	if (flags & B_CONTIG) {
    793 		KASSERT(ip->i_ffs_first_data_blk != 0);
    794 		KASSERT(ip->i_ffs_first_indir_blk != 0);
    795 		if (flags & B_METAONLY)
    796 			return ip->i_ffs_first_indir_blk;
    797 		else
    798 			return ip->i_ffs_first_data_blk + ffs_blkstofrags(fs, lbn);
    799 	}
    800 
    801 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    802 		if (lbn < UFS_NDADDR + FFS_NINDIR(fs)) {
    803 			cg = ino_to_cg(fs, ip->i_number);
    804 			return (cgbase(fs, cg) + fs->fs_frag);
    805 		}
    806 		/*
    807 		 * Find a cylinder with greater than average number of
    808 		 * unused data blocks.
    809 		 */
    810 		if (indx == 0 || bap[indx - 1] == 0)
    811 			startcg =
    812 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    813 		else
    814 			startcg = dtog(fs,
    815 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    816 		startcg %= fs->fs_ncg;
    817 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    818 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    819 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    820 				return (cgbase(fs, cg) + fs->fs_frag);
    821 			}
    822 		for (cg = 0; cg < startcg; cg++)
    823 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    824 				return (cgbase(fs, cg) + fs->fs_frag);
    825 			}
    826 		return (0);
    827 	}
    828 	/*
    829 	 * We just always try to lay things out contiguously.
    830 	 */
    831 	return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    832 }
    833 
    834 daddr_t
    835 ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int flags,
    836     int64_t *bap)
    837 {
    838 	struct fs *fs;
    839 	u_int cg;
    840 	u_int avgbfree, startcg;
    841 
    842 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    843 
    844 	fs = ip->i_fs;
    845 
    846 	/*
    847 	 * If allocating a contiguous file with B_CONTIG, use the hints
    848 	 * in the inode extensions to return the desired block.
    849 	 *
    850 	 * For metadata (indirect blocks) return the address of where
    851 	 * the first indirect block resides - we'll scan for the next
    852 	 * available slot if we need to allocate more than one indirect
    853 	 * block.  For data, return the address of the actual block
    854 	 * relative to the address of the first data block.
    855 	 */
    856 	if (flags & B_CONTIG) {
    857 		KASSERT(ip->i_ffs_first_data_blk != 0);
    858 		KASSERT(ip->i_ffs_first_indir_blk != 0);
    859 		if (flags & B_METAONLY)
    860 			return ip->i_ffs_first_indir_blk;
    861 		else
    862 			return ip->i_ffs_first_data_blk + ffs_blkstofrags(fs, lbn);
    863 	}
    864 
    865 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    866 		if (lbn < UFS_NDADDR + FFS_NINDIR(fs)) {
    867 			cg = ino_to_cg(fs, ip->i_number);
    868 			return (cgbase(fs, cg) + fs->fs_frag);
    869 		}
    870 		/*
    871 		 * Find a cylinder with greater than average number of
    872 		 * unused data blocks.
    873 		 */
    874 		if (indx == 0 || bap[indx - 1] == 0)
    875 			startcg =
    876 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    877 		else
    878 			startcg = dtog(fs,
    879 				ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    880 		startcg %= fs->fs_ncg;
    881 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    882 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    883 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    884 				return (cgbase(fs, cg) + fs->fs_frag);
    885 			}
    886 		for (cg = 0; cg < startcg; cg++)
    887 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    888 				return (cgbase(fs, cg) + fs->fs_frag);
    889 			}
    890 		return (0);
    891 	}
    892 	/*
    893 	 * We just always try to lay things out contiguously.
    894 	 */
    895 	return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    896 }
    897 
    898 
    899 /*
    900  * Implement the cylinder overflow algorithm.
    901  *
    902  * The policy implemented by this algorithm is:
    903  *   1) allocate the block in its requested cylinder group.
    904  *   2) quadratically rehash on the cylinder group number.
    905  *   3) brute force search for a free block.
    906  *
    907  * => called with um_lock held
    908  * => returns with um_lock released on success, held on failure
    909  *    (*allocator releases lock on success, retains lock on failure)
    910  */
    911 /*VARARGS5*/
    912 static daddr_t
    913 ffs_hashalloc(struct inode *ip, u_int cg, daddr_t pref,
    914     int size /* size for data blocks, mode for inodes */,
    915     int realsize,
    916     int flags,
    917     daddr_t (*allocator)(struct inode *, u_int, daddr_t, int, int, int))
    918 {
    919 	struct fs *fs;
    920 	daddr_t result;
    921 	u_int i, icg = cg;
    922 
    923 	fs = ip->i_fs;
    924 	/*
    925 	 * 1: preferred cylinder group
    926 	 */
    927 	result = (*allocator)(ip, cg, pref, size, realsize, flags);
    928 	if (result)
    929 		return (result);
    930 
    931 	if (flags & B_CONTIG)
    932 		return (result);
    933 	/*
    934 	 * 2: quadratic rehash
    935 	 */
    936 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    937 		cg += i;
    938 		if (cg >= fs->fs_ncg)
    939 			cg -= fs->fs_ncg;
    940 		result = (*allocator)(ip, cg, 0, size, realsize, flags);
    941 		if (result)
    942 			return (result);
    943 	}
    944 	/*
    945 	 * 3: brute force search
    946 	 * Note that we start at i == 2, since 0 was checked initially,
    947 	 * and 1 is always checked in the quadratic rehash.
    948 	 */
    949 	cg = (icg + 2) % fs->fs_ncg;
    950 	for (i = 2; i < fs->fs_ncg; i++) {
    951 		result = (*allocator)(ip, cg, 0, size, realsize, flags);
    952 		if (result)
    953 			return (result);
    954 		cg++;
    955 		if (cg == fs->fs_ncg)
    956 			cg = 0;
    957 	}
    958 	return (0);
    959 }
    960 
    961 /*
    962  * Determine whether a fragment can be extended.
    963  *
    964  * Check to see if the necessary fragments are available, and
    965  * if they are, allocate them.
    966  *
    967  * => called with um_lock held
    968  * => returns with um_lock released on success, held on failure
    969  */
    970 static daddr_t
    971 ffs_fragextend(struct inode *ip, u_int cg, daddr_t bprev, int osize, int nsize)
    972 {
    973 	struct ufsmount *ump;
    974 	struct fs *fs;
    975 	struct cg *cgp;
    976 	struct buf *bp;
    977 	daddr_t bno;
    978 	int frags, bbase;
    979 	int i, error;
    980 	u_int8_t *blksfree;
    981 
    982 	fs = ip->i_fs;
    983 	ump = ip->i_ump;
    984 
    985 	KASSERT(mutex_owned(&ump->um_lock));
    986 
    987 	if (fs->fs_cs(fs, cg).cs_nffree < ffs_numfrags(fs, nsize - osize))
    988 		return (0);
    989 	frags = ffs_numfrags(fs, nsize);
    990 	bbase = ffs_fragnum(fs, bprev);
    991 	if (bbase > ffs_fragnum(fs, (bprev + frags - 1))) {
    992 		/* cannot extend across a block boundary */
    993 		return (0);
    994 	}
    995 	mutex_exit(&ump->um_lock);
    996 	error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
    997 		(int)fs->fs_cgsize, B_MODIFY, &bp);
    998 	if (error)
    999 		goto fail;
   1000 	cgp = (struct cg *)bp->b_data;
   1001 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1002 		goto fail;
   1003 	cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
   1004 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1005 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1006 		cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
   1007 	bno = dtogd(fs, bprev);
   1008 	blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
   1009 	for (i = ffs_numfrags(fs, osize); i < frags; i++)
   1010 		if (isclr(blksfree, bno + i))
   1011 			goto fail;
   1012 	/*
   1013 	 * the current fragment can be extended
   1014 	 * deduct the count on fragment being extended into
   1015 	 * increase the count on the remaining fragment (if any)
   1016 	 * allocate the extended piece
   1017 	 */
   1018 	for (i = frags; i < fs->fs_frag - bbase; i++)
   1019 		if (isclr(blksfree, bno + i))
   1020 			break;
   1021 	ufs_add32(cgp->cg_frsum[i - ffs_numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
   1022 	if (i != frags)
   1023 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
   1024 	mutex_enter(&ump->um_lock);
   1025 	for (i = ffs_numfrags(fs, osize); i < frags; i++) {
   1026 		clrbit(blksfree, bno + i);
   1027 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
   1028 		fs->fs_cstotal.cs_nffree--;
   1029 		fs->fs_cs(fs, cg).cs_nffree--;
   1030 	}
   1031 	fs->fs_fmod = 1;
   1032 	ACTIVECG_CLR(fs, cg);
   1033 	mutex_exit(&ump->um_lock);
   1034 	bdwrite(bp);
   1035 	return (bprev);
   1036 
   1037  fail:
   1038  	if (bp != NULL)
   1039 		brelse(bp, 0);
   1040  	mutex_enter(&ump->um_lock);
   1041  	return (0);
   1042 }
   1043 
   1044 /*
   1045  * Determine whether a block can be allocated.
   1046  *
   1047  * Check to see if a block of the appropriate size is available,
   1048  * and if it is, allocate it.
   1049  */
   1050 static daddr_t
   1051 ffs_alloccg(struct inode *ip, u_int cg, daddr_t bpref, int size, int realsize,
   1052     int flags)
   1053 {
   1054 	struct ufsmount *ump;
   1055 	struct fs *fs = ip->i_fs;
   1056 	struct cg *cgp;
   1057 	struct buf *bp;
   1058 	int32_t bno;
   1059 	daddr_t blkno;
   1060 	int error, frags, allocsiz, i;
   1061 	u_int8_t *blksfree;
   1062 	const int needswap = UFS_FSNEEDSWAP(fs);
   1063 
   1064 	ump = ip->i_ump;
   1065 
   1066 	KASSERT(mutex_owned(&ump->um_lock));
   1067 
   1068 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
   1069 		return (0);
   1070 	mutex_exit(&ump->um_lock);
   1071 	error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
   1072 		(int)fs->fs_cgsize, B_MODIFY, &bp);
   1073 	if (error)
   1074 		goto fail;
   1075 	cgp = (struct cg *)bp->b_data;
   1076 	if (!cg_chkmagic(cgp, needswap) ||
   1077 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
   1078 		goto fail;
   1079 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1080 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1081 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1082 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1083 	if (size == fs->fs_bsize) {
   1084 		mutex_enter(&ump->um_lock);
   1085 		blkno = ffs_alloccgblk(ip, bp, bpref, realsize, flags);
   1086 		ACTIVECG_CLR(fs, cg);
   1087 		mutex_exit(&ump->um_lock);
   1088 
   1089 		/*
   1090 		 * If actually needed size is lower, free the extra blocks now.
   1091 		 * This is safe to call here, there is no outside reference
   1092 		 * to this block yet. It is not necessary to keep um_lock
   1093 		 * locked.
   1094 		 */
   1095 		if (realsize != 0 && realsize < size) {
   1096 			ffs_blkfree_common(ip->i_ump, ip->i_fs,
   1097 			    ip->i_devvp->v_rdev,
   1098 			    bp, blkno + ffs_numfrags(fs, realsize),
   1099 			    (long)(size - realsize), false);
   1100 		}
   1101 
   1102 		bdwrite(bp);
   1103 		return (blkno);
   1104 	}
   1105 	/*
   1106 	 * check to see if any fragments are already available
   1107 	 * allocsiz is the size which will be allocated, hacking
   1108 	 * it down to a smaller size if necessary
   1109 	 */
   1110 	blksfree = cg_blksfree(cgp, needswap);
   1111 	frags = ffs_numfrags(fs, size);
   1112 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
   1113 		if (cgp->cg_frsum[allocsiz] != 0)
   1114 			break;
   1115 	if (allocsiz == fs->fs_frag) {
   1116 		/*
   1117 		 * no fragments were available, so a block will be
   1118 		 * allocated, and hacked up
   1119 		 */
   1120 		if (cgp->cg_cs.cs_nbfree == 0)
   1121 			goto fail;
   1122 		mutex_enter(&ump->um_lock);
   1123 		blkno = ffs_alloccgblk(ip, bp, bpref, realsize, flags);
   1124 		bno = dtogd(fs, blkno);
   1125 		for (i = frags; i < fs->fs_frag; i++)
   1126 			setbit(blksfree, bno + i);
   1127 		i = fs->fs_frag - frags;
   1128 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1129 		fs->fs_cstotal.cs_nffree += i;
   1130 		fs->fs_cs(fs, cg).cs_nffree += i;
   1131 		fs->fs_fmod = 1;
   1132 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
   1133 		ACTIVECG_CLR(fs, cg);
   1134 		mutex_exit(&ump->um_lock);
   1135 		bdwrite(bp);
   1136 		return (blkno);
   1137 	}
   1138 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
   1139 #if 0
   1140 	/*
   1141 	 * XXX fvdl mapsearch will panic, and never return -1
   1142 	 *          also: returning NULL as daddr_t ?
   1143 	 */
   1144 	if (bno < 0)
   1145 		goto fail;
   1146 #endif
   1147 	for (i = 0; i < frags; i++)
   1148 		clrbit(blksfree, bno + i);
   1149 	mutex_enter(&ump->um_lock);
   1150 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
   1151 	fs->fs_cstotal.cs_nffree -= frags;
   1152 	fs->fs_cs(fs, cg).cs_nffree -= frags;
   1153 	fs->fs_fmod = 1;
   1154 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
   1155 	if (frags != allocsiz)
   1156 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
   1157 	blkno = cgbase(fs, cg) + bno;
   1158 	ACTIVECG_CLR(fs, cg);
   1159 	mutex_exit(&ump->um_lock);
   1160 	bdwrite(bp);
   1161 	return blkno;
   1162 
   1163  fail:
   1164  	if (bp != NULL)
   1165 		brelse(bp, 0);
   1166  	mutex_enter(&ump->um_lock);
   1167  	return (0);
   1168 }
   1169 
   1170 /*
   1171  * Allocate a block in a cylinder group.
   1172  *
   1173  * This algorithm implements the following policy:
   1174  *   1) allocate the requested block.
   1175  *   2) allocate a rotationally optimal block in the same cylinder.
   1176  *   3) allocate the next available block on the block rotor for the
   1177  *      specified cylinder group.
   1178  * Note that this routine only allocates fs_bsize blocks; these
   1179  * blocks may be fragmented by the routine that allocates them.
   1180  */
   1181 static daddr_t
   1182 ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref, int realsize,
   1183     int flags)
   1184 {
   1185 	struct fs *fs = ip->i_fs;
   1186 	struct cg *cgp;
   1187 	int cg;
   1188 	daddr_t blkno;
   1189 	int32_t bno;
   1190 	u_int8_t *blksfree;
   1191 	const int needswap = UFS_FSNEEDSWAP(fs);
   1192 
   1193 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
   1194 
   1195 	cgp = (struct cg *)bp->b_data;
   1196 	blksfree = cg_blksfree(cgp, needswap);
   1197 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
   1198 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
   1199 	} else {
   1200 		bpref = ffs_blknum(fs, bpref);
   1201 		bno = dtogd(fs, bpref);
   1202 		/*
   1203 		 * if the requested block is available, use it
   1204 		 */
   1205 		if (ffs_isblock(fs, blksfree, ffs_fragstoblks(fs, bno)))
   1206 			goto gotit;
   1207 		/*
   1208 		 * if the requested data block isn't available and we are
   1209 		 * trying to allocate a contiguous file, return an error.
   1210 		 */
   1211 		if ((flags & (B_CONTIG | B_METAONLY)) == B_CONTIG)
   1212 			return (0);
   1213 	}
   1214 
   1215 	/*
   1216 	 * Take the next available block in this cylinder group.
   1217 	 */
   1218 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1219 #if 0
   1220 	/*
   1221 	 * XXX jdolecek ffs_mapsearch() succeeds or panics
   1222 	 */
   1223 	if (bno < 0)
   1224 		return (0);
   1225 #endif
   1226 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1227 gotit:
   1228 	blkno = ffs_fragstoblks(fs, bno);
   1229 	ffs_clrblock(fs, blksfree, blkno);
   1230 	ffs_clusteracct(fs, cgp, blkno, -1);
   1231 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1232 	fs->fs_cstotal.cs_nbfree--;
   1233 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1234 	if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1235 	    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1236 		int cylno;
   1237 		cylno = old_cbtocylno(fs, bno);
   1238 		KASSERT(cylno >= 0);
   1239 		KASSERT(cylno < fs->fs_old_ncyl);
   1240 		KASSERT(old_cbtorpos(fs, bno) >= 0);
   1241 		KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
   1242 		ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
   1243 		    needswap);
   1244 		ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1245 	}
   1246 	fs->fs_fmod = 1;
   1247 	cg = ufs_rw32(cgp->cg_cgx, needswap);
   1248 	blkno = cgbase(fs, cg) + bno;
   1249 	return (blkno);
   1250 }
   1251 
   1252 /*
   1253  * Determine whether an inode can be allocated.
   1254  *
   1255  * Check to see if an inode is available, and if it is,
   1256  * allocate it using the following policy:
   1257  *   1) allocate the requested inode.
   1258  *   2) allocate the next available inode after the requested
   1259  *      inode in the specified cylinder group.
   1260  */
   1261 static daddr_t
   1262 ffs_nodealloccg(struct inode *ip, u_int cg, daddr_t ipref, int mode, int realsize,
   1263     int flags)
   1264 {
   1265 	struct ufsmount *ump = ip->i_ump;
   1266 	struct fs *fs = ip->i_fs;
   1267 	struct cg *cgp;
   1268 	struct buf *bp, *ibp;
   1269 	u_int8_t *inosused;
   1270 	int error, start, len, loc, map, i;
   1271 	int32_t initediblk, maxiblk, irotor;
   1272 	daddr_t nalloc;
   1273 	struct ufs2_dinode *dp2;
   1274 	const int needswap = UFS_FSNEEDSWAP(fs);
   1275 
   1276 	KASSERT(mutex_owned(&ump->um_lock));
   1277 	UFS_WAPBL_JLOCK_ASSERT(ip->i_ump->um_mountp);
   1278 
   1279 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1280 		return (0);
   1281 	mutex_exit(&ump->um_lock);
   1282 	ibp = NULL;
   1283 	if (fs->fs_magic == FS_UFS2_MAGIC) {
   1284 		initediblk = -1;
   1285 	} else {
   1286 		initediblk = fs->fs_ipg;
   1287 	}
   1288 	maxiblk = initediblk;
   1289 
   1290 retry:
   1291 	error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
   1292 		(int)fs->fs_cgsize, B_MODIFY, &bp);
   1293 	if (error)
   1294 		goto fail;
   1295 	cgp = (struct cg *)bp->b_data;
   1296 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
   1297 		goto fail;
   1298 
   1299 	if (ibp != NULL &&
   1300 	    initediblk != ufs_rw32(cgp->cg_initediblk, needswap)) {
   1301 		/* Another thread allocated more inodes so we retry the test. */
   1302 		brelse(ibp, 0);
   1303 		ibp = NULL;
   1304 	}
   1305 	/*
   1306 	 * Check to see if we need to initialize more inodes.
   1307 	 */
   1308 	if (fs->fs_magic == FS_UFS2_MAGIC && ibp == NULL) {
   1309 	        initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
   1310 		maxiblk = initediblk;
   1311 		nalloc = fs->fs_ipg - ufs_rw32(cgp->cg_cs.cs_nifree, needswap);
   1312 		if (nalloc + FFS_INOPB(fs) > initediblk &&
   1313 		    initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
   1314 			/*
   1315 			 * We have to release the cg buffer here to prevent
   1316 			 * a deadlock when reading the inode block will
   1317 			 * run a copy-on-write that might use this cg.
   1318 			 */
   1319 			brelse(bp, 0);
   1320 			bp = NULL;
   1321 			error = ffs_getblk(ip->i_devvp, FFS_FSBTODB(fs,
   1322 			    ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
   1323 			    FFS_NOBLK, fs->fs_bsize, false, &ibp);
   1324 			if (error)
   1325 				goto fail;
   1326 
   1327 			maxiblk += FFS_INOPB(fs);
   1328 
   1329 			goto retry;
   1330 		}
   1331 	}
   1332 
   1333 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1334 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1335 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1336 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1337 	inosused = cg_inosused(cgp, needswap);
   1338 
   1339 	if (ipref) {
   1340 		ipref %= fs->fs_ipg;
   1341 		/* safeguard to stay in (to be) allocated range */
   1342 		if (ipref < maxiblk && isclr(inosused, ipref))
   1343 			goto gotit;
   1344 	}
   1345 
   1346 	irotor = ufs_rw32(cgp->cg_irotor, needswap);
   1347 
   1348 	KASSERTMSG(irotor < initediblk, "%s: allocation botch: cg=%d, irotor %d"
   1349 		   " out of bounds, initediblk=%d",
   1350 		   __func__, cg, irotor, initediblk);
   1351 
   1352 	start = irotor / NBBY;
   1353 	len = howmany(maxiblk - irotor, NBBY);
   1354 	loc = skpc(0xff, len, &inosused[start]);
   1355 	if (loc == 0) {
   1356 		len = start + 1;
   1357 		start = 0;
   1358 		loc = skpc(0xff, len, &inosused[0]);
   1359 		if (loc == 0) {
   1360 			panic("%s: map corrupted: cg=%d, irotor=%d, fs=%s",
   1361 			    __func__, cg, ufs_rw32(cgp->cg_irotor, needswap),
   1362 			    fs->fs_fsmnt);
   1363 			/* NOTREACHED */
   1364 		}
   1365 	}
   1366 	i = start + len - loc;
   1367 	map = inosused[i] ^ 0xff;
   1368 	if (map == 0) {
   1369 		panic("%s: block not in map: fs=%s", __func__, fs->fs_fsmnt);
   1370 	}
   1371 
   1372 	ipref = i * NBBY + ffs(map) - 1;
   1373 
   1374 	cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1375 
   1376 gotit:
   1377 	KASSERTMSG(ipref < maxiblk, "%s: allocation botch: cg=%d attempt to "
   1378 		   "allocate inode index %d beyond max allocated index %d"
   1379 		   " of %d inodes/cg",
   1380 		   __func__, cg, (int)ipref, maxiblk, cgp->cg_niblk);
   1381 
   1382 	UFS_WAPBL_REGISTER_INODE(ip->i_ump->um_mountp, cg * fs->fs_ipg + ipref,
   1383 	    mode);
   1384 	/*
   1385 	 * Check to see if we need to initialize more inodes.
   1386 	 */
   1387 	if (ibp != NULL) {
   1388 		KASSERT(initediblk == ufs_rw32(cgp->cg_initediblk, needswap));
   1389 		memset(ibp->b_data, 0, fs->fs_bsize);
   1390 		dp2 = (struct ufs2_dinode *)(ibp->b_data);
   1391 		for (i = 0; i < FFS_INOPB(fs); i++) {
   1392 			/*
   1393 			 * Don't bother to swap, it's supposed to be
   1394 			 * random, after all.
   1395 			 */
   1396 			dp2->di_gen = (cprng_fast32() & INT32_MAX) / 2 + 1;
   1397 			dp2++;
   1398 		}
   1399 		initediblk += FFS_INOPB(fs);
   1400 		cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
   1401 	}
   1402 
   1403 	mutex_enter(&ump->um_lock);
   1404 	ACTIVECG_CLR(fs, cg);
   1405 	setbit(inosused, ipref);
   1406 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1407 	fs->fs_cstotal.cs_nifree--;
   1408 	fs->fs_cs(fs, cg).cs_nifree--;
   1409 	fs->fs_fmod = 1;
   1410 	if ((mode & IFMT) == IFDIR) {
   1411 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1412 		fs->fs_cstotal.cs_ndir++;
   1413 		fs->fs_cs(fs, cg).cs_ndir++;
   1414 	}
   1415 	mutex_exit(&ump->um_lock);
   1416 	if (ibp != NULL) {
   1417 		bwrite(ibp);
   1418 		bwrite(bp);
   1419 	} else
   1420 		bdwrite(bp);
   1421 	return ((ino_t)(cg * fs->fs_ipg + ipref));
   1422  fail:
   1423 	if (bp != NULL)
   1424 		brelse(bp, 0);
   1425 	if (ibp != NULL)
   1426 		brelse(ibp, 0);
   1427 	mutex_enter(&ump->um_lock);
   1428 	return (0);
   1429 }
   1430 
   1431 /*
   1432  * Allocate a block or fragment.
   1433  *
   1434  * The specified block or fragment is removed from the
   1435  * free map, possibly fragmenting a block in the process.
   1436  *
   1437  * This implementation should mirror fs_blkfree
   1438  *
   1439  * => um_lock not held on entry or exit
   1440  */
   1441 int
   1442 ffs_blkalloc(struct inode *ip, daddr_t bno, long size)
   1443 {
   1444 	int error;
   1445 
   1446 	error = ffs_check_bad_allocation(__func__, ip->i_fs, bno, size,
   1447 	    ip->i_dev, ip->i_uid);
   1448 	if (error)
   1449 		return error;
   1450 
   1451 	return ffs_blkalloc_ump(ip->i_ump, bno, size);
   1452 }
   1453 
   1454 int
   1455 ffs_blkalloc_ump(struct ufsmount *ump, daddr_t bno, long size)
   1456 {
   1457 	struct fs *fs = ump->um_fs;
   1458 	struct cg *cgp;
   1459 	struct buf *bp;
   1460 	int32_t fragno, cgbno;
   1461 	int i, error, blk, frags, bbase;
   1462 	u_int cg;
   1463 	u_int8_t *blksfree;
   1464 	const int needswap = UFS_FSNEEDSWAP(fs);
   1465 
   1466 	KASSERT((u_int)size <= fs->fs_bsize && ffs_fragoff(fs, size) == 0 &&
   1467 	    ffs_fragnum(fs, bno) + ffs_numfrags(fs, size) <= fs->fs_frag);
   1468 	KASSERT(bno < fs->fs_size);
   1469 
   1470 	cg = dtog(fs, bno);
   1471 	error = bread(ump->um_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
   1472 		(int)fs->fs_cgsize, B_MODIFY, &bp);
   1473 	if (error) {
   1474 		return error;
   1475 	}
   1476 	cgp = (struct cg *)bp->b_data;
   1477 	if (!cg_chkmagic(cgp, needswap)) {
   1478 		brelse(bp, 0);
   1479 		return EIO;
   1480 	}
   1481 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1482 	cgp->cg_time = ufs_rw64(time_second, needswap);
   1483 	cgbno = dtogd(fs, bno);
   1484 	blksfree = cg_blksfree(cgp, needswap);
   1485 
   1486 	mutex_enter(&ump->um_lock);
   1487 	if (size == fs->fs_bsize) {
   1488 		fragno = ffs_fragstoblks(fs, cgbno);
   1489 		if (!ffs_isblock(fs, blksfree, fragno)) {
   1490 			mutex_exit(&ump->um_lock);
   1491 			brelse(bp, 0);
   1492 			return EBUSY;
   1493 		}
   1494 		ffs_clrblock(fs, blksfree, fragno);
   1495 		ffs_clusteracct(fs, cgp, fragno, -1);
   1496 		ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1497 		fs->fs_cstotal.cs_nbfree--;
   1498 		fs->fs_cs(fs, cg).cs_nbfree--;
   1499 	} else {
   1500 		bbase = cgbno - ffs_fragnum(fs, cgbno);
   1501 
   1502 		frags = ffs_numfrags(fs, size);
   1503 		for (i = 0; i < frags; i++) {
   1504 			if (isclr(blksfree, cgbno + i)) {
   1505 				mutex_exit(&ump->um_lock);
   1506 				brelse(bp, 0);
   1507 				return EBUSY;
   1508 			}
   1509 		}
   1510 		/*
   1511 		 * if a complete block is being split, account for it
   1512 		 */
   1513 		fragno = ffs_fragstoblks(fs, bbase);
   1514 		if (ffs_isblock(fs, blksfree, fragno)) {
   1515 			ufs_add32(cgp->cg_cs.cs_nffree, fs->fs_frag, needswap);
   1516 			fs->fs_cstotal.cs_nffree += fs->fs_frag;
   1517 			fs->fs_cs(fs, cg).cs_nffree += fs->fs_frag;
   1518 			ffs_clusteracct(fs, cgp, fragno, -1);
   1519 			ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1520 			fs->fs_cstotal.cs_nbfree--;
   1521 			fs->fs_cs(fs, cg).cs_nbfree--;
   1522 		}
   1523 		/*
   1524 		 * decrement the counts associated with the old frags
   1525 		 */
   1526 		blk = blkmap(fs, blksfree, bbase);
   1527 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1528 		/*
   1529 		 * allocate the fragment
   1530 		 */
   1531 		for (i = 0; i < frags; i++) {
   1532 			clrbit(blksfree, cgbno + i);
   1533 		}
   1534 		ufs_add32(cgp->cg_cs.cs_nffree, -i, needswap);
   1535 		fs->fs_cstotal.cs_nffree -= i;
   1536 		fs->fs_cs(fs, cg).cs_nffree -= i;
   1537 		/*
   1538 		 * add back in counts associated with the new frags
   1539 		 */
   1540 		blk = blkmap(fs, blksfree, bbase);
   1541 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1542 	}
   1543 	fs->fs_fmod = 1;
   1544 	ACTIVECG_CLR(fs, cg);
   1545 	mutex_exit(&ump->um_lock);
   1546 	bdwrite(bp);
   1547 	return 0;
   1548 }
   1549 
   1550 /*
   1551  * Free a block or fragment.
   1552  *
   1553  * The specified block or fragment is placed back in the
   1554  * free map. If a fragment is deallocated, a possible
   1555  * block reassembly is checked.
   1556  *
   1557  * => um_lock not held on entry or exit
   1558  */
   1559 static void
   1560 ffs_blkfree_cg(struct fs *fs, struct vnode *devvp, daddr_t bno, long size)
   1561 {
   1562 	struct cg *cgp;
   1563 	struct buf *bp;
   1564 	struct ufsmount *ump;
   1565 	daddr_t cgblkno;
   1566 	int error;
   1567 	u_int cg;
   1568 	dev_t dev;
   1569 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1570 	const int needswap = UFS_FSNEEDSWAP(fs);
   1571 
   1572 	KASSERT(!devvp_is_snapshot);
   1573 
   1574 	cg = dtog(fs, bno);
   1575 	dev = devvp->v_rdev;
   1576 	ump = VFSTOUFS(spec_node_getmountedfs(devvp));
   1577 	KASSERT(fs == ump->um_fs);
   1578 	cgblkno = FFS_FSBTODB(fs, cgtod(fs, cg));
   1579 
   1580 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
   1581 	    B_MODIFY, &bp);
   1582 	if (error) {
   1583 		return;
   1584 	}
   1585 	cgp = (struct cg *)bp->b_data;
   1586 	if (!cg_chkmagic(cgp, needswap)) {
   1587 		brelse(bp, 0);
   1588 		return;
   1589 	}
   1590 
   1591 	ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
   1592 
   1593 	bdwrite(bp);
   1594 }
   1595 
   1596 struct discardopdata {
   1597 	struct work wk; /* must be first */
   1598 	struct vnode *devvp;
   1599 	daddr_t bno;
   1600 	long size;
   1601 };
   1602 
   1603 struct discarddata {
   1604 	struct fs *fs;
   1605 	struct discardopdata *entry;
   1606 	long maxsize;
   1607 	kmutex_t entrylk;
   1608 	struct workqueue *wq;
   1609 	int wqcnt, wqdraining;
   1610 	kmutex_t wqlk;
   1611 	kcondvar_t wqcv;
   1612 	/* timer for flush? */
   1613 };
   1614 
   1615 static void
   1616 ffs_blkfree_td(struct fs *fs, struct discardopdata *td)
   1617 {
   1618 	struct mount *mp = spec_node_getmountedfs(td->devvp);
   1619 	long todo;
   1620 	int error;
   1621 
   1622 	while (td->size) {
   1623 		todo = uimin(td->size,
   1624 		  ffs_lfragtosize(fs, (fs->fs_frag - ffs_fragnum(fs, td->bno))));
   1625 		error = UFS_WAPBL_BEGIN(mp);
   1626 		if (error) {
   1627 			printf("ffs: failed to begin wapbl transaction"
   1628 			    " for discard: %d\n", error);
   1629 			break;
   1630 		}
   1631 		ffs_blkfree_cg(fs, td->devvp, td->bno, todo);
   1632 		UFS_WAPBL_END(mp);
   1633 		td->bno += ffs_numfrags(fs, todo);
   1634 		td->size -= todo;
   1635 	}
   1636 }
   1637 
   1638 static void
   1639 ffs_discardcb(struct work *wk, void *arg)
   1640 {
   1641 	struct discardopdata *td = (void *)wk;
   1642 	struct discarddata *ts = arg;
   1643 	struct fs *fs = ts->fs;
   1644 	off_t start, len;
   1645 #ifdef TRIMDEBUG
   1646 	int error;
   1647 #endif
   1648 
   1649 /* like FSBTODB but emits bytes; XXX move to fs.h */
   1650 #ifndef FFS_FSBTOBYTES
   1651 #define FFS_FSBTOBYTES(fs, b) ((b) << (fs)->fs_fshift)
   1652 #endif
   1653 
   1654 	start = FFS_FSBTOBYTES(fs, td->bno);
   1655 	len = td->size;
   1656 	vn_lock(td->devvp, LK_EXCLUSIVE | LK_RETRY);
   1657 #ifdef TRIMDEBUG
   1658 	error =
   1659 #endif
   1660 		VOP_FDISCARD(td->devvp, start, len);
   1661 	VOP_UNLOCK(td->devvp);
   1662 #ifdef TRIMDEBUG
   1663 	printf("trim(%" PRId64 ",%ld):%d\n", td->bno, td->size, error);
   1664 #endif
   1665 
   1666 	ffs_blkfree_td(fs, td);
   1667 	kmem_free(td, sizeof(*td));
   1668 	mutex_enter(&ts->wqlk);
   1669 	ts->wqcnt--;
   1670 	if (ts->wqdraining && !ts->wqcnt)
   1671 		cv_signal(&ts->wqcv);
   1672 	mutex_exit(&ts->wqlk);
   1673 }
   1674 
   1675 void *
   1676 ffs_discard_init(struct vnode *devvp, struct fs *fs)
   1677 {
   1678 	struct discarddata *ts;
   1679 	int error;
   1680 
   1681 	ts = kmem_zalloc(sizeof (*ts), KM_SLEEP);
   1682 	error = workqueue_create(&ts->wq, "trimwq", ffs_discardcb, ts,
   1683 				 PRI_USER, IPL_NONE, 0);
   1684 	if (error) {
   1685 		kmem_free(ts, sizeof (*ts));
   1686 		return NULL;
   1687 	}
   1688 	mutex_init(&ts->entrylk, MUTEX_DEFAULT, IPL_NONE);
   1689 	mutex_init(&ts->wqlk, MUTEX_DEFAULT, IPL_NONE);
   1690 	cv_init(&ts->wqcv, "trimwqcv");
   1691 	ts->maxsize = 100*1024; /* XXX */
   1692 	ts->fs = fs;
   1693 	return ts;
   1694 }
   1695 
   1696 void
   1697 ffs_discard_finish(void *vts, int flags)
   1698 {
   1699 	struct discarddata *ts = vts;
   1700 	struct discardopdata *td = NULL;
   1701 
   1702 	/* wait for workqueue to drain */
   1703 	mutex_enter(&ts->wqlk);
   1704 	if (ts->wqcnt) {
   1705 		ts->wqdraining = 1;
   1706 		cv_wait(&ts->wqcv, &ts->wqlk);
   1707 	}
   1708 	mutex_exit(&ts->wqlk);
   1709 
   1710 	mutex_enter(&ts->entrylk);
   1711 	if (ts->entry) {
   1712 		td = ts->entry;
   1713 		ts->entry = NULL;
   1714 	}
   1715 	mutex_exit(&ts->entrylk);
   1716 	if (td) {
   1717 		/* XXX don't tell disk, its optional */
   1718 		ffs_blkfree_td(ts->fs, td);
   1719 #ifdef TRIMDEBUG
   1720 		printf("finish(%" PRId64 ",%ld)\n", td->bno, td->size);
   1721 #endif
   1722 		kmem_free(td, sizeof(*td));
   1723 	}
   1724 
   1725 	cv_destroy(&ts->wqcv);
   1726 	mutex_destroy(&ts->entrylk);
   1727 	mutex_destroy(&ts->wqlk);
   1728 	workqueue_destroy(ts->wq);
   1729 	kmem_free(ts, sizeof(*ts));
   1730 }
   1731 
   1732 void
   1733 ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1734     ino_t inum)
   1735 {
   1736 	struct ufsmount *ump;
   1737 	int error;
   1738 	dev_t dev;
   1739 	struct discarddata *ts;
   1740 	struct discardopdata *td;
   1741 
   1742 	dev = devvp->v_rdev;
   1743 	ump = VFSTOUFS(spec_node_getmountedfs(devvp));
   1744 	if (ffs_snapblkfree(fs, devvp, bno, size, inum))
   1745 		return;
   1746 
   1747 	error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
   1748 	if (error)
   1749 		return;
   1750 
   1751 	if (!ump->um_discarddata) {
   1752 		ffs_blkfree_cg(fs, devvp, bno, size);
   1753 		return;
   1754 	}
   1755 
   1756 #ifdef TRIMDEBUG
   1757 	printf("blkfree(%" PRId64 ",%ld)\n", bno, size);
   1758 #endif
   1759 	ts = ump->um_discarddata;
   1760 	td = NULL;
   1761 
   1762 	mutex_enter(&ts->entrylk);
   1763 	if (ts->entry) {
   1764 		td = ts->entry;
   1765 		/* ffs deallocs backwards, check for prepend only */
   1766 		if (td->bno == bno + ffs_numfrags(fs, size)
   1767 		    && td->size + size <= ts->maxsize) {
   1768 			td->bno = bno;
   1769 			td->size += size;
   1770 			if (td->size < ts->maxsize) {
   1771 #ifdef TRIMDEBUG
   1772 				printf("defer(%" PRId64 ",%ld)\n", td->bno, td->size);
   1773 #endif
   1774 				mutex_exit(&ts->entrylk);
   1775 				return;
   1776 			}
   1777 			size = 0; /* mark done */
   1778 		}
   1779 		ts->entry = NULL;
   1780 	}
   1781 	mutex_exit(&ts->entrylk);
   1782 
   1783 	if (td) {
   1784 #ifdef TRIMDEBUG
   1785 		printf("enq old(%" PRId64 ",%ld)\n", td->bno, td->size);
   1786 #endif
   1787 		mutex_enter(&ts->wqlk);
   1788 		ts->wqcnt++;
   1789 		mutex_exit(&ts->wqlk);
   1790 		workqueue_enqueue(ts->wq, &td->wk, NULL);
   1791 	}
   1792 	if (!size)
   1793 		return;
   1794 
   1795 	td = kmem_alloc(sizeof(*td), KM_SLEEP);
   1796 	td->devvp = devvp;
   1797 	td->bno = bno;
   1798 	td->size = size;
   1799 
   1800 	if (td->size < ts->maxsize) { /* XXX always the case */
   1801 		mutex_enter(&ts->entrylk);
   1802 		if (!ts->entry) { /* possible race? */
   1803 #ifdef TRIMDEBUG
   1804 			printf("defer(%" PRId64 ",%ld)\n", td->bno, td->size);
   1805 #endif
   1806 			ts->entry = td;
   1807 			td = NULL;
   1808 		}
   1809 		mutex_exit(&ts->entrylk);
   1810 	}
   1811 	if (td) {
   1812 #ifdef TRIMDEBUG
   1813 		printf("enq new(%" PRId64 ",%ld)\n", td->bno, td->size);
   1814 #endif
   1815 		mutex_enter(&ts->wqlk);
   1816 		ts->wqcnt++;
   1817 		mutex_exit(&ts->wqlk);
   1818 		workqueue_enqueue(ts->wq, &td->wk, NULL);
   1819 	}
   1820 }
   1821 
   1822 /*
   1823  * Free a block or fragment from a snapshot cg copy.
   1824  *
   1825  * The specified block or fragment is placed back in the
   1826  * free map. If a fragment is deallocated, a possible
   1827  * block reassembly is checked.
   1828  *
   1829  * => um_lock not held on entry or exit
   1830  */
   1831 void
   1832 ffs_blkfree_snap(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1833     ino_t inum)
   1834 {
   1835 	struct cg *cgp;
   1836 	struct buf *bp;
   1837 	struct ufsmount *ump;
   1838 	daddr_t cgblkno;
   1839 	int error, cg;
   1840 	dev_t dev;
   1841 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1842 	const int needswap = UFS_FSNEEDSWAP(fs);
   1843 
   1844 	KASSERT(devvp_is_snapshot);
   1845 
   1846 	cg = dtog(fs, bno);
   1847 	dev = VTOI(devvp)->i_devvp->v_rdev;
   1848 	ump = VFSTOUFS(devvp->v_mount);
   1849 	cgblkno = ffs_fragstoblks(fs, cgtod(fs, cg));
   1850 
   1851 	error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
   1852 	if (error)
   1853 		return;
   1854 
   1855 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
   1856 	    B_MODIFY, &bp);
   1857 	if (error) {
   1858 		return;
   1859 	}
   1860 	cgp = (struct cg *)bp->b_data;
   1861 	if (!cg_chkmagic(cgp, needswap)) {
   1862 		brelse(bp, 0);
   1863 		return;
   1864 	}
   1865 
   1866 	ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
   1867 
   1868 	bdwrite(bp);
   1869 }
   1870 
   1871 static void
   1872 ffs_blkfree_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
   1873     struct buf *bp, daddr_t bno, long size, bool devvp_is_snapshot)
   1874 {
   1875 	struct cg *cgp;
   1876 	int32_t fragno, cgbno;
   1877 	int i, blk, frags, bbase;
   1878 	u_int cg;
   1879 	u_int8_t *blksfree;
   1880 	const int needswap = UFS_FSNEEDSWAP(fs);
   1881 
   1882 	cg = dtog(fs, bno);
   1883 	cgp = (struct cg *)bp->b_data;
   1884 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1885 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1886 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1887 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1888 	cgbno = dtogd(fs, bno);
   1889 	blksfree = cg_blksfree(cgp, needswap);
   1890 	mutex_enter(&ump->um_lock);
   1891 	if (size == fs->fs_bsize) {
   1892 		fragno = ffs_fragstoblks(fs, cgbno);
   1893 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
   1894 			if (devvp_is_snapshot) {
   1895 				mutex_exit(&ump->um_lock);
   1896 				return;
   1897 			}
   1898 			panic("%s: freeing free block: dev = 0x%llx, block = %"
   1899 			    PRId64 ", fs = %s", __func__,
   1900 			    (unsigned long long)dev, bno, fs->fs_fsmnt);
   1901 		}
   1902 		ffs_setblock(fs, blksfree, fragno);
   1903 		ffs_clusteracct(fs, cgp, fragno, 1);
   1904 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1905 		fs->fs_cstotal.cs_nbfree++;
   1906 		fs->fs_cs(fs, cg).cs_nbfree++;
   1907 		if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1908 		    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1909 			i = old_cbtocylno(fs, cgbno);
   1910 			KASSERT(i >= 0);
   1911 			KASSERT(i < fs->fs_old_ncyl);
   1912 			KASSERT(old_cbtorpos(fs, cgbno) >= 0);
   1913 			KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
   1914 			ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
   1915 			    needswap);
   1916 			ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1917 		}
   1918 	} else {
   1919 		bbase = cgbno - ffs_fragnum(fs, cgbno);
   1920 		/*
   1921 		 * decrement the counts associated with the old frags
   1922 		 */
   1923 		blk = blkmap(fs, blksfree, bbase);
   1924 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1925 		/*
   1926 		 * deallocate the fragment
   1927 		 */
   1928 		frags = ffs_numfrags(fs, size);
   1929 		for (i = 0; i < frags; i++) {
   1930 			if (isset(blksfree, cgbno + i)) {
   1931 				panic("%s: freeing free frag: "
   1932 				    "dev = 0x%llx, block = %" PRId64
   1933 				    ", fs = %s", __func__,
   1934 				    (unsigned long long)dev, bno + i,
   1935 				    fs->fs_fsmnt);
   1936 			}
   1937 			setbit(blksfree, cgbno + i);
   1938 		}
   1939 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1940 		fs->fs_cstotal.cs_nffree += i;
   1941 		fs->fs_cs(fs, cg).cs_nffree += i;
   1942 		/*
   1943 		 * add back in counts associated with the new frags
   1944 		 */
   1945 		blk = blkmap(fs, blksfree, bbase);
   1946 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1947 		/*
   1948 		 * if a complete block has been reassembled, account for it
   1949 		 */
   1950 		fragno = ffs_fragstoblks(fs, bbase);
   1951 		if (ffs_isblock(fs, blksfree, fragno)) {
   1952 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1953 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1954 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1955 			ffs_clusteracct(fs, cgp, fragno, 1);
   1956 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1957 			fs->fs_cstotal.cs_nbfree++;
   1958 			fs->fs_cs(fs, cg).cs_nbfree++;
   1959 			if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1960 			    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1961 				i = old_cbtocylno(fs, bbase);
   1962 				KASSERT(i >= 0);
   1963 				KASSERT(i < fs->fs_old_ncyl);
   1964 				KASSERT(old_cbtorpos(fs, bbase) >= 0);
   1965 				KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
   1966 				ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
   1967 				    bbase)], 1, needswap);
   1968 				ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1969 			}
   1970 		}
   1971 	}
   1972 	fs->fs_fmod = 1;
   1973 	ACTIVECG_CLR(fs, cg);
   1974 	mutex_exit(&ump->um_lock);
   1975 }
   1976 
   1977 /*
   1978  * Free an inode.
   1979  */
   1980 int
   1981 ffs_vfree(struct vnode *vp, ino_t ino, int mode)
   1982 {
   1983 
   1984 	return ffs_freefile(vp->v_mount, ino, mode);
   1985 }
   1986 
   1987 /*
   1988  * Do the actual free operation.
   1989  * The specified inode is placed back in the free map.
   1990  *
   1991  * => um_lock not held on entry or exit
   1992  */
   1993 int
   1994 ffs_freefile(struct mount *mp, ino_t ino, int mode)
   1995 {
   1996 	struct ufsmount *ump = VFSTOUFS(mp);
   1997 	struct fs *fs = ump->um_fs;
   1998 	struct vnode *devvp;
   1999 	struct cg *cgp;
   2000 	struct buf *bp;
   2001 	int error;
   2002 	u_int cg;
   2003 	daddr_t cgbno;
   2004 	dev_t dev;
   2005 	const int needswap = UFS_FSNEEDSWAP(fs);
   2006 
   2007 	cg = ino_to_cg(fs, ino);
   2008 	devvp = ump->um_devvp;
   2009 	dev = devvp->v_rdev;
   2010 	cgbno = FFS_FSBTODB(fs, cgtod(fs, cg));
   2011 
   2012 	if (ino >= fs->fs_ipg * fs->fs_ncg)
   2013 		panic("%s: range: dev = 0x%llx, ino = %llu, fs = %s", __func__,
   2014 		    (long long)dev, (unsigned long long)ino, fs->fs_fsmnt);
   2015 	error = bread(devvp, cgbno, (int)fs->fs_cgsize,
   2016 	    B_MODIFY, &bp);
   2017 	if (error) {
   2018 		return (error);
   2019 	}
   2020 	cgp = (struct cg *)bp->b_data;
   2021 	if (!cg_chkmagic(cgp, needswap)) {
   2022 		brelse(bp, 0);
   2023 		return (0);
   2024 	}
   2025 
   2026 	ffs_freefile_common(ump, fs, dev, bp, ino, mode, false);
   2027 
   2028 	bdwrite(bp);
   2029 
   2030 	return 0;
   2031 }
   2032 
   2033 int
   2034 ffs_freefile_snap(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
   2035 {
   2036 	struct ufsmount *ump;
   2037 	struct cg *cgp;
   2038 	struct buf *bp;
   2039 	int error, cg;
   2040 	daddr_t cgbno;
   2041 	dev_t dev;
   2042 	const int needswap = UFS_FSNEEDSWAP(fs);
   2043 
   2044 	KASSERT(devvp->v_type != VBLK);
   2045 
   2046 	cg = ino_to_cg(fs, ino);
   2047 	dev = VTOI(devvp)->i_devvp->v_rdev;
   2048 	ump = VFSTOUFS(devvp->v_mount);
   2049 	cgbno = ffs_fragstoblks(fs, cgtod(fs, cg));
   2050 	if (ino >= fs->fs_ipg * fs->fs_ncg)
   2051 		panic("%s: range: dev = 0x%llx, ino = %llu, fs = %s", __func__,
   2052 		    (unsigned long long)dev, (unsigned long long)ino,
   2053 		    fs->fs_fsmnt);
   2054 	error = bread(devvp, cgbno, (int)fs->fs_cgsize,
   2055 	    B_MODIFY, &bp);
   2056 	if (error) {
   2057 		return (error);
   2058 	}
   2059 	cgp = (struct cg *)bp->b_data;
   2060 	if (!cg_chkmagic(cgp, needswap)) {
   2061 		brelse(bp, 0);
   2062 		return (0);
   2063 	}
   2064 	ffs_freefile_common(ump, fs, dev, bp, ino, mode, true);
   2065 
   2066 	bdwrite(bp);
   2067 
   2068 	return 0;
   2069 }
   2070 
   2071 static void
   2072 ffs_freefile_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
   2073     struct buf *bp, ino_t ino, int mode, bool devvp_is_snapshot)
   2074 {
   2075 	u_int cg;
   2076 	struct cg *cgp;
   2077 	u_int8_t *inosused;
   2078 	const int needswap = UFS_FSNEEDSWAP(fs);
   2079 	ino_t cgino;
   2080 
   2081 	cg = ino_to_cg(fs, ino);
   2082 	cgp = (struct cg *)bp->b_data;
   2083 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   2084 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   2085 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   2086 		cgp->cg_time = ufs_rw64(time_second, needswap);
   2087 	inosused = cg_inosused(cgp, needswap);
   2088 	cgino = ino % fs->fs_ipg;
   2089 	if (isclr(inosused, cgino)) {
   2090 		printf("ifree: dev = 0x%llx, ino = %llu, fs = %s\n",
   2091 		    (unsigned long long)dev, (unsigned long long)ino,
   2092 		    fs->fs_fsmnt);
   2093 		if (fs->fs_ronly == 0)
   2094 			panic("%s: freeing free inode", __func__);
   2095 	}
   2096 	clrbit(inosused, cgino);
   2097 	if (!devvp_is_snapshot)
   2098 		UFS_WAPBL_UNREGISTER_INODE(ump->um_mountp, ino, mode);
   2099 	if (cgino < ufs_rw32(cgp->cg_irotor, needswap))
   2100 		cgp->cg_irotor = ufs_rw32(cgino, needswap);
   2101 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   2102 	mutex_enter(&ump->um_lock);
   2103 	fs->fs_cstotal.cs_nifree++;
   2104 	fs->fs_cs(fs, cg).cs_nifree++;
   2105 	if ((mode & IFMT) == IFDIR) {
   2106 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   2107 		fs->fs_cstotal.cs_ndir--;
   2108 		fs->fs_cs(fs, cg).cs_ndir--;
   2109 	}
   2110 	fs->fs_fmod = 1;
   2111 	ACTIVECG_CLR(fs, cg);
   2112 	mutex_exit(&ump->um_lock);
   2113 }
   2114 
   2115 /*
   2116  * Check to see if a file is free.
   2117  */
   2118 int
   2119 ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
   2120 {
   2121 	struct cg *cgp;
   2122 	struct buf *bp;
   2123 	daddr_t cgbno;
   2124 	int ret;
   2125 	u_int cg;
   2126 	u_int8_t *inosused;
   2127 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   2128 
   2129 	KASSERT(devvp_is_snapshot);
   2130 
   2131 	cg = ino_to_cg(fs, ino);
   2132 	if (devvp_is_snapshot)
   2133 		cgbno = ffs_fragstoblks(fs, cgtod(fs, cg));
   2134 	else
   2135 		cgbno = FFS_FSBTODB(fs, cgtod(fs, cg));
   2136 	if (ino >= fs->fs_ipg * fs->fs_ncg)
   2137 		return 1;
   2138 	if (bread(devvp, cgbno, (int)fs->fs_cgsize, 0, &bp)) {
   2139 		return 1;
   2140 	}
   2141 	cgp = (struct cg *)bp->b_data;
   2142 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   2143 		brelse(bp, 0);
   2144 		return 1;
   2145 	}
   2146 	inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
   2147 	ino %= fs->fs_ipg;
   2148 	ret = isclr(inosused, ino);
   2149 	brelse(bp, 0);
   2150 	return ret;
   2151 }
   2152 
   2153 /*
   2154  * Find a block of the specified size in the specified cylinder group.
   2155  *
   2156  * It is a panic if a request is made to find a block if none are
   2157  * available.
   2158  */
   2159 static int32_t
   2160 ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
   2161 {
   2162 	int32_t bno;
   2163 	int start, len, loc, i;
   2164 	int blk, field, subfield, pos;
   2165 	int ostart, olen;
   2166 	u_int8_t *blksfree;
   2167 	const int needswap = UFS_FSNEEDSWAP(fs);
   2168 
   2169 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   2170 
   2171 	/*
   2172 	 * find the fragment by searching through the free block
   2173 	 * map for an appropriate bit pattern
   2174 	 */
   2175 	if (bpref)
   2176 		start = dtogd(fs, bpref) / NBBY;
   2177 	else
   2178 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   2179 	blksfree = cg_blksfree(cgp, needswap);
   2180 	len = howmany(fs->fs_fpg, NBBY) - start;
   2181 	ostart = start;
   2182 	olen = len;
   2183 	loc = scanc((u_int)len,
   2184 		(const u_char *)&blksfree[start],
   2185 		(const u_char *)fragtbl[fs->fs_frag],
   2186 		(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   2187 	if (loc == 0) {
   2188 		len = start + 1;
   2189 		start = 0;
   2190 		loc = scanc((u_int)len,
   2191 			(const u_char *)&blksfree[0],
   2192 			(const u_char *)fragtbl[fs->fs_frag],
   2193 			(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   2194 		if (loc == 0) {
   2195 			panic("%s: map corrupted: start=%d, len=%d, "
   2196 			    "fs = %s, offset=%d/%ld, cg %d", __func__,
   2197 			    ostart, olen, fs->fs_fsmnt,
   2198 			    ufs_rw32(cgp->cg_freeoff, needswap),
   2199 			    (long)blksfree - (long)cgp, cgp->cg_cgx);
   2200 			/* NOTREACHED */
   2201 		}
   2202 	}
   2203 	bno = (start + len - loc) * NBBY;
   2204 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   2205 	/*
   2206 	 * found the byte in the map
   2207 	 * sift through the bits to find the selected frag
   2208 	 */
   2209 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   2210 		blk = blkmap(fs, blksfree, bno);
   2211 		blk <<= 1;
   2212 		field = around[allocsiz];
   2213 		subfield = inside[allocsiz];
   2214 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   2215 			if ((blk & field) == subfield)
   2216 				return (bno + pos);
   2217 			field <<= 1;
   2218 			subfield <<= 1;
   2219 		}
   2220 	}
   2221 	panic("%s: block not in map: bno=%d, fs=%s", __func__,
   2222 	    bno, fs->fs_fsmnt);
   2223 	/* return (-1); */
   2224 }
   2225 
   2226 /*
   2227  * Fserr prints the name of a file system with an error diagnostic.
   2228  *
   2229  * The form of the error message is:
   2230  *	fs: error message
   2231  */
   2232 static void
   2233 ffs_fserr(struct fs *fs, kauth_cred_t cred, const char *cp)
   2234 {
   2235 	KASSERT(cred != NULL);
   2236 
   2237 	if (cred == NOCRED || cred == FSCRED) {
   2238 		log(LOG_ERR, "pid %d, command %s, on %s: %s\n",
   2239 		    curproc->p_pid, curproc->p_comm,
   2240 		    fs->fs_fsmnt, cp);
   2241 	} else {
   2242 		log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
   2243 		    kauth_cred_getuid(cred), curproc->p_pid, curproc->p_comm,
   2244 		    fs->fs_fsmnt, cp);
   2245 	}
   2246 }
   2247