Home | History | Annotate | Line # | Download | only in ic
      1 /*	$NetBSD: i82557.c,v 1.162 2024/06/29 12:11:11 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1995, David Greenman
     35  * Copyright (c) 2001 Jonathan Lemon <jlemon (at) freebsd.org>
     36  * All rights reserved.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice unmodified, this list of conditions, and the following
     43  *    disclaimer.
     44  * 2. Redistributions in binary form must reproduce the above copyright
     45  *    notice, this list of conditions and the following disclaimer in the
     46  *    documentation and/or other materials provided with the distribution.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  *
     60  *	Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
     61  */
     62 
     63 /*
     64  * Device driver for the Intel i82557 fast Ethernet controller,
     65  * and its successors, the i82558 and i82559.
     66  */
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.162 2024/06/29 12:11:11 riastradh Exp $");
     70 
     71 #include <sys/param.h>
     72 #include <sys/systm.h>
     73 #include <sys/callout.h>
     74 #include <sys/mbuf.h>
     75 #include <sys/malloc.h>
     76 #include <sys/kernel.h>
     77 #include <sys/socket.h>
     78 #include <sys/ioctl.h>
     79 #include <sys/errno.h>
     80 #include <sys/device.h>
     81 #include <sys/syslog.h>
     82 #include <sys/proc.h>
     83 
     84 #include <machine/endian.h>
     85 
     86 #include <sys/rndsource.h>
     87 
     88 #include <net/if.h>
     89 #include <net/if_dl.h>
     90 #include <net/if_media.h>
     91 #include <net/if_ether.h>
     92 
     93 #include <netinet/in.h>
     94 #include <netinet/in_systm.h>
     95 #include <netinet/ip.h>
     96 #include <netinet/tcp.h>
     97 #include <netinet/udp.h>
     98 
     99 #include <net/bpf.h>
    100 
    101 #include <sys/bus.h>
    102 #include <sys/intr.h>
    103 
    104 #include <dev/mii/miivar.h>
    105 
    106 #include <dev/ic/i82557reg.h>
    107 #include <dev/ic/i82557var.h>
    108 
    109 #include <dev/microcode/i8255x/rcvbundl.h>
    110 
    111 /*
    112  * NOTE!  On the Alpha, we have an alignment constraint.  The
    113  * card DMAs the packet immediately following the RFA.  However,
    114  * the first thing in the packet is a 14-byte Ethernet header.
    115  * This means that the packet is misaligned.  To compensate,
    116  * we actually offset the RFA 2 bytes into the cluster.  This
    117  * aligns the packet after the Ethernet header at a 32-bit
    118  * boundary.  HOWEVER!  This means that the RFA is misaligned!
    119  */
    120 #define	RFA_ALIGNMENT_FUDGE	2
    121 
    122 /*
    123  * The configuration byte map has several undefined fields which
    124  * must be one or must be zero.  Set up a template for these bits
    125  * only (assuming an i82557 chip), leaving the actual configuration
    126  * for fxp_init().
    127  *
    128  * See the definition of struct fxp_cb_config for the bit definitions.
    129  */
    130 const uint8_t fxp_cb_config_template[] = {
    131 	0x0, 0x0,		/* cb_status */
    132 	0x0, 0x0,		/* cb_command */
    133 	0x0, 0x0, 0x0, 0x0,	/* link_addr */
    134 	0x0,	/*  0 */
    135 	0x0,	/*  1 */
    136 	0x0,	/*  2 */
    137 	0x0,	/*  3 */
    138 	0x0,	/*  4 */
    139 	0x0,	/*  5 */
    140 	0x32,	/*  6 */
    141 	0x0,	/*  7 */
    142 	0x0,	/*  8 */
    143 	0x0,	/*  9 */
    144 	0x6,	/* 10 */
    145 	0x0,	/* 11 */
    146 	0x0,	/* 12 */
    147 	0x0,	/* 13 */
    148 	0xf2,	/* 14 */
    149 	0x48,	/* 15 */
    150 	0x0,	/* 16 */
    151 	0x40,	/* 17 */
    152 	0xf0,	/* 18 */
    153 	0x0,	/* 19 */
    154 	0x3f,	/* 20 */
    155 	0x5,	/* 21 */
    156 	0x0,	/* 22 */
    157 	0x0,	/* 23 */
    158 	0x0,	/* 24 */
    159 	0x0,	/* 25 */
    160 	0x0,	/* 26 */
    161 	0x0,	/* 27 */
    162 	0x0,	/* 28 */
    163 	0x0,	/* 29 */
    164 	0x0,	/* 30 */
    165 	0x0,	/* 31 */
    166 };
    167 
    168 void	fxp_mii_initmedia(struct fxp_softc *);
    169 void	fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
    170 
    171 void	fxp_80c24_initmedia(struct fxp_softc *);
    172 int	fxp_80c24_mediachange(struct ifnet *);
    173 void	fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
    174 
    175 void	fxp_start(struct ifnet *);
    176 int	fxp_ioctl(struct ifnet *, u_long, void *);
    177 void	fxp_watchdog(struct ifnet *);
    178 int	fxp_init(struct ifnet *);
    179 void	fxp_stop(struct ifnet *, int);
    180 
    181 void	fxp_txintr(struct fxp_softc *);
    182 int	fxp_rxintr(struct fxp_softc *);
    183 
    184 void	fxp_rx_hwcksum(struct fxp_softc *, struct mbuf *,
    185 	    const struct fxp_rfa *, u_int);
    186 
    187 void	fxp_rxdrain(struct fxp_softc *);
    188 int	fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
    189 int	fxp_mdi_read(device_t, int, int, uint16_t *);
    190 void	fxp_statchg(struct ifnet *);
    191 int	fxp_mdi_write(device_t, int, int, uint16_t);
    192 void	fxp_autosize_eeprom(struct fxp_softc*);
    193 void	fxp_read_eeprom(struct fxp_softc *, uint16_t *, int, int);
    194 void	fxp_write_eeprom(struct fxp_softc *, uint16_t *, int, int);
    195 void	fxp_eeprom_update_cksum(struct fxp_softc *);
    196 void	fxp_get_info(struct fxp_softc *, uint8_t *);
    197 void	fxp_tick(void *);
    198 void	fxp_mc_setup(struct fxp_softc *);
    199 void	fxp_load_ucode(struct fxp_softc *);
    200 
    201 int	fxp_copy_small = 0;
    202 
    203 /*
    204  * Variables for interrupt mitigating microcode.
    205  */
    206 int	fxp_int_delay = 1000;		/* usec */
    207 int	fxp_bundle_max = 6;		/* packets */
    208 
    209 struct fxp_phytype {
    210 	int	fp_phy;		/* type of PHY, -1 for MII at the end. */
    211 	void	(*fp_init)(struct fxp_softc *);
    212 } fxp_phytype_table[] = {
    213 	{ FXP_PHY_80C24,		fxp_80c24_initmedia },
    214 	{ -1,				fxp_mii_initmedia },
    215 };
    216 
    217 /*
    218  * Set initial transmit threshold at 64 (512 bytes). This is
    219  * increased by 64 (512 bytes) at a time, to maximum of 192
    220  * (1536 bytes), if an underrun occurs.
    221  */
    222 static int tx_threshold = 64;
    223 
    224 /*
    225  * Wait for the previous command to be accepted (but not necessarily
    226  * completed).
    227  */
    228 static inline void
    229 fxp_scb_wait(struct fxp_softc *sc)
    230 {
    231 	int i = 10000;
    232 
    233 	while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
    234 		delay(2);
    235 	if (i == 0)
    236 		log(LOG_WARNING,
    237 		    "%s: WARNING: SCB timed out!\n", device_xname(sc->sc_dev));
    238 }
    239 
    240 /*
    241  * Submit a command to the i82557.
    242  */
    243 static inline void
    244 fxp_scb_cmd(struct fxp_softc *sc, uint8_t cmd)
    245 {
    246 
    247 	CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
    248 }
    249 
    250 /*
    251  * Finish attaching an i82557 interface.  Called by bus-specific front-end.
    252  */
    253 void
    254 fxp_attach(struct fxp_softc *sc)
    255 {
    256 	uint8_t enaddr[ETHER_ADDR_LEN];
    257 	struct ifnet *ifp;
    258 	bus_dma_segment_t seg;
    259 	int rseg, i, error;
    260 	struct fxp_phytype *fp;
    261 
    262 	callout_init(&sc->sc_callout, 0);
    263 	callout_setfunc(&sc->sc_callout, fxp_tick, sc);
    264 
    265         /*
    266 	 * Enable use of extended RFDs and IPCBs for 82550 and later chips.
    267 	 * Note: to use IPCB we need extended TXCB support too, and
    268 	 *       these feature flags should be set in each bus attachment.
    269 	 */
    270 	if (sc->sc_flags & FXPF_EXT_RFA) {
    271 		sc->sc_txcmd = htole16(FXP_CB_COMMAND_IPCBXMIT);
    272 		sc->sc_rfa_size = RFA_EXT_SIZE;
    273 	} else {
    274 		sc->sc_txcmd = htole16(FXP_CB_COMMAND_XMIT);
    275 		sc->sc_rfa_size = RFA_SIZE;
    276 	}
    277 
    278 	/*
    279 	 * Allocate the control data structures, and create and load the
    280 	 * DMA map for it.
    281 	 */
    282 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    283 	    sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    284 	    0)) != 0) {
    285 		aprint_error_dev(sc->sc_dev,
    286 		    "unable to allocate control data, error = %d\n",
    287 		    error);
    288 		goto fail_0;
    289 	}
    290 
    291 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    292 	    sizeof(struct fxp_control_data), (void **)&sc->sc_control_data,
    293 	    BUS_DMA_COHERENT)) != 0) {
    294 		aprint_error_dev(sc->sc_dev,
    295 		    "unable to map control data, error = %d\n", error);
    296 		goto fail_1;
    297 	}
    298 	sc->sc_cdseg = seg;
    299 	sc->sc_cdnseg = rseg;
    300 
    301 	memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
    302 
    303 	if ((error = bus_dmamap_create(sc->sc_dmat,
    304 	    sizeof(struct fxp_control_data), 1,
    305 	    sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
    306 		aprint_error_dev(sc->sc_dev,
    307 		    "unable to create control data DMA map, error = %d\n",
    308 		    error);
    309 		goto fail_2;
    310 	}
    311 
    312 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
    313 	    sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
    314 	    0)) != 0) {
    315 		aprint_error_dev(sc->sc_dev,
    316 		    "can't load control data DMA map, error = %d\n",
    317 		    error);
    318 		goto fail_3;
    319 	}
    320 
    321 	/*
    322 	 * Create the transmit buffer DMA maps.
    323 	 */
    324 	for (i = 0; i < FXP_NTXCB; i++) {
    325 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    326 		    (sc->sc_flags & FXPF_EXT_RFA) ?
    327 		    FXP_IPCB_NTXSEG : FXP_NTXSEG,
    328 		    MCLBYTES, 0, 0, &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
    329 			aprint_error_dev(sc->sc_dev,
    330 			    "unable to create tx DMA map %d, error = %d\n",
    331 			    i, error);
    332 			goto fail_4;
    333 		}
    334 	}
    335 
    336 	/*
    337 	 * Create the receive buffer DMA maps.
    338 	 */
    339 	for (i = 0; i < FXP_NRFABUFS; i++) {
    340 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    341 		    MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
    342 			aprint_error_dev(sc->sc_dev,
    343 			    "unable to create rx DMA map %d, error = %d\n",
    344 			    i, error);
    345 			goto fail_5;
    346 		}
    347 	}
    348 
    349 	/* Initialize MAC address and media structures. */
    350 	fxp_get_info(sc, enaddr);
    351 
    352 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
    353 	    ether_sprintf(enaddr));
    354 
    355 	ifp = &sc->sc_ethercom.ec_if;
    356 
    357 	/*
    358 	 * Get info about our media interface, and initialize it.  Note
    359 	 * the table terminates itself with a phy of -1, indicating
    360 	 * that we're using MII.
    361 	 */
    362 	for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
    363 		if (fp->fp_phy == sc->phy_primary_device)
    364 			break;
    365 	(*fp->fp_init)(sc);
    366 
    367 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    368 	ifp->if_softc = sc;
    369 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    370 	ifp->if_ioctl = fxp_ioctl;
    371 	ifp->if_start = fxp_start;
    372 	ifp->if_watchdog = fxp_watchdog;
    373 	ifp->if_init = fxp_init;
    374 	ifp->if_stop = fxp_stop;
    375 	IFQ_SET_READY(&ifp->if_snd);
    376 
    377 	if (sc->sc_flags & FXPF_EXT_RFA) {
    378 		/*
    379 		 * Enable hardware cksum support by EXT_RFA and IPCB.
    380 		 *
    381 		 * IFCAP_CSUM_IPv4_Tx seems to have a problem,
    382 		 * at least, on i82550 rev.12.
    383 		 * specifically, it doesn't set ipv4 checksum properly
    384 		 * when sending UDP (and probably TCP) packets with
    385 		 * 20 byte ipv4 header + 1 or 2 byte data,
    386 		 * though ICMP packets seem working.
    387 		 * FreeBSD driver has related comments.
    388 		 * We've added a workaround to handle the bug by padding
    389 		 * such packets manually.
    390 		 */
    391 		ifp->if_capabilities =
    392 		    IFCAP_CSUM_IPv4_Tx  | IFCAP_CSUM_IPv4_Rx  |
    393 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    394 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    395 		sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
    396 		sc->sc_ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
    397 	} else if (sc->sc_flags & FXPF_82559_RXCSUM) {
    398 		ifp->if_capabilities =
    399 		    IFCAP_CSUM_TCPv4_Rx |
    400 		    IFCAP_CSUM_UDPv4_Rx;
    401 	}
    402 
    403 	/*
    404 	 * We can support 802.1Q VLAN-sized frames.
    405 	 */
    406 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    407 
    408 	/*
    409 	 * Attach the interface.
    410 	 */
    411 	if_attach(ifp);
    412 	if_deferred_start_init(ifp, NULL);
    413 	ether_ifattach(ifp, enaddr);
    414 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
    415 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
    416 
    417 #ifdef FXP_EVENT_COUNTERS
    418 	evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
    419 	    NULL, device_xname(sc->sc_dev), "txstall");
    420 	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
    421 	    NULL, device_xname(sc->sc_dev), "txintr");
    422 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    423 	    NULL, device_xname(sc->sc_dev), "rxintr");
    424 	if (sc->sc_flags & FXPF_FC) {
    425 		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
    426 		    NULL, device_xname(sc->sc_dev), "txpause");
    427 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
    428 		    NULL, device_xname(sc->sc_dev), "rxpause");
    429 	}
    430 #endif /* FXP_EVENT_COUNTERS */
    431 
    432 	/* The attach is successful. */
    433 	sc->sc_flags |= FXPF_ATTACHED;
    434 
    435 	return;
    436 
    437 	/*
    438 	 * Free any resources we've allocated during the failed attach
    439 	 * attempt.  Do this in reverse order and fall though.
    440 	 */
    441  fail_5:
    442 	for (i = 0; i < FXP_NRFABUFS; i++) {
    443 		if (sc->sc_rxmaps[i] != NULL)
    444 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
    445 	}
    446  fail_4:
    447 	for (i = 0; i < FXP_NTXCB; i++) {
    448 		if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
    449 			bus_dmamap_destroy(sc->sc_dmat,
    450 			    FXP_DSTX(sc, i)->txs_dmamap);
    451 	}
    452 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
    453  fail_3:
    454 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
    455  fail_2:
    456 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    457 	    sizeof(struct fxp_control_data));
    458  fail_1:
    459 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    460  fail_0:
    461 	return;
    462 }
    463 
    464 void
    465 fxp_mii_initmedia(struct fxp_softc *sc)
    466 {
    467 	struct mii_data * const mii = &sc->sc_mii;
    468 	int flags;
    469 
    470 	sc->sc_flags |= FXPF_MII;
    471 
    472 	mii->mii_ifp = &sc->sc_ethercom.ec_if;
    473 	mii->mii_readreg = fxp_mdi_read;
    474 	mii->mii_writereg = fxp_mdi_write;
    475 	mii->mii_statchg = fxp_statchg;
    476 
    477 	sc->sc_ethercom.ec_mii = mii;
    478 	ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
    479 	    fxp_mii_mediastatus);
    480 
    481 	flags = MIIF_NOISOLATE;
    482 	if (sc->sc_flags & FXPF_FC)
    483 		flags |= MIIF_FORCEANEG | MIIF_DOPAUSE;
    484 	/*
    485 	 * The i82557 wedges if all of its PHYs are isolated!
    486 	 */
    487 	mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
    488 	    MII_OFFSET_ANY, flags);
    489 	if (LIST_EMPTY(&mii->mii_phys)) {
    490 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
    491 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
    492 	} else
    493 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
    494 }
    495 
    496 void
    497 fxp_80c24_initmedia(struct fxp_softc *sc)
    498 {
    499 	struct mii_data * const mii = &sc->sc_mii;
    500 
    501 	/*
    502 	 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
    503 	 * doesn't have a programming interface of any sort.  The
    504 	 * media is sensed automatically based on how the link partner
    505 	 * is configured.  This is, in essence, manual configuration.
    506 	 */
    507 	aprint_normal_dev(sc->sc_dev,
    508 	    "Seeq 80c24 AutoDUPLEX media interface present\n");
    509 	ifmedia_init(&mii->mii_media, 0, fxp_80c24_mediachange,
    510 	    fxp_80c24_mediastatus);
    511 	ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
    512 	ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
    513 }
    514 
    515 /*
    516  * Initialize the interface media.
    517  */
    518 void
    519 fxp_get_info(struct fxp_softc *sc, uint8_t *enaddr)
    520 {
    521 	uint16_t data, myea[ETHER_ADDR_LEN / 2];
    522 
    523 	/*
    524 	 * Reset to a stable state.
    525 	 */
    526 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
    527 	DELAY(100);
    528 
    529 	sc->sc_eeprom_size = 0;
    530 	fxp_autosize_eeprom(sc);
    531 	if (sc->sc_eeprom_size == 0) {
    532 		aprint_error_dev(sc->sc_dev, "failed to detect EEPROM size\n");
    533 		sc->sc_eeprom_size = 6; /* XXX panic here? */
    534 	}
    535 #ifdef DEBUG
    536 	aprint_debug_dev(sc->sc_dev, "detected %d word EEPROM\n",
    537 	    1 << sc->sc_eeprom_size);
    538 #endif
    539 
    540 	/*
    541 	 * Get info about the primary PHY
    542 	 */
    543 	fxp_read_eeprom(sc, &data, 6, 1);
    544 	sc->phy_primary_device =
    545 	    (data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
    546 
    547 	/*
    548 	 * Read MAC address.
    549 	 */
    550 	fxp_read_eeprom(sc, myea, 0, 3);
    551 	enaddr[0] = myea[0] & 0xff;
    552 	enaddr[1] = myea[0] >> 8;
    553 	enaddr[2] = myea[1] & 0xff;
    554 	enaddr[3] = myea[1] >> 8;
    555 	enaddr[4] = myea[2] & 0xff;
    556 	enaddr[5] = myea[2] >> 8;
    557 
    558 	/*
    559 	 * Systems based on the ICH2/ICH2-M chip from Intel, as well
    560 	 * as some i82559 designs, have a defect where the chip can
    561 	 * cause a PCI protocol violation if it receives a CU_RESUME
    562 	 * command when it is entering the IDLE state.
    563 	 *
    564 	 * The work-around is to disable Dynamic Standby Mode, so that
    565 	 * the chip never deasserts #CLKRUN, and always remains in the
    566 	 * active state.
    567 	 *
    568 	 * Unfortunately, the only way to disable Dynamic Standby is
    569 	 * to frob an EEPROM setting and reboot (the EEPROM setting
    570 	 * is only consulted when the PCI bus comes out of reset).
    571 	 *
    572 	 * See Intel 82801BA/82801BAM Specification Update, Errata #30.
    573 	 */
    574 	if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
    575 		fxp_read_eeprom(sc, &data, 10, 1);
    576 		if (data & 0x02) {		/* STB enable */
    577 			aprint_error_dev(sc->sc_dev, "WARNING: "
    578 			    "Disabling dynamic standby mode in EEPROM "
    579 			    "to work around a\n");
    580 			aprint_normal_dev(sc->sc_dev,
    581 			    "WARNING: hardware bug.  You must reset "
    582 			    "the system before using this\n");
    583 			aprint_normal_dev(sc->sc_dev, "WARNING: interface.\n");
    584 			data &= ~0x02;
    585 			fxp_write_eeprom(sc, &data, 10, 1);
    586 			aprint_normal_dev(sc->sc_dev, "new EEPROM ID: 0x%04x\n",
    587 			    data);
    588 			fxp_eeprom_update_cksum(sc);
    589 		}
    590 	}
    591 
    592 	/* Receiver lock-up workaround detection. (FXPF_RECV_WORKAROUND) */
    593 	/* Due to false positives we make it conditional on setting link1 */
    594 	fxp_read_eeprom(sc, &data, 3, 1);
    595 	if ((data & 0x03) != 0x03) {
    596 		aprint_verbose_dev(sc->sc_dev,
    597 		    "May need receiver lock-up workaround\n");
    598 	}
    599 }
    600 
    601 static void
    602 fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
    603 {
    604 	uint16_t reg;
    605 	int x;
    606 
    607 	for (x = 1 << (len - 1); x != 0; x >>= 1) {
    608 		DELAY(40);
    609 		if (data & x)
    610 			reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
    611 		else
    612 			reg = FXP_EEPROM_EECS;
    613 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    614 		DELAY(40);
    615 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    616 		    reg | FXP_EEPROM_EESK);
    617 		DELAY(40);
    618 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    619 	}
    620 	DELAY(40);
    621 }
    622 
    623 /*
    624  * Figure out EEPROM size.
    625  *
    626  * 559's can have either 64-word or 256-word EEPROMs, the 558
    627  * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
    628  * talks about the existence of 16 to 256 word EEPROMs.
    629  *
    630  * The only known sizes are 64 and 256, where the 256 version is used
    631  * by CardBus cards to store CIS information.
    632  *
    633  * The address is shifted in msb-to-lsb, and after the last
    634  * address-bit the EEPROM is supposed to output a `dummy zero' bit,
    635  * after which follows the actual data. We try to detect this zero, by
    636  * probing the data-out bit in the EEPROM control register just after
    637  * having shifted in a bit. If the bit is zero, we assume we've
    638  * shifted enough address bits. The data-out should be tri-state,
    639  * before this, which should translate to a logical one.
    640  *
    641  * Other ways to do this would be to try to read a register with known
    642  * contents with a varying number of address bits, but no such
    643  * register seem to be available. The high bits of register 10 are 01
    644  * on the 558 and 559, but apparently not on the 557.
    645  *
    646  * The Linux driver computes a checksum on the EEPROM data, but the
    647  * value of this checksum is not very well documented.
    648  */
    649 
    650 void
    651 fxp_autosize_eeprom(struct fxp_softc *sc)
    652 {
    653 	int x;
    654 
    655 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    656 	DELAY(40);
    657 
    658 	/* Shift in read opcode. */
    659 	fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
    660 
    661 	/*
    662 	 * Shift in address, wait for the dummy zero following a correct
    663 	 * address shift.
    664 	 */
    665 	for (x = 1; x <= 8; x++) {
    666 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    667 		DELAY(40);
    668 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    669 		    FXP_EEPROM_EECS | FXP_EEPROM_EESK);
    670 		DELAY(40);
    671 		if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
    672 		    FXP_EEPROM_EEDO) == 0)
    673 			break;
    674 		DELAY(40);
    675 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    676 		DELAY(40);
    677 	}
    678 	CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    679 	DELAY(40);
    680 	if (x != 6 && x != 8) {
    681 #ifdef DEBUG
    682 		printf("%s: strange EEPROM size (%d)\n",
    683 		    device_xname(sc->sc_dev), 1 << x);
    684 #endif
    685 	} else
    686 		sc->sc_eeprom_size = x;
    687 }
    688 
    689 /*
    690  * Read from the serial EEPROM. Basically, you manually shift in
    691  * the read opcode (one bit at a time) and then shift in the address,
    692  * and then you shift out the data (all of this one bit at a time).
    693  * The word size is 16 bits, so you have to provide the address for
    694  * every 16 bits of data.
    695  */
    696 void
    697 fxp_read_eeprom(struct fxp_softc *sc, uint16_t *data, int offset, int words)
    698 {
    699 	uint16_t reg;
    700 	int i, x;
    701 
    702 	for (i = 0; i < words; i++) {
    703 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    704 
    705 		/* Shift in read opcode. */
    706 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
    707 
    708 		/* Shift in address. */
    709 		fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
    710 
    711 		reg = FXP_EEPROM_EECS;
    712 		data[i] = 0;
    713 
    714 		/* Shift out data. */
    715 		for (x = 16; x > 0; x--) {
    716 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
    717 			    reg | FXP_EEPROM_EESK);
    718 			DELAY(40);
    719 			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
    720 			    FXP_EEPROM_EEDO)
    721 				data[i] |= (1 << (x - 1));
    722 			CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
    723 			DELAY(40);
    724 		}
    725 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    726 		DELAY(40);
    727 	}
    728 }
    729 
    730 /*
    731  * Write data to the serial EEPROM.
    732  */
    733 void
    734 fxp_write_eeprom(struct fxp_softc *sc, uint16_t *data, int offset, int words)
    735 {
    736 	int i, j;
    737 
    738 	for (i = 0; i < words; i++) {
    739 		/* Erase/write enable. */
    740 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    741 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
    742 		fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
    743 		    sc->sc_eeprom_size);
    744 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    745 		DELAY(4);
    746 
    747 		/* Shift in write opcode, address, data. */
    748 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    749 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
    750 		fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
    751 		fxp_eeprom_shiftin(sc, data[i], 16);
    752 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    753 		DELAY(4);
    754 
    755 		/* Wait for the EEPROM to finish up. */
    756 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    757 		DELAY(4);
    758 		for (j = 0; j < 1000; j++) {
    759 			if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
    760 			    FXP_EEPROM_EEDO)
    761 				break;
    762 			DELAY(50);
    763 		}
    764 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    765 		DELAY(4);
    766 
    767 		/* Erase/write disable. */
    768 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
    769 		fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
    770 		fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
    771 		CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
    772 		DELAY(4);
    773 	}
    774 }
    775 
    776 /*
    777  * Update the checksum of the EEPROM.
    778  */
    779 void
    780 fxp_eeprom_update_cksum(struct fxp_softc *sc)
    781 {
    782 	int i;
    783 	uint16_t data, cksum;
    784 
    785 	cksum = 0;
    786 	for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
    787 		fxp_read_eeprom(sc, &data, i, 1);
    788 		cksum += data;
    789 	}
    790 	i = (1 << sc->sc_eeprom_size) - 1;
    791 	cksum = 0xbaba - cksum;
    792 	fxp_read_eeprom(sc, &data, i, 1);
    793 	fxp_write_eeprom(sc, &cksum, i, 1);
    794 	log(LOG_INFO, "%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
    795 	    device_xname(sc->sc_dev), i, data, cksum);
    796 }
    797 
    798 /*
    799  * Start packet transmission on the interface.
    800  */
    801 void
    802 fxp_start(struct ifnet *ifp)
    803 {
    804 	struct fxp_softc *sc = ifp->if_softc;
    805 	struct mbuf *m0, *m;
    806 	struct fxp_txdesc *txd;
    807 	struct fxp_txsoft *txs;
    808 	bus_dmamap_t dmamap;
    809 	int error, lasttx, nexttx, opending, seg, nsegs, len;
    810 
    811 	/*
    812 	 * If we want a re-init, bail out now.
    813 	 */
    814 	if (sc->sc_flags & FXPF_WANTINIT) {
    815 		ifp->if_flags |= IFF_OACTIVE;
    816 		return;
    817 	}
    818 
    819 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
    820 		return;
    821 
    822 	/*
    823 	 * Remember the previous txpending and the current lasttx.
    824 	 */
    825 	opending = sc->sc_txpending;
    826 	lasttx = sc->sc_txlast;
    827 
    828 	/*
    829 	 * Loop through the send queue, setting up transmit descriptors
    830 	 * until we drain the queue, or use up all available transmit
    831 	 * descriptors.
    832 	 */
    833 	for (;;) {
    834 		struct fxp_tbd *tbdp;
    835 		int csum_flags;
    836 
    837 		/*
    838 		 * Grab a packet off the queue.
    839 		 */
    840 		IFQ_POLL(&ifp->if_snd, m0);
    841 		if (m0 == NULL)
    842 			break;
    843 		m = NULL;
    844 
    845 		if (sc->sc_txpending == FXP_NTXCB - 1) {
    846 			FXP_EVCNT_INCR(&sc->sc_ev_txstall);
    847 			break;
    848 		}
    849 
    850 		/*
    851 		 * Get the next available transmit descriptor.
    852 		 */
    853 		nexttx = FXP_NEXTTX(sc->sc_txlast);
    854 		txd = FXP_CDTX(sc, nexttx);
    855 		txs = FXP_DSTX(sc, nexttx);
    856 		dmamap = txs->txs_dmamap;
    857 
    858 		/*
    859 		 * Load the DMA map.  If this fails, the packet either
    860 		 * didn't fit in the allotted number of frags, or we were
    861 		 * short on resources.  In this case, we'll copy and try
    862 		 * again.
    863 		 */
    864 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    865 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
    866 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    867 			if (m == NULL) {
    868 				log(LOG_ERR, "%s: unable to allocate Tx mbuf\n",
    869 				    device_xname(sc->sc_dev));
    870 				break;
    871 			}
    872 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
    873 			if (m0->m_pkthdr.len > MHLEN) {
    874 				MCLGET(m, M_DONTWAIT);
    875 				if ((m->m_flags & M_EXT) == 0) {
    876 					log(LOG_ERR, "%s: unable to allocate "
    877 					    "Tx cluster\n",
    878 					    device_xname(sc->sc_dev));
    879 					m_freem(m);
    880 					break;
    881 				}
    882 			}
    883 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
    884 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    885 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
    886 			    m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
    887 			if (error) {
    888 				log(LOG_ERR, "%s: unable to load Tx buffer, "
    889 				    "error = %d\n",
    890 				    device_xname(sc->sc_dev), error);
    891 				break;
    892 			}
    893 		}
    894 
    895 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    896 		csum_flags = m0->m_pkthdr.csum_flags;
    897 		if (m != NULL) {
    898 			m_freem(m0);
    899 			m0 = m;
    900 		}
    901 
    902 		/* Initialize the fraglist. */
    903 		tbdp = txd->txd_tbd;
    904 		len = m0->m_pkthdr.len;
    905 		nsegs = dmamap->dm_nsegs;
    906 		if (sc->sc_flags & FXPF_EXT_RFA)
    907 			tbdp++;
    908 		for (seg = 0; seg < nsegs; seg++) {
    909 			tbdp[seg].tb_addr =
    910 			    htole32(dmamap->dm_segs[seg].ds_addr);
    911 			tbdp[seg].tb_size =
    912 			    htole32(dmamap->dm_segs[seg].ds_len);
    913 		}
    914 		if (__predict_false(len <= FXP_IP4CSUMTX_PADLEN &&
    915 		    (csum_flags & M_CSUM_IPv4) != 0)) {
    916 			/*
    917 			 * Pad short packets to avoid ip4csum-tx bug.
    918 			 *
    919 			 * XXX Should we still consider if such short
    920 			 *     (36 bytes or less) packets might already
    921 			 *     occupy FXP_IPCB_NTXSEG (15) fragments here?
    922 			 */
    923 			KASSERT(nsegs < FXP_IPCB_NTXSEG);
    924 			nsegs++;
    925 			tbdp[seg].tb_addr = htole32(FXP_CDTXPADADDR(sc));
    926 			tbdp[seg].tb_size =
    927 			    htole32(FXP_IP4CSUMTX_PADLEN + 1 - len);
    928 		}
    929 
    930 		/* Sync the DMA map. */
    931 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    932 		    BUS_DMASYNC_PREWRITE);
    933 
    934 		/*
    935 		 * Store a pointer to the packet so we can free it later.
    936 		 */
    937 		txs->txs_mbuf = m0;
    938 
    939 		/*
    940 		 * Initialize the transmit descriptor.
    941 		 */
    942 		/* BIG_ENDIAN: no need to swap to store 0 */
    943 		txd->txd_txcb.cb_status = 0;
    944 		txd->txd_txcb.cb_command =
    945 		    sc->sc_txcmd | htole16(FXP_CB_COMMAND_SF);
    946 		txd->txd_txcb.tx_threshold = tx_threshold;
    947 		txd->txd_txcb.tbd_number = nsegs;
    948 
    949 		KASSERT((csum_flags & (M_CSUM_TCPv6 | M_CSUM_UDPv6)) == 0);
    950 		if (sc->sc_flags & FXPF_EXT_RFA) {
    951 			struct fxp_ipcb *ipcb;
    952 			/*
    953 			 * Deal with TCP/IP checksum offload. Note that
    954 			 * in order for TCP checksum offload to work,
    955 			 * the pseudo header checksum must have already
    956 			 * been computed and stored in the checksum field
    957 			 * in the TCP header. The stack should have
    958 			 * already done this for us.
    959 			 */
    960 			ipcb = &txd->txd_u.txdu_ipcb;
    961 			memset(ipcb, 0, sizeof(*ipcb));
    962 			/*
    963 			 * always do hardware parsing.
    964 			 */
    965 			ipcb->ipcb_ip_activation_high =
    966 			    FXP_IPCB_HARDWAREPARSING_ENABLE;
    967 			/*
    968 			 * ip checksum offloading.
    969 			 */
    970 			if (csum_flags & M_CSUM_IPv4) {
    971 				ipcb->ipcb_ip_schedule |=
    972 				    FXP_IPCB_IP_CHECKSUM_ENABLE;
    973 			}
    974 			/*
    975 			 * TCP/UDP checksum offloading.
    976 			 */
    977 			if (csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
    978 				ipcb->ipcb_ip_schedule |=
    979 				    FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
    980 			}
    981 
    982 			/*
    983 			 * request VLAN tag insertion if needed.
    984 			 */
    985 			if (vlan_has_tag(m0)) {
    986 				ipcb->ipcb_vlan_id = htobe16(vlan_get_tag(m0));
    987 				ipcb->ipcb_ip_activation_high |=
    988 				    FXP_IPCB_INSERTVLAN_ENABLE;
    989 			}
    990 		} else {
    991 			KASSERT((csum_flags &
    992 			    (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) == 0);
    993 		}
    994 
    995 		FXP_CDTXSYNC(sc, nexttx,
    996 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    997 
    998 		/* Advance the tx pointer. */
    999 		sc->sc_txpending++;
   1000 		sc->sc_txlast = nexttx;
   1001 
   1002 		/*
   1003 		 * Pass packet to bpf if there is a listener.
   1004 		 */
   1005 		bpf_mtap(ifp, m0, BPF_D_OUT);
   1006 	}
   1007 
   1008 	if (sc->sc_txpending == FXP_NTXCB - 1) {
   1009 		/* No more slots; notify upper layer. */
   1010 		ifp->if_flags |= IFF_OACTIVE;
   1011 	}
   1012 
   1013 	if (sc->sc_txpending != opending) {
   1014 		/*
   1015 		 * We enqueued packets.  If the transmitter was idle,
   1016 		 * reset the txdirty pointer.
   1017 		 */
   1018 		if (opending == 0)
   1019 			sc->sc_txdirty = FXP_NEXTTX(lasttx);
   1020 
   1021 		/*
   1022 		 * Cause the chip to interrupt and suspend command
   1023 		 * processing once the last packet we've enqueued
   1024 		 * has been transmitted.
   1025 		 *
   1026 		 * To avoid a race between updating status bits
   1027 		 * by the fxp chip and clearing command bits
   1028 		 * by this function on machines which don't have
   1029 		 * atomic methods to clear/set bits in memory
   1030 		 * smaller than 32bits (both cb_status and cb_command
   1031 		 * members are uint16_t and in the same 32bit word),
   1032 		 * we have to prepare a dummy TX descriptor which has
   1033 		 * NOP command and just causes a TX completion interrupt.
   1034 		 */
   1035 		sc->sc_txpending++;
   1036 		sc->sc_txlast = FXP_NEXTTX(sc->sc_txlast);
   1037 		txd = FXP_CDTX(sc, sc->sc_txlast);
   1038 		/* BIG_ENDIAN: no need to swap to store 0 */
   1039 		txd->txd_txcb.cb_status = 0;
   1040 		txd->txd_txcb.cb_command = htole16(FXP_CB_COMMAND_NOP |
   1041 		    FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
   1042 		FXP_CDTXSYNC(sc, sc->sc_txlast,
   1043 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1044 
   1045 		/*
   1046 		 * The entire packet chain is set up.  Clear the suspend bit
   1047 		 * on the command prior to the first packet we set up.
   1048 		 */
   1049 		FXP_CDTXSYNC(sc, lasttx,
   1050 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1051 		FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
   1052 		    htole16(~FXP_CB_COMMAND_S);
   1053 		FXP_CDTXSYNC(sc, lasttx,
   1054 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1055 
   1056 		/*
   1057 		 * Issue a Resume command in case the chip was suspended.
   1058 		 */
   1059 		fxp_scb_wait(sc);
   1060 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
   1061 
   1062 		/* Set a watchdog timer in case the chip flakes out. */
   1063 		ifp->if_timer = 5;
   1064 	}
   1065 }
   1066 
   1067 /*
   1068  * Process interface interrupts.
   1069  */
   1070 int
   1071 fxp_intr(void *arg)
   1072 {
   1073 	struct fxp_softc *sc = arg;
   1074 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1075 	bus_dmamap_t rxmap;
   1076 	int claimed = 0, rnr;
   1077 	uint8_t statack, rndstat = 0;
   1078 
   1079 	if (!device_is_active(sc->sc_dev) || sc->sc_enabled == 0)
   1080 		return (0);
   1081 	/*
   1082 	 * If the interface isn't running, don't try to
   1083 	 * service the interrupt.. just ack it and bail.
   1084 	 */
   1085 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
   1086 		statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
   1087 		if (statack) {
   1088 			claimed = 1;
   1089 			CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
   1090 		}
   1091 		return (claimed);
   1092 	}
   1093 
   1094 	while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
   1095 		rndstat = statack;
   1096 		claimed = 1;
   1097 
   1098 		/*
   1099 		 * First ACK all the interrupts in this pass.
   1100 		 */
   1101 		CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
   1102 
   1103 		/*
   1104 		 * Process receiver interrupts. If a no-resource (RNR)
   1105 		 * condition exists, get whatever packets we can and
   1106 		 * re-start the receiver.
   1107 		 */
   1108 		rnr = (statack & (FXP_SCB_STATACK_RNR | FXP_SCB_STATACK_SWI)) ?
   1109 		    1 : 0;
   1110 		if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR |
   1111 		    FXP_SCB_STATACK_SWI)) {
   1112 			FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
   1113 			rnr |= fxp_rxintr(sc);
   1114 		}
   1115 
   1116 		/*
   1117 		 * Free any finished transmit mbuf chains.
   1118 		 */
   1119 		if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
   1120 			FXP_EVCNT_INCR(&sc->sc_ev_txintr);
   1121 			fxp_txintr(sc);
   1122 
   1123 			/*
   1124 			 * Try to get more packets going.
   1125 			 */
   1126 			if_schedule_deferred_start(ifp);
   1127 
   1128 			if (sc->sc_txpending == 0) {
   1129 				/*
   1130 				 * Tell them that they can re-init now.
   1131 				 */
   1132 				if (sc->sc_flags & FXPF_WANTINIT)
   1133 					wakeup(sc);
   1134 			}
   1135 		}
   1136 
   1137 		if (rnr) {
   1138 			fxp_scb_wait(sc);
   1139 			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_ABORT);
   1140 			rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
   1141 			fxp_scb_wait(sc);
   1142 			CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
   1143 			    rxmap->dm_segs[0].ds_addr +
   1144 			    RFA_ALIGNMENT_FUDGE);
   1145 			fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
   1146 		}
   1147 	}
   1148 
   1149 	if (claimed)
   1150 		rnd_add_uint32(&sc->rnd_source, rndstat);
   1151 	return (claimed);
   1152 }
   1153 
   1154 /*
   1155  * Handle transmit completion interrupts.
   1156  */
   1157 void
   1158 fxp_txintr(struct fxp_softc *sc)
   1159 {
   1160 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1161 	struct fxp_txdesc *txd;
   1162 	struct fxp_txsoft *txs;
   1163 	int i;
   1164 	uint16_t txstat;
   1165 
   1166 	ifp->if_flags &= ~IFF_OACTIVE;
   1167 	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
   1168 	    i = FXP_NEXTTX(i), sc->sc_txpending--) {
   1169 		txd = FXP_CDTX(sc, i);
   1170 		txs = FXP_DSTX(sc, i);
   1171 
   1172 		FXP_CDTXSYNC(sc, i,
   1173 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1174 
   1175 		/* skip dummy NOP TX descriptor */
   1176 		if ((le16toh(txd->txd_txcb.cb_command) & FXP_CB_COMMAND_CMD)
   1177 		    == FXP_CB_COMMAND_NOP)
   1178 			continue;
   1179 
   1180 		txstat = le16toh(txd->txd_txcb.cb_status);
   1181 
   1182 		if ((txstat & FXP_CB_STATUS_C) == 0)
   1183 			break;
   1184 
   1185 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1186 		    0, txs->txs_dmamap->dm_mapsize,
   1187 		    BUS_DMASYNC_POSTWRITE);
   1188 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1189 		m_freem(txs->txs_mbuf);
   1190 		txs->txs_mbuf = NULL;
   1191 	}
   1192 
   1193 	/* Update the dirty transmit buffer pointer. */
   1194 	sc->sc_txdirty = i;
   1195 
   1196 	/*
   1197 	 * Cancel the watchdog timer if there are no pending
   1198 	 * transmissions.
   1199 	 */
   1200 	if (sc->sc_txpending == 0)
   1201 		ifp->if_timer = 0;
   1202 }
   1203 
   1204 /*
   1205  * fxp_rx_hwcksum: check status of H/W offloading for received packets.
   1206  */
   1207 
   1208 void
   1209 fxp_rx_hwcksum(struct fxp_softc *sc, struct mbuf *m, const struct fxp_rfa *rfa,
   1210     u_int len)
   1211 {
   1212 	uint32_t csum_data;
   1213 	int csum_flags;
   1214 
   1215 	/*
   1216 	 * check H/W Checksumming.
   1217 	 */
   1218 
   1219 	csum_flags = 0;
   1220 	csum_data = 0;
   1221 
   1222 	if ((sc->sc_flags & FXPF_EXT_RFA) != 0) {
   1223 		uint8_t csum_stat;
   1224 
   1225 		csum_stat = rfa->cksum_stat;
   1226 		if ((rfa->rfa_status & htole16(FXP_RFA_STATUS_PARSE)) == 0)
   1227 			goto out;
   1228 
   1229 		if (csum_stat & FXP_RFDX_CS_IP_CSUM_BIT_VALID) {
   1230 			csum_flags = M_CSUM_IPv4;
   1231 			if ((csum_stat & FXP_RFDX_CS_IP_CSUM_VALID) == 0)
   1232 				csum_flags |= M_CSUM_IPv4_BAD;
   1233 		}
   1234 
   1235 		if (csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) {
   1236 			csum_flags |= (M_CSUM_TCPv4 | M_CSUM_UDPv4); /* XXX */
   1237 			if ((csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_VALID) == 0)
   1238 				csum_flags |= M_CSUM_TCP_UDP_BAD;
   1239 		}
   1240 
   1241 	} else if ((sc->sc_flags & FXPF_82559_RXCSUM) != 0) {
   1242 		struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1243 		struct ether_header *eh;
   1244 		struct ip *ip;
   1245 		struct udphdr *uh;
   1246 		u_int hlen, pktlen;
   1247 
   1248 		if (len < ETHER_HDR_LEN + sizeof(struct ip))
   1249 			goto out;
   1250 		pktlen = len - ETHER_HDR_LEN;
   1251 		eh = mtod(m, struct ether_header *);
   1252 		if (ntohs(eh->ether_type) != ETHERTYPE_IP)
   1253 			goto out;
   1254 		ip = (struct ip *)((uint8_t *)eh + ETHER_HDR_LEN);
   1255 		if (ip->ip_v != IPVERSION)
   1256 			goto out;
   1257 
   1258 		hlen = ip->ip_hl << 2;
   1259 		if (hlen < sizeof(struct ip))
   1260 			goto out;
   1261 
   1262 		/*
   1263 		 * Bail if too short, has random trailing garbage, truncated,
   1264 		 * fragment, or has ethernet pad.
   1265 		 */
   1266 		if (ntohs(ip->ip_len) < hlen ||
   1267 		    ntohs(ip->ip_len) != pktlen ||
   1268 		    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0)
   1269 			goto out;
   1270 
   1271 		switch (ip->ip_p) {
   1272 		case IPPROTO_TCP:
   1273 			if ((ifp->if_csum_flags_rx & M_CSUM_TCPv4) == 0 ||
   1274 			    pktlen < (hlen + sizeof(struct tcphdr)))
   1275 				goto out;
   1276 			csum_flags =
   1277 			    M_CSUM_TCPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
   1278 			break;
   1279 		case IPPROTO_UDP:
   1280 			if ((ifp->if_csum_flags_rx & M_CSUM_UDPv4) == 0 ||
   1281 			    pktlen < (hlen + sizeof(struct udphdr)))
   1282 				goto out;
   1283 			uh = (struct udphdr *)((uint8_t *)ip + hlen);
   1284 			if (uh->uh_sum == 0)
   1285 				goto out;	/* no checksum */
   1286 			csum_flags =
   1287 			    M_CSUM_UDPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
   1288 			break;
   1289 		default:
   1290 			goto out;
   1291 		}
   1292 
   1293 		/* Extract computed checksum. */
   1294 		csum_data = be16dec(mtod(m, uint8_t *) + len);
   1295 
   1296 		/*
   1297 		 * The computed checksum includes IP headers,
   1298 		 * so we have to deduct them.
   1299 		 */
   1300 #if 0
   1301 		/*
   1302 		 * But in TCP/UDP layer we can assume the IP header is valid,
   1303 		 * i.e. a sum of the whole IP header should be 0xffff,
   1304 		 * so we don't have to bother to deduct it.
   1305 		 */
   1306 		if (hlen > 0) {
   1307 			uint32_t hsum;
   1308 			const uint16_t *iphdr;
   1309 			hsum = 0;
   1310 			iphdr = (uint16_t *)ip;
   1311 
   1312 			while (hlen > 1) {
   1313 				hsum += ntohs(*iphdr++);
   1314 				hlen -= sizeof(uint16_t);
   1315 			}
   1316 			while (hsum >> 16)
   1317 				hsum = (hsum >> 16) + (hsum & 0xffff);
   1318 
   1319 			csum_data += (uint16_t)~hsum;
   1320 
   1321 			while (csum_data >> 16)
   1322 				csum_data =
   1323 				    (csum_data >> 16) + (csum_data & 0xffff);
   1324 		}
   1325 #endif
   1326 	}
   1327  out:
   1328 	m->m_pkthdr.csum_flags = csum_flags;
   1329 	m->m_pkthdr.csum_data = csum_data;
   1330 }
   1331 
   1332 /*
   1333  * Handle receive interrupts.
   1334  */
   1335 int
   1336 fxp_rxintr(struct fxp_softc *sc)
   1337 {
   1338 	struct ethercom *ec = &sc->sc_ethercom;
   1339 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1340 	struct mbuf *m, *m0;
   1341 	bus_dmamap_t rxmap;
   1342 	struct fxp_rfa *rfa;
   1343 	int rnr;
   1344 	uint16_t len, rxstat;
   1345 
   1346 	rnr = 0;
   1347 
   1348 	for (;;) {
   1349 		m = sc->sc_rxq.ifq_head;
   1350 		rfa = FXP_MTORFA(m);
   1351 		rxmap = M_GETCTX(m, bus_dmamap_t);
   1352 
   1353 		FXP_RFASYNC(sc, m,
   1354 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1355 
   1356 		rxstat = le16toh(rfa->rfa_status);
   1357 
   1358 		if ((rxstat & FXP_RFA_STATUS_RNR) != 0)
   1359 			rnr = 1;
   1360 
   1361 		if ((rxstat & FXP_RFA_STATUS_C) == 0) {
   1362 			/*
   1363 			 * We have processed all of the
   1364 			 * receive buffers.
   1365 			 */
   1366 			FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
   1367 			return rnr;
   1368 		}
   1369 
   1370 		IF_DEQUEUE(&sc->sc_rxq, m);
   1371 
   1372 		FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
   1373 
   1374 		len = le16toh(rfa->actual_size) &
   1375 		    (m->m_ext.ext_size - 1);
   1376 		if ((sc->sc_flags & FXPF_82559_RXCSUM) != 0) {
   1377 			/* Adjust for appended checksum bytes. */
   1378 			len -= sizeof(uint16_t);
   1379 		}
   1380 
   1381 		if (len < sizeof(struct ether_header)) {
   1382 			/*
   1383 			 * Runt packet; drop it now.
   1384 			 */
   1385 			FXP_INIT_RFABUF(sc, m);
   1386 			continue;
   1387 		}
   1388 
   1389 		/*
   1390 		 * If support for 802.1Q VLAN sized frames is
   1391 		 * enabled, we need to do some additional error
   1392 		 * checking (as we are saving bad frames, in
   1393 		 * order to receive the larger ones).
   1394 		 */
   1395 		if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
   1396 		    (rxstat & (FXP_RFA_STATUS_OVERRUN |
   1397 			       FXP_RFA_STATUS_RNR |
   1398 			       FXP_RFA_STATUS_ALIGN |
   1399 			       FXP_RFA_STATUS_CRC)) != 0) {
   1400 			FXP_INIT_RFABUF(sc, m);
   1401 			continue;
   1402 		}
   1403 
   1404 		/*
   1405 		 * check VLAN tag stripping.
   1406 		 */
   1407 		if ((sc->sc_flags & FXPF_EXT_RFA) != 0 &&
   1408 		    (rfa->rfa_status & htole16(FXP_RFA_STATUS_VLAN)) != 0)
   1409 			vlan_set_tag(m, be16toh(rfa->vlan_id));
   1410 
   1411 		/* Do checksum checking. */
   1412 		if ((ifp->if_csum_flags_rx &
   1413 		    (M_CSUM_TCPv4 | M_CSUM_UDPv4)) != 0)
   1414 			fxp_rx_hwcksum(sc, m, rfa, len);
   1415 
   1416 		/*
   1417 		 * If the packet is small enough to fit in a
   1418 		 * single header mbuf, allocate one and copy
   1419 		 * the data into it.  This greatly reduces
   1420 		 * memory consumption when we receive lots
   1421 		 * of small packets.
   1422 		 *
   1423 		 * Otherwise, we add a new buffer to the receive
   1424 		 * chain.  If this fails, we drop the packet and
   1425 		 * recycle the old buffer.
   1426 		 */
   1427 		if (fxp_copy_small != 0 && len <= MHLEN) {
   1428 			MGETHDR(m0, M_DONTWAIT, MT_DATA);
   1429 			if (m0 == NULL)
   1430 				goto dropit;
   1431 			MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner);
   1432 			memcpy(mtod(m0, void *),
   1433 			    mtod(m, void *), len);
   1434 			m0->m_pkthdr.csum_flags = m->m_pkthdr.csum_flags;
   1435 			m0->m_pkthdr.csum_data = m->m_pkthdr.csum_data;
   1436 			FXP_INIT_RFABUF(sc, m);
   1437 			m = m0;
   1438 		} else {
   1439 			if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
   1440  dropit:
   1441 				if_statinc(ifp, if_ierrors);
   1442 				FXP_INIT_RFABUF(sc, m);
   1443 				continue;
   1444 			}
   1445 		}
   1446 
   1447 		m_set_rcvif(m, ifp);
   1448 		m->m_pkthdr.len = m->m_len = len;
   1449 
   1450 		/* Pass it on. */
   1451 		if_percpuq_enqueue(ifp->if_percpuq, m);
   1452 	}
   1453 }
   1454 
   1455 /*
   1456  * Update packet in/out/collision statistics. The i82557 doesn't
   1457  * allow you to access these counters without doing a fairly
   1458  * expensive DMA to get _all_ of the statistics it maintains, so
   1459  * we do this operation here only once per second. The statistics
   1460  * counters in the kernel are updated from the previous dump-stats
   1461  * DMA and then a new dump-stats DMA is started. The on-chip
   1462  * counters are zeroed when the DMA completes. If we can't start
   1463  * the DMA immediately, we don't wait - we just prepare to read
   1464  * them again next time.
   1465  */
   1466 void
   1467 fxp_tick(void *arg)
   1468 {
   1469 	struct fxp_softc *sc = arg;
   1470 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1471 	struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
   1472 	int s;
   1473 
   1474 	if (!device_is_active(sc->sc_dev))
   1475 		return;
   1476 
   1477 	s = splnet();
   1478 
   1479 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
   1480 
   1481 	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
   1482 
   1483 	if_statadd_ref(ifp, nsr, if_opackets, le32toh(sp->tx_good));
   1484 	if_statadd_ref(ifp, nsr, if_collisions,
   1485 	    le32toh(sp->tx_total_collisions));
   1486 	if (sp->rx_good) {
   1487 		sc->sc_rxidle = 0;
   1488 	} else if (sc->sc_flags & FXPF_RECV_WORKAROUND) {
   1489 		sc->sc_rxidle++;
   1490 	}
   1491 	if_statadd_ref(ifp, nsr, if_ierrors,
   1492 	    le32toh(sp->rx_crc_errors) +
   1493 	    le32toh(sp->rx_alignment_errors) +
   1494 	    le32toh(sp->rx_rnr_errors) +
   1495 	    le32toh(sp->rx_overrun_errors));
   1496 	/*
   1497 	 * If any transmit underruns occurred, bump up the transmit
   1498 	 * threshold by another 512 bytes (64 * 8).
   1499 	 */
   1500 	if (sp->tx_underruns) {
   1501 		if_statadd_ref(ifp, nsr, if_oerrors,
   1502 		    le32toh(sp->tx_underruns));
   1503 		if (tx_threshold < 192)
   1504 			tx_threshold += 64;
   1505 	}
   1506 #ifdef FXP_EVENT_COUNTERS
   1507 	if (sc->sc_flags & FXPF_FC) {
   1508 		sc->sc_ev_txpause.ev_count += sp->tx_pauseframes;
   1509 		sc->sc_ev_rxpause.ev_count += sp->rx_pauseframes;
   1510 	}
   1511 #endif
   1512 
   1513 	IF_STAT_PUTREF(ifp);
   1514 
   1515 	/*
   1516 	 * If we haven't received any packets in FXP_MAX_RX_IDLE seconds,
   1517 	 * then assume the receiver has locked up and attempt to clear
   1518 	 * the condition by reprogramming the multicast filter (actually,
   1519 	 * resetting the interface). This is a work-around for a bug in
   1520 	 * the 82557 where the receiver locks up if it gets certain types
   1521 	 * of garbage in the synchronization bits prior to the packet header.
   1522 	 * This bug is supposed to only occur in 10Mbps mode, but has been
   1523 	 * seen to occur in 100Mbps mode as well (perhaps due to a 10/100
   1524 	 * speed transition).
   1525 	 */
   1526 	if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
   1527 		(void) fxp_init(ifp);
   1528 		splx(s);
   1529 		return;
   1530 	}
   1531 	/*
   1532 	 * If there is no pending command, start another stats
   1533 	 * dump. Otherwise punt for now.
   1534 	 */
   1535 	if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
   1536 		/*
   1537 		 * Start another stats dump.
   1538 		 */
   1539 		FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
   1540 		fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
   1541 	} else {
   1542 		/*
   1543 		 * A previous command is still waiting to be accepted.
   1544 		 * Just zero our copy of the stats and wait for the
   1545 		 * next timer event to update them.
   1546 		 */
   1547 		/* BIG_ENDIAN: no swap required to store 0 */
   1548 		sp->tx_good = 0;
   1549 		sp->tx_underruns = 0;
   1550 		sp->tx_total_collisions = 0;
   1551 
   1552 		sp->rx_good = 0;
   1553 		sp->rx_crc_errors = 0;
   1554 		sp->rx_alignment_errors = 0;
   1555 		sp->rx_rnr_errors = 0;
   1556 		sp->rx_overrun_errors = 0;
   1557 		if (sc->sc_flags & FXPF_FC) {
   1558 			sp->tx_pauseframes = 0;
   1559 			sp->rx_pauseframes = 0;
   1560 		}
   1561 	}
   1562 
   1563 	if (sc->sc_flags & FXPF_MII) {
   1564 		/* Tick the MII clock. */
   1565 		mii_tick(&sc->sc_mii);
   1566 	}
   1567 
   1568 	splx(s);
   1569 
   1570 	/*
   1571 	 * Schedule another timeout one second from now.
   1572 	 */
   1573 	callout_schedule(&sc->sc_callout, hz);
   1574 }
   1575 
   1576 /*
   1577  * Drain the receive queue.
   1578  */
   1579 void
   1580 fxp_rxdrain(struct fxp_softc *sc)
   1581 {
   1582 	bus_dmamap_t rxmap;
   1583 	struct mbuf *m;
   1584 
   1585 	for (;;) {
   1586 		IF_DEQUEUE(&sc->sc_rxq, m);
   1587 		if (m == NULL)
   1588 			break;
   1589 		rxmap = M_GETCTX(m, bus_dmamap_t);
   1590 		bus_dmamap_unload(sc->sc_dmat, rxmap);
   1591 		FXP_RXMAP_PUT(sc, rxmap);
   1592 		m_freem(m);
   1593 	}
   1594 }
   1595 
   1596 /*
   1597  * Stop the interface. Cancels the statistics updater and resets
   1598  * the interface.
   1599  */
   1600 void
   1601 fxp_stop(struct ifnet *ifp, int disable)
   1602 {
   1603 	struct fxp_softc *sc = ifp->if_softc;
   1604 	struct fxp_txsoft *txs;
   1605 	int i;
   1606 
   1607 	/*
   1608 	 * Turn down interface (done early to avoid bad interactions
   1609 	 * between panics, shutdown hooks, and the watchdog timer)
   1610 	 */
   1611 	ifp->if_timer = 0;
   1612 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1613 
   1614 	/*
   1615 	 * Cancel stats updater.
   1616 	 */
   1617 	callout_stop(&sc->sc_callout);
   1618 	if (sc->sc_flags & FXPF_MII) {
   1619 		/* Down the MII. */
   1620 		mii_down(&sc->sc_mii);
   1621 	}
   1622 
   1623 	/*
   1624 	 * Issue software reset.  This unloads any microcode that
   1625 	 * might already be loaded.
   1626 	 */
   1627 	sc->sc_flags &= ~FXPF_UCODE_LOADED;
   1628 	CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
   1629 	DELAY(50);
   1630 
   1631 	/*
   1632 	 * Release any xmit buffers.
   1633 	 */
   1634 	for (i = 0; i < FXP_NTXCB; i++) {
   1635 		txs = FXP_DSTX(sc, i);
   1636 		if (txs->txs_mbuf != NULL) {
   1637 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1638 			m_freem(txs->txs_mbuf);
   1639 			txs->txs_mbuf = NULL;
   1640 		}
   1641 	}
   1642 	sc->sc_txpending = 0;
   1643 
   1644 	if (disable) {
   1645 		fxp_rxdrain(sc);
   1646 		fxp_disable(sc);
   1647 	}
   1648 
   1649 }
   1650 
   1651 /*
   1652  * Watchdog/transmission transmit timeout handler. Called when a
   1653  * transmission is started on the interface, but no interrupt is
   1654  * received before the timeout. This usually indicates that the
   1655  * card has wedged for some reason.
   1656  */
   1657 void
   1658 fxp_watchdog(struct ifnet *ifp)
   1659 {
   1660 	struct fxp_softc *sc = ifp->if_softc;
   1661 
   1662 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
   1663 	if_statinc(ifp, if_oerrors);
   1664 
   1665 	(void) fxp_init(ifp);
   1666 }
   1667 
   1668 /*
   1669  * Initialize the interface.  Must be called at splnet().
   1670  */
   1671 int
   1672 fxp_init(struct ifnet *ifp)
   1673 {
   1674 	struct fxp_softc *sc = ifp->if_softc;
   1675 	struct fxp_cb_config *cbp;
   1676 	struct fxp_cb_ias *cb_ias;
   1677 	struct fxp_txdesc *txd;
   1678 	bus_dmamap_t rxmap;
   1679 	int i, prm, save_bf, lrxen, vlan_drop, allm, error = 0;
   1680 	uint16_t status;
   1681 
   1682 	if ((error = fxp_enable(sc)) != 0)
   1683 		goto out;
   1684 
   1685 	/*
   1686 	 * Cancel any pending I/O
   1687 	 */
   1688 	fxp_stop(ifp, 0);
   1689 
   1690 	/*
   1691 	 * XXX just setting sc_flags to 0 here clears any FXPF_MII
   1692 	 * flag, and this prevents the MII from detaching resulting in
   1693 	 * a panic. The flags field should perhaps be split in runtime
   1694 	 * flags and more static information. For now, just clear the
   1695 	 * only other flag set.
   1696 	 */
   1697 
   1698 	sc->sc_flags &= ~FXPF_WANTINIT;
   1699 
   1700 	/*
   1701 	 * Initialize base of CBL and RFA memory. Loading with zero
   1702 	 * sets it up for regular linear addressing.
   1703 	 */
   1704 	fxp_scb_wait(sc);
   1705 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
   1706 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
   1707 
   1708 	fxp_scb_wait(sc);
   1709 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
   1710 
   1711 	/*
   1712 	 * Initialize the multicast filter.  Do this now, since we might
   1713 	 * have to setup the config block differently.
   1714 	 */
   1715 	fxp_mc_setup(sc);
   1716 
   1717 	prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
   1718 	allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
   1719 
   1720 	/*
   1721 	 * In order to support receiving 802.1Q VLAN frames, we have to
   1722 	 * enable "save bad frames", since they are 4 bytes larger than
   1723 	 * the normal Ethernet maximum frame length.  On i82558 and later,
   1724 	 * we have a better mechanism for this.
   1725 	 */
   1726 	save_bf = 0;
   1727 	lrxen = 0;
   1728 	vlan_drop = 0;
   1729 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
   1730 		if (sc->sc_rev < FXP_REV_82558_A4)
   1731 			save_bf = 1;
   1732 		else
   1733 			lrxen = 1;
   1734 		if (sc->sc_rev >= FXP_REV_82550)
   1735 			vlan_drop = 1;
   1736 	}
   1737 
   1738 	/*
   1739 	 * Initialize base of dump-stats buffer.
   1740 	 */
   1741 	fxp_scb_wait(sc);
   1742 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
   1743 	    sc->sc_cddma + FXP_CDSTATSOFF);
   1744 	FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
   1745 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
   1746 
   1747 	cbp = &sc->sc_control_data->fcd_configcb;
   1748 	memset(cbp, 0, sizeof(struct fxp_cb_config));
   1749 
   1750 	/*
   1751 	 * Load microcode for this controller.
   1752 	 */
   1753 	fxp_load_ucode(sc);
   1754 
   1755 	if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK1))
   1756 		sc->sc_flags |= FXPF_RECV_WORKAROUND;
   1757 	else
   1758 		sc->sc_flags &= ~FXPF_RECV_WORKAROUND;
   1759 
   1760 	/*
   1761 	 * This copy is kind of disgusting, but there are a bunch of must be
   1762 	 * zero and must be one bits in this structure and this is the easiest
   1763 	 * way to initialize them all to proper values.
   1764 	 */
   1765 	memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
   1766 
   1767 	/* BIG_ENDIAN: no need to swap to store 0 */
   1768 	cbp->cb_status =	0;
   1769 	cbp->cb_command =	htole16(FXP_CB_COMMAND_CONFIG |
   1770 				    FXP_CB_COMMAND_EL);
   1771 	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
   1772 	cbp->link_addr =	0xffffffff; /* (no) next command */
   1773 					/* bytes in config block */
   1774 	cbp->byte_count =	(sc->sc_flags & FXPF_EXT_RFA) ?
   1775 				FXP_EXT_CONFIG_LEN : FXP_CONFIG_LEN;
   1776 	cbp->rx_fifo_limit =	8;	/* rx fifo threshold (32 bytes) */
   1777 	cbp->tx_fifo_limit =	0;	/* tx fifo threshold (0 bytes) */
   1778 	cbp->adaptive_ifs =	0;	/* (no) adaptive interframe spacing */
   1779 	cbp->mwi_enable =	(sc->sc_flags & FXPF_MWI) ? 1 : 0;
   1780 	cbp->type_enable =	0;	/* actually reserved */
   1781 	cbp->read_align_en =	(sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
   1782 	cbp->end_wr_on_cl =	(sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
   1783 	cbp->rx_dma_bytecount =	0;	/* (no) rx DMA max */
   1784 	cbp->tx_dma_bytecount =	0;	/* (no) tx DMA max */
   1785 	cbp->dma_mbce =		0;	/* (disable) dma max counters */
   1786 	cbp->late_scb =		0;	/* (don't) defer SCB update */
   1787 	cbp->tno_int_or_tco_en =0;	/* (disable) tx not okay interrupt */
   1788 	cbp->ci_int =		1;	/* interrupt on CU idle */
   1789 	cbp->ext_txcb_dis =	(sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
   1790 	cbp->ext_stats_dis =	1;	/* disable extended counters */
   1791 	cbp->keep_overrun_rx =	0;	/* don't pass overrun frames to host */
   1792 	cbp->save_bf =		save_bf;/* save bad frames */
   1793 	cbp->disc_short_rx =	!prm;	/* discard short packets */
   1794 	cbp->underrun_retry =	1;	/* retry mode (1) on DMA underrun */
   1795 	cbp->ext_rfa =		(sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
   1796 	cbp->two_frames =	0;	/* do not limit FIFO to 2 frames */
   1797 	cbp->dyn_tbd =		0;	/* (no) dynamic TBD mode */
   1798 					/* interface mode */
   1799 	cbp->mediatype =	(sc->sc_flags & FXPF_MII) ? 1 : 0;
   1800 	cbp->csma_dis =		0;	/* (don't) disable link */
   1801 	cbp->tcp_udp_cksum =	(sc->sc_flags & FXPF_82559_RXCSUM) ? 1 : 0;
   1802 					/* (don't) enable RX checksum */
   1803 	cbp->vlan_tco =		0;	/* (don't) enable vlan wakeup */
   1804 	cbp->link_wake_en =	0;	/* (don't) assert PME# on link change */
   1805 	cbp->arp_wake_en =	0;	/* (don't) assert PME# on arp */
   1806 	cbp->mc_wake_en =	0;	/* (don't) assert PME# on mcmatch */
   1807 	cbp->nsai =		1;	/* (don't) disable source addr insert */
   1808 	cbp->preamble_length =	2;	/* (7 byte) preamble */
   1809 	cbp->loopback =		0;	/* (don't) loopback */
   1810 	cbp->linear_priority =	0;	/* (normal CSMA/CD operation) */
   1811 	cbp->linear_pri_mode =	0;	/* (wait after xmit only) */
   1812 	cbp->interfrm_spacing =	6;	/* (96 bits of) interframe spacing */
   1813 	cbp->promiscuous =	prm;	/* promiscuous mode */
   1814 	cbp->bcast_disable =	0;	/* (don't) disable broadcasts */
   1815 	cbp->wait_after_win =	0;	/* (don't) enable modified backoff alg*/
   1816 	cbp->ignore_ul =	0;	/* consider U/L bit in IA matching */
   1817 	cbp->crc16_en =		0;	/* (don't) enable crc-16 algorithm */
   1818 	cbp->crscdt =		(sc->sc_flags & FXPF_MII) ? 0 : 1;
   1819 	cbp->stripping =	!prm;	/* truncate rx packet to byte count */
   1820 	cbp->padding =		1;	/* (do) pad short tx packets */
   1821 	cbp->rcv_crc_xfer =	0;	/* (don't) xfer CRC to host */
   1822 	cbp->long_rx_en =	lrxen;	/* long packet receive enable */
   1823 	cbp->ia_wake_en =	0;	/* (don't) wake up on address match */
   1824 	cbp->magic_pkt_dis =	0;	/* (don't) disable magic packet */
   1825 					/* must set wake_en in PMCSR also */
   1826 	cbp->force_fdx =	0;	/* (don't) force full duplex */
   1827 	cbp->fdx_pin_en =	1;	/* (enable) FDX# pin */
   1828 	cbp->multi_ia =		0;	/* (don't) accept multiple IAs */
   1829 	cbp->mc_all =		allm;	/* accept all multicasts */
   1830 	cbp->ext_rx_mode =	(sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
   1831 	cbp->vlan_drop_en =	vlan_drop;
   1832 
   1833 	if (!(sc->sc_flags & FXPF_FC)) {
   1834 		/*
   1835 		 * The i82557 has no hardware flow control, the values
   1836 		 * here are the defaults for the chip.
   1837 		 */
   1838 		cbp->fc_delay_lsb =	0;
   1839 		cbp->fc_delay_msb =	0x40;
   1840 		cbp->pri_fc_thresh =	3;
   1841 		cbp->tx_fc_dis =	0;
   1842 		cbp->rx_fc_restop =	0;
   1843 		cbp->rx_fc_restart =	0;
   1844 		cbp->fc_filter =	0;
   1845 		cbp->pri_fc_loc =	1;
   1846 	} else {
   1847 		cbp->fc_delay_lsb =	0x1f;
   1848 		cbp->fc_delay_msb =	0x01;
   1849 		cbp->pri_fc_thresh =	3;
   1850 		cbp->tx_fc_dis =	0;	/* enable transmit FC */
   1851 		cbp->rx_fc_restop =	1;	/* enable FC restop frames */
   1852 		cbp->rx_fc_restart =	1;	/* enable FC restart frames */
   1853 		cbp->fc_filter =	!prm;	/* drop FC frames to host */
   1854 		cbp->pri_fc_loc =	1;	/* FC pri location (byte31) */
   1855 		cbp->ext_stats_dis =	0;	/* enable extended stats */
   1856 	}
   1857 
   1858 	FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1859 
   1860 	/*
   1861 	 * Start the config command/DMA.
   1862 	 */
   1863 	fxp_scb_wait(sc);
   1864 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
   1865 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
   1866 	/* ...and wait for it to complete. */
   1867 	for (i = 1000; i > 0; i--) {
   1868 		FXP_CDCONFIGSYNC(sc,
   1869 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1870 		status = le16toh(cbp->cb_status);
   1871 		FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD);
   1872 		if ((status & FXP_CB_STATUS_C) != 0)
   1873 			break;
   1874 		DELAY(1);
   1875 	}
   1876 	if (i == 0) {
   1877 		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
   1878 		    device_xname(sc->sc_dev), __LINE__);
   1879 		return (ETIMEDOUT);
   1880 	}
   1881 
   1882 	/*
   1883 	 * Initialize the station address.
   1884 	 */
   1885 	cb_ias = &sc->sc_control_data->fcd_iascb;
   1886 	/* BIG_ENDIAN: no need to swap to store 0 */
   1887 	cb_ias->cb_status = 0;
   1888 	cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
   1889 	/* BIG_ENDIAN: no need to swap to store 0xffffffff */
   1890 	cb_ias->link_addr = 0xffffffff;
   1891 	memcpy(cb_ias->macaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
   1892 
   1893 	FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1894 
   1895 	/*
   1896 	 * Start the IAS (Individual Address Setup) command/DMA.
   1897 	 */
   1898 	fxp_scb_wait(sc);
   1899 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
   1900 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
   1901 	/* ...and wait for it to complete. */
   1902 	for (i = 1000; i > 0; i--) {
   1903 		FXP_CDIASSYNC(sc,
   1904 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1905 		status = le16toh(cb_ias->cb_status);
   1906 		FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD);
   1907 		if ((status & FXP_CB_STATUS_C) != 0)
   1908 			break;
   1909 		DELAY(1);
   1910 	}
   1911 	if (i == 0) {
   1912 		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
   1913 		    device_xname(sc->sc_dev), __LINE__);
   1914 		return (ETIMEDOUT);
   1915 	}
   1916 
   1917 	/*
   1918 	 * Initialize the transmit descriptor ring.  txlast is initialized
   1919 	 * to the end of the list so that it will wrap around to the first
   1920 	 * descriptor when the first packet is transmitted.
   1921 	 */
   1922 	for (i = 0; i < FXP_NTXCB; i++) {
   1923 		txd = FXP_CDTX(sc, i);
   1924 		memset(txd, 0, sizeof(*txd));
   1925 		txd->txd_txcb.cb_command =
   1926 		    htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
   1927 		txd->txd_txcb.link_addr =
   1928 		    htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
   1929 		if (sc->sc_flags & FXPF_EXT_TXCB)
   1930 			txd->txd_txcb.tbd_array_addr =
   1931 			    htole32(FXP_CDTBDADDR(sc, i) +
   1932 				    (2 * sizeof(struct fxp_tbd)));
   1933 		else
   1934 			txd->txd_txcb.tbd_array_addr =
   1935 			    htole32(FXP_CDTBDADDR(sc, i));
   1936 		FXP_CDTXSYNC(sc, i,
   1937 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1938 	}
   1939 	sc->sc_txpending = 0;
   1940 	sc->sc_txdirty = 0;
   1941 	sc->sc_txlast = FXP_NTXCB - 1;
   1942 
   1943 	/*
   1944 	 * Initialize the receive buffer list.
   1945 	 */
   1946 	sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
   1947 	while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
   1948 		rxmap = FXP_RXMAP_GET(sc);
   1949 		if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
   1950 			log(LOG_ERR, "%s: unable to allocate or map rx "
   1951 			    "buffer %d, error = %d\n",
   1952 			    device_xname(sc->sc_dev),
   1953 			    sc->sc_rxq.ifq_len, error);
   1954 			/*
   1955 			 * XXX Should attempt to run with fewer receive
   1956 			 * XXX buffers instead of just failing.
   1957 			 */
   1958 			FXP_RXMAP_PUT(sc, rxmap);
   1959 			fxp_rxdrain(sc);
   1960 			goto out;
   1961 		}
   1962 	}
   1963 	sc->sc_rxidle = 0;
   1964 
   1965 	/*
   1966 	 * Give the transmit ring to the chip.  We do this by pointing
   1967 	 * the chip at the last descriptor (which is a NOP|SUSPEND), and
   1968 	 * issuing a start command.  It will execute the NOP and then
   1969 	 * suspend, pointing at the first descriptor.
   1970 	 */
   1971 	fxp_scb_wait(sc);
   1972 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
   1973 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
   1974 
   1975 	/*
   1976 	 * Initialize receiver buffer area - RFA.
   1977 	 */
   1978 #if 0	/* initialization will be done by FXP_SCB_INTRCNTL_REQUEST_SWI later */
   1979 	rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
   1980 	fxp_scb_wait(sc);
   1981 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
   1982 	    rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
   1983 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
   1984 #endif
   1985 
   1986 	if (sc->sc_flags & FXPF_MII) {
   1987 		/*
   1988 		 * Set current media.
   1989 		 */
   1990 		if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0)
   1991 			goto out;
   1992 	}
   1993 
   1994 	/*
   1995 	 * ...all done!
   1996 	 */
   1997 	ifp->if_flags |= IFF_RUNNING;
   1998 	ifp->if_flags &= ~IFF_OACTIVE;
   1999 
   2000 	/*
   2001 	 * Request a software generated interrupt that will be used to
   2002 	 * (re)start the RU processing.  If we direct the chip to start
   2003 	 * receiving from the start of queue now, instead of letting the
   2004 	 * interrupt handler first process all received packets, we run
   2005 	 * the risk of having it overwrite mbuf clusters while they are
   2006 	 * being processed or after they have been returned to the pool.
   2007 	 */
   2008 	CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTRCNTL_REQUEST_SWI);
   2009 
   2010 	/*
   2011 	 * Start the one second timer.
   2012 	 */
   2013 	callout_schedule(&sc->sc_callout, hz);
   2014 
   2015 	/*
   2016 	 * Attempt to start output on the interface.
   2017 	 */
   2018 	fxp_start(ifp);
   2019 
   2020  out:
   2021 	if (error) {
   2022 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2023 		ifp->if_timer = 0;
   2024 		log(LOG_ERR, "%s: interface not running\n",
   2025 		    device_xname(sc->sc_dev));
   2026 	}
   2027 	return (error);
   2028 }
   2029 
   2030 /*
   2031  * Notify the world which media we're using.
   2032  */
   2033 void
   2034 fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   2035 {
   2036 	struct fxp_softc *sc = ifp->if_softc;
   2037 
   2038 	if (sc->sc_enabled == 0) {
   2039 		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
   2040 		ifmr->ifm_status = 0;
   2041 		return;
   2042 	}
   2043 
   2044 	ether_mediastatus(ifp, ifmr);
   2045 }
   2046 
   2047 int
   2048 fxp_80c24_mediachange(struct ifnet *ifp)
   2049 {
   2050 
   2051 	/* Nothing to do here. */
   2052 	return (0);
   2053 }
   2054 
   2055 void
   2056 fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   2057 {
   2058 	struct fxp_softc *sc = ifp->if_softc;
   2059 
   2060 	/*
   2061 	 * Media is currently-selected media.  We cannot determine
   2062 	 * the link status.
   2063 	 */
   2064 	ifmr->ifm_status = 0;
   2065 	ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
   2066 }
   2067 
   2068 /*
   2069  * Add a buffer to the end of the RFA buffer list.
   2070  * Return 0 if successful, error code on failure.
   2071  *
   2072  * The RFA struct is stuck at the beginning of mbuf cluster and the
   2073  * data pointer is fixed up to point just past it.
   2074  */
   2075 int
   2076 fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
   2077 {
   2078 	struct mbuf *m;
   2079 	int error;
   2080 
   2081 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2082 	if (m == NULL)
   2083 		return (ENOBUFS);
   2084 
   2085 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   2086 	MCLGET(m, M_DONTWAIT);
   2087 	if ((m->m_flags & M_EXT) == 0) {
   2088 		m_freem(m);
   2089 		return (ENOBUFS);
   2090 	}
   2091 
   2092 	if (unload)
   2093 		bus_dmamap_unload(sc->sc_dmat, rxmap);
   2094 
   2095 	M_SETCTX(m, rxmap);
   2096 
   2097 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
   2098 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m,
   2099 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
   2100 	if (error) {
   2101 		/* XXX XXX XXX */
   2102 		aprint_error_dev(sc->sc_dev,
   2103 		    "can't load rx DMA map %d, error = %d\n",
   2104 		    sc->sc_rxq.ifq_len, error);
   2105 		panic("fxp_add_rfabuf");
   2106 	}
   2107 
   2108 	FXP_INIT_RFABUF(sc, m);
   2109 
   2110 	return (0);
   2111 }
   2112 
   2113 int
   2114 fxp_mdi_read(device_t self, int phy, int reg, uint16_t *value)
   2115 {
   2116 	struct fxp_softc *sc = device_private(self);
   2117 	int count = 10000;
   2118 	uint32_t data;
   2119 
   2120 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
   2121 	    (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
   2122 
   2123 	while (((data = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) &
   2124 	    0x10000000) == 0 && count--)
   2125 		DELAY(10);
   2126 
   2127 	if (count <= 0) {
   2128 		log(LOG_WARNING,
   2129 		    "%s: fxp_mdi_read: timed out\n", device_xname(self));
   2130 		return ETIMEDOUT;
   2131 	}
   2132 
   2133 	*value = data & 0xffff;
   2134 	return 0;
   2135 }
   2136 
   2137 void
   2138 fxp_statchg(struct ifnet *ifp)
   2139 {
   2140 
   2141 	/* Nothing to do. */
   2142 }
   2143 
   2144 int
   2145 fxp_mdi_write(device_t self, int phy, int reg, uint16_t value)
   2146 {
   2147 	struct fxp_softc *sc = device_private(self);
   2148 	int count = 10000;
   2149 
   2150 	CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
   2151 	    (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) | value);
   2152 
   2153 	while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
   2154 	    count--)
   2155 		DELAY(10);
   2156 
   2157 	if (count <= 0) {
   2158 		log(LOG_WARNING,
   2159 		    "%s: fxp_mdi_write: timed out\n", device_xname(self));
   2160 		return ETIMEDOUT;
   2161 	}
   2162 
   2163 	return 0;
   2164 }
   2165 
   2166 int
   2167 fxp_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   2168 {
   2169 	struct fxp_softc *sc = ifp->if_softc;
   2170 	int s, error;
   2171 
   2172 	s = splnet();
   2173 
   2174 	switch (cmd) {
   2175 	default:
   2176 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
   2177 			break;
   2178 
   2179 		error = 0;
   2180 
   2181 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   2182 			;
   2183 		else if (ifp->if_flags & IFF_RUNNING) {
   2184 			/*
   2185 			 * Multicast list has changed; set the
   2186 			 * hardware filter accordingly.
   2187 			 */
   2188 			while (sc->sc_txpending) {
   2189 				sc->sc_flags |= FXPF_WANTINIT;
   2190 				tsleep(sc, PSOCK, "fxp_init", 0);
   2191 			}
   2192 			error = fxp_init(ifp);
   2193 		}
   2194 		break;
   2195 	}
   2196 
   2197 	/* Try to get more packets going. */
   2198 	if (sc->sc_enabled)
   2199 		fxp_start(ifp);
   2200 
   2201 	splx(s);
   2202 	return (error);
   2203 }
   2204 
   2205 /*
   2206  * Program the multicast filter.
   2207  *
   2208  * This function must be called at splnet().
   2209  */
   2210 void
   2211 fxp_mc_setup(struct fxp_softc *sc)
   2212 {
   2213 	struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
   2214 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2215 	struct ethercom *ec = &sc->sc_ethercom;
   2216 	struct ether_multi *enm;
   2217 	struct ether_multistep step;
   2218 	int count, nmcasts;
   2219 	uint16_t status;
   2220 
   2221 #ifdef DIAGNOSTIC
   2222 	if (sc->sc_txpending)
   2223 		panic("fxp_mc_setup: pending transmissions");
   2224 #endif
   2225 
   2226 
   2227 	if (ifp->if_flags & IFF_PROMISC) {
   2228 		ifp->if_flags |= IFF_ALLMULTI;
   2229 		return;
   2230 	} else {
   2231 		ifp->if_flags &= ~IFF_ALLMULTI;
   2232 	}
   2233 
   2234 	/*
   2235 	 * Initialize multicast setup descriptor.
   2236 	 */
   2237 	nmcasts = 0;
   2238 	ETHER_LOCK(ec);
   2239 	ETHER_FIRST_MULTI(step, ec, enm);
   2240 	while (enm != NULL) {
   2241 		/*
   2242 		 * Check for too many multicast addresses or if we're
   2243 		 * listening to a range.  Either way, we simply have
   2244 		 * to accept all multicasts.
   2245 		 */
   2246 		if (nmcasts >= MAXMCADDR ||
   2247 		    memcmp(enm->enm_addrlo, enm->enm_addrhi,
   2248 		    ETHER_ADDR_LEN) != 0) {
   2249 			/*
   2250 			 * Callers of this function must do the
   2251 			 * right thing with this.  If we're called
   2252 			 * from outside fxp_init(), the caller must
   2253 			 * detect if the state if IFF_ALLMULTI changes.
   2254 			 * If it does, the caller must then call
   2255 			 * fxp_init(), since allmulti is handled by
   2256 			 * the config block.
   2257 			 */
   2258 			ifp->if_flags |= IFF_ALLMULTI;
   2259 			ETHER_UNLOCK(ec);
   2260 			return;
   2261 		}
   2262 		memcpy(&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
   2263 		    ETHER_ADDR_LEN);
   2264 		nmcasts++;
   2265 		ETHER_NEXT_MULTI(step, enm);
   2266 	}
   2267 	ETHER_UNLOCK(ec);
   2268 
   2269 	/* BIG_ENDIAN: no need to swap to store 0 */
   2270 	mcsp->cb_status = 0;
   2271 	mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
   2272 	mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
   2273 	mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
   2274 
   2275 	FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2276 
   2277 	/*
   2278 	 * Wait until the command unit is not active.  This should never
   2279 	 * happen since nothing is queued, but make sure anyway.
   2280 	 */
   2281 	count = 100;
   2282 	while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
   2283 	    FXP_SCB_CUS_ACTIVE && --count)
   2284 		DELAY(1);
   2285 	if (count == 0) {
   2286 		log(LOG_WARNING, "%s: line %d: command queue timeout\n",
   2287 		    device_xname(sc->sc_dev), __LINE__);
   2288 		return;
   2289 	}
   2290 
   2291 	/*
   2292 	 * Start the multicast setup command/DMA.
   2293 	 */
   2294 	fxp_scb_wait(sc);
   2295 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
   2296 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
   2297 
   2298 	/* ...and wait for it to complete. */
   2299 	for (count = 1000; count > 0; count--) {
   2300 		FXP_CDMCSSYNC(sc,
   2301 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   2302 		status = le16toh(mcsp->cb_status);
   2303 		FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD);
   2304 		if ((status & FXP_CB_STATUS_C) != 0)
   2305 			break;
   2306 		DELAY(1);
   2307 	}
   2308 	if (count == 0) {
   2309 		log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
   2310 		    device_xname(sc->sc_dev), __LINE__);
   2311 		return;
   2312 	}
   2313 }
   2314 
   2315 static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
   2316 static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
   2317 static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
   2318 static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
   2319 static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
   2320 static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
   2321 static const uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
   2322 
   2323 #define	UCODE(x)	x, sizeof(x)/sizeof(uint32_t)
   2324 
   2325 static const struct ucode {
   2326 	int32_t		revision;
   2327 	const uint32_t	*ucode;
   2328 	size_t		length;
   2329 	uint16_t	int_delay_offset;
   2330 	uint16_t	bundle_max_offset;
   2331 } ucode_table[] = {
   2332 	{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
   2333 	  D101_CPUSAVER_DWORD, 0 },
   2334 
   2335 	{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
   2336 	  D101_CPUSAVER_DWORD, 0 },
   2337 
   2338 	{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
   2339 	  D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
   2340 
   2341 	{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
   2342 	  D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
   2343 
   2344 	{ FXP_REV_82550, UCODE(fxp_ucode_d102),
   2345 	  D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
   2346 
   2347 	{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
   2348 	  D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
   2349 
   2350 	{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
   2351 	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
   2352 
   2353 	{ FXP_REV_82551_10, UCODE(fxp_ucode_d102e),
   2354 	    D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
   2355 
   2356 	{ 0, NULL, 0, 0, 0 }
   2357 };
   2358 
   2359 void
   2360 fxp_load_ucode(struct fxp_softc *sc)
   2361 {
   2362 	const struct ucode *uc;
   2363 	struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
   2364 	int count, i;
   2365 	uint16_t status;
   2366 
   2367 	if (sc->sc_flags & FXPF_UCODE_LOADED)
   2368 		return;
   2369 
   2370 	/*
   2371 	 * Only load the uCode if the user has requested that
   2372 	 * we do so.
   2373 	 */
   2374 	if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
   2375 		sc->sc_int_delay = 0;
   2376 		sc->sc_bundle_max = 0;
   2377 		return;
   2378 	}
   2379 
   2380 	for (uc = ucode_table; uc->ucode != NULL; uc++) {
   2381 		if (sc->sc_rev == uc->revision)
   2382 			break;
   2383 	}
   2384 	if (uc->ucode == NULL)
   2385 		return;
   2386 
   2387 	/* BIG ENDIAN: no need to swap to store 0 */
   2388 	cbp->cb_status = 0;
   2389 	cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
   2390 	cbp->link_addr = 0xffffffff;		/* (no) next command */
   2391 	for (i = 0; i < uc->length; i++)
   2392 		cbp->ucode[i] = htole32(uc->ucode[i]);
   2393 
   2394 	if (uc->int_delay_offset)
   2395 		*(volatile uint16_t *) &cbp->ucode[uc->int_delay_offset] =
   2396 		    htole16(fxp_int_delay + (fxp_int_delay / 2));
   2397 
   2398 	if (uc->bundle_max_offset)
   2399 		*(volatile uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
   2400 		    htole16(fxp_bundle_max);
   2401 
   2402 	FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2403 
   2404 	/*
   2405 	 * Download the uCode to the chip.
   2406 	 */
   2407 	fxp_scb_wait(sc);
   2408 	CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
   2409 	fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
   2410 
   2411 	/* ...and wait for it to complete. */
   2412 	for (count = 10000; count > 0; count--) {
   2413 		FXP_CDUCODESYNC(sc,
   2414 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   2415 		status = le16toh(cbp->cb_status);
   2416 		FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD);
   2417 		if ((status & FXP_CB_STATUS_C) != 0)
   2418 			break;
   2419 		DELAY(2);
   2420 	}
   2421 	if (count == 0) {
   2422 		sc->sc_int_delay = 0;
   2423 		sc->sc_bundle_max = 0;
   2424 		log(LOG_WARNING, "%s: timeout loading microcode\n",
   2425 		    device_xname(sc->sc_dev));
   2426 		return;
   2427 	}
   2428 
   2429 	if (sc->sc_int_delay != fxp_int_delay ||
   2430 	    sc->sc_bundle_max != fxp_bundle_max) {
   2431 		sc->sc_int_delay = fxp_int_delay;
   2432 		sc->sc_bundle_max = fxp_bundle_max;
   2433 		log(LOG_INFO, "%s: Microcode loaded: int delay: %d usec, "
   2434 		    "max bundle: %d\n", device_xname(sc->sc_dev),
   2435 		    sc->sc_int_delay,
   2436 		    uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
   2437 	}
   2438 
   2439 	sc->sc_flags |= FXPF_UCODE_LOADED;
   2440 }
   2441 
   2442 int
   2443 fxp_enable(struct fxp_softc *sc)
   2444 {
   2445 
   2446 	if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
   2447 		if ((*sc->sc_enable)(sc) != 0) {
   2448 			log(LOG_ERR, "%s: device enable failed\n",
   2449 			    device_xname(sc->sc_dev));
   2450 			return (EIO);
   2451 		}
   2452 	}
   2453 
   2454 	sc->sc_enabled = 1;
   2455 	return (0);
   2456 }
   2457 
   2458 void
   2459 fxp_disable(struct fxp_softc *sc)
   2460 {
   2461 
   2462 	if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
   2463 		(*sc->sc_disable)(sc);
   2464 		sc->sc_enabled = 0;
   2465 	}
   2466 }
   2467 
   2468 /*
   2469  * fxp_activate:
   2470  *
   2471  *	Handle device activation/deactivation requests.
   2472  */
   2473 int
   2474 fxp_activate(device_t self, enum devact act)
   2475 {
   2476 	struct fxp_softc *sc = device_private(self);
   2477 
   2478 	switch (act) {
   2479 	case DVACT_DEACTIVATE:
   2480 		if_deactivate(&sc->sc_ethercom.ec_if);
   2481 		return 0;
   2482 	default:
   2483 		return EOPNOTSUPP;
   2484 	}
   2485 }
   2486 
   2487 /*
   2488  * fxp_detach:
   2489  *
   2490  *	Detach an i82557 interface.
   2491  */
   2492 int
   2493 fxp_detach(struct fxp_softc *sc, int flags)
   2494 {
   2495 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2496 	int i, s;
   2497 
   2498 	/* Succeed now if there's no work to do. */
   2499 	if ((sc->sc_flags & FXPF_ATTACHED) == 0)
   2500 		return (0);
   2501 
   2502 	s = splnet();
   2503 	/* Stop the interface. Callouts are stopped in it. */
   2504 	fxp_stop(ifp, 1);
   2505 	splx(s);
   2506 
   2507 	/* Destroy our callout. */
   2508 	callout_destroy(&sc->sc_callout);
   2509 
   2510 	if (sc->sc_flags & FXPF_MII) {
   2511 		/* Detach all PHYs */
   2512 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
   2513 	}
   2514 
   2515 	rnd_detach_source(&sc->rnd_source);
   2516 	ether_ifdetach(ifp);
   2517 	if_detach(ifp);
   2518 
   2519 	/* Delete all remaining media. */
   2520 	ifmedia_fini(&sc->sc_mii.mii_media);
   2521 
   2522 	for (i = 0; i < FXP_NRFABUFS; i++) {
   2523 		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
   2524 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
   2525 	}
   2526 
   2527 	for (i = 0; i < FXP_NTXCB; i++) {
   2528 		bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
   2529 		bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
   2530 	}
   2531 
   2532 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
   2533 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
   2534 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
   2535 	    sizeof(struct fxp_control_data));
   2536 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
   2537 
   2538 	return (0);
   2539 }
   2540