Home | History | Annotate | Line # | Download | only in ffs
      1 /*	$NetBSD: ffs_vfsops.c,v 1.384 2024/12/30 09:03:07 hannken Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Wasabi Systems, Inc, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1989, 1991, 1993, 1994
     34  *	The Regents of the University of California.  All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. Neither the name of the University nor the names of its contributors
     45  *    may be used to endorse or promote products derived from this software
     46  *    without specific prior written permission.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  *
     60  *	@(#)ffs_vfsops.c	8.31 (Berkeley) 5/20/95
     61  */
     62 
     63 #include <sys/cdefs.h>
     64 __KERNEL_RCSID(0, "$NetBSD: ffs_vfsops.c,v 1.384 2024/12/30 09:03:07 hannken Exp $");
     65 
     66 #if defined(_KERNEL_OPT)
     67 #include "opt_ffs.h"
     68 #include "opt_quota.h"
     69 #include "opt_wapbl.h"
     70 #endif
     71 
     72 #include <sys/param.h>
     73 #include <sys/systm.h>
     74 #include <sys/namei.h>
     75 #include <sys/proc.h>
     76 #include <sys/kernel.h>
     77 #include <sys/vnode.h>
     78 #include <sys/fstrans.h>
     79 #include <sys/socket.h>
     80 #include <sys/mount.h>
     81 #include <sys/buf.h>
     82 #include <sys/device.h>
     83 #include <sys/disk.h>
     84 #include <sys/file.h>
     85 #include <sys/disklabel.h>
     86 #include <sys/ioctl.h>
     87 #include <sys/errno.h>
     88 #include <sys/kmem.h>
     89 #include <sys/pool.h>
     90 #include <sys/lock.h>
     91 #include <sys/sysctl.h>
     92 #include <sys/conf.h>
     93 #include <sys/kauth.h>
     94 #include <sys/wapbl.h>
     95 #include <sys/module.h>
     96 
     97 #include <miscfs/genfs/genfs.h>
     98 #include <miscfs/specfs/specdev.h>
     99 
    100 #include <ufs/ufs/quota.h>
    101 #include <ufs/ufs/ufsmount.h>
    102 #include <ufs/ufs/inode.h>
    103 #include <ufs/ufs/dir.h>
    104 #include <ufs/ufs/ufs_extern.h>
    105 #include <ufs/ufs/ufs_bswap.h>
    106 #include <ufs/ufs/ufs_wapbl.h>
    107 
    108 #include <ufs/ffs/fs.h>
    109 #include <ufs/ffs/ffs_extern.h>
    110 
    111 #ifdef WAPBL
    112 MODULE(MODULE_CLASS_VFS, ffs, "ufs,wapbl");
    113 #else
    114 MODULE(MODULE_CLASS_VFS, ffs, "ufs");
    115 #endif
    116 
    117 static int ffs_vfs_fsync(vnode_t *, int);
    118 static int ffs_superblock_validate(struct fs *);
    119 static int ffs_is_appleufs(struct vnode *, struct fs *);
    120 
    121 static int ffs_init_vnode(struct ufsmount *, struct vnode *, ino_t);
    122 static void ffs_deinit_vnode(struct ufsmount *, struct vnode *);
    123 
    124 static kauth_listener_t ffs_snapshot_listener;
    125 
    126 /* how many times ffs_init() was called */
    127 int ffs_initcount = 0;
    128 
    129 #ifdef DEBUG_FFS_MOUNT
    130 #define DPRINTF(_fmt, args...)	printf("%s: " _fmt "\n", __func__, ##args)
    131 #else
    132 #define DPRINTF(_fmt, args...)	do {} while (/*CONSTCOND*/0)
    133 #endif
    134 
    135 extern const struct vnodeopv_desc ffs_vnodeop_opv_desc;
    136 extern const struct vnodeopv_desc ffs_specop_opv_desc;
    137 extern const struct vnodeopv_desc ffs_fifoop_opv_desc;
    138 
    139 const struct vnodeopv_desc * const ffs_vnodeopv_descs[] = {
    140 	&ffs_vnodeop_opv_desc,
    141 	&ffs_specop_opv_desc,
    142 	&ffs_fifoop_opv_desc,
    143 	NULL,
    144 };
    145 
    146 struct vfsops ffs_vfsops = {
    147 	.vfs_name = MOUNT_FFS,
    148 	.vfs_min_mount_data = sizeof (struct ufs_args),
    149 	.vfs_mount = ffs_mount,
    150 	.vfs_start = ufs_start,
    151 	.vfs_unmount = ffs_unmount,
    152 	.vfs_root = ufs_root,
    153 	.vfs_quotactl = ufs_quotactl,
    154 	.vfs_statvfs = ffs_statvfs,
    155 	.vfs_sync = ffs_sync,
    156 	.vfs_vget = ufs_vget,
    157 	.vfs_loadvnode = ffs_loadvnode,
    158 	.vfs_newvnode = ffs_newvnode,
    159 	.vfs_fhtovp = ffs_fhtovp,
    160 	.vfs_vptofh = ffs_vptofh,
    161 	.vfs_init = ffs_init,
    162 	.vfs_reinit = ffs_reinit,
    163 	.vfs_done = ffs_done,
    164 	.vfs_mountroot = ffs_mountroot,
    165 	.vfs_snapshot = ffs_snapshot,
    166 	.vfs_extattrctl = ffs_extattrctl,
    167 	.vfs_suspendctl = genfs_suspendctl,
    168 	.vfs_renamelock_enter = genfs_renamelock_enter,
    169 	.vfs_renamelock_exit = genfs_renamelock_exit,
    170 	.vfs_fsync = ffs_vfs_fsync,
    171 	.vfs_opv_descs = ffs_vnodeopv_descs
    172 };
    173 
    174 static const struct genfs_ops ffs_genfsops = {
    175 	.gop_size = ffs_gop_size,
    176 	.gop_alloc = ufs_gop_alloc,
    177 	.gop_write = genfs_gop_write,
    178 	.gop_markupdate = ufs_gop_markupdate,
    179 	.gop_putrange = genfs_gop_putrange,
    180 };
    181 
    182 static const struct ufs_ops ffs_ufsops = {
    183 	.uo_itimes = ffs_itimes,
    184 	.uo_update = ffs_update,
    185 	.uo_truncate = ffs_truncate,
    186 	.uo_balloc = ffs_balloc,
    187 	.uo_snapgone = ffs_snapgone,
    188 	.uo_bufrd = ffs_bufrd,
    189 	.uo_bufwr = ffs_bufwr,
    190 };
    191 
    192 static int
    193 ffs_checkrange(struct mount *mp, ino_t ino)
    194 {
    195 	struct fs *fs = VFSTOUFS(mp)->um_fs;
    196 
    197 	if (ino < UFS_ROOTINO || ino >= fs->fs_ncg * fs->fs_ipg) {
    198 		DPRINTF("out of range %" PRIu64 "\n", ino);
    199 		return ESTALE;
    200 	}
    201 
    202 	/*
    203 	 * Need to check if inode is initialized because ffsv2 does
    204 	 * lazy initialization and we can get here from nfs_fhtovp
    205 	 */
    206 	if (fs->fs_magic != FS_UFS2_MAGIC)
    207 		return 0;
    208 
    209 	struct buf *bp;
    210 	int cg = ino_to_cg(fs, ino);
    211 	struct ufsmount *ump = VFSTOUFS(mp);
    212 
    213 	int error = bread(ump->um_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
    214 	    (int)fs->fs_cgsize, B_MODIFY, &bp);
    215 	if (error) {
    216 		DPRINTF("error %d reading cg %d ino %" PRIu64 "\n",
    217 		    error, cg, ino);
    218 		return error;
    219 	}
    220 
    221 	const int needswap = UFS_FSNEEDSWAP(fs);
    222 
    223 	struct cg *cgp = (struct cg *)bp->b_data;
    224 	if (!cg_chkmagic(cgp, needswap)) {
    225 		brelse(bp, 0);
    226 		DPRINTF("bad cylinder group magic cg %d ino %" PRIu64 "\n",
    227 		    cg, ino);
    228 		return ESTALE;
    229 	}
    230 
    231 	int32_t initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
    232 	brelse(bp, 0);
    233 
    234 	if (cg * fs->fs_ipg + initediblk < ino) {
    235 		DPRINTF("cg=%d fs->fs_ipg=%d initediblk=%d ino=%" PRIu64 "\n",
    236 		    cg, fs->fs_ipg, initediblk, ino);
    237 		return ESTALE;
    238 	}
    239 	return 0;
    240 }
    241 
    242 static int
    243 ffs_snapshot_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    244     void *arg0, void *arg1, void *arg2, void *arg3)
    245 {
    246 	vnode_t *vp = arg2;
    247 	int result = KAUTH_RESULT_DEFER;
    248 
    249 	if (action != KAUTH_SYSTEM_FS_SNAPSHOT)
    250 		return result;
    251 
    252 	if (VTOI(vp)->i_uid == kauth_cred_geteuid(cred))
    253 		result = KAUTH_RESULT_ALLOW;
    254 
    255 	return result;
    256 }
    257 
    258 SYSCTL_SETUP(ffs_sysctl_setup, "ffs sysctls")
    259 {
    260 #ifdef UFS_EXTATTR
    261 	extern int ufs_extattr_autocreate;
    262 #endif
    263 	extern int ffs_log_changeopt;
    264 
    265 	sysctl_createv(clog, 0, NULL, NULL,
    266 		       CTLFLAG_PERMANENT,
    267 		       CTLTYPE_NODE, "ffs",
    268 		       SYSCTL_DESCR("Berkeley Fast File System"),
    269 		       NULL, 0, NULL, 0,
    270 		       CTL_VFS, 1, CTL_EOL);
    271 	/*
    272 	 * @@@ should we even bother with these first three?
    273 	 */
    274 	sysctl_createv(clog, 0, NULL, NULL,
    275 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    276 		       CTLTYPE_INT, "doclusterread", NULL,
    277 		       sysctl_notavail, 0, NULL, 0,
    278 		       CTL_VFS, 1, FFS_CLUSTERREAD, CTL_EOL);
    279 	sysctl_createv(clog, 0, NULL, NULL,
    280 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    281 		       CTLTYPE_INT, "doclusterwrite", NULL,
    282 		       sysctl_notavail, 0, NULL, 0,
    283 		       CTL_VFS, 1, FFS_CLUSTERWRITE, CTL_EOL);
    284 	sysctl_createv(clog, 0, NULL, NULL,
    285 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    286 		       CTLTYPE_INT, "doreallocblks", NULL,
    287 		       sysctl_notavail, 0, NULL, 0,
    288 		       CTL_VFS, 1, FFS_REALLOCBLKS, CTL_EOL);
    289 #if 0
    290 	sysctl_createv(clog, 0, NULL, NULL,
    291 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    292 		       CTLTYPE_INT, "doasyncfree",
    293 		       SYSCTL_DESCR("Release dirty blocks asynchronously"),
    294 		       NULL, 0, &doasyncfree, 0,
    295 		       CTL_VFS, 1, FFS_ASYNCFREE, CTL_EOL);
    296 #endif
    297 	sysctl_createv(clog, 0, NULL, NULL,
    298 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    299 		       CTLTYPE_INT, "log_changeopt",
    300 		       SYSCTL_DESCR("Log changes in optimization strategy"),
    301 		       NULL, 0, &ffs_log_changeopt, 0,
    302 		       CTL_VFS, 1, FFS_LOG_CHANGEOPT, CTL_EOL);
    303 #ifdef UFS_EXTATTR
    304 	sysctl_createv(clog, 0, NULL, NULL,
    305 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    306 		       CTLTYPE_INT, "extattr_autocreate",
    307 		       SYSCTL_DESCR("Size of attribute for "
    308 				    "backing file autocreation"),
    309 		       NULL, 0, &ufs_extattr_autocreate, 0,
    310 		       CTL_VFS, 1, FFS_EXTATTR_AUTOCREATE, CTL_EOL);
    311 
    312 #endif /* UFS_EXTATTR */
    313 }
    314 
    315 static int
    316 ffs_modcmd(modcmd_t cmd, void *arg)
    317 {
    318 	int error;
    319 
    320 #if 0
    321 	extern int doasyncfree;
    322 #endif
    323 
    324 	switch (cmd) {
    325 	case MODULE_CMD_INIT:
    326 		error = vfs_attach(&ffs_vfsops);
    327 		if (error != 0)
    328 			break;
    329 
    330 		ffs_snapshot_listener = kauth_listen_scope(KAUTH_SCOPE_SYSTEM,
    331 		    ffs_snapshot_cb, NULL);
    332 		if (ffs_snapshot_listener == NULL)
    333 			printf("ffs_modcmd: can't listen on system scope.\n");
    334 
    335 		break;
    336 	case MODULE_CMD_FINI:
    337 		error = vfs_detach(&ffs_vfsops);
    338 		if (error != 0)
    339 			break;
    340 		if (ffs_snapshot_listener != NULL)
    341 			kauth_unlisten_scope(ffs_snapshot_listener);
    342 		break;
    343 	default:
    344 		error = ENOTTY;
    345 		break;
    346 	}
    347 
    348 	return (error);
    349 }
    350 
    351 pool_cache_t ffs_inode_cache;
    352 pool_cache_t ffs_dinode1_cache;
    353 pool_cache_t ffs_dinode2_cache;
    354 
    355 static void ffs_oldfscompat_read(struct fs *, struct ufsmount *, daddr_t);
    356 static void ffs_oldfscompat_write(struct fs *, struct ufsmount *);
    357 
    358 /*
    359  * Called by main() when ffs is going to be mounted as root.
    360  */
    361 
    362 int
    363 ffs_mountroot(void)
    364 {
    365 	struct fs *fs;
    366 	struct mount *mp;
    367 	struct lwp *l = curlwp;			/* XXX */
    368 	struct ufsmount *ump;
    369 	int error;
    370 
    371 	if (device_class(root_device) != DV_DISK)
    372 		return (ENODEV);
    373 
    374 	if ((error = vfs_rootmountalloc(MOUNT_FFS, "root_device", &mp))) {
    375 		vrele(rootvp);
    376 		return (error);
    377 	}
    378 
    379 	/*
    380 	 * We always need to be able to mount the root file system.
    381 	 */
    382 	mp->mnt_flag |= MNT_FORCE;
    383 	if ((error = ffs_mountfs(rootvp, mp, l)) != 0) {
    384 		vfs_unbusy(mp);
    385 		vfs_rele(mp);
    386 		return (error);
    387 	}
    388 	mp->mnt_flag &= ~MNT_FORCE;
    389 	mountlist_append(mp);
    390 	ump = VFSTOUFS(mp);
    391 	fs = ump->um_fs;
    392 	memset(fs->fs_fsmnt, 0, sizeof(fs->fs_fsmnt));
    393 	(void)copystr(mp->mnt_stat.f_mntonname, fs->fs_fsmnt, MNAMELEN - 1, 0);
    394 	(void)ffs_statvfs(mp, &mp->mnt_stat);
    395 	vfs_unbusy(mp);
    396 	setrootfstime((time_t)fs->fs_time);
    397 	return (0);
    398 }
    399 
    400 static int
    401 ffs_acls(struct mount *mp, int fs_flags)
    402 {
    403 	struct ufsmount *ump;
    404 
    405 	ump = VFSTOUFS(mp);
    406 	if (ump->um_fstype == UFS2 && (ump->um_flags & UFS_EA) == 0 &&
    407 	    ((mp->mnt_flag & (MNT_POSIX1EACLS | MNT_NFS4ACLS)) != 0 ||
    408 	     (fs_flags & (FS_POSIX1EACLS | FS_NFS4ACLS)) != 0)) {
    409 		printf("%s: ACLs requested but not supported by this fs\n",
    410 		       mp->mnt_stat.f_mntonname);
    411 		return EINVAL;
    412 	}
    413 
    414 	if ((fs_flags & FS_POSIX1EACLS) != 0) {
    415 #ifdef UFS_ACL
    416 		if (mp->mnt_flag & MNT_NFS4ACLS)
    417 			printf("WARNING: %s: POSIX.1e ACLs flag on fs conflicts "
    418 			    "with \"nfsv4acls\" mount option; option ignored\n",
    419 			    mp->mnt_stat.f_mntonname);
    420 		mp->mnt_flag &= ~MNT_NFS4ACLS;
    421 		mp->mnt_flag |= MNT_POSIX1EACLS;
    422 #else
    423 		printf("WARNING: %s: POSIX.1e ACLs flag on fs but no "
    424 		    "ACLs support\n", mp->mnt_stat.f_mntonname);
    425 #endif
    426 	}
    427 	if ((fs_flags & FS_NFS4ACLS) != 0) {
    428 #ifdef UFS_ACL
    429 		if (mp->mnt_flag & MNT_POSIX1EACLS)
    430 			printf("WARNING: %s: NFSv4 ACLs flag on fs conflicts "
    431 			    "with \"posix1eacls\" mount option; option ignored\n",
    432 			    mp->mnt_stat.f_mntonname);
    433 		mp->mnt_flag &= ~MNT_POSIX1EACLS;
    434 		mp->mnt_flag |= MNT_NFS4ACLS;
    435 
    436 #else
    437 		printf("WARNING: %s: NFSv4 ACLs flag on fs but no "
    438 		    "ACLs support\n", mp->mnt_stat.f_mntonname);
    439 #endif
    440 	}
    441 	if ((mp->mnt_flag & (MNT_NFS4ACLS | MNT_POSIX1EACLS))
    442 	    == (MNT_NFS4ACLS | MNT_POSIX1EACLS))
    443 	{
    444 		printf("%s: \"posix1eacls\" and \"nfsv4acls\" options "
    445 		       "are mutually exclusive\n",
    446 		    mp->mnt_stat.f_mntonname);
    447 		return EINVAL;
    448 	}
    449 
    450 	if (mp->mnt_flag & (MNT_NFS4ACLS | MNT_POSIX1EACLS))
    451 		mp->mnt_iflag &= ~(IMNT_SHRLOOKUP|IMNT_NCLOOKUP);
    452 	else
    453 		mp->mnt_iflag |= IMNT_SHRLOOKUP|IMNT_NCLOOKUP;
    454 	return 0;
    455 }
    456 
    457 /*
    458  * VFS Operations.
    459  *
    460  * mount system call
    461  */
    462 int
    463 ffs_mount(struct mount *mp, const char *path, void *data, size_t *data_len)
    464 {
    465 	struct lwp *l = curlwp;
    466 	struct vnode *devvp = NULL;
    467 	struct ufs_args *args = data;
    468 	struct ufsmount *ump = NULL;
    469 	struct fs *fs;
    470 	int error = 0, flags, update;
    471 	mode_t accessmode;
    472 
    473 	if (args == NULL) {
    474 		DPRINTF("NULL args");
    475 		return EINVAL;
    476 	}
    477 	if (*data_len < sizeof(*args)) {
    478 		DPRINTF("bad size args %zu != %zu", *data_len, sizeof(*args));
    479 		return EINVAL;
    480 	}
    481 
    482 	ump = VFSTOUFS(mp);
    483 	if ((mp->mnt_flag & (MNT_GETARGS|MNT_UPDATE)) && ump == NULL) {
    484 		DPRINTF("no ump");
    485 		return EIO;
    486 	}
    487 
    488 	if (mp->mnt_flag & MNT_GETARGS) {
    489 		args->fspec = NULL;
    490 		*data_len = sizeof *args;
    491 		return 0;
    492 	}
    493 
    494 	update = mp->mnt_flag & MNT_UPDATE;
    495 
    496 	/* Check arguments */
    497 	if (args->fspec == NULL) {
    498 		if (!update) {
    499 			/* New mounts must have a filename for the device */
    500 			DPRINTF("no filename for mount");
    501 			return EINVAL;
    502 		}
    503 	} else {
    504 		/*
    505 		 * Look up the name and verify that it's sane.
    506 		 */
    507 		error = namei_simple_user(args->fspec,
    508 		    NSM_FOLLOW_NOEMULROOT, &devvp);
    509 		if (error != 0) {
    510 			DPRINTF("namei_simple_user returned %d", error);
    511 			return error;
    512 		}
    513 
    514 		/*
    515 		 * Be sure this is a valid block device
    516 		 */
    517 		if (devvp->v_type != VBLK) {
    518 			DPRINTF("non block device %d", devvp->v_type);
    519 			error = ENOTBLK;
    520 			goto fail;
    521 		}
    522 
    523 		if (bdevsw_lookup(devvp->v_rdev) == NULL) {
    524 			DPRINTF("can't find block device 0x%jx",
    525 			    devvp->v_rdev);
    526 			error = ENXIO;
    527 			goto fail;
    528 		}
    529 
    530 		if (update) {
    531 			/*
    532 			 * Be sure we're still naming the same device
    533 			 * used for our initial mount
    534 			 */
    535 			if (devvp != ump->um_devvp &&
    536 			    devvp->v_rdev != ump->um_devvp->v_rdev) {
    537 				DPRINTF("wrong device 0x%jx != 0x%jx",
    538 				    (uintmax_t)devvp->v_rdev,
    539 				    (uintmax_t)ump->um_devvp->v_rdev);
    540 				error = EINVAL;
    541 				goto fail;
    542 			}
    543 			vrele(devvp);
    544 			devvp = NULL;
    545 		}
    546 	}
    547 
    548 	if (devvp == NULL) {
    549 		devvp = ump->um_devvp;
    550 		vref(devvp);
    551 	}
    552 
    553 	/*
    554 	 * If mount by non-root, then verify that user has necessary
    555 	 * permissions on the device.
    556 	 *
    557 	 * Permission to update a mount is checked higher, so here we presume
    558 	 * updating the mount is okay (for example, as far as securelevel goes)
    559 	 * which leaves us with the normal check.
    560 	 */
    561 	accessmode = VREAD;
    562 	if (update ? (mp->mnt_iflag & IMNT_WANTRDWR) != 0 :
    563 	    (mp->mnt_flag & MNT_RDONLY) == 0)
    564 		accessmode |= VWRITE;
    565 	vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
    566 	error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_MOUNT,
    567 	    KAUTH_REQ_SYSTEM_MOUNT_DEVICE, mp, devvp, KAUTH_ARG(accessmode));
    568 	VOP_UNLOCK(devvp);
    569 	if (error) {
    570 		DPRINTF("kauth returned %d", error);
    571 		goto fail;
    572 	}
    573 
    574 #ifdef WAPBL
    575 	/* WAPBL can only be enabled on a r/w mount. */
    576 	if (((mp->mnt_flag & MNT_RDONLY) && !(mp->mnt_iflag & IMNT_WANTRDWR)) ||
    577 	    (mp->mnt_iflag & IMNT_WANTRDONLY)) {
    578 		mp->mnt_flag &= ~MNT_LOG;
    579 	}
    580 #else /* !WAPBL */
    581 	mp->mnt_flag &= ~MNT_LOG;
    582 #endif /* !WAPBL */
    583 
    584 	error = set_statvfs_info(path, UIO_USERSPACE, args->fspec,
    585 	    UIO_USERSPACE, mp->mnt_op->vfs_name, mp, l);
    586 	if (error)
    587 		goto fail;
    588 
    589 	if (!update) {
    590 		int xflags;
    591 
    592 		if (mp->mnt_flag & MNT_RDONLY)
    593 			xflags = FREAD;
    594 		else
    595 			xflags = FREAD | FWRITE;
    596 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
    597 		error = VOP_OPEN(devvp, xflags, FSCRED);
    598 		VOP_UNLOCK(devvp);
    599 		if (error) {
    600 			DPRINTF("VOP_OPEN returned %d", error);
    601 			goto fail;
    602 		}
    603 		/* Need fstrans_start() for assertion in ufs_strategy(). */
    604 		if ((mp->mnt_flag & MNT_RDONLY) == 0)
    605 			fstrans_start(mp);
    606 		error = ffs_mountfs(devvp, mp, l);
    607 		if ((mp->mnt_flag & MNT_RDONLY) == 0)
    608 			fstrans_done(mp);
    609 		if (error) {
    610 			DPRINTF("ffs_mountfs returned %d", error);
    611 			vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
    612 			(void)VOP_CLOSE(devvp, xflags, NOCRED);
    613 			VOP_UNLOCK(devvp);
    614 			goto fail;
    615 		}
    616 
    617 		ump = VFSTOUFS(mp);
    618 		fs = ump->um_fs;
    619 	} else {
    620 		/*
    621 		 * Update the mount.  The file system is suspended.
    622 		 */
    623 		KASSERT(fstrans_is_owner(mp));
    624 
    625 		/*
    626 		 * The initial mount got a reference on this
    627 		 * device, so drop the one obtained via
    628 		 * namei(), above.
    629 		 */
    630 		vrele(devvp);
    631 
    632 		ump = VFSTOUFS(mp);
    633 		fs = ump->um_fs;
    634 		if (fs->fs_ronly == 0 && (mp->mnt_iflag & IMNT_WANTRDONLY)) {
    635 			/*
    636 			 * Changing from r/w to r/o
    637 			 */
    638 			flags = WRITECLOSE;
    639 			if (mp->mnt_flag & MNT_FORCE)
    640 				flags |= FORCECLOSE;
    641 			error = ffs_flushfiles(mp, flags, l);
    642 			if (error)
    643 				return error;
    644 
    645 			error = UFS_WAPBL_BEGIN(mp);
    646 			if (error) {
    647 				DPRINTF("wapbl %d", error);
    648 				return error;
    649 			}
    650 
    651 			if (ffs_cgupdate(ump, MNT_WAIT) == 0 &&
    652 			    fs->fs_clean & FS_WASCLEAN) {
    653 				if (mp->mnt_flag & MNT_SOFTDEP)
    654 					fs->fs_flags &= ~FS_DOSOFTDEP;
    655 				fs->fs_clean = FS_ISCLEAN;
    656 				(void) ffs_sbupdate(ump, MNT_WAIT);
    657 			}
    658 
    659 			UFS_WAPBL_END(mp);
    660 		}
    661 
    662 #ifdef WAPBL
    663 		if ((mp->mnt_flag & MNT_LOG) == 0) {
    664 			error = ffs_wapbl_stop(mp, mp->mnt_flag & MNT_FORCE);
    665 			if (error) {
    666 				DPRINTF("ffs_wapbl_stop returned %d", error);
    667 				return error;
    668 			}
    669 		}
    670 #endif /* WAPBL */
    671 
    672 		if (fs->fs_ronly == 0 && (mp->mnt_iflag & IMNT_WANTRDONLY)) {
    673 			/*
    674 			 * Finish change from r/w to r/o
    675 			 */
    676 			fs->fs_ronly = 1;
    677 			fs->fs_fmod = 0;
    678 		}
    679 
    680 		error = ffs_acls(mp, fs->fs_flags);
    681 		if (error)
    682 			return error;
    683 		if (mp->mnt_flag & MNT_RELOAD) {
    684 			error = ffs_reload(mp, l->l_cred, l);
    685 			if (error) {
    686 				DPRINTF("ffs_reload returned %d", error);
    687 				return error;
    688 			}
    689 		}
    690 
    691 		if (fs->fs_ronly && (mp->mnt_iflag & IMNT_WANTRDWR)) {
    692 			/*
    693 			 * Changing from read-only to read/write
    694 			 */
    695 #ifndef QUOTA2
    696 			if (fs->fs_flags & FS_DOQUOTA2) {
    697 				ump->um_flags |= UFS_QUOTA2;
    698 				uprintf("%s: options QUOTA2 not enabled%s\n",
    699 				    mp->mnt_stat.f_mntonname,
    700 				    (mp->mnt_flag & MNT_FORCE) ? "" :
    701 				    ", not mounting");
    702 				DPRINTF("ffs_quota2 %d", EINVAL);
    703 				return EINVAL;
    704 			}
    705 #endif
    706 			fs->fs_ronly = 0;
    707 			fs->fs_clean =
    708 			    fs->fs_clean == FS_ISCLEAN ? FS_WASCLEAN : 0;
    709 			fs->fs_fmod = 1;
    710 #ifdef WAPBL
    711 			if (fs->fs_flags & FS_DOWAPBL) {
    712 				const char *nm = mp->mnt_stat.f_mntonname;
    713 				if (!mp->mnt_wapbl_replay) {
    714 					printf("%s: log corrupted;"
    715 					    " replay cancelled\n", nm);
    716 					return EFTYPE;
    717 				}
    718 				printf("%s: replaying log to disk\n", nm);
    719 				error = wapbl_replay_write(mp->mnt_wapbl_replay,
    720 				    devvp);
    721 				if (error) {
    722 					DPRINTF("%s: wapbl_replay_write %d",
    723 					    nm, error);
    724 					return error;
    725 				}
    726 				wapbl_replay_stop(mp->mnt_wapbl_replay);
    727 				fs->fs_clean = FS_WASCLEAN;
    728 			}
    729 #endif /* WAPBL */
    730 			if (fs->fs_snapinum[0] != 0)
    731 				ffs_snapshot_mount(mp);
    732 		}
    733 
    734 #ifdef WAPBL
    735 		error = ffs_wapbl_start(mp);
    736 		if (error) {
    737 			DPRINTF("ffs_wapbl_start returned %d", error);
    738 			return error;
    739 		}
    740 #endif /* WAPBL */
    741 
    742 #ifdef QUOTA2
    743 		if (!fs->fs_ronly) {
    744 			error = ffs_quota2_mount(mp);
    745 			if (error) {
    746 				DPRINTF("ffs_quota2_mount returned %d", error);
    747 				return error;
    748 			}
    749 		}
    750 #endif
    751 
    752 		if ((mp->mnt_flag & MNT_DISCARD) && !(ump->um_discarddata))
    753 			ump->um_discarddata = ffs_discard_init(devvp, fs);
    754 
    755 		if (args->fspec == NULL)
    756 			return 0;
    757 	}
    758 
    759 	(void)strncpy(fs->fs_fsmnt, mp->mnt_stat.f_mntonname,
    760 	    sizeof(fs->fs_fsmnt));
    761 
    762 	fs->fs_flags &= ~FS_DOSOFTDEP;
    763 
    764 	if ((fs->fs_ronly && (fs->fs_clean & FS_ISCLEAN) == 0) ||
    765 	    (!fs->fs_ronly && (fs->fs_clean & FS_WASCLEAN) == 0)) {
    766 		printf("%s: file system not clean (fs_clean=%#x); "
    767 		    "please fsck(8)\n", mp->mnt_stat.f_mntfromname,
    768 		    fs->fs_clean);
    769 	}
    770 
    771 	if (UFS_WAPBL_BEGIN(mp) == 0) {
    772 		mutex_enter(&ump->um_lock);
    773 		if (fs->fs_fmod != 0) {
    774 			KASSERT(!fs->fs_ronly);
    775 
    776 			if (fs->fs_clean & FS_WASCLEAN)
    777 				fs->fs_time = time_second;
    778 			fs->fs_fmod = 0;
    779 			mutex_exit(&ump->um_lock);
    780 			(void) ffs_cgupdate(ump, MNT_WAIT);
    781 		} else {
    782 			mutex_exit(&ump->um_lock);
    783 		}
    784 		UFS_WAPBL_END(mp);
    785 	}
    786 	if ((mp->mnt_flag & MNT_SOFTDEP) != 0) {
    787 		printf("%s: `-o softdep' is no longer supported, "
    788 		    "consider `-o log'\n", mp->mnt_stat.f_mntfromname);
    789 		mp->mnt_flag &= ~MNT_SOFTDEP;
    790 	}
    791 
    792 	return (error);
    793 
    794 fail:
    795 	vrele(devvp);
    796 	return (error);
    797 }
    798 
    799 /*
    800  * Reload all incore data for a filesystem (used after running fsck on
    801  * the root filesystem and finding things to fix). The filesystem must
    802  * be mounted read-only.
    803  *
    804  * Things to do to update the mount:
    805  *	1) invalidate all cached meta-data.
    806  *	2) re-read superblock from disk.
    807  *	3) re-read summary information from disk.
    808  *	4) invalidate all inactive vnodes.
    809  *	5) invalidate all cached file data.
    810  *	6) re-read inode data for all active vnodes.
    811  */
    812 int
    813 ffs_reload(struct mount *mp, kauth_cred_t cred, struct lwp *l)
    814 {
    815 	struct vnode *vp, *devvp;
    816 	struct inode *ip;
    817 	void *space;
    818 	struct buf *bp;
    819 	struct fs *fs, *newfs;
    820 	int i, bsize, blks, error;
    821 	int32_t *lp, fs_sbsize;
    822 	struct ufsmount *ump;
    823 	daddr_t sblockloc;
    824 	struct vnode_iterator *marker;
    825 
    826 	if ((mp->mnt_flag & MNT_RDONLY) == 0)
    827 		return (EINVAL);
    828 
    829 	ump = VFSTOUFS(mp);
    830 
    831 	/*
    832 	 * Step 1: invalidate all cached meta-data.
    833 	 */
    834 	devvp = ump->um_devvp;
    835 	vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
    836 	error = vinvalbuf(devvp, 0, cred, l, 0, 0);
    837 	VOP_UNLOCK(devvp);
    838 	if (error)
    839 		panic("%s: dirty1", __func__);
    840 
    841 	/*
    842 	 * Step 2: re-read superblock from disk. XXX: We don't handle
    843 	 * possibility that superblock moved. Which implies that we don't
    844 	 * want its size to change either.
    845 	 */
    846 	fs = ump->um_fs;
    847 	fs_sbsize = fs->fs_sbsize;
    848 	error = bread(devvp, fs->fs_sblockloc / DEV_BSIZE, fs_sbsize,
    849 		      0, &bp);
    850 	if (error)
    851 		return (error);
    852 	newfs = kmem_alloc(fs_sbsize, KM_SLEEP);
    853 	memcpy(newfs, bp->b_data, fs_sbsize);
    854 
    855 #ifdef FFS_EI
    856 	if (ump->um_flags & UFS_NEEDSWAP) {
    857 		ffs_sb_swap((struct fs *)bp->b_data, newfs);
    858 		newfs->fs_flags |= FS_SWAPPED;
    859 	} else
    860 #endif
    861 		newfs->fs_flags &= ~FS_SWAPPED;
    862 
    863 	brelse(bp, 0);
    864 
    865 	/* Allow converting from UFS2 to UFS2EA but not vice versa. */
    866 	if (newfs->fs_magic == FS_UFS2EA_MAGIC) {
    867 		ump->um_flags |= UFS_EA;
    868 		newfs->fs_magic = FS_UFS2_MAGIC;
    869 	} else {
    870 		if ((ump->um_flags & UFS_EA) != 0)
    871 			return EINVAL;
    872 	}
    873 
    874 	if ((newfs->fs_magic != FS_UFS1_MAGIC) &&
    875 	    (newfs->fs_magic != FS_UFS2_MAGIC)) {
    876 		kmem_free(newfs, fs_sbsize);
    877 		return (EIO);		/* XXX needs translation */
    878 	}
    879 	if (!ffs_superblock_validate(newfs)) {
    880 		kmem_free(newfs, fs_sbsize);
    881 		return (EINVAL);
    882 	}
    883 
    884 	/*
    885 	 * The current implementation doesn't handle the possibility that
    886 	 * these values may have changed.
    887 	 */
    888 	if ((newfs->fs_sbsize != fs_sbsize) ||
    889 	    (newfs->fs_cssize != fs->fs_cssize) ||
    890 	    (newfs->fs_contigsumsize != fs->fs_contigsumsize) ||
    891 	    (newfs->fs_ncg != fs->fs_ncg)) {
    892 		kmem_free(newfs, fs_sbsize);
    893 		return (EINVAL);
    894 	}
    895 
    896 	/* Store off old fs_sblockloc for fs_oldfscompat_read. */
    897 	sblockloc = fs->fs_sblockloc;
    898 	/*
    899 	 * Copy pointer fields back into superblock before copying in	XXX
    900 	 * new superblock. These should really be in the ufsmount.	XXX
    901 	 * Note that important parameters (eg fs_ncg) are unchanged.
    902 	 */
    903 	newfs->fs_csp = fs->fs_csp;
    904 	newfs->fs_maxcluster = fs->fs_maxcluster;
    905 	newfs->fs_contigdirs = fs->fs_contigdirs;
    906 	newfs->fs_ronly = fs->fs_ronly;
    907 	newfs->fs_active = fs->fs_active;
    908 	memcpy(fs, newfs, (u_int)fs_sbsize);
    909 	kmem_free(newfs, fs_sbsize);
    910 
    911 	/*
    912 	 * Recheck for Apple UFS filesystem.
    913 	 */
    914 	ump->um_flags &= ~UFS_ISAPPLEUFS;
    915 	if (ffs_is_appleufs(devvp, fs)) {
    916 #ifdef APPLE_UFS
    917 		ump->um_flags |= UFS_ISAPPLEUFS;
    918 #else
    919 		DPRINTF("AppleUFS not supported");
    920 		return (EIO); /* XXX: really? */
    921 #endif
    922 	}
    923 
    924 	if (UFS_MPISAPPLEUFS(ump)) {
    925 		/* see comment about NeXT below */
    926 		ump->um_maxsymlinklen = APPLEUFS_MAXSYMLINKLEN;
    927 		ump->um_dirblksiz = APPLEUFS_DIRBLKSIZ;
    928 		mp->mnt_iflag |= IMNT_DTYPE;
    929 	} else {
    930 		ump->um_maxsymlinklen = fs->fs_maxsymlinklen;
    931 		ump->um_dirblksiz = UFS_DIRBLKSIZ;
    932 		if (ump->um_maxsymlinklen > 0)
    933 			mp->mnt_iflag |= IMNT_DTYPE;
    934 		else
    935 			mp->mnt_iflag &= ~IMNT_DTYPE;
    936 	}
    937 	ffs_oldfscompat_read(fs, ump, sblockloc);
    938 
    939 	mutex_enter(&ump->um_lock);
    940 	ump->um_maxfilesize = fs->fs_maxfilesize;
    941 	if (fs->fs_flags & ~(FS_KNOWN_FLAGS | FS_INTERNAL)) {
    942 		uprintf("%s: unknown ufs flags: 0x%08"PRIx32"%s\n",
    943 		    mp->mnt_stat.f_mntonname, fs->fs_flags,
    944 		    (mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting");
    945 		if ((mp->mnt_flag & MNT_FORCE) == 0) {
    946 			mutex_exit(&ump->um_lock);
    947 			return (EINVAL);
    948 		}
    949 	}
    950 
    951 	if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
    952 		fs->fs_pendingblocks = 0;
    953 		fs->fs_pendinginodes = 0;
    954 	}
    955 	mutex_exit(&ump->um_lock);
    956 
    957 	ffs_statvfs(mp, &mp->mnt_stat);
    958 	/*
    959 	 * Step 3: re-read summary information from disk.
    960 	 */
    961 	blks = howmany(fs->fs_cssize, fs->fs_fsize);
    962 	space = fs->fs_csp;
    963 	for (i = 0; i < blks; i += fs->fs_frag) {
    964 		bsize = fs->fs_bsize;
    965 		if (i + fs->fs_frag > blks)
    966 			bsize = (blks - i) * fs->fs_fsize;
    967 		error = bread(devvp, FFS_FSBTODB(fs, fs->fs_csaddr + i), bsize,
    968 			      0, &bp);
    969 		if (error) {
    970 			return (error);
    971 		}
    972 #ifdef FFS_EI
    973 		if (UFS_FSNEEDSWAP(fs))
    974 			ffs_csum_swap((struct csum *)bp->b_data,
    975 			    (struct csum *)space, bsize);
    976 		else
    977 #endif
    978 			memcpy(space, bp->b_data, (size_t)bsize);
    979 		space = (char *)space + bsize;
    980 		brelse(bp, 0);
    981 	}
    982 	/*
    983 	 * We no longer know anything about clusters per cylinder group.
    984 	 */
    985 	if (fs->fs_contigsumsize > 0) {
    986 		lp = fs->fs_maxcluster;
    987 		for (i = 0; i < fs->fs_ncg; i++)
    988 			*lp++ = fs->fs_contigsumsize;
    989 	}
    990 
    991 	vfs_vnode_iterator_init(mp, &marker);
    992 	while ((vp = vfs_vnode_iterator_next(marker, NULL, NULL))) {
    993 		/*
    994 		 * Step 4: invalidate all inactive vnodes.
    995 		 */
    996 		if (vrecycle(vp))
    997 			continue;
    998 		/*
    999 		 * Step 5: invalidate all cached file data.
   1000 		 */
   1001 		if (vn_lock(vp, LK_EXCLUSIVE)) {
   1002 			vrele(vp);
   1003 			continue;
   1004 		}
   1005 		if (vinvalbuf(vp, 0, cred, l, 0, 0))
   1006 			panic("%s: dirty2", __func__);
   1007 		/*
   1008 		 * Step 6: re-read inode data for all active vnodes.
   1009 		 */
   1010 		ip = VTOI(vp);
   1011 		error = bread(devvp, FFS_FSBTODB(fs, ino_to_fsba(fs, ip->i_number)),
   1012 			      (int)fs->fs_bsize, 0, &bp);
   1013 		if (error) {
   1014 			vput(vp);
   1015 			break;
   1016 		}
   1017 		ffs_load_inode(bp, ip, fs, ip->i_number);
   1018 		brelse(bp, 0);
   1019 		vput(vp);
   1020 	}
   1021 	vfs_vnode_iterator_destroy(marker);
   1022 	return (error);
   1023 }
   1024 
   1025 /*
   1026  * Possible superblock locations ordered from most to least likely.
   1027  */
   1028 static const int sblock_try[] = SBLOCKSEARCH;
   1029 
   1030 
   1031 static int
   1032 ffs_superblock_validate(struct fs *fs)
   1033 {
   1034 	int32_t i, fs_bshift = 0, fs_fshift = 0, fs_fragshift = 0, fs_frag;
   1035 	int32_t fs_inopb;
   1036 
   1037 	/* Check the superblock size */
   1038 	if (fs->fs_sbsize > SBLOCKSIZE || fs->fs_sbsize < sizeof(struct fs))
   1039 		return 0;
   1040 
   1041 	/* Check the file system blocksize */
   1042 	if (fs->fs_bsize > MAXBSIZE || fs->fs_bsize < MINBSIZE)
   1043 		return 0;
   1044 	if (!powerof2(fs->fs_bsize))
   1045 		return 0;
   1046 
   1047 	/* Check the size of frag blocks */
   1048 	if (!powerof2(fs->fs_fsize))
   1049 		return 0;
   1050 	if (fs->fs_fsize == 0)
   1051 		return 0;
   1052 
   1053 	/*
   1054 	 * XXX: these values are just zero-checked to prevent obvious
   1055 	 * bugs. We need more strict checks.
   1056 	 */
   1057 	if (fs->fs_size == 0 && fs->fs_old_size == 0)
   1058 		return 0;
   1059 	if (fs->fs_cssize == 0)
   1060 		return 0;
   1061 	if (fs->fs_ipg == 0)
   1062 		return 0;
   1063 	if (fs->fs_fpg == 0)
   1064 		return 0;
   1065 	if (fs->fs_ncg == 0)
   1066 		return 0;
   1067 	if (fs->fs_maxbpg == 0)
   1068 		return 0;
   1069 
   1070 	/* Check the number of inodes per block */
   1071 	if (fs->fs_magic == FS_UFS1_MAGIC)
   1072 		fs_inopb = fs->fs_bsize / sizeof(struct ufs1_dinode);
   1073 	else /* fs->fs_magic == FS_UFS2_MAGIC */
   1074 		fs_inopb = fs->fs_bsize / sizeof(struct ufs2_dinode);
   1075 	if (fs->fs_inopb != fs_inopb)
   1076 		return 0;
   1077 
   1078 	/* Block size cannot be smaller than fragment size */
   1079 	if (fs->fs_bsize < fs->fs_fsize)
   1080 		return 0;
   1081 
   1082 	/* Compute fs_bshift and ensure it is consistent */
   1083 	for (i = fs->fs_bsize; i > 1; i >>= 1)
   1084 		fs_bshift++;
   1085 	if (fs->fs_bshift != fs_bshift)
   1086 		return 0;
   1087 
   1088 	/* Compute fs_fshift and ensure it is consistent */
   1089 	for (i = fs->fs_fsize; i > 1; i >>= 1)
   1090 		fs_fshift++;
   1091 	if (fs->fs_fshift != fs_fshift)
   1092 		return 0;
   1093 
   1094 	/* Compute fs_fragshift and ensure it is consistent */
   1095 	for (i = fs->fs_frag; i > 1; i >>= 1)
   1096 		fs_fragshift++;
   1097 	if (fs->fs_fragshift != fs_fragshift)
   1098 		return 0;
   1099 
   1100 	/* Check the masks */
   1101 	if (fs->fs_bmask != ~(fs->fs_bsize - 1))
   1102 		return 0;
   1103 	if (fs->fs_fmask != ~(fs->fs_fsize - 1))
   1104 		return 0;
   1105 
   1106 	/*
   1107 	 * Now that the shifts and masks are sanitized, we can use the ffs_ API.
   1108 	 */
   1109 
   1110 	/* Check the number of frag blocks */
   1111 	if ((fs_frag = ffs_numfrags(fs, fs->fs_bsize)) > MAXFRAG)
   1112 		return 0;
   1113 	if (fs->fs_frag != fs_frag)
   1114 		return 0;
   1115 
   1116 	/* Check the size of cylinder groups */
   1117 	if ((fs->fs_cgsize < sizeof(struct cg)) ||
   1118 	    (fs->fs_cgsize > fs->fs_bsize))
   1119 		return 0;
   1120 
   1121 	return 1;
   1122 }
   1123 
   1124 static int
   1125 ffs_is_appleufs(struct vnode *devvp, struct fs *fs)
   1126 {
   1127 	struct dkwedge_info dkw;
   1128 	int ret = 0;
   1129 
   1130 	/*
   1131 	 * First check to see if this is tagged as an Apple UFS filesystem
   1132 	 * in the disklabel.
   1133 	 */
   1134 	if (getdiskinfo(devvp, &dkw) == 0 &&
   1135 	    strcmp(dkw.dkw_ptype, DKW_PTYPE_APPLEUFS) == 0)
   1136 		ret = 1;
   1137 #ifdef APPLE_UFS
   1138 	else {
   1139 		struct appleufslabel *applefs;
   1140 		struct buf *bp;
   1141 		daddr_t blkno = APPLEUFS_LABEL_OFFSET / DEV_BSIZE;
   1142 		int error;
   1143 
   1144 		/*
   1145 		 * Manually look for an Apple UFS label, and if a valid one
   1146 		 * is found, then treat it like an Apple UFS filesystem anyway.
   1147 		 */
   1148 		error = bread(devvp, blkno, APPLEUFS_LABEL_SIZE, 0, &bp);
   1149 		if (error) {
   1150 			DPRINTF("bread@0x%jx returned %d", (intmax_t)blkno, error);
   1151 			return 0;
   1152 		}
   1153 		applefs = (struct appleufslabel *)bp->b_data;
   1154 		error = ffs_appleufs_validate(fs->fs_fsmnt, applefs, NULL);
   1155 		if (error == 0)
   1156 			ret = 1;
   1157 		brelse(bp, 0);
   1158 	}
   1159 #endif
   1160 
   1161 	return ret;
   1162 }
   1163 
   1164 /*
   1165  * Common code for mount and mountroot
   1166  */
   1167 int
   1168 ffs_mountfs(struct vnode *devvp, struct mount *mp, struct lwp *l)
   1169 {
   1170 	struct ufsmount *ump = NULL;
   1171 	struct buf *bp = NULL;
   1172 	struct fs *fs = NULL;
   1173 	dev_t dev;
   1174 	void *space;
   1175 	daddr_t sblockloc = 0;
   1176 	int blks, fstype = 0;
   1177 	int error, i, bsize, ronly, bset = 0;
   1178 #ifdef FFS_EI
   1179 	int needswap = 0;		/* keep gcc happy */
   1180 #endif
   1181 	int32_t *lp;
   1182 	kauth_cred_t cred;
   1183 	u_int32_t allocsbsize, fs_sbsize = 0;
   1184 
   1185 	dev = devvp->v_rdev;
   1186 	cred = l ? l->l_cred : NOCRED;
   1187 
   1188 	/* Flush out any old buffers remaining from a previous use. */
   1189 	vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
   1190 	error = vinvalbuf(devvp, V_SAVE, cred, l, 0, 0);
   1191 	VOP_UNLOCK(devvp);
   1192 	if (error) {
   1193 		DPRINTF("vinvalbuf returned %d", error);
   1194 		return error;
   1195 	}
   1196 
   1197 	ronly = (mp->mnt_flag & MNT_RDONLY) != 0;
   1198 
   1199 	ump = kmem_zalloc(sizeof(*ump), KM_SLEEP);
   1200 	mutex_init(&ump->um_lock, MUTEX_DEFAULT, IPL_NONE);
   1201 	error = ffs_snapshot_init(ump);
   1202 	if (error) {
   1203 		DPRINTF("ffs_snapshot_init returned %d", error);
   1204 		goto out;
   1205 	}
   1206 	ump->um_ops = &ffs_ufsops;
   1207 
   1208 #ifdef WAPBL
   1209  sbagain:
   1210 #endif
   1211 	/*
   1212 	 * Try reading the superblock in each of its possible locations.
   1213 	 */
   1214 	for (i = 0; ; i++) {
   1215 		daddr_t fs_sblockloc;
   1216 
   1217 		if (bp != NULL) {
   1218 			brelse(bp, BC_NOCACHE);
   1219 			bp = NULL;
   1220 		}
   1221 		if (sblock_try[i] == -1) {
   1222 			DPRINTF("no superblock found");
   1223 			error = EINVAL;
   1224 			fs = NULL;
   1225 			goto out;
   1226 		}
   1227 
   1228 		error = bread(devvp, sblock_try[i] / DEV_BSIZE, SBLOCKSIZE,
   1229 		    0, &bp);
   1230 		if (error) {
   1231 			DPRINTF("bread@0x%x returned %d",
   1232 			    sblock_try[i] / DEV_BSIZE, error);
   1233 			fs = NULL;
   1234 			goto out;
   1235 		}
   1236 		fs = (struct fs *)bp->b_data;
   1237 
   1238 		sblockloc = sblock_try[i];
   1239 		DPRINTF("fs_magic 0x%x", fs->fs_magic);
   1240 
   1241 		/*
   1242 		 * Swap: here, we swap fs->fs_sbsize in order to get the correct
   1243 		 * size to read the superblock. Once read, we swap the whole
   1244 		 * superblock structure.
   1245 		 */
   1246 		if (fs->fs_magic == FS_UFS2EA_MAGIC) {
   1247 			ump->um_flags |= UFS_EA;
   1248 			fs->fs_magic = FS_UFS2_MAGIC;
   1249 		} else if (fs->fs_magic == FS_UFS2EA_MAGIC_SWAPPED) {
   1250 			ump->um_flags |= UFS_EA;
   1251 			fs->fs_magic = FS_UFS2_MAGIC_SWAPPED;
   1252 		}
   1253 		if (fs->fs_magic == FS_UFS1_MAGIC) {
   1254 			fs_sbsize = fs->fs_sbsize;
   1255 			fstype = UFS1;
   1256 #ifdef FFS_EI
   1257 			needswap = 0;
   1258 		} else if (fs->fs_magic == FS_UFS1_MAGIC_SWAPPED) {
   1259 			fs_sbsize = bswap32(fs->fs_sbsize);
   1260 			fstype = UFS1;
   1261 			needswap = 1;
   1262 #endif
   1263 		} else if (fs->fs_magic == FS_UFS2_MAGIC) {
   1264 			fs_sbsize = fs->fs_sbsize;
   1265 			fstype = UFS2;
   1266 #ifdef FFS_EI
   1267 			needswap = 0;
   1268 		} else if (fs->fs_magic == FS_UFS2_MAGIC_SWAPPED) {
   1269 			fs_sbsize = bswap32(fs->fs_sbsize);
   1270 			fstype = UFS2;
   1271 			needswap = 1;
   1272 #endif
   1273 		} else
   1274 			continue;
   1275 
   1276 		/* fs->fs_sblockloc isn't defined for old filesystems */
   1277 		if (fstype == UFS1 && !(fs->fs_old_flags & FS_FLAGS_UPDATED)) {
   1278 			if (sblockloc == SBLOCK_UFS2)
   1279 				/*
   1280 				 * This is likely to be the first alternate
   1281 				 * in a filesystem with 64k blocks.
   1282 				 * Don't use it.
   1283 				 */
   1284 				continue;
   1285 			fs_sblockloc = sblockloc;
   1286 		} else {
   1287 			fs_sblockloc = fs->fs_sblockloc;
   1288 #ifdef FFS_EI
   1289 			if (needswap)
   1290 				fs_sblockloc = bswap64(fs_sblockloc);
   1291 #endif
   1292 		}
   1293 
   1294 		/* Check we haven't found an alternate superblock */
   1295 		if (fs_sblockloc != sblockloc)
   1296 			continue;
   1297 
   1298 		/* Check the superblock size */
   1299 		if (fs_sbsize > SBLOCKSIZE || fs_sbsize < sizeof(struct fs))
   1300 			continue;
   1301 		fs = kmem_alloc((u_long)fs_sbsize, KM_SLEEP);
   1302 		memcpy(fs, bp->b_data, fs_sbsize);
   1303 
   1304 		/* Swap the whole superblock structure, if necessary. */
   1305 #ifdef FFS_EI
   1306 		if (needswap) {
   1307 			ffs_sb_swap((struct fs*)bp->b_data, fs);
   1308 			fs->fs_flags |= FS_SWAPPED;
   1309 		} else
   1310 #endif
   1311 			fs->fs_flags &= ~FS_SWAPPED;
   1312 
   1313 		/*
   1314 		 * Now that everything is swapped, the superblock is ready to
   1315 		 * be sanitized.
   1316 		 */
   1317 		if (!ffs_superblock_validate(fs)) {
   1318 			kmem_free(fs, fs_sbsize);
   1319 			continue;
   1320 		}
   1321 
   1322 		/* Ok seems to be a good superblock */
   1323 		break;
   1324 	}
   1325 
   1326 	ump->um_fs = fs;
   1327 
   1328 #ifdef WAPBL
   1329 	if ((mp->mnt_wapbl_replay == 0) && (fs->fs_flags & FS_DOWAPBL)) {
   1330 		error = ffs_wapbl_replay_start(mp, fs, devvp);
   1331 		if (error && (mp->mnt_flag & MNT_FORCE) == 0) {
   1332 			DPRINTF("ffs_wapbl_replay_start returned %d", error);
   1333 			goto out;
   1334 		}
   1335 		if (!error) {
   1336 			if (!ronly) {
   1337 				/* XXX fsmnt may be stale. */
   1338 				printf("%s: replaying log to disk\n",
   1339 				    fs->fs_fsmnt);
   1340 				error = wapbl_replay_write(mp->mnt_wapbl_replay,
   1341 				    devvp);
   1342 				if (error) {
   1343 					DPRINTF("wapbl_replay_write returned %d",
   1344 					    error);
   1345 					goto out;
   1346 				}
   1347 				wapbl_replay_stop(mp->mnt_wapbl_replay);
   1348 				fs->fs_clean = FS_WASCLEAN;
   1349 			} else {
   1350 				/* XXX fsmnt may be stale */
   1351 				printf("%s: replaying log to memory\n",
   1352 				    fs->fs_fsmnt);
   1353 			}
   1354 
   1355 			/* Force a re-read of the superblock */
   1356 			brelse(bp, BC_INVAL);
   1357 			bp = NULL;
   1358 			kmem_free(fs, fs_sbsize);
   1359 			fs = NULL;
   1360 			goto sbagain;
   1361 		}
   1362 	}
   1363 #else /* !WAPBL */
   1364 	if ((fs->fs_flags & FS_DOWAPBL) && (mp->mnt_flag & MNT_FORCE) == 0) {
   1365 		error = EPERM;
   1366 		DPRINTF("no force %d", error);
   1367 		goto out;
   1368 	}
   1369 #endif /* !WAPBL */
   1370 
   1371 	ffs_oldfscompat_read(fs, ump, sblockloc);
   1372 	ump->um_maxfilesize = fs->fs_maxfilesize;
   1373 
   1374 	if (fs->fs_flags & ~(FS_KNOWN_FLAGS | FS_INTERNAL)) {
   1375 		uprintf("%s: unknown ufs flags: 0x%08"PRIx32"%s\n",
   1376 		    mp->mnt_stat.f_mntonname, fs->fs_flags,
   1377 		    (mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting");
   1378 		if ((mp->mnt_flag & MNT_FORCE) == 0) {
   1379 			error = EINVAL;
   1380 			DPRINTF("no force %d", error);
   1381 			goto out;
   1382 		}
   1383 	}
   1384 
   1385 	fs->fs_fmod = 0;
   1386 	if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
   1387 		fs->fs_pendingblocks = 0;
   1388 		fs->fs_pendinginodes = 0;
   1389 	}
   1390 
   1391 	ump->um_fstype = fstype;
   1392 	if (fs->fs_sbsize < SBLOCKSIZE)
   1393 		brelse(bp, BC_INVAL);
   1394 	else
   1395 		brelse(bp, 0);
   1396 	bp = NULL;
   1397 
   1398 	if (ffs_is_appleufs(devvp, fs)) {
   1399 #ifdef APPLE_UFS
   1400 		ump->um_flags |= UFS_ISAPPLEUFS;
   1401 #else
   1402 		DPRINTF("AppleUFS not supported");
   1403 		error = EINVAL;
   1404 		goto out;
   1405 #endif
   1406 	}
   1407 
   1408 #if 0
   1409 /*
   1410  * XXX This code changes the behaviour of mounting dirty filesystems, to
   1411  * XXX require "mount -f ..." to mount them.  This doesn't match what
   1412  * XXX mount(8) describes and is disabled for now.
   1413  */
   1414 	/*
   1415 	 * If the file system is not clean, don't allow it to be mounted
   1416 	 * unless MNT_FORCE is specified.  (Note: MNT_FORCE is always set
   1417 	 * for the root file system.)
   1418 	 */
   1419 	if (fs->fs_flags & FS_DOWAPBL) {
   1420 		/*
   1421 		 * wapbl normally expects to be FS_WASCLEAN when the FS_DOWAPBL
   1422 		 * bit is set, although there's a window in unmount where it
   1423 		 * could be FS_ISCLEAN
   1424 		 */
   1425 		if ((mp->mnt_flag & MNT_FORCE) == 0 &&
   1426 		    (fs->fs_clean & (FS_WASCLEAN | FS_ISCLEAN)) == 0) {
   1427 			error = EPERM;
   1428 			goto out;
   1429 		}
   1430 	} else
   1431 		if ((fs->fs_clean & FS_ISCLEAN) == 0 &&
   1432 		    (mp->mnt_flag & MNT_FORCE) == 0) {
   1433 			error = EPERM;
   1434 			goto out;
   1435 		}
   1436 #endif
   1437 
   1438 	/*
   1439 	 * Verify that we can access the last block in the fs
   1440 	 * if we're mounting read/write.
   1441 	 */
   1442 	if (!ronly) {
   1443 		error = bread(devvp, FFS_FSBTODB(fs, fs->fs_size - 1),
   1444 		    fs->fs_fsize, 0, &bp);
   1445 		if (error) {
   1446 			DPRINTF("bread@0x%jx returned %d",
   1447 			    (intmax_t)FFS_FSBTODB(fs, fs->fs_size - 1),
   1448 			    error);
   1449 			bset = BC_INVAL;
   1450 			goto out;
   1451 		}
   1452 		if (bp->b_bcount != fs->fs_fsize) {
   1453 			DPRINTF("bcount %x != fsize %x", bp->b_bcount,
   1454 			    fs->fs_fsize);
   1455 			error = EINVAL;
   1456 			bset = BC_INVAL;
   1457 			goto out;
   1458 		}
   1459 		brelse(bp, BC_INVAL);
   1460 		bp = NULL;
   1461 	}
   1462 
   1463 	fs->fs_ronly = ronly;
   1464 	/* Don't bump fs_clean if we're replaying journal */
   1465 	if (!((fs->fs_flags & FS_DOWAPBL) && (fs->fs_clean & FS_WASCLEAN))) {
   1466 		if (ronly == 0) {
   1467 			fs->fs_clean =
   1468 			    fs->fs_clean == FS_ISCLEAN ? FS_WASCLEAN : 0;
   1469 			fs->fs_fmod = 1;
   1470 		}
   1471 	}
   1472 
   1473 	bsize = fs->fs_cssize;
   1474 	blks = howmany(bsize, fs->fs_fsize);
   1475 	if (fs->fs_contigsumsize > 0)
   1476 		bsize += fs->fs_ncg * sizeof(int32_t);
   1477 	bsize += fs->fs_ncg * sizeof(*fs->fs_contigdirs);
   1478 	allocsbsize = bsize;
   1479 	space = kmem_alloc((u_long)allocsbsize, KM_SLEEP);
   1480 	fs->fs_csp = space;
   1481 
   1482 	for (i = 0; i < blks; i += fs->fs_frag) {
   1483 		bsize = fs->fs_bsize;
   1484 		if (i + fs->fs_frag > blks)
   1485 			bsize = (blks - i) * fs->fs_fsize;
   1486 		error = bread(devvp, FFS_FSBTODB(fs, fs->fs_csaddr + i), bsize,
   1487 			      0, &bp);
   1488 		if (error) {
   1489 			DPRINTF("bread@0x%jx %d",
   1490 			    (intmax_t)FFS_FSBTODB(fs, fs->fs_csaddr + i),
   1491 			    error);
   1492 			goto out1;
   1493 		}
   1494 #ifdef FFS_EI
   1495 		if (needswap)
   1496 			ffs_csum_swap((struct csum *)bp->b_data,
   1497 				(struct csum *)space, bsize);
   1498 		else
   1499 #endif
   1500 			memcpy(space, bp->b_data, (u_int)bsize);
   1501 
   1502 		space = (char *)space + bsize;
   1503 		brelse(bp, 0);
   1504 		bp = NULL;
   1505 	}
   1506 	if (fs->fs_contigsumsize > 0) {
   1507 		fs->fs_maxcluster = lp = space;
   1508 		for (i = 0; i < fs->fs_ncg; i++)
   1509 			*lp++ = fs->fs_contigsumsize;
   1510 		space = lp;
   1511 	}
   1512 	bsize = fs->fs_ncg * sizeof(*fs->fs_contigdirs);
   1513 	fs->fs_contigdirs = space;
   1514 	space = (char *)space + bsize;
   1515 	memset(fs->fs_contigdirs, 0, bsize);
   1516 
   1517 	/* Compatibility for old filesystems - XXX */
   1518 	if (fs->fs_avgfilesize <= 0)
   1519 		fs->fs_avgfilesize = AVFILESIZ;
   1520 	if (fs->fs_avgfpdir <= 0)
   1521 		fs->fs_avgfpdir = AFPDIR;
   1522 	fs->fs_active = NULL;
   1523 
   1524 	mp->mnt_data = ump;
   1525 	mp->mnt_stat.f_fsidx.__fsid_val[0] = (long)dev;
   1526 	mp->mnt_stat.f_fsidx.__fsid_val[1] = makefstype(MOUNT_FFS);
   1527 	mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0];
   1528 	mp->mnt_stat.f_namemax = FFS_MAXNAMLEN;
   1529 	if (UFS_MPISAPPLEUFS(ump)) {
   1530 		/* NeXT used to keep short symlinks in the inode even
   1531 		 * when using FS_42INODEFMT.  In that case fs->fs_maxsymlinklen
   1532 		 * is probably -1, but we still need to be able to identify
   1533 		 * short symlinks.
   1534 		 */
   1535 		ump->um_maxsymlinklen = APPLEUFS_MAXSYMLINKLEN;
   1536 		ump->um_dirblksiz = APPLEUFS_DIRBLKSIZ;
   1537 		mp->mnt_iflag |= IMNT_DTYPE;
   1538 	} else {
   1539 		ump->um_maxsymlinklen = fs->fs_maxsymlinklen;
   1540 		ump->um_dirblksiz = UFS_DIRBLKSIZ;
   1541 		if (ump->um_maxsymlinklen > 0)
   1542 			mp->mnt_iflag |= IMNT_DTYPE;
   1543 		else
   1544 			mp->mnt_iflag &= ~IMNT_DTYPE;
   1545 	}
   1546 	mp->mnt_fs_bshift = fs->fs_bshift;
   1547 	mp->mnt_dev_bshift = DEV_BSHIFT;	/* XXX */
   1548 	mp->mnt_flag |= MNT_LOCAL;
   1549 	mp->mnt_iflag |= IMNT_MPSAFE | IMNT_CAN_RWTORO | IMNT_SHRLOOKUP |
   1550 	    IMNT_NCLOOKUP;
   1551 #ifdef FFS_EI
   1552 	if (needswap)
   1553 		ump->um_flags |= UFS_NEEDSWAP;
   1554 #endif
   1555 	error = ffs_acls(mp, fs->fs_flags);
   1556 	if (error)
   1557 		goto out1;
   1558 	ump->um_mountp = mp;
   1559 	ump->um_dev = dev;
   1560 	ump->um_devvp = devvp;
   1561 	ump->um_nindir = fs->fs_nindir;
   1562 	ump->um_lognindir = ffs(fs->fs_nindir) - 1;
   1563 	ump->um_bptrtodb = fs->fs_fshift - DEV_BSHIFT;
   1564 	ump->um_seqinc = fs->fs_frag;
   1565 	for (i = 0; i < MAXQUOTAS; i++)
   1566 		ump->um_quotas[i] = NULLVP;
   1567 	spec_node_setmountedfs(devvp, mp);
   1568 	if (ronly == 0 && fs->fs_snapinum[0] != 0)
   1569 		ffs_snapshot_mount(mp);
   1570 #ifdef WAPBL
   1571 	if (!ronly) {
   1572 		KDASSERT(fs->fs_ronly == 0);
   1573 		/*
   1574 		 * ffs_wapbl_start() needs mp->mnt_stat initialised if it
   1575 		 * needs to create a new log file in-filesystem.
   1576 		 */
   1577 		error = ffs_statvfs(mp, &mp->mnt_stat);
   1578 		if (error) {
   1579 			DPRINTF("ffs_statvfs returned %d", error);
   1580 			goto out1;
   1581 		}
   1582 
   1583 		error = ffs_wapbl_start(mp);
   1584 		if (error) {
   1585 			DPRINTF("ffs_wapbl_start returned %d", error);
   1586 			goto out1;
   1587 		}
   1588 	}
   1589 #endif /* WAPBL */
   1590 	if (ronly == 0) {
   1591 #ifdef QUOTA2
   1592 		error = ffs_quota2_mount(mp);
   1593 		if (error) {
   1594 			DPRINTF("ffs_quota2_mount returned %d", error);
   1595 			goto out1;
   1596 		}
   1597 #else
   1598 		if (fs->fs_flags & FS_DOQUOTA2) {
   1599 			ump->um_flags |= UFS_QUOTA2;
   1600 			uprintf("%s: options QUOTA2 not enabled%s\n",
   1601 			    mp->mnt_stat.f_mntonname,
   1602 			    (mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting");
   1603 			if ((mp->mnt_flag & MNT_FORCE) == 0) {
   1604 				error = EINVAL;
   1605 				DPRINTF("quota disabled %d", error);
   1606 				goto out1;
   1607 			}
   1608 		}
   1609 #endif
   1610 	 }
   1611 
   1612 	if (mp->mnt_flag & MNT_DISCARD)
   1613 		ump->um_discarddata = ffs_discard_init(devvp, fs);
   1614 
   1615 	return (0);
   1616 out1:
   1617 	kmem_free(fs->fs_csp, allocsbsize);
   1618 out:
   1619 #ifdef WAPBL
   1620 	if (mp->mnt_wapbl_replay) {
   1621 		wapbl_replay_stop(mp->mnt_wapbl_replay);
   1622 		wapbl_replay_free(mp->mnt_wapbl_replay);
   1623 		mp->mnt_wapbl_replay = 0;
   1624 	}
   1625 #endif
   1626 
   1627 	if (fs)
   1628 		kmem_free(fs, fs->fs_sbsize);
   1629 	spec_node_setmountedfs(devvp, NULL);
   1630 	if (bp)
   1631 		brelse(bp, bset);
   1632 	if (ump) {
   1633 		if (ump->um_oldfscompat)
   1634 			kmem_free(ump->um_oldfscompat, 512 + 3*sizeof(int32_t));
   1635 		mutex_destroy(&ump->um_lock);
   1636 		kmem_free(ump, sizeof(*ump));
   1637 		mp->mnt_data = NULL;
   1638 	}
   1639 	return (error);
   1640 }
   1641 
   1642 /*
   1643  * Sanity checks for loading old filesystem superblocks.
   1644  * See ffs_oldfscompat_write below for unwound actions.
   1645  *
   1646  * XXX - Parts get retired eventually.
   1647  * Unfortunately new bits get added.
   1648  */
   1649 static void
   1650 ffs_oldfscompat_read(struct fs *fs, struct ufsmount *ump, daddr_t sblockloc)
   1651 {
   1652 	off_t maxfilesize;
   1653 	int32_t *extrasave;
   1654 
   1655 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1656 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1657 		return;
   1658 
   1659 	if (!ump->um_oldfscompat)
   1660 		ump->um_oldfscompat = kmem_alloc(512 + 3*sizeof(int32_t),
   1661 		    KM_SLEEP);
   1662 
   1663 	memcpy(ump->um_oldfscompat, &fs->fs_old_postbl_start, 512);
   1664 	extrasave = ump->um_oldfscompat;
   1665 	extrasave += 512/sizeof(int32_t);
   1666 	extrasave[0] = fs->fs_old_npsect;
   1667 	extrasave[1] = fs->fs_old_interleave;
   1668 	extrasave[2] = fs->fs_old_trackskew;
   1669 
   1670 	/* These fields will be overwritten by their
   1671 	 * original values in fs_oldfscompat_write, so it is harmless
   1672 	 * to modify them here.
   1673 	 */
   1674 	fs->fs_cstotal.cs_ndir = fs->fs_old_cstotal.cs_ndir;
   1675 	fs->fs_cstotal.cs_nbfree = fs->fs_old_cstotal.cs_nbfree;
   1676 	fs->fs_cstotal.cs_nifree = fs->fs_old_cstotal.cs_nifree;
   1677 	fs->fs_cstotal.cs_nffree = fs->fs_old_cstotal.cs_nffree;
   1678 
   1679 	fs->fs_maxbsize = fs->fs_bsize;
   1680 	fs->fs_time = fs->fs_old_time;
   1681 	fs->fs_size = fs->fs_old_size;
   1682 	fs->fs_dsize = fs->fs_old_dsize;
   1683 	fs->fs_csaddr = fs->fs_old_csaddr;
   1684 	fs->fs_sblockloc = sblockloc;
   1685 
   1686 	fs->fs_flags = fs->fs_old_flags | (fs->fs_flags & FS_INTERNAL);
   1687 
   1688 	if (fs->fs_old_postblformat == FS_42POSTBLFMT) {
   1689 		fs->fs_old_nrpos = 8;
   1690 		fs->fs_old_npsect = fs->fs_old_nsect;
   1691 		fs->fs_old_interleave = 1;
   1692 		fs->fs_old_trackskew = 0;
   1693 	}
   1694 
   1695 	if (fs->fs_magic == FS_UFS1_MAGIC &&
   1696 	    fs->fs_old_inodefmt < FS_44INODEFMT) {
   1697 		fs->fs_maxfilesize = (u_quad_t) 1LL << 39;
   1698 		fs->fs_qbmask = ~fs->fs_bmask;
   1699 		fs->fs_qfmask = ~fs->fs_fmask;
   1700 	}
   1701 
   1702 	maxfilesize = (u_int64_t)0x80000000 * fs->fs_bsize - 1;
   1703 	if (fs->fs_maxfilesize > maxfilesize)
   1704 		fs->fs_maxfilesize = maxfilesize;
   1705 
   1706 	/* Compatibility for old filesystems */
   1707 	if (fs->fs_avgfilesize <= 0)
   1708 		fs->fs_avgfilesize = AVFILESIZ;
   1709 	if (fs->fs_avgfpdir <= 0)
   1710 		fs->fs_avgfpdir = AFPDIR;
   1711 
   1712 #if 0
   1713 	if (bigcgs) {
   1714 		fs->fs_save_cgsize = fs->fs_cgsize;
   1715 		fs->fs_cgsize = fs->fs_bsize;
   1716 	}
   1717 #endif
   1718 }
   1719 
   1720 /*
   1721  * Unwinding superblock updates for old filesystems.
   1722  * See ffs_oldfscompat_read above for details.
   1723  *
   1724  * XXX - Parts get retired eventually.
   1725  * Unfortunately new bits get added.
   1726  */
   1727 static void
   1728 ffs_oldfscompat_write(struct fs *fs, struct ufsmount *ump)
   1729 {
   1730 	int32_t *extrasave;
   1731 
   1732 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1733 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1734 		return;
   1735 
   1736 	fs->fs_old_time = fs->fs_time;
   1737 	fs->fs_old_cstotal.cs_ndir = fs->fs_cstotal.cs_ndir;
   1738 	fs->fs_old_cstotal.cs_nbfree = fs->fs_cstotal.cs_nbfree;
   1739 	fs->fs_old_cstotal.cs_nifree = fs->fs_cstotal.cs_nifree;
   1740 	fs->fs_old_cstotal.cs_nffree = fs->fs_cstotal.cs_nffree;
   1741 	fs->fs_old_flags = fs->fs_flags;
   1742 
   1743 #if 0
   1744 	if (bigcgs) {
   1745 		fs->fs_cgsize = fs->fs_save_cgsize;
   1746 	}
   1747 #endif
   1748 
   1749 	memcpy(&fs->fs_old_postbl_start, ump->um_oldfscompat, 512);
   1750 	extrasave = ump->um_oldfscompat;
   1751 	extrasave += 512/sizeof(int32_t);
   1752 	fs->fs_old_npsect = extrasave[0];
   1753 	fs->fs_old_interleave = extrasave[1];
   1754 	fs->fs_old_trackskew = extrasave[2];
   1755 
   1756 }
   1757 
   1758 /*
   1759  * unmount vfs operation
   1760  */
   1761 int
   1762 ffs_unmount(struct mount *mp, int mntflags)
   1763 {
   1764 	struct lwp *l = curlwp;
   1765 	struct ufsmount *ump = VFSTOUFS(mp);
   1766 	struct fs *fs = ump->um_fs;
   1767 	int error, flags;
   1768 	u_int32_t bsize;
   1769 #ifdef WAPBL
   1770 	extern int doforce;
   1771 #endif
   1772 
   1773 	/* The file system is suspended. */
   1774 	KASSERT(fstrans_is_owner(mp));
   1775 
   1776 	if (ump->um_discarddata) {
   1777 		ffs_discard_finish(ump->um_discarddata, mntflags);
   1778 		ump->um_discarddata = NULL;
   1779 	}
   1780 
   1781 	flags = 0;
   1782 	if (mntflags & MNT_FORCE)
   1783 		flags |= FORCECLOSE;
   1784 	if ((error = ffs_flushfiles(mp, flags, l)) != 0)
   1785 		return (error);
   1786 	if (fs->fs_ronly == 0 && UFS_WAPBL_BEGIN(mp) == 0) {
   1787 		if (ffs_cgupdate(ump, MNT_WAIT) == 0 &&
   1788 		    fs->fs_clean & FS_WASCLEAN) {
   1789 			mutex_enter(&ump->um_lock);
   1790 			fs->fs_clean = FS_ISCLEAN;
   1791 			fs->fs_fmod = 0;
   1792 			mutex_exit(&ump->um_lock);
   1793 			(void) ffs_sbupdate(ump, MNT_WAIT);
   1794 		}
   1795 		UFS_WAPBL_END(mp);
   1796 	}
   1797 #ifdef WAPBL
   1798 	KASSERT(!(mp->mnt_wapbl_replay && mp->mnt_wapbl));
   1799 	if (mp->mnt_wapbl_replay) {
   1800 		KDASSERT(fs->fs_ronly);
   1801 		wapbl_replay_stop(mp->mnt_wapbl_replay);
   1802 		wapbl_replay_free(mp->mnt_wapbl_replay);
   1803 		mp->mnt_wapbl_replay = 0;
   1804 	}
   1805 	error = ffs_wapbl_stop(mp, doforce && (mntflags & MNT_FORCE));
   1806 	if (error) {
   1807 		return error;
   1808 	}
   1809 #endif /* WAPBL */
   1810 
   1811 	if (ump->um_devvp->v_type != VBAD)
   1812 		spec_node_setmountedfs(ump->um_devvp, NULL);
   1813 	vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
   1814 	(void)VOP_CLOSE(ump->um_devvp, fs->fs_ronly ? FREAD : FREAD | FWRITE,
   1815 		NOCRED);
   1816 	vput(ump->um_devvp);
   1817 
   1818 	bsize = fs->fs_cssize;
   1819 	if (fs->fs_contigsumsize > 0)
   1820 		bsize += fs->fs_ncg * sizeof(int32_t);
   1821 	bsize += fs->fs_ncg * sizeof(*fs->fs_contigdirs);
   1822 	kmem_free(fs->fs_csp, bsize);
   1823 
   1824 	kmem_free(fs, fs->fs_sbsize);
   1825 	if (ump->um_oldfscompat != NULL)
   1826 		kmem_free(ump->um_oldfscompat, 512 + 3*sizeof(int32_t));
   1827 	mutex_destroy(&ump->um_lock);
   1828 	ffs_snapshot_fini(ump);
   1829 	kmem_free(ump, sizeof(*ump));
   1830 	mp->mnt_data = NULL;
   1831 	mp->mnt_flag &= ~MNT_LOCAL;
   1832 	return (0);
   1833 }
   1834 
   1835 /*
   1836  * Flush out all the files in a filesystem.
   1837  */
   1838 int
   1839 ffs_flushfiles(struct mount *mp, int flags, struct lwp *l)
   1840 {
   1841 	extern int doforce;
   1842 	struct ufsmount *ump;
   1843 	int error;
   1844 
   1845 	if (!doforce)
   1846 		flags &= ~FORCECLOSE;
   1847 	ump = VFSTOUFS(mp);
   1848 #ifdef QUOTA
   1849 	if ((error = quota1_umount(mp, flags)) != 0)
   1850 		return (error);
   1851 #endif
   1852 #ifdef QUOTA2
   1853 	if ((error = quota2_umount(mp, flags)) != 0)
   1854 		return (error);
   1855 #endif
   1856 #ifdef UFS_EXTATTR
   1857 	if (ump->um_fstype == UFS1) {
   1858 		if (ump->um_extattr.uepm_flags & UFS_EXTATTR_UEPM_STARTED)
   1859 			ufs_extattr_stop(mp, l);
   1860 		if (ump->um_extattr.uepm_flags & UFS_EXTATTR_UEPM_INITIALIZED)
   1861 			ufs_extattr_uepm_destroy(&ump->um_extattr);
   1862 		mp->mnt_flag &= ~MNT_EXTATTR;
   1863 	}
   1864 #endif
   1865 	if ((error = vflush(mp, 0, SKIPSYSTEM | flags)) != 0)
   1866 		return (error);
   1867 	ffs_snapshot_unmount(mp);
   1868 	/*
   1869 	 * Flush all the files.
   1870 	 */
   1871 	error = vflush(mp, NULLVP, flags);
   1872 	if (error)
   1873 		return (error);
   1874 	/*
   1875 	 * Flush filesystem metadata.
   1876 	 */
   1877 	vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
   1878 	error = VOP_FSYNC(ump->um_devvp, l->l_cred, FSYNC_WAIT, 0, 0);
   1879 	VOP_UNLOCK(ump->um_devvp);
   1880 	if (flags & FORCECLOSE) /* XXXDBJ */
   1881 		error = 0;
   1882 
   1883 #ifdef WAPBL
   1884 	if (error)
   1885 		return error;
   1886 	if (mp->mnt_wapbl) {
   1887 		error = wapbl_flush(mp->mnt_wapbl, 1);
   1888 		if (flags & FORCECLOSE)
   1889 			error = 0;
   1890 	}
   1891 #endif
   1892 
   1893 	return (error);
   1894 }
   1895 
   1896 /*
   1897  * Get file system statistics.
   1898  */
   1899 int
   1900 ffs_statvfs(struct mount *mp, struct statvfs *sbp)
   1901 {
   1902 	struct ufsmount *ump;
   1903 	struct fs *fs;
   1904 
   1905 	ump = VFSTOUFS(mp);
   1906 	fs = ump->um_fs;
   1907 	mutex_enter(&ump->um_lock);
   1908 	sbp->f_bsize = fs->fs_bsize;
   1909 	sbp->f_frsize = fs->fs_fsize;
   1910 	sbp->f_iosize = fs->fs_bsize;
   1911 	sbp->f_blocks = fs->fs_dsize;
   1912 	sbp->f_bfree = ffs_blkstofrags(fs, fs->fs_cstotal.cs_nbfree) +
   1913 	    fs->fs_cstotal.cs_nffree + FFS_DBTOFSB(fs, fs->fs_pendingblocks);
   1914 	sbp->f_bresvd = ((u_int64_t) fs->fs_dsize * (u_int64_t)
   1915 	    fs->fs_minfree) / (u_int64_t) 100;
   1916 	if (sbp->f_bfree > sbp->f_bresvd)
   1917 		sbp->f_bavail = sbp->f_bfree - sbp->f_bresvd;
   1918 	else
   1919 		sbp->f_bavail = 0;
   1920 	sbp->f_files =  fs->fs_ncg * fs->fs_ipg - UFS_ROOTINO;
   1921 	sbp->f_ffree = fs->fs_cstotal.cs_nifree + fs->fs_pendinginodes;
   1922 	sbp->f_favail = sbp->f_ffree;
   1923 	sbp->f_fresvd = 0;
   1924 	mutex_exit(&ump->um_lock);
   1925 	copy_statvfs_info(sbp, mp);
   1926 
   1927 	return (0);
   1928 }
   1929 
   1930 struct ffs_sync_ctx {
   1931 	int waitfor;
   1932 };
   1933 
   1934 static bool
   1935 ffs_sync_selector(void *cl, struct vnode *vp)
   1936 {
   1937 	struct ffs_sync_ctx *c = cl;
   1938 	struct inode *ip;
   1939 
   1940 	KASSERT(mutex_owned(vp->v_interlock));
   1941 
   1942 	ip = VTOI(vp);
   1943 	/*
   1944 	 * Skip the vnode/inode if inaccessible.
   1945 	 */
   1946 	if (ip == NULL || vp->v_type == VNON)
   1947 		return false;
   1948 
   1949 	/*
   1950 	 * We deliberately update inode times here.  This will
   1951 	 * prevent a massive queue of updates accumulating, only
   1952 	 * to be handled by a call to unmount.
   1953 	 *
   1954 	 * XXX It would be better to have the syncer trickle these
   1955 	 * out.  Adjustment needed to allow registering vnodes for
   1956 	 * sync when the vnode is clean, but the inode dirty.  Or
   1957 	 * have ufs itself trickle out inode updates.
   1958 	 *
   1959 	 * If doing a lazy sync, we don't care about metadata or
   1960 	 * data updates, because they are handled by each vnode's
   1961 	 * synclist entry.  In this case we are only interested in
   1962 	 * writing back modified inodes.
   1963 	 */
   1964 	if ((ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE |
   1965 	    IN_MODIFY | IN_MODIFIED | IN_ACCESSED)) == 0 &&
   1966 	    (c->waitfor == MNT_LAZY || (LIST_EMPTY(&vp->v_dirtyblkhd) &&
   1967 	    (vp->v_iflag & VI_ONWORKLST) == 0)))
   1968 		return false;
   1969 
   1970 	return true;
   1971 }
   1972 
   1973 /*
   1974  * Go through the disk queues to initiate sandbagged IO;
   1975  * go through the inodes to write those that have been modified;
   1976  * initiate the writing of the super block if it has been modified.
   1977  */
   1978 int
   1979 ffs_sync(struct mount *mp, int waitfor, kauth_cred_t cred)
   1980 {
   1981 	struct vnode *vp;
   1982 	struct ufsmount *ump = VFSTOUFS(mp);
   1983 	struct fs *fs;
   1984 	struct vnode_iterator *marker;
   1985 	int error, allerror = 0;
   1986 	struct ffs_sync_ctx ctx;
   1987 
   1988 	fs = ump->um_fs;
   1989 	if (fs->fs_fmod != 0 && fs->fs_ronly != 0) {		/* XXX */
   1990 		panic("%s: rofs mod, fs=%s", __func__, fs->fs_fsmnt);
   1991 	}
   1992 
   1993 	/*
   1994 	 * Write back each (modified) inode.
   1995 	 */
   1996 	vfs_vnode_iterator_init(mp, &marker);
   1997 
   1998 	ctx.waitfor = waitfor;
   1999 	while ((vp = vfs_vnode_iterator_next(marker, ffs_sync_selector, &ctx)))
   2000 	{
   2001 		error = vn_lock(vp,
   2002 		    LK_EXCLUSIVE | (waitfor == MNT_LAZY ? LK_NOWAIT : 0));
   2003 		if (error) {
   2004 			vrele(vp);
   2005 			continue;
   2006 		}
   2007 		if (waitfor == MNT_LAZY) {
   2008 			error = UFS_WAPBL_BEGIN(vp->v_mount);
   2009 			if (!error) {
   2010 				error = ffs_update(vp, NULL, NULL,
   2011 				    UPDATE_CLOSE);
   2012 				UFS_WAPBL_END(vp->v_mount);
   2013 			}
   2014 		} else {
   2015 			error = VOP_FSYNC(vp, cred, FSYNC_NOLOG |
   2016 			    (waitfor == MNT_WAIT ? FSYNC_WAIT : 0), 0, 0);
   2017 		}
   2018 		if (error)
   2019 			allerror = error;
   2020 		vput(vp);
   2021 	}
   2022 	vfs_vnode_iterator_destroy(marker);
   2023 
   2024 	/*
   2025 	 * Force stale file system control information to be flushed.
   2026 	 */
   2027 	if (waitfor != MNT_LAZY)  {
   2028 		bool need_devvp_fsync;
   2029 
   2030 		mutex_enter(ump->um_devvp->v_interlock);
   2031 		need_devvp_fsync = (ump->um_devvp->v_numoutput > 0 ||
   2032 		    !LIST_EMPTY(&ump->um_devvp->v_dirtyblkhd));
   2033 		mutex_exit(ump->um_devvp->v_interlock);
   2034 		if (need_devvp_fsync) {
   2035 			int flags = FSYNC_NOLOG;
   2036 
   2037 			if (waitfor == MNT_WAIT)
   2038 				flags |= FSYNC_WAIT;
   2039 
   2040 			vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
   2041 			if ((error = VOP_FSYNC(ump->um_devvp, cred, flags, 0,
   2042 				    0)) != 0)
   2043 				allerror = error;
   2044 			VOP_UNLOCK(ump->um_devvp);
   2045 		}
   2046 	}
   2047 #if defined(QUOTA) || defined(QUOTA2)
   2048 	qsync(mp);
   2049 #endif
   2050 	/*
   2051 	 * Write back modified superblock.
   2052 	 */
   2053 	error = UFS_WAPBL_BEGIN(mp);
   2054 	if (error) {
   2055 		allerror = error;
   2056 	} else {
   2057 		mutex_enter(&ump->um_lock);
   2058 		if (fs->fs_fmod != 0) {
   2059 			fs->fs_fmod = 0;
   2060 			fs->fs_time = time_second;
   2061 			mutex_exit(&ump->um_lock);
   2062 			if ((error = ffs_cgupdate(ump, waitfor)))
   2063 				allerror = error;
   2064 		} else {
   2065 			mutex_exit(&ump->um_lock);
   2066 		}
   2067 		UFS_WAPBL_END(mp);
   2068 	}
   2069 
   2070 #ifdef WAPBL
   2071 	if (mp->mnt_wapbl) {
   2072 		error = wapbl_flush(mp->mnt_wapbl, (waitfor == MNT_WAIT));
   2073 		if (error)
   2074 			allerror = error;
   2075 	}
   2076 #endif
   2077 
   2078 	return (allerror);
   2079 }
   2080 
   2081 /*
   2082  * Load inode from disk and initialize vnode.
   2083  */
   2084 static int
   2085 ffs_init_vnode(struct ufsmount *ump, struct vnode *vp, ino_t ino)
   2086 {
   2087 	struct fs *fs;
   2088 	struct inode *ip;
   2089 	struct buf *bp;
   2090 	int error;
   2091 
   2092 	fs = ump->um_fs;
   2093 
   2094 	/* Read in the disk contents for the inode. */
   2095 	error = bread(ump->um_devvp, FFS_FSBTODB(fs, ino_to_fsba(fs, ino)),
   2096 		      (int)fs->fs_bsize, 0, &bp);
   2097 	if (error)
   2098 		return error;
   2099 
   2100 	/* Allocate and initialize inode. */
   2101 	ip = pool_cache_get(ffs_inode_cache, PR_WAITOK);
   2102 	memset(ip, 0, sizeof(struct inode));
   2103 	ip->i_ump = ump;
   2104 	ip->i_fs = fs;
   2105 	ip->i_dev = ump->um_dev;
   2106 	ip->i_number = ino;
   2107 	if (ump->um_fstype == UFS1)
   2108 		ip->i_din.ffs1_din = pool_cache_get(ffs_dinode1_cache,
   2109 		    PR_WAITOK);
   2110 	else
   2111 		ip->i_din.ffs2_din = pool_cache_get(ffs_dinode2_cache,
   2112 		    PR_WAITOK);
   2113 	ffs_load_inode(bp, ip, fs, ino);
   2114 	brelse(bp, 0);
   2115 	ip->i_vnode = vp;
   2116 #if defined(QUOTA) || defined(QUOTA2)
   2117 	ufsquota_init(ip);
   2118 #endif
   2119 
   2120 	/* Initialise vnode with this inode. */
   2121 	vp->v_tag = VT_UFS;
   2122 	vp->v_op = ffs_vnodeop_p;
   2123 	vp->v_data = ip;
   2124 
   2125 	/* Initialize genfs node. */
   2126 	genfs_node_init(vp, &ffs_genfsops);
   2127 
   2128 	return 0;
   2129 }
   2130 
   2131 /*
   2132  * Undo ffs_init_vnode().
   2133  */
   2134 static void
   2135 ffs_deinit_vnode(struct ufsmount *ump, struct vnode *vp)
   2136 {
   2137 	struct inode *ip = VTOI(vp);
   2138 
   2139 	genfs_node_destroy(vp);
   2140 	vp->v_data = NULL;
   2141 
   2142 	if (ump->um_fstype == UFS1)
   2143 		pool_cache_put(ffs_dinode1_cache, ip->i_din.ffs1_din);
   2144 	else
   2145 		pool_cache_put(ffs_dinode2_cache, ip->i_din.ffs2_din);
   2146 	pool_cache_put(ffs_inode_cache, ip);
   2147 }
   2148 
   2149 /*
   2150  * Read an inode from disk and initialize this vnode / inode pair.
   2151  * Caller assures no other thread will try to load this inode.
   2152  */
   2153 int
   2154 ffs_loadvnode(struct mount *mp, struct vnode *vp,
   2155     const void *key, size_t key_len, const void **new_key)
   2156 {
   2157 	ino_t ino;
   2158 	struct fs *fs;
   2159 	struct inode *ip;
   2160 	struct ufsmount *ump;
   2161 	int error;
   2162 
   2163 	KASSERT(key_len == sizeof(ino));
   2164 	memcpy(&ino, key, key_len);
   2165 	ump = VFSTOUFS(mp);
   2166 	fs = ump->um_fs;
   2167 
   2168 	error = ffs_init_vnode(ump, vp, ino);
   2169 	if (error)
   2170 		return error;
   2171 
   2172 	ip = VTOI(vp);
   2173 	if (ip->i_mode == 0) {
   2174 		ffs_deinit_vnode(ump, vp);
   2175 
   2176 		return ENOENT;
   2177 	}
   2178 
   2179 	/* Initialize the vnode from the inode. */
   2180 	ufs_vinit(mp, ffs_specop_p, ffs_fifoop_p, &vp);
   2181 
   2182 	/* Finish inode initialization.  */
   2183 	ip->i_devvp = ump->um_devvp;
   2184 	vref(ip->i_devvp);
   2185 
   2186 	/*
   2187 	 * Ensure that uid and gid are correct. This is a temporary
   2188 	 * fix until fsck has been changed to do the update.
   2189 	 */
   2190 
   2191 	if (fs->fs_magic == FS_UFS1_MAGIC &&			/* XXX */
   2192 	    fs->fs_old_inodefmt < FS_44INODEFMT) {		/* XXX */
   2193 		ip->i_uid = ip->i_ffs1_ouid;			/* XXX */
   2194 		ip->i_gid = ip->i_ffs1_ogid;			/* XXX */
   2195 	}							/* XXX */
   2196 	uvm_vnp_setsize(vp, ip->i_size);
   2197 	cache_enter_id(vp, ip->i_mode, ip->i_uid, ip->i_gid, !HAS_ACLS(ip));
   2198 	*new_key = &ip->i_number;
   2199 	return 0;
   2200 }
   2201 
   2202 /*
   2203  * Create a new inode on disk and initialize this vnode / inode pair.
   2204  */
   2205 int
   2206 ffs_newvnode(struct mount *mp, struct vnode *dvp, struct vnode *vp,
   2207     struct vattr *vap, kauth_cred_t cred, void *extra,
   2208     size_t *key_len, const void **new_key)
   2209 {
   2210 	ino_t ino;
   2211 	struct fs *fs;
   2212 	struct inode *ip;
   2213 	struct timespec ts;
   2214 	struct ufsmount *ump;
   2215 	int error, mode;
   2216 
   2217 	KASSERT(dvp->v_mount == mp);
   2218 	KASSERT(vap->va_type != VNON);
   2219 
   2220 	*key_len = sizeof(ino);
   2221 	ump = VFSTOUFS(mp);
   2222 	fs = ump->um_fs;
   2223 	mode = MAKEIMODE(vap->va_type, vap->va_mode);
   2224 
   2225 	/* Allocate fresh inode. */
   2226 	error = ffs_valloc(dvp, mode, cred, &ino);
   2227 	if (error)
   2228 		return error;
   2229 
   2230 	/* Attach inode to vnode. */
   2231 	error = ffs_init_vnode(ump, vp, ino);
   2232 	if (error) {
   2233 		if (UFS_WAPBL_BEGIN(mp) == 0) {
   2234 			ffs_vfree(dvp, ino, mode);
   2235 			UFS_WAPBL_END(mp);
   2236 		}
   2237 		return error;
   2238 	}
   2239 
   2240 	ip = VTOI(vp);
   2241 	if (ip->i_mode) {
   2242 		panic("%s: dup alloc ino=%" PRId64 " on %s: mode %o/%o "
   2243 		    "gen %x/%x size %" PRIx64 " blocks %" PRIx64,
   2244 		    __func__, ino, fs->fs_fsmnt, DIP(ip, mode), ip->i_mode,
   2245 		    DIP(ip, gen), ip->i_gen, DIP(ip, size), DIP(ip, blocks));
   2246 	}
   2247 	if (DIP(ip, size) || DIP(ip, blocks)) {
   2248 		printf("%s: ino=%" PRId64 " on %s: "
   2249 		    "gen %x/%x has non zero blocks %" PRIx64 " or size %"
   2250 		    PRIx64 "\n",
   2251 		    __func__, ino, fs->fs_fsmnt, DIP(ip, gen), ip->i_gen,
   2252 		    DIP(ip, blocks), DIP(ip, size));
   2253 		if ((ip)->i_ump->um_fstype == UFS1)
   2254 			panic("%s: dirty filesystem?", __func__);
   2255 		DIP_ASSIGN(ip, blocks, 0);
   2256 		DIP_ASSIGN(ip, size, 0);
   2257 	}
   2258 
   2259 	/* Set uid / gid. */
   2260 	if (cred == NOCRED || cred == FSCRED) {
   2261 		ip->i_gid = 0;
   2262 		ip->i_uid = 0;
   2263 	} else {
   2264 		ip->i_gid = VTOI(dvp)->i_gid;
   2265 		ip->i_uid = kauth_cred_geteuid(cred);
   2266 	}
   2267 	DIP_ASSIGN(ip, gid, ip->i_gid);
   2268 	DIP_ASSIGN(ip, uid, ip->i_uid);
   2269 
   2270 #if defined(QUOTA) || defined(QUOTA2)
   2271 	error = UFS_WAPBL_BEGIN(mp);
   2272 	if (error) {
   2273 		ffs_deinit_vnode(ump, vp);
   2274 
   2275 		return error;
   2276 	}
   2277 	error = chkiq(ip, 1, cred, 0);
   2278 	if (error) {
   2279 		ffs_vfree(dvp, ino, mode);
   2280 		UFS_WAPBL_END(mp);
   2281 		ffs_deinit_vnode(ump, vp);
   2282 
   2283 		return error;
   2284 	}
   2285 	UFS_WAPBL_END(mp);
   2286 #endif
   2287 
   2288 	/* Set type and finalize. */
   2289 	ip->i_flags = 0;
   2290 	DIP_ASSIGN(ip, flags, 0);
   2291 	ip->i_mode = mode;
   2292 	DIP_ASSIGN(ip, mode, mode);
   2293 	if (vap->va_rdev != VNOVAL) {
   2294 		/*
   2295 		 * Want to be able to use this to make badblock
   2296 		 * inodes, so don't truncate the dev number.
   2297 		 */
   2298 		if (ump->um_fstype == UFS1)
   2299 			ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev,
   2300 			    UFS_MPNEEDSWAP(ump));
   2301 		else
   2302 			ip->i_ffs2_rdev = ufs_rw64(vap->va_rdev,
   2303 			    UFS_MPNEEDSWAP(ump));
   2304 	}
   2305 	ufs_vinit(mp, ffs_specop_p, ffs_fifoop_p, &vp);
   2306 	ip->i_devvp = ump->um_devvp;
   2307 	vref(ip->i_devvp);
   2308 
   2309 	/* Set up a new generation number for this inode.  */
   2310 	ip->i_gen++;
   2311 	DIP_ASSIGN(ip, gen, ip->i_gen);
   2312 	if (fs->fs_magic == FS_UFS2_MAGIC) {
   2313 		vfs_timestamp(&ts);
   2314 		ip->i_ffs2_birthtime = ts.tv_sec;
   2315 		ip->i_ffs2_birthnsec = ts.tv_nsec;
   2316 	}
   2317 
   2318 	uvm_vnp_setsize(vp, ip->i_size);
   2319 	cache_enter_id(vp, ip->i_mode, ip->i_uid, ip->i_gid, !HAS_ACLS(ip));
   2320 	*new_key = &ip->i_number;
   2321 	return 0;
   2322 }
   2323 
   2324 /*
   2325  * File handle to vnode
   2326  *
   2327  * Have to be really careful about stale file handles:
   2328  * - check that the inode number is valid
   2329  * - call ffs_vget() to get the locked inode
   2330  * - check for an unallocated inode (i_mode == 0)
   2331  * - check that the given client host has export rights and return
   2332  *   those rights via. exflagsp and credanonp
   2333  */
   2334 int
   2335 ffs_fhtovp(struct mount *mp, struct fid *fhp, int lktype, struct vnode **vpp)
   2336 {
   2337 	struct ufid ufh;
   2338 	int error;
   2339 
   2340 	if (fhp->fid_len != sizeof(struct ufid))
   2341 		return EINVAL;
   2342 
   2343 	memcpy(&ufh, fhp, sizeof(ufh));
   2344 	if ((error = ffs_checkrange(mp, ufh.ufid_ino)) != 0)
   2345 		return error;
   2346 
   2347 	return (ufs_fhtovp(mp, &ufh, lktype, vpp));
   2348 }
   2349 
   2350 /*
   2351  * Vnode pointer to File handle
   2352  */
   2353 /* ARGSUSED */
   2354 int
   2355 ffs_vptofh(struct vnode *vp, struct fid *fhp, size_t *fh_size)
   2356 {
   2357 	struct inode *ip;
   2358 	struct ufid ufh;
   2359 
   2360 	if (*fh_size < sizeof(struct ufid)) {
   2361 		*fh_size = sizeof(struct ufid);
   2362 		return E2BIG;
   2363 	}
   2364 	ip = VTOI(vp);
   2365 	*fh_size = sizeof(struct ufid);
   2366 	memset(&ufh, 0, sizeof(ufh));
   2367 	ufh.ufid_len = sizeof(struct ufid);
   2368 	ufh.ufid_ino = ip->i_number;
   2369 	ufh.ufid_gen = ip->i_gen;
   2370 	memcpy(fhp, &ufh, sizeof(ufh));
   2371 	return (0);
   2372 }
   2373 
   2374 void
   2375 ffs_init(void)
   2376 {
   2377 	if (ffs_initcount++ > 0)
   2378 		return;
   2379 
   2380 	ffs_inode_cache = pool_cache_init(sizeof(struct inode), 0, 0, 0,
   2381 	    "ffsino", NULL, IPL_NONE, NULL, NULL, NULL);
   2382 	ffs_dinode1_cache = pool_cache_init(sizeof(struct ufs1_dinode), 0, 0, 0,
   2383 	    "ffsdino1", NULL, IPL_NONE, NULL, NULL, NULL);
   2384 	ffs_dinode2_cache = pool_cache_init(sizeof(struct ufs2_dinode), 0, 0, 0,
   2385 	    "ffsdino2", NULL, IPL_NONE, NULL, NULL, NULL);
   2386 	ufs_init();
   2387 }
   2388 
   2389 void
   2390 ffs_reinit(void)
   2391 {
   2392 	ufs_reinit();
   2393 }
   2394 
   2395 void
   2396 ffs_done(void)
   2397 {
   2398 	if (--ffs_initcount > 0)
   2399 		return;
   2400 
   2401 	ufs_done();
   2402 	pool_cache_destroy(ffs_dinode2_cache);
   2403 	pool_cache_destroy(ffs_dinode1_cache);
   2404 	pool_cache_destroy(ffs_inode_cache);
   2405 }
   2406 
   2407 /*
   2408  * Write a superblock and associated information back to disk.
   2409  */
   2410 int
   2411 ffs_sbupdate(struct ufsmount *mp, int waitfor)
   2412 {
   2413 	struct fs *fs = mp->um_fs;
   2414 	struct fs *bfs;
   2415 	struct buf *bp;
   2416 	int error;
   2417 
   2418 	error = ffs_getblk(mp->um_devvp,
   2419 	    fs->fs_sblockloc / DEV_BSIZE, FFS_NOBLK,
   2420 	    fs->fs_sbsize, false, &bp);
   2421 	if (error)
   2422 		return error;
   2423 
   2424 	mutex_enter(&mp->um_lock);
   2425 	memcpy(bp->b_data, fs, fs->fs_sbsize);
   2426 	mutex_exit(&mp->um_lock);
   2427 
   2428 	bfs = (struct fs *)bp->b_data;
   2429 
   2430 	bfs->fs_flags &= ~FS_INTERNAL;
   2431 	ffs_oldfscompat_write((struct fs *)bp->b_data, mp);
   2432 	if (mp->um_flags & UFS_EA) {
   2433 		KASSERT(bfs->fs_magic == FS_UFS2_MAGIC);
   2434 		bfs->fs_magic = FS_UFS2EA_MAGIC;
   2435 	}
   2436 #ifdef FFS_EI
   2437 	if (mp->um_flags & UFS_NEEDSWAP)
   2438 		ffs_sb_swap(bfs, bfs);
   2439 #endif
   2440 
   2441 	if (waitfor == MNT_WAIT)
   2442 		error = bwrite(bp);
   2443 	else
   2444 		bawrite(bp);
   2445 	return (error);
   2446 }
   2447 
   2448 int
   2449 ffs_cgupdate(struct ufsmount *mp, int waitfor)
   2450 {
   2451 	struct fs *fs = mp->um_fs;
   2452 	struct buf *bp;
   2453 	int blks;
   2454 	void *space;
   2455 	int i, size, error = 0, allerror = 0;
   2456 
   2457 	UFS_WAPBL_JLOCK_ASSERT(mp->um_mountp);
   2458 
   2459 	allerror = ffs_sbupdate(mp, waitfor);
   2460 	blks = howmany(fs->fs_cssize, fs->fs_fsize);
   2461 	space = fs->fs_csp;
   2462 	for (i = 0; i < blks; i += fs->fs_frag) {
   2463 		size = fs->fs_bsize;
   2464 		if (i + fs->fs_frag > blks)
   2465 			size = (blks - i) * fs->fs_fsize;
   2466 		error = ffs_getblk(mp->um_devvp, FFS_FSBTODB(fs, fs->fs_csaddr + i),
   2467 		    FFS_NOBLK, size, false, &bp);
   2468 		if (error)
   2469 			break;
   2470 #ifdef FFS_EI
   2471 		if (mp->um_flags & UFS_NEEDSWAP)
   2472 			ffs_csum_swap((struct csum*)space,
   2473 			    (struct csum*)bp->b_data, size);
   2474 		else
   2475 #endif
   2476 			memcpy(bp->b_data, space, (u_int)size);
   2477 		space = (char *)space + size;
   2478 		if (waitfor == MNT_WAIT)
   2479 			error = bwrite(bp);
   2480 		else
   2481 			bawrite(bp);
   2482 	}
   2483 	if (!allerror && error)
   2484 		allerror = error;
   2485 	return (allerror);
   2486 }
   2487 
   2488 int
   2489 ffs_extattrctl(struct mount *mp, int cmd, struct vnode *vp,
   2490     int attrnamespace, const char *attrname)
   2491 {
   2492 #ifdef UFS_EXTATTR
   2493 	/*
   2494 	 * File-backed extended attributes are only supported on UFS1.
   2495 	 * UFS2 has native extended attributes.
   2496 	 */
   2497 	if (VFSTOUFS(mp)->um_fstype == UFS1)
   2498 		return (ufs_extattrctl(mp, cmd, vp, attrnamespace, attrname));
   2499 #endif
   2500 	return (vfs_stdextattrctl(mp, cmd, vp, attrnamespace, attrname));
   2501 }
   2502 
   2503 /*
   2504  * Synch vnode for a mounted file system.
   2505  */
   2506 static int
   2507 ffs_vfs_fsync(vnode_t *vp, int flags)
   2508 {
   2509 	int error, i, pflags;
   2510 #ifdef WAPBL
   2511 	struct mount *mp;
   2512 #endif
   2513 
   2514 	KASSERT(vp->v_type == VBLK);
   2515 	KASSERT(spec_node_getmountedfs(vp) != NULL);
   2516 
   2517 	/*
   2518 	 * Flush all dirty data associated with the vnode.
   2519 	 */
   2520 	pflags = PGO_ALLPAGES | PGO_CLEANIT;
   2521 	if ((flags & FSYNC_WAIT) != 0)
   2522 		pflags |= PGO_SYNCIO;
   2523 	rw_enter(vp->v_uobj.vmobjlock, RW_WRITER);
   2524 	error = VOP_PUTPAGES(vp, 0, 0, pflags);
   2525 	if (error)
   2526 		return error;
   2527 
   2528 #ifdef WAPBL
   2529 	mp = spec_node_getmountedfs(vp);
   2530 	if (mp && mp->mnt_wapbl) {
   2531 		/*
   2532 		 * Don't bother writing out metadata if the syncer is
   2533 		 * making the request.  We will let the sync vnode
   2534 		 * write it out in a single burst through a call to
   2535 		 * VFS_SYNC().
   2536 		 */
   2537 		if ((flags & (FSYNC_DATAONLY | FSYNC_LAZY | FSYNC_NOLOG)) != 0)
   2538 			return 0;
   2539 
   2540 		/*
   2541 		 * Don't flush the log if the vnode being flushed
   2542 		 * contains no dirty buffers that could be in the log.
   2543 		 */
   2544 		if (!LIST_EMPTY(&vp->v_dirtyblkhd)) {
   2545 			error = wapbl_flush(mp->mnt_wapbl, 0);
   2546 			if (error)
   2547 				return error;
   2548 		}
   2549 
   2550 		if ((flags & FSYNC_WAIT) != 0) {
   2551 			mutex_enter(vp->v_interlock);
   2552 			while (vp->v_numoutput)
   2553 				cv_wait(&vp->v_cv, vp->v_interlock);
   2554 			mutex_exit(vp->v_interlock);
   2555 		}
   2556 
   2557 		return 0;
   2558 	}
   2559 #endif /* WAPBL */
   2560 
   2561 	error = vflushbuf(vp, flags);
   2562 	if (error == 0 && (flags & FSYNC_CACHE) != 0) {
   2563 		i = 1;
   2564 		(void)VOP_IOCTL(vp, DIOCCACHESYNC, &i, FWRITE,
   2565 		    kauth_cred_get());
   2566 	}
   2567 
   2568 	return error;
   2569 }
   2570