Home | History | Annotate | Line # | Download | only in gvt
      1 /*	$NetBSD: gtt.c,v 1.2 2021/12/18 23:45:31 riastradh Exp $	*/
      2 
      3 /*
      4  * GTT virtualization
      5  *
      6  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
      7  *
      8  * Permission is hereby granted, free of charge, to any person obtaining a
      9  * copy of this software and associated documentation files (the "Software"),
     10  * to deal in the Software without restriction, including without limitation
     11  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     12  * and/or sell copies of the Software, and to permit persons to whom the
     13  * Software is furnished to do so, subject to the following conditions:
     14  *
     15  * The above copyright notice and this permission notice (including the next
     16  * paragraph) shall be included in all copies or substantial portions of the
     17  * Software.
     18  *
     19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     21  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     22  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     23  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     24  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
     25  * SOFTWARE.
     26  *
     27  * Authors:
     28  *    Zhi Wang <zhi.a.wang (at) intel.com>
     29  *    Zhenyu Wang <zhenyuw (at) linux.intel.com>
     30  *    Xiao Zheng <xiao.zheng (at) intel.com>
     31  *
     32  * Contributors:
     33  *    Min He <min.he (at) intel.com>
     34  *    Bing Niu <bing.niu (at) intel.com>
     35  *
     36  */
     37 
     38 #include <sys/cdefs.h>
     39 __KERNEL_RCSID(0, "$NetBSD: gtt.c,v 1.2 2021/12/18 23:45:31 riastradh Exp $");
     40 
     41 #include "i915_drv.h"
     42 #include "gvt.h"
     43 #include "i915_pvinfo.h"
     44 #include "trace.h"
     45 
     46 #if defined(VERBOSE_DEBUG)
     47 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args)
     48 #else
     49 #define gvt_vdbg_mm(fmt, args...)
     50 #endif
     51 
     52 static bool enable_out_of_sync = false;
     53 static int preallocated_oos_pages = 8192;
     54 
     55 /*
     56  * validate a gm address and related range size,
     57  * translate it to host gm address
     58  */
     59 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
     60 {
     61 	if (size == 0)
     62 		return vgpu_gmadr_is_valid(vgpu, addr);
     63 
     64 	if (vgpu_gmadr_is_aperture(vgpu, addr) &&
     65 	    vgpu_gmadr_is_aperture(vgpu, addr + size - 1))
     66 		return true;
     67 	else if (vgpu_gmadr_is_hidden(vgpu, addr) &&
     68 		 vgpu_gmadr_is_hidden(vgpu, addr + size - 1))
     69 		return true;
     70 
     71 	gvt_dbg_mm("Invalid ggtt range at 0x%llx, size: 0x%x\n",
     72 		     addr, size);
     73 	return false;
     74 }
     75 
     76 /* translate a guest gmadr to host gmadr */
     77 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
     78 {
     79 	if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr),
     80 		 "invalid guest gmadr %llx\n", g_addr))
     81 		return -EACCES;
     82 
     83 	if (vgpu_gmadr_is_aperture(vgpu, g_addr))
     84 		*h_addr = vgpu_aperture_gmadr_base(vgpu)
     85 			  + (g_addr - vgpu_aperture_offset(vgpu));
     86 	else
     87 		*h_addr = vgpu_hidden_gmadr_base(vgpu)
     88 			  + (g_addr - vgpu_hidden_offset(vgpu));
     89 	return 0;
     90 }
     91 
     92 /* translate a host gmadr to guest gmadr */
     93 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
     94 {
     95 	if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr),
     96 		 "invalid host gmadr %llx\n", h_addr))
     97 		return -EACCES;
     98 
     99 	if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
    100 		*g_addr = vgpu_aperture_gmadr_base(vgpu)
    101 			+ (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
    102 	else
    103 		*g_addr = vgpu_hidden_gmadr_base(vgpu)
    104 			+ (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
    105 	return 0;
    106 }
    107 
    108 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
    109 			     unsigned long *h_index)
    110 {
    111 	u64 h_addr;
    112 	int ret;
    113 
    114 	ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
    115 				       &h_addr);
    116 	if (ret)
    117 		return ret;
    118 
    119 	*h_index = h_addr >> I915_GTT_PAGE_SHIFT;
    120 	return 0;
    121 }
    122 
    123 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
    124 			     unsigned long *g_index)
    125 {
    126 	u64 g_addr;
    127 	int ret;
    128 
    129 	ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
    130 				       &g_addr);
    131 	if (ret)
    132 		return ret;
    133 
    134 	*g_index = g_addr >> I915_GTT_PAGE_SHIFT;
    135 	return 0;
    136 }
    137 
    138 #define gtt_type_is_entry(type) \
    139 	(type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
    140 	 && type != GTT_TYPE_PPGTT_PTE_ENTRY \
    141 	 && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
    142 
    143 #define gtt_type_is_pt(type) \
    144 	(type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
    145 
    146 #define gtt_type_is_pte_pt(type) \
    147 	(type == GTT_TYPE_PPGTT_PTE_PT)
    148 
    149 #define gtt_type_is_root_pointer(type) \
    150 	(gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
    151 
    152 #define gtt_init_entry(e, t, p, v) do { \
    153 	(e)->type = t; \
    154 	(e)->pdev = p; \
    155 	memcpy(&(e)->val64, &v, sizeof(v)); \
    156 } while (0)
    157 
    158 /*
    159  * Mappings between GTT_TYPE* enumerations.
    160  * Following information can be found according to the given type:
    161  * - type of next level page table
    162  * - type of entry inside this level page table
    163  * - type of entry with PSE set
    164  *
    165  * If the given type doesn't have such a kind of information,
    166  * e.g. give a l4 root entry type, then request to get its PSE type,
    167  * give a PTE page table type, then request to get its next level page
    168  * table type, as we know l4 root entry doesn't have a PSE bit,
    169  * and a PTE page table doesn't have a next level page table type,
    170  * GTT_TYPE_INVALID will be returned. This is useful when traversing a
    171  * page table.
    172  */
    173 
    174 struct gtt_type_table_entry {
    175 	int entry_type;
    176 	int pt_type;
    177 	int next_pt_type;
    178 	int pse_entry_type;
    179 };
    180 
    181 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
    182 	[type] = { \
    183 		.entry_type = e_type, \
    184 		.pt_type = cpt_type, \
    185 		.next_pt_type = npt_type, \
    186 		.pse_entry_type = pse_type, \
    187 	}
    188 
    189 static struct gtt_type_table_entry gtt_type_table[] = {
    190 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
    191 			GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
    192 			GTT_TYPE_INVALID,
    193 			GTT_TYPE_PPGTT_PML4_PT,
    194 			GTT_TYPE_INVALID),
    195 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
    196 			GTT_TYPE_PPGTT_PML4_ENTRY,
    197 			GTT_TYPE_PPGTT_PML4_PT,
    198 			GTT_TYPE_PPGTT_PDP_PT,
    199 			GTT_TYPE_INVALID),
    200 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
    201 			GTT_TYPE_PPGTT_PML4_ENTRY,
    202 			GTT_TYPE_PPGTT_PML4_PT,
    203 			GTT_TYPE_PPGTT_PDP_PT,
    204 			GTT_TYPE_INVALID),
    205 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
    206 			GTT_TYPE_PPGTT_PDP_ENTRY,
    207 			GTT_TYPE_PPGTT_PDP_PT,
    208 			GTT_TYPE_PPGTT_PDE_PT,
    209 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
    210 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
    211 			GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
    212 			GTT_TYPE_INVALID,
    213 			GTT_TYPE_PPGTT_PDE_PT,
    214 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
    215 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
    216 			GTT_TYPE_PPGTT_PDP_ENTRY,
    217 			GTT_TYPE_PPGTT_PDP_PT,
    218 			GTT_TYPE_PPGTT_PDE_PT,
    219 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
    220 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
    221 			GTT_TYPE_PPGTT_PDE_ENTRY,
    222 			GTT_TYPE_PPGTT_PDE_PT,
    223 			GTT_TYPE_PPGTT_PTE_PT,
    224 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
    225 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
    226 			GTT_TYPE_PPGTT_PDE_ENTRY,
    227 			GTT_TYPE_PPGTT_PDE_PT,
    228 			GTT_TYPE_PPGTT_PTE_PT,
    229 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
    230 	/* We take IPS bit as 'PSE' for PTE level. */
    231 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
    232 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
    233 			GTT_TYPE_PPGTT_PTE_PT,
    234 			GTT_TYPE_INVALID,
    235 			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
    236 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
    237 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
    238 			GTT_TYPE_PPGTT_PTE_PT,
    239 			GTT_TYPE_INVALID,
    240 			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
    241 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY,
    242 			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
    243 			GTT_TYPE_PPGTT_PTE_PT,
    244 			GTT_TYPE_INVALID,
    245 			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
    246 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
    247 			GTT_TYPE_PPGTT_PDE_ENTRY,
    248 			GTT_TYPE_PPGTT_PDE_PT,
    249 			GTT_TYPE_INVALID,
    250 			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
    251 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
    252 			GTT_TYPE_PPGTT_PDP_ENTRY,
    253 			GTT_TYPE_PPGTT_PDP_PT,
    254 			GTT_TYPE_INVALID,
    255 			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
    256 	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
    257 			GTT_TYPE_GGTT_PTE,
    258 			GTT_TYPE_INVALID,
    259 			GTT_TYPE_INVALID,
    260 			GTT_TYPE_INVALID),
    261 };
    262 
    263 static inline int get_next_pt_type(int type)
    264 {
    265 	return gtt_type_table[type].next_pt_type;
    266 }
    267 
    268 static inline int get_pt_type(int type)
    269 {
    270 	return gtt_type_table[type].pt_type;
    271 }
    272 
    273 static inline int get_entry_type(int type)
    274 {
    275 	return gtt_type_table[type].entry_type;
    276 }
    277 
    278 static inline int get_pse_type(int type)
    279 {
    280 	return gtt_type_table[type].pse_entry_type;
    281 }
    282 
    283 static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index)
    284 {
    285 	void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
    286 
    287 	return readq(addr);
    288 }
    289 
    290 static void ggtt_invalidate(struct drm_i915_private *dev_priv)
    291 {
    292 	mmio_hw_access_pre(dev_priv);
    293 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
    294 	mmio_hw_access_post(dev_priv);
    295 }
    296 
    297 static void write_pte64(struct drm_i915_private *dev_priv,
    298 		unsigned long index, u64 pte)
    299 {
    300 	void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
    301 
    302 	writeq(pte, addr);
    303 }
    304 
    305 static inline int gtt_get_entry64(void *pt,
    306 		struct intel_gvt_gtt_entry *e,
    307 		unsigned long index, bool hypervisor_access, unsigned long gpa,
    308 		struct intel_vgpu *vgpu)
    309 {
    310 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
    311 	int ret;
    312 
    313 	if (WARN_ON(info->gtt_entry_size != 8))
    314 		return -EINVAL;
    315 
    316 	if (hypervisor_access) {
    317 		ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
    318 				(index << info->gtt_entry_size_shift),
    319 				&e->val64, 8);
    320 		if (WARN_ON(ret))
    321 			return ret;
    322 	} else if (!pt) {
    323 		e->val64 = read_pte64(vgpu->gvt->dev_priv, index);
    324 	} else {
    325 		e->val64 = *((u64 *)pt + index);
    326 	}
    327 	return 0;
    328 }
    329 
    330 static inline int gtt_set_entry64(void *pt,
    331 		struct intel_gvt_gtt_entry *e,
    332 		unsigned long index, bool hypervisor_access, unsigned long gpa,
    333 		struct intel_vgpu *vgpu)
    334 {
    335 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
    336 	int ret;
    337 
    338 	if (WARN_ON(info->gtt_entry_size != 8))
    339 		return -EINVAL;
    340 
    341 	if (hypervisor_access) {
    342 		ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
    343 				(index << info->gtt_entry_size_shift),
    344 				&e->val64, 8);
    345 		if (WARN_ON(ret))
    346 			return ret;
    347 	} else if (!pt) {
    348 		write_pte64(vgpu->gvt->dev_priv, index, e->val64);
    349 	} else {
    350 		*((u64 *)pt + index) = e->val64;
    351 	}
    352 	return 0;
    353 }
    354 
    355 #define GTT_HAW 46
    356 
    357 #define ADDR_1G_MASK	GENMASK_ULL(GTT_HAW - 1, 30)
    358 #define ADDR_2M_MASK	GENMASK_ULL(GTT_HAW - 1, 21)
    359 #define ADDR_64K_MASK	GENMASK_ULL(GTT_HAW - 1, 16)
    360 #define ADDR_4K_MASK	GENMASK_ULL(GTT_HAW - 1, 12)
    361 
    362 #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52)
    363 #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */
    364 
    365 #define GTT_64K_PTE_STRIDE 16
    366 
    367 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
    368 {
    369 	unsigned long pfn;
    370 
    371 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
    372 		pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT;
    373 	else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
    374 		pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT;
    375 	else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY)
    376 		pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT;
    377 	else
    378 		pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT;
    379 	return pfn;
    380 }
    381 
    382 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
    383 {
    384 	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
    385 		e->val64 &= ~ADDR_1G_MASK;
    386 		pfn &= (ADDR_1G_MASK >> PAGE_SHIFT);
    387 	} else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
    388 		e->val64 &= ~ADDR_2M_MASK;
    389 		pfn &= (ADDR_2M_MASK >> PAGE_SHIFT);
    390 	} else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) {
    391 		e->val64 &= ~ADDR_64K_MASK;
    392 		pfn &= (ADDR_64K_MASK >> PAGE_SHIFT);
    393 	} else {
    394 		e->val64 &= ~ADDR_4K_MASK;
    395 		pfn &= (ADDR_4K_MASK >> PAGE_SHIFT);
    396 	}
    397 
    398 	e->val64 |= (pfn << PAGE_SHIFT);
    399 }
    400 
    401 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
    402 {
    403 	return !!(e->val64 & _PAGE_PSE);
    404 }
    405 
    406 static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e)
    407 {
    408 	if (gen8_gtt_test_pse(e)) {
    409 		switch (e->type) {
    410 		case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
    411 			e->val64 &= ~_PAGE_PSE;
    412 			e->type = GTT_TYPE_PPGTT_PDE_ENTRY;
    413 			break;
    414 		case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
    415 			e->type = GTT_TYPE_PPGTT_PDP_ENTRY;
    416 			e->val64 &= ~_PAGE_PSE;
    417 			break;
    418 		default:
    419 			WARN_ON(1);
    420 		}
    421 	}
    422 }
    423 
    424 static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e)
    425 {
    426 	if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
    427 		return false;
    428 
    429 	return !!(e->val64 & GEN8_PDE_IPS_64K);
    430 }
    431 
    432 static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e)
    433 {
    434 	if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
    435 		return;
    436 
    437 	e->val64 &= ~GEN8_PDE_IPS_64K;
    438 }
    439 
    440 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
    441 {
    442 	/*
    443 	 * i915 writes PDP root pointer registers without present bit,
    444 	 * it also works, so we need to treat root pointer entry
    445 	 * specifically.
    446 	 */
    447 	if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
    448 			|| e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
    449 		return (e->val64 != 0);
    450 	else
    451 		return (e->val64 & _PAGE_PRESENT);
    452 }
    453 
    454 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
    455 {
    456 	e->val64 &= ~_PAGE_PRESENT;
    457 }
    458 
    459 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
    460 {
    461 	e->val64 |= _PAGE_PRESENT;
    462 }
    463 
    464 static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e)
    465 {
    466 	return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED);
    467 }
    468 
    469 static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e)
    470 {
    471 	e->val64 |= GTT_SPTE_FLAG_64K_SPLITED;
    472 }
    473 
    474 static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e)
    475 {
    476 	e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED;
    477 }
    478 
    479 /*
    480  * Per-platform GMA routines.
    481  */
    482 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
    483 {
    484 	unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
    485 
    486 	trace_gma_index(__func__, gma, x);
    487 	return x;
    488 }
    489 
    490 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
    491 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
    492 { \
    493 	unsigned long x = (exp); \
    494 	trace_gma_index(__func__, gma, x); \
    495 	return x; \
    496 }
    497 
    498 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
    499 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
    500 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
    501 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
    502 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
    503 
    504 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
    505 	.get_entry = gtt_get_entry64,
    506 	.set_entry = gtt_set_entry64,
    507 	.clear_present = gtt_entry_clear_present,
    508 	.set_present = gtt_entry_set_present,
    509 	.test_present = gen8_gtt_test_present,
    510 	.test_pse = gen8_gtt_test_pse,
    511 	.clear_pse = gen8_gtt_clear_pse,
    512 	.clear_ips = gen8_gtt_clear_ips,
    513 	.test_ips = gen8_gtt_test_ips,
    514 	.clear_64k_splited = gen8_gtt_clear_64k_splited,
    515 	.set_64k_splited = gen8_gtt_set_64k_splited,
    516 	.test_64k_splited = gen8_gtt_test_64k_splited,
    517 	.get_pfn = gen8_gtt_get_pfn,
    518 	.set_pfn = gen8_gtt_set_pfn,
    519 };
    520 
    521 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
    522 	.gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
    523 	.gma_to_pte_index = gen8_gma_to_pte_index,
    524 	.gma_to_pde_index = gen8_gma_to_pde_index,
    525 	.gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
    526 	.gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
    527 	.gma_to_pml4_index = gen8_gma_to_pml4_index,
    528 };
    529 
    530 /* Update entry type per pse and ips bit. */
    531 static void update_entry_type_for_real(struct intel_gvt_gtt_pte_ops *pte_ops,
    532 	struct intel_gvt_gtt_entry *entry, bool ips)
    533 {
    534 	switch (entry->type) {
    535 	case GTT_TYPE_PPGTT_PDE_ENTRY:
    536 	case GTT_TYPE_PPGTT_PDP_ENTRY:
    537 		if (pte_ops->test_pse(entry))
    538 			entry->type = get_pse_type(entry->type);
    539 		break;
    540 	case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
    541 		if (ips)
    542 			entry->type = get_pse_type(entry->type);
    543 		break;
    544 	default:
    545 		GEM_BUG_ON(!gtt_type_is_entry(entry->type));
    546 	}
    547 
    548 	GEM_BUG_ON(entry->type == GTT_TYPE_INVALID);
    549 }
    550 
    551 /*
    552  * MM helpers.
    553  */
    554 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm,
    555 		struct intel_gvt_gtt_entry *entry, unsigned long index,
    556 		bool guest)
    557 {
    558 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
    559 
    560 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT);
    561 
    562 	entry->type = mm->ppgtt_mm.root_entry_type;
    563 	pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps :
    564 			   mm->ppgtt_mm.shadow_pdps,
    565 			   entry, index, false, 0, mm->vgpu);
    566 	update_entry_type_for_real(pte_ops, entry, false);
    567 }
    568 
    569 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm,
    570 		struct intel_gvt_gtt_entry *entry, unsigned long index)
    571 {
    572 	_ppgtt_get_root_entry(mm, entry, index, true);
    573 }
    574 
    575 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm,
    576 		struct intel_gvt_gtt_entry *entry, unsigned long index)
    577 {
    578 	_ppgtt_get_root_entry(mm, entry, index, false);
    579 }
    580 
    581 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm,
    582 		struct intel_gvt_gtt_entry *entry, unsigned long index,
    583 		bool guest)
    584 {
    585 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
    586 
    587 	pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps :
    588 			   mm->ppgtt_mm.shadow_pdps,
    589 			   entry, index, false, 0, mm->vgpu);
    590 }
    591 
    592 static inline void ppgtt_set_guest_root_entry(struct intel_vgpu_mm *mm,
    593 		struct intel_gvt_gtt_entry *entry, unsigned long index)
    594 {
    595 	_ppgtt_set_root_entry(mm, entry, index, true);
    596 }
    597 
    598 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm,
    599 		struct intel_gvt_gtt_entry *entry, unsigned long index)
    600 {
    601 	_ppgtt_set_root_entry(mm, entry, index, false);
    602 }
    603 
    604 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm,
    605 		struct intel_gvt_gtt_entry *entry, unsigned long index)
    606 {
    607 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
    608 
    609 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
    610 
    611 	entry->type = GTT_TYPE_GGTT_PTE;
    612 	pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
    613 			   false, 0, mm->vgpu);
    614 }
    615 
    616 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm,
    617 		struct intel_gvt_gtt_entry *entry, unsigned long index)
    618 {
    619 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
    620 
    621 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
    622 
    623 	pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
    624 			   false, 0, mm->vgpu);
    625 }
    626 
    627 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm,
    628 		struct intel_gvt_gtt_entry *entry, unsigned long index)
    629 {
    630 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
    631 
    632 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
    633 
    634 	pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu);
    635 }
    636 
    637 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm,
    638 		struct intel_gvt_gtt_entry *entry, unsigned long index)
    639 {
    640 	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
    641 
    642 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
    643 
    644 	pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu);
    645 }
    646 
    647 /*
    648  * PPGTT shadow page table helpers.
    649  */
    650 static inline int ppgtt_spt_get_entry(
    651 		struct intel_vgpu_ppgtt_spt *spt,
    652 		void *page_table, int type,
    653 		struct intel_gvt_gtt_entry *e, unsigned long index,
    654 		bool guest)
    655 {
    656 	struct intel_gvt *gvt = spt->vgpu->gvt;
    657 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
    658 	int ret;
    659 
    660 	e->type = get_entry_type(type);
    661 
    662 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
    663 		return -EINVAL;
    664 
    665 	ret = ops->get_entry(page_table, e, index, guest,
    666 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
    667 			spt->vgpu);
    668 	if (ret)
    669 		return ret;
    670 
    671 	update_entry_type_for_real(ops, e, guest ?
    672 				   spt->guest_page.pde_ips : false);
    673 
    674 	gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
    675 		    type, e->type, index, e->val64);
    676 	return 0;
    677 }
    678 
    679 static inline int ppgtt_spt_set_entry(
    680 		struct intel_vgpu_ppgtt_spt *spt,
    681 		void *page_table, int type,
    682 		struct intel_gvt_gtt_entry *e, unsigned long index,
    683 		bool guest)
    684 {
    685 	struct intel_gvt *gvt = spt->vgpu->gvt;
    686 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
    687 
    688 	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
    689 		return -EINVAL;
    690 
    691 	gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
    692 		    type, e->type, index, e->val64);
    693 
    694 	return ops->set_entry(page_table, e, index, guest,
    695 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
    696 			spt->vgpu);
    697 }
    698 
    699 #define ppgtt_get_guest_entry(spt, e, index) \
    700 	ppgtt_spt_get_entry(spt, NULL, \
    701 		spt->guest_page.type, e, index, true)
    702 
    703 #define ppgtt_set_guest_entry(spt, e, index) \
    704 	ppgtt_spt_set_entry(spt, NULL, \
    705 		spt->guest_page.type, e, index, true)
    706 
    707 #define ppgtt_get_shadow_entry(spt, e, index) \
    708 	ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
    709 		spt->shadow_page.type, e, index, false)
    710 
    711 #define ppgtt_set_shadow_entry(spt, e, index) \
    712 	ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
    713 		spt->shadow_page.type, e, index, false)
    714 
    715 static void *alloc_spt(gfp_t gfp_mask)
    716 {
    717 	struct intel_vgpu_ppgtt_spt *spt;
    718 
    719 	spt = kzalloc(sizeof(*spt), gfp_mask);
    720 	if (!spt)
    721 		return NULL;
    722 
    723 	spt->shadow_page.page = alloc_page(gfp_mask);
    724 	if (!spt->shadow_page.page) {
    725 		kfree(spt);
    726 		return NULL;
    727 	}
    728 	return spt;
    729 }
    730 
    731 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
    732 {
    733 	__free_page(spt->shadow_page.page);
    734 	kfree(spt);
    735 }
    736 
    737 static int detach_oos_page(struct intel_vgpu *vgpu,
    738 		struct intel_vgpu_oos_page *oos_page);
    739 
    740 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt)
    741 {
    742 	struct device *kdev = &spt->vgpu->gvt->dev_priv->drm.pdev->dev;
    743 
    744 	trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type);
    745 
    746 	dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096,
    747 		       PCI_DMA_BIDIRECTIONAL);
    748 
    749 	radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn);
    750 
    751 	if (spt->guest_page.gfn) {
    752 		if (spt->guest_page.oos_page)
    753 			detach_oos_page(spt->vgpu, spt->guest_page.oos_page);
    754 
    755 		intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn);
    756 	}
    757 
    758 	list_del_init(&spt->post_shadow_list);
    759 	free_spt(spt);
    760 }
    761 
    762 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu)
    763 {
    764 	struct intel_vgpu_ppgtt_spt *spt, *spn;
    765 	struct radix_tree_iter iter;
    766 	LIST_HEAD(all_spt);
    767 	void __rcu **slot;
    768 
    769 	rcu_read_lock();
    770 	radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) {
    771 		spt = radix_tree_deref_slot(slot);
    772 		list_move(&spt->post_shadow_list, &all_spt);
    773 	}
    774 	rcu_read_unlock();
    775 
    776 	list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list)
    777 		ppgtt_free_spt(spt);
    778 }
    779 
    780 static int ppgtt_handle_guest_write_page_table_bytes(
    781 		struct intel_vgpu_ppgtt_spt *spt,
    782 		u64 pa, void *p_data, int bytes);
    783 
    784 static int ppgtt_write_protection_handler(
    785 		struct intel_vgpu_page_track *page_track,
    786 		u64 gpa, void *data, int bytes)
    787 {
    788 	struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data;
    789 
    790 	int ret;
    791 
    792 	if (bytes != 4 && bytes != 8)
    793 		return -EINVAL;
    794 
    795 	ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes);
    796 	if (ret)
    797 		return ret;
    798 	return ret;
    799 }
    800 
    801 /* Find a spt by guest gfn. */
    802 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn(
    803 		struct intel_vgpu *vgpu, unsigned long gfn)
    804 {
    805 	struct intel_vgpu_page_track *track;
    806 
    807 	track = intel_vgpu_find_page_track(vgpu, gfn);
    808 	if (track && track->handler == ppgtt_write_protection_handler)
    809 		return track->priv_data;
    810 
    811 	return NULL;
    812 }
    813 
    814 /* Find the spt by shadow page mfn. */
    815 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn(
    816 		struct intel_vgpu *vgpu, unsigned long mfn)
    817 {
    818 	return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn);
    819 }
    820 
    821 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt);
    822 
    823 /* Allocate shadow page table without guest page. */
    824 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt(
    825 		struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type)
    826 {
    827 	struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
    828 	struct intel_vgpu_ppgtt_spt *spt = NULL;
    829 	dma_addr_t daddr;
    830 	int ret;
    831 
    832 retry:
    833 	spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
    834 	if (!spt) {
    835 		if (reclaim_one_ppgtt_mm(vgpu->gvt))
    836 			goto retry;
    837 
    838 		gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
    839 		return ERR_PTR(-ENOMEM);
    840 	}
    841 
    842 	spt->vgpu = vgpu;
    843 	atomic_set(&spt->refcount, 1);
    844 	INIT_LIST_HEAD(&spt->post_shadow_list);
    845 
    846 	/*
    847 	 * Init shadow_page.
    848 	 */
    849 	spt->shadow_page.type = type;
    850 	daddr = dma_map_page(kdev, spt->shadow_page.page,
    851 			     0, 4096, PCI_DMA_BIDIRECTIONAL);
    852 	if (dma_mapping_error(kdev, daddr)) {
    853 		gvt_vgpu_err("fail to map dma addr\n");
    854 		ret = -EINVAL;
    855 		goto err_free_spt;
    856 	}
    857 	spt->shadow_page.vaddr = page_address(spt->shadow_page.page);
    858 	spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT;
    859 
    860 	ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt);
    861 	if (ret)
    862 		goto err_unmap_dma;
    863 
    864 	return spt;
    865 
    866 err_unmap_dma:
    867 	dma_unmap_page(kdev, daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
    868 err_free_spt:
    869 	free_spt(spt);
    870 	return ERR_PTR(ret);
    871 }
    872 
    873 /* Allocate shadow page table associated with specific gfn. */
    874 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn(
    875 		struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type,
    876 		unsigned long gfn, bool guest_pde_ips)
    877 {
    878 	struct intel_vgpu_ppgtt_spt *spt;
    879 	int ret;
    880 
    881 	spt = ppgtt_alloc_spt(vgpu, type);
    882 	if (IS_ERR(spt))
    883 		return spt;
    884 
    885 	/*
    886 	 * Init guest_page.
    887 	 */
    888 	ret = intel_vgpu_register_page_track(vgpu, gfn,
    889 			ppgtt_write_protection_handler, spt);
    890 	if (ret) {
    891 		ppgtt_free_spt(spt);
    892 		return ERR_PTR(ret);
    893 	}
    894 
    895 	spt->guest_page.type = type;
    896 	spt->guest_page.gfn = gfn;
    897 	spt->guest_page.pde_ips = guest_pde_ips;
    898 
    899 	trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
    900 
    901 	return spt;
    902 }
    903 
    904 #define pt_entry_size_shift(spt) \
    905 	((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
    906 
    907 #define pt_entries(spt) \
    908 	(I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
    909 
    910 #define for_each_present_guest_entry(spt, e, i) \
    911 	for (i = 0; i < pt_entries(spt); \
    912 	     i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
    913 		if (!ppgtt_get_guest_entry(spt, e, i) && \
    914 		    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
    915 
    916 #define for_each_present_shadow_entry(spt, e, i) \
    917 	for (i = 0; i < pt_entries(spt); \
    918 	     i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
    919 		if (!ppgtt_get_shadow_entry(spt, e, i) && \
    920 		    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
    921 
    922 #define for_each_shadow_entry(spt, e, i) \
    923 	for (i = 0; i < pt_entries(spt); \
    924 	     i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \
    925 		if (!ppgtt_get_shadow_entry(spt, e, i))
    926 
    927 static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt)
    928 {
    929 	int v = atomic_read(&spt->refcount);
    930 
    931 	trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
    932 	atomic_inc(&spt->refcount);
    933 }
    934 
    935 static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt)
    936 {
    937 	int v = atomic_read(&spt->refcount);
    938 
    939 	trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
    940 	return atomic_dec_return(&spt->refcount);
    941 }
    942 
    943 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt);
    944 
    945 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu,
    946 		struct intel_gvt_gtt_entry *e)
    947 {
    948 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
    949 	struct intel_vgpu_ppgtt_spt *s;
    950 	enum intel_gvt_gtt_type cur_pt_type;
    951 
    952 	GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type)));
    953 
    954 	if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
    955 		&& e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
    956 		cur_pt_type = get_next_pt_type(e->type);
    957 
    958 		if (!gtt_type_is_pt(cur_pt_type) ||
    959 				!gtt_type_is_pt(cur_pt_type + 1)) {
    960 			WARN(1, "Invalid page table type, cur_pt_type is: %d\n", cur_pt_type);
    961 			return -EINVAL;
    962 		}
    963 
    964 		cur_pt_type += 1;
    965 
    966 		if (ops->get_pfn(e) ==
    967 			vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
    968 			return 0;
    969 	}
    970 	s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
    971 	if (!s) {
    972 		gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
    973 				ops->get_pfn(e));
    974 		return -ENXIO;
    975 	}
    976 	return ppgtt_invalidate_spt(s);
    977 }
    978 
    979 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt,
    980 		struct intel_gvt_gtt_entry *entry)
    981 {
    982 	struct intel_vgpu *vgpu = spt->vgpu;
    983 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
    984 	unsigned long pfn;
    985 	int type;
    986 
    987 	pfn = ops->get_pfn(entry);
    988 	type = spt->shadow_page.type;
    989 
    990 	/* Uninitialized spte or unshadowed spte. */
    991 	if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn)
    992 		return;
    993 
    994 	intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
    995 }
    996 
    997 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt)
    998 {
    999 	struct intel_vgpu *vgpu = spt->vgpu;
   1000 	struct intel_gvt_gtt_entry e;
   1001 	unsigned long index;
   1002 	int ret;
   1003 
   1004 	trace_spt_change(spt->vgpu->id, "die", spt,
   1005 			spt->guest_page.gfn, spt->shadow_page.type);
   1006 
   1007 	if (ppgtt_put_spt(spt) > 0)
   1008 		return 0;
   1009 
   1010 	for_each_present_shadow_entry(spt, &e, index) {
   1011 		switch (e.type) {
   1012 		case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
   1013 			gvt_vdbg_mm("invalidate 4K entry\n");
   1014 			ppgtt_invalidate_pte(spt, &e);
   1015 			break;
   1016 		case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
   1017 			/* We don't setup 64K shadow entry so far. */
   1018 			WARN(1, "suspicious 64K gtt entry\n");
   1019 			continue;
   1020 		case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
   1021 			gvt_vdbg_mm("invalidate 2M entry\n");
   1022 			continue;
   1023 		case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
   1024 			WARN(1, "GVT doesn't support 1GB page\n");
   1025 			continue;
   1026 		case GTT_TYPE_PPGTT_PML4_ENTRY:
   1027 		case GTT_TYPE_PPGTT_PDP_ENTRY:
   1028 		case GTT_TYPE_PPGTT_PDE_ENTRY:
   1029 			gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n");
   1030 			ret = ppgtt_invalidate_spt_by_shadow_entry(
   1031 					spt->vgpu, &e);
   1032 			if (ret)
   1033 				goto fail;
   1034 			break;
   1035 		default:
   1036 			GEM_BUG_ON(1);
   1037 		}
   1038 	}
   1039 
   1040 	trace_spt_change(spt->vgpu->id, "release", spt,
   1041 			 spt->guest_page.gfn, spt->shadow_page.type);
   1042 	ppgtt_free_spt(spt);
   1043 	return 0;
   1044 fail:
   1045 	gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
   1046 			spt, e.val64, e.type);
   1047 	return ret;
   1048 }
   1049 
   1050 static bool vgpu_ips_enabled(struct intel_vgpu *vgpu)
   1051 {
   1052 	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
   1053 
   1054 	if (INTEL_GEN(dev_priv) == 9 || INTEL_GEN(dev_priv) == 10) {
   1055 		u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) &
   1056 			GAMW_ECO_ENABLE_64K_IPS_FIELD;
   1057 
   1058 		return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD;
   1059 	} else if (INTEL_GEN(dev_priv) >= 11) {
   1060 		/* 64K paging only controlled by IPS bit in PTE now. */
   1061 		return true;
   1062 	} else
   1063 		return false;
   1064 }
   1065 
   1066 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt);
   1067 
   1068 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry(
   1069 		struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
   1070 {
   1071 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
   1072 	struct intel_vgpu_ppgtt_spt *spt = NULL;
   1073 	bool ips = false;
   1074 	int ret;
   1075 
   1076 	GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type)));
   1077 
   1078 	if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY)
   1079 		ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we);
   1080 
   1081 	spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we));
   1082 	if (spt) {
   1083 		ppgtt_get_spt(spt);
   1084 
   1085 		if (ips != spt->guest_page.pde_ips) {
   1086 			spt->guest_page.pde_ips = ips;
   1087 
   1088 			gvt_dbg_mm("reshadow PDE since ips changed\n");
   1089 			clear_page(spt->shadow_page.vaddr);
   1090 			ret = ppgtt_populate_spt(spt);
   1091 			if (ret) {
   1092 				ppgtt_put_spt(spt);
   1093 				goto err;
   1094 			}
   1095 		}
   1096 	} else {
   1097 		int type = get_next_pt_type(we->type);
   1098 
   1099 		if (!gtt_type_is_pt(type)) {
   1100 			ret = -EINVAL;
   1101 			goto err;
   1102 		}
   1103 
   1104 		spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips);
   1105 		if (IS_ERR(spt)) {
   1106 			ret = PTR_ERR(spt);
   1107 			goto err;
   1108 		}
   1109 
   1110 		ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn);
   1111 		if (ret)
   1112 			goto err_free_spt;
   1113 
   1114 		ret = ppgtt_populate_spt(spt);
   1115 		if (ret)
   1116 			goto err_free_spt;
   1117 
   1118 		trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn,
   1119 				 spt->shadow_page.type);
   1120 	}
   1121 	return spt;
   1122 
   1123 err_free_spt:
   1124 	ppgtt_free_spt(spt);
   1125 	spt = NULL;
   1126 err:
   1127 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
   1128 		     spt, we->val64, we->type);
   1129 	return ERR_PTR(ret);
   1130 }
   1131 
   1132 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
   1133 		struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
   1134 {
   1135 	struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
   1136 
   1137 	se->type = ge->type;
   1138 	se->val64 = ge->val64;
   1139 
   1140 	/* Because we always split 64KB pages, so clear IPS in shadow PDE. */
   1141 	if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY)
   1142 		ops->clear_ips(se);
   1143 
   1144 	ops->set_pfn(se, s->shadow_page.mfn);
   1145 }
   1146 
   1147 /**
   1148  * Check if can do 2M page
   1149  * @vgpu: target vgpu
   1150  * @entry: target pfn's gtt entry
   1151  *
   1152  * Return 1 if 2MB huge gtt shadowing is possilbe, 0 if miscondition,
   1153  * negtive if found err.
   1154  */
   1155 static int is_2MB_gtt_possible(struct intel_vgpu *vgpu,
   1156 	struct intel_gvt_gtt_entry *entry)
   1157 {
   1158 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
   1159 	unsigned long pfn;
   1160 
   1161 	if (!HAS_PAGE_SIZES(vgpu->gvt->dev_priv, I915_GTT_PAGE_SIZE_2M))
   1162 		return 0;
   1163 
   1164 	pfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, ops->get_pfn(entry));
   1165 	if (pfn == INTEL_GVT_INVALID_ADDR)
   1166 		return -EINVAL;
   1167 
   1168 	return PageTransHuge(pfn_to_page(pfn));
   1169 }
   1170 
   1171 static int split_2MB_gtt_entry(struct intel_vgpu *vgpu,
   1172 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
   1173 	struct intel_gvt_gtt_entry *se)
   1174 {
   1175 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
   1176 	struct intel_vgpu_ppgtt_spt *sub_spt;
   1177 	struct intel_gvt_gtt_entry sub_se;
   1178 	unsigned long start_gfn;
   1179 	dma_addr_t dma_addr;
   1180 	unsigned long sub_index;
   1181 	int ret;
   1182 
   1183 	gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index);
   1184 
   1185 	start_gfn = ops->get_pfn(se);
   1186 
   1187 	sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT);
   1188 	if (IS_ERR(sub_spt))
   1189 		return PTR_ERR(sub_spt);
   1190 
   1191 	for_each_shadow_entry(sub_spt, &sub_se, sub_index) {
   1192 		ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
   1193 				start_gfn + sub_index, PAGE_SIZE, &dma_addr);
   1194 		if (ret) {
   1195 			ppgtt_invalidate_spt(spt);
   1196 			return ret;
   1197 		}
   1198 		sub_se.val64 = se->val64;
   1199 
   1200 		/* Copy the PAT field from PDE. */
   1201 		sub_se.val64 &= ~_PAGE_PAT;
   1202 		sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5;
   1203 
   1204 		ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT);
   1205 		ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index);
   1206 	}
   1207 
   1208 	/* Clear dirty field. */
   1209 	se->val64 &= ~_PAGE_DIRTY;
   1210 
   1211 	ops->clear_pse(se);
   1212 	ops->clear_ips(se);
   1213 	ops->set_pfn(se, sub_spt->shadow_page.mfn);
   1214 	ppgtt_set_shadow_entry(spt, se, index);
   1215 	return 0;
   1216 }
   1217 
   1218 static int split_64KB_gtt_entry(struct intel_vgpu *vgpu,
   1219 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
   1220 	struct intel_gvt_gtt_entry *se)
   1221 {
   1222 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
   1223 	struct intel_gvt_gtt_entry entry = *se;
   1224 	unsigned long start_gfn;
   1225 	dma_addr_t dma_addr;
   1226 	int i, ret;
   1227 
   1228 	gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index);
   1229 
   1230 	GEM_BUG_ON(index % GTT_64K_PTE_STRIDE);
   1231 
   1232 	start_gfn = ops->get_pfn(se);
   1233 
   1234 	entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY;
   1235 	ops->set_64k_splited(&entry);
   1236 
   1237 	for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
   1238 		ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
   1239 					start_gfn + i, PAGE_SIZE, &dma_addr);
   1240 		if (ret)
   1241 			return ret;
   1242 
   1243 		ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT);
   1244 		ppgtt_set_shadow_entry(spt, &entry, index + i);
   1245 	}
   1246 	return 0;
   1247 }
   1248 
   1249 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu,
   1250 	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
   1251 	struct intel_gvt_gtt_entry *ge)
   1252 {
   1253 	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
   1254 	struct intel_gvt_gtt_entry se = *ge;
   1255 	unsigned long gfn, page_size = PAGE_SIZE;
   1256 	dma_addr_t dma_addr;
   1257 	int ret;
   1258 
   1259 	if (!pte_ops->test_present(ge))
   1260 		return 0;
   1261 
   1262 	gfn = pte_ops->get_pfn(ge);
   1263 
   1264 	switch (ge->type) {
   1265 	case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
   1266 		gvt_vdbg_mm("shadow 4K gtt entry\n");
   1267 		break;
   1268 	case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
   1269 		gvt_vdbg_mm("shadow 64K gtt entry\n");
   1270 		/*
   1271 		 * The layout of 64K page is special, the page size is
   1272 		 * controlled by uper PDE. To be simple, we always split
   1273 		 * 64K page to smaller 4K pages in shadow PT.
   1274 		 */
   1275 		return split_64KB_gtt_entry(vgpu, spt, index, &se);
   1276 	case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
   1277 		gvt_vdbg_mm("shadow 2M gtt entry\n");
   1278 		ret = is_2MB_gtt_possible(vgpu, ge);
   1279 		if (ret == 0)
   1280 			return split_2MB_gtt_entry(vgpu, spt, index, &se);
   1281 		else if (ret < 0)
   1282 			return ret;
   1283 		page_size = I915_GTT_PAGE_SIZE_2M;
   1284 		break;
   1285 	case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
   1286 		gvt_vgpu_err("GVT doesn't support 1GB entry\n");
   1287 		return -EINVAL;
   1288 	default:
   1289 		GEM_BUG_ON(1);
   1290 	}
   1291 
   1292 	/* direct shadow */
   1293 	ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, page_size,
   1294 						      &dma_addr);
   1295 	if (ret)
   1296 		return -ENXIO;
   1297 
   1298 	pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT);
   1299 	ppgtt_set_shadow_entry(spt, &se, index);
   1300 	return 0;
   1301 }
   1302 
   1303 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt)
   1304 {
   1305 	struct intel_vgpu *vgpu = spt->vgpu;
   1306 	struct intel_gvt *gvt = vgpu->gvt;
   1307 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
   1308 	struct intel_vgpu_ppgtt_spt *s;
   1309 	struct intel_gvt_gtt_entry se, ge;
   1310 	unsigned long gfn, i;
   1311 	int ret;
   1312 
   1313 	trace_spt_change(spt->vgpu->id, "born", spt,
   1314 			 spt->guest_page.gfn, spt->shadow_page.type);
   1315 
   1316 	for_each_present_guest_entry(spt, &ge, i) {
   1317 		if (gtt_type_is_pt(get_next_pt_type(ge.type))) {
   1318 			s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
   1319 			if (IS_ERR(s)) {
   1320 				ret = PTR_ERR(s);
   1321 				goto fail;
   1322 			}
   1323 			ppgtt_get_shadow_entry(spt, &se, i);
   1324 			ppgtt_generate_shadow_entry(&se, s, &ge);
   1325 			ppgtt_set_shadow_entry(spt, &se, i);
   1326 		} else {
   1327 			gfn = ops->get_pfn(&ge);
   1328 			if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
   1329 				ops->set_pfn(&se, gvt->gtt.scratch_mfn);
   1330 				ppgtt_set_shadow_entry(spt, &se, i);
   1331 				continue;
   1332 			}
   1333 
   1334 			ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge);
   1335 			if (ret)
   1336 				goto fail;
   1337 		}
   1338 	}
   1339 	return 0;
   1340 fail:
   1341 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
   1342 			spt, ge.val64, ge.type);
   1343 	return ret;
   1344 }
   1345 
   1346 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt,
   1347 		struct intel_gvt_gtt_entry *se, unsigned long index)
   1348 {
   1349 	struct intel_vgpu *vgpu = spt->vgpu;
   1350 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
   1351 	int ret;
   1352 
   1353 	trace_spt_guest_change(spt->vgpu->id, "remove", spt,
   1354 			       spt->shadow_page.type, se->val64, index);
   1355 
   1356 	gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n",
   1357 		    se->type, index, se->val64);
   1358 
   1359 	if (!ops->test_present(se))
   1360 		return 0;
   1361 
   1362 	if (ops->get_pfn(se) ==
   1363 	    vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn)
   1364 		return 0;
   1365 
   1366 	if (gtt_type_is_pt(get_next_pt_type(se->type))) {
   1367 		struct intel_vgpu_ppgtt_spt *s =
   1368 			intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se));
   1369 		if (!s) {
   1370 			gvt_vgpu_err("fail to find guest page\n");
   1371 			ret = -ENXIO;
   1372 			goto fail;
   1373 		}
   1374 		ret = ppgtt_invalidate_spt(s);
   1375 		if (ret)
   1376 			goto fail;
   1377 	} else {
   1378 		/* We don't setup 64K shadow entry so far. */
   1379 		WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY,
   1380 		     "suspicious 64K entry\n");
   1381 		ppgtt_invalidate_pte(spt, se);
   1382 	}
   1383 
   1384 	return 0;
   1385 fail:
   1386 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
   1387 			spt, se->val64, se->type);
   1388 	return ret;
   1389 }
   1390 
   1391 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt,
   1392 		struct intel_gvt_gtt_entry *we, unsigned long index)
   1393 {
   1394 	struct intel_vgpu *vgpu = spt->vgpu;
   1395 	struct intel_gvt_gtt_entry m;
   1396 	struct intel_vgpu_ppgtt_spt *s;
   1397 	int ret;
   1398 
   1399 	trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type,
   1400 			       we->val64, index);
   1401 
   1402 	gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n",
   1403 		    we->type, index, we->val64);
   1404 
   1405 	if (gtt_type_is_pt(get_next_pt_type(we->type))) {
   1406 		s = ppgtt_populate_spt_by_guest_entry(vgpu, we);
   1407 		if (IS_ERR(s)) {
   1408 			ret = PTR_ERR(s);
   1409 			goto fail;
   1410 		}
   1411 		ppgtt_get_shadow_entry(spt, &m, index);
   1412 		ppgtt_generate_shadow_entry(&m, s, we);
   1413 		ppgtt_set_shadow_entry(spt, &m, index);
   1414 	} else {
   1415 		ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we);
   1416 		if (ret)
   1417 			goto fail;
   1418 	}
   1419 	return 0;
   1420 fail:
   1421 	gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
   1422 		spt, we->val64, we->type);
   1423 	return ret;
   1424 }
   1425 
   1426 static int sync_oos_page(struct intel_vgpu *vgpu,
   1427 		struct intel_vgpu_oos_page *oos_page)
   1428 {
   1429 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
   1430 	struct intel_gvt *gvt = vgpu->gvt;
   1431 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
   1432 	struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
   1433 	struct intel_gvt_gtt_entry old, new;
   1434 	int index;
   1435 	int ret;
   1436 
   1437 	trace_oos_change(vgpu->id, "sync", oos_page->id,
   1438 			 spt, spt->guest_page.type);
   1439 
   1440 	old.type = new.type = get_entry_type(spt->guest_page.type);
   1441 	old.val64 = new.val64 = 0;
   1442 
   1443 	for (index = 0; index < (I915_GTT_PAGE_SIZE >>
   1444 				info->gtt_entry_size_shift); index++) {
   1445 		ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
   1446 		ops->get_entry(NULL, &new, index, true,
   1447 			       spt->guest_page.gfn << PAGE_SHIFT, vgpu);
   1448 
   1449 		if (old.val64 == new.val64
   1450 			&& !test_and_clear_bit(index, spt->post_shadow_bitmap))
   1451 			continue;
   1452 
   1453 		trace_oos_sync(vgpu->id, oos_page->id,
   1454 				spt, spt->guest_page.type,
   1455 				new.val64, index);
   1456 
   1457 		ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new);
   1458 		if (ret)
   1459 			return ret;
   1460 
   1461 		ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
   1462 	}
   1463 
   1464 	spt->guest_page.write_cnt = 0;
   1465 	list_del_init(&spt->post_shadow_list);
   1466 	return 0;
   1467 }
   1468 
   1469 static int detach_oos_page(struct intel_vgpu *vgpu,
   1470 		struct intel_vgpu_oos_page *oos_page)
   1471 {
   1472 	struct intel_gvt *gvt = vgpu->gvt;
   1473 	struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
   1474 
   1475 	trace_oos_change(vgpu->id, "detach", oos_page->id,
   1476 			 spt, spt->guest_page.type);
   1477 
   1478 	spt->guest_page.write_cnt = 0;
   1479 	spt->guest_page.oos_page = NULL;
   1480 	oos_page->spt = NULL;
   1481 
   1482 	list_del_init(&oos_page->vm_list);
   1483 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
   1484 
   1485 	return 0;
   1486 }
   1487 
   1488 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page,
   1489 		struct intel_vgpu_ppgtt_spt *spt)
   1490 {
   1491 	struct intel_gvt *gvt = spt->vgpu->gvt;
   1492 	int ret;
   1493 
   1494 	ret = intel_gvt_hypervisor_read_gpa(spt->vgpu,
   1495 			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
   1496 			oos_page->mem, I915_GTT_PAGE_SIZE);
   1497 	if (ret)
   1498 		return ret;
   1499 
   1500 	oos_page->spt = spt;
   1501 	spt->guest_page.oos_page = oos_page;
   1502 
   1503 	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
   1504 
   1505 	trace_oos_change(spt->vgpu->id, "attach", oos_page->id,
   1506 			 spt, spt->guest_page.type);
   1507 	return 0;
   1508 }
   1509 
   1510 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt)
   1511 {
   1512 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
   1513 	int ret;
   1514 
   1515 	ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn);
   1516 	if (ret)
   1517 		return ret;
   1518 
   1519 	trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id,
   1520 			 spt, spt->guest_page.type);
   1521 
   1522 	list_del_init(&oos_page->vm_list);
   1523 	return sync_oos_page(spt->vgpu, oos_page);
   1524 }
   1525 
   1526 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt)
   1527 {
   1528 	struct intel_gvt *gvt = spt->vgpu->gvt;
   1529 	struct intel_gvt_gtt *gtt = &gvt->gtt;
   1530 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
   1531 	int ret;
   1532 
   1533 	WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
   1534 
   1535 	if (list_empty(&gtt->oos_page_free_list_head)) {
   1536 		oos_page = container_of(gtt->oos_page_use_list_head.next,
   1537 			struct intel_vgpu_oos_page, list);
   1538 		ret = ppgtt_set_guest_page_sync(oos_page->spt);
   1539 		if (ret)
   1540 			return ret;
   1541 		ret = detach_oos_page(spt->vgpu, oos_page);
   1542 		if (ret)
   1543 			return ret;
   1544 	} else
   1545 		oos_page = container_of(gtt->oos_page_free_list_head.next,
   1546 			struct intel_vgpu_oos_page, list);
   1547 	return attach_oos_page(oos_page, spt);
   1548 }
   1549 
   1550 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt)
   1551 {
   1552 	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
   1553 
   1554 	if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
   1555 		return -EINVAL;
   1556 
   1557 	trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id,
   1558 			 spt, spt->guest_page.type);
   1559 
   1560 	list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head);
   1561 	return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn);
   1562 }
   1563 
   1564 /**
   1565  * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
   1566  * @vgpu: a vGPU
   1567  *
   1568  * This function is called before submitting a guest workload to host,
   1569  * to sync all the out-of-synced shadow for vGPU
   1570  *
   1571  * Returns:
   1572  * Zero on success, negative error code if failed.
   1573  */
   1574 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
   1575 {
   1576 	struct list_head *pos, *n;
   1577 	struct intel_vgpu_oos_page *oos_page;
   1578 	int ret;
   1579 
   1580 	if (!enable_out_of_sync)
   1581 		return 0;
   1582 
   1583 	list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
   1584 		oos_page = container_of(pos,
   1585 				struct intel_vgpu_oos_page, vm_list);
   1586 		ret = ppgtt_set_guest_page_sync(oos_page->spt);
   1587 		if (ret)
   1588 			return ret;
   1589 	}
   1590 	return 0;
   1591 }
   1592 
   1593 /*
   1594  * The heart of PPGTT shadow page table.
   1595  */
   1596 static int ppgtt_handle_guest_write_page_table(
   1597 		struct intel_vgpu_ppgtt_spt *spt,
   1598 		struct intel_gvt_gtt_entry *we, unsigned long index)
   1599 {
   1600 	struct intel_vgpu *vgpu = spt->vgpu;
   1601 	int type = spt->shadow_page.type;
   1602 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
   1603 	struct intel_gvt_gtt_entry old_se;
   1604 	int new_present;
   1605 	int i, ret;
   1606 
   1607 	new_present = ops->test_present(we);
   1608 
   1609 	/*
   1610 	 * Adding the new entry first and then removing the old one, that can
   1611 	 * guarantee the ppgtt table is validated during the window between
   1612 	 * adding and removal.
   1613 	 */
   1614 	ppgtt_get_shadow_entry(spt, &old_se, index);
   1615 
   1616 	if (new_present) {
   1617 		ret = ppgtt_handle_guest_entry_add(spt, we, index);
   1618 		if (ret)
   1619 			goto fail;
   1620 	}
   1621 
   1622 	ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index);
   1623 	if (ret)
   1624 		goto fail;
   1625 
   1626 	if (!new_present) {
   1627 		/* For 64KB splited entries, we need clear them all. */
   1628 		if (ops->test_64k_splited(&old_se) &&
   1629 		    !(index % GTT_64K_PTE_STRIDE)) {
   1630 			gvt_vdbg_mm("remove splited 64K shadow entries\n");
   1631 			for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
   1632 				ops->clear_64k_splited(&old_se);
   1633 				ops->set_pfn(&old_se,
   1634 					vgpu->gtt.scratch_pt[type].page_mfn);
   1635 				ppgtt_set_shadow_entry(spt, &old_se, index + i);
   1636 			}
   1637 		} else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY ||
   1638 			   old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
   1639 			ops->clear_pse(&old_se);
   1640 			ops->set_pfn(&old_se,
   1641 				     vgpu->gtt.scratch_pt[type].page_mfn);
   1642 			ppgtt_set_shadow_entry(spt, &old_se, index);
   1643 		} else {
   1644 			ops->set_pfn(&old_se,
   1645 				     vgpu->gtt.scratch_pt[type].page_mfn);
   1646 			ppgtt_set_shadow_entry(spt, &old_se, index);
   1647 		}
   1648 	}
   1649 
   1650 	return 0;
   1651 fail:
   1652 	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
   1653 			spt, we->val64, we->type);
   1654 	return ret;
   1655 }
   1656 
   1657 
   1658 
   1659 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt)
   1660 {
   1661 	return enable_out_of_sync
   1662 		&& gtt_type_is_pte_pt(spt->guest_page.type)
   1663 		&& spt->guest_page.write_cnt >= 2;
   1664 }
   1665 
   1666 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
   1667 		unsigned long index)
   1668 {
   1669 	set_bit(index, spt->post_shadow_bitmap);
   1670 	if (!list_empty(&spt->post_shadow_list))
   1671 		return;
   1672 
   1673 	list_add_tail(&spt->post_shadow_list,
   1674 			&spt->vgpu->gtt.post_shadow_list_head);
   1675 }
   1676 
   1677 /**
   1678  * intel_vgpu_flush_post_shadow - flush the post shadow transactions
   1679  * @vgpu: a vGPU
   1680  *
   1681  * This function is called before submitting a guest workload to host,
   1682  * to flush all the post shadows for a vGPU.
   1683  *
   1684  * Returns:
   1685  * Zero on success, negative error code if failed.
   1686  */
   1687 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
   1688 {
   1689 	struct list_head *pos, *n;
   1690 	struct intel_vgpu_ppgtt_spt *spt;
   1691 	struct intel_gvt_gtt_entry ge;
   1692 	unsigned long index;
   1693 	int ret;
   1694 
   1695 	list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
   1696 		spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
   1697 				post_shadow_list);
   1698 
   1699 		for_each_set_bit(index, spt->post_shadow_bitmap,
   1700 				GTT_ENTRY_NUM_IN_ONE_PAGE) {
   1701 			ppgtt_get_guest_entry(spt, &ge, index);
   1702 
   1703 			ret = ppgtt_handle_guest_write_page_table(spt,
   1704 							&ge, index);
   1705 			if (ret)
   1706 				return ret;
   1707 			clear_bit(index, spt->post_shadow_bitmap);
   1708 		}
   1709 		list_del_init(&spt->post_shadow_list);
   1710 	}
   1711 	return 0;
   1712 }
   1713 
   1714 static int ppgtt_handle_guest_write_page_table_bytes(
   1715 		struct intel_vgpu_ppgtt_spt *spt,
   1716 		u64 pa, void *p_data, int bytes)
   1717 {
   1718 	struct intel_vgpu *vgpu = spt->vgpu;
   1719 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
   1720 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
   1721 	struct intel_gvt_gtt_entry we, se;
   1722 	unsigned long index;
   1723 	int ret;
   1724 
   1725 	index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
   1726 
   1727 	ppgtt_get_guest_entry(spt, &we, index);
   1728 
   1729 	/*
   1730 	 * For page table which has 64K gtt entry, only PTE#0, PTE#16,
   1731 	 * PTE#32, ... PTE#496 are used. Unused PTEs update should be
   1732 	 * ignored.
   1733 	 */
   1734 	if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY &&
   1735 	    (index % GTT_64K_PTE_STRIDE)) {
   1736 		gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n",
   1737 			    index);
   1738 		return 0;
   1739 	}
   1740 
   1741 	if (bytes == info->gtt_entry_size) {
   1742 		ret = ppgtt_handle_guest_write_page_table(spt, &we, index);
   1743 		if (ret)
   1744 			return ret;
   1745 	} else {
   1746 		if (!test_bit(index, spt->post_shadow_bitmap)) {
   1747 			int type = spt->shadow_page.type;
   1748 
   1749 			ppgtt_get_shadow_entry(spt, &se, index);
   1750 			ret = ppgtt_handle_guest_entry_removal(spt, &se, index);
   1751 			if (ret)
   1752 				return ret;
   1753 			ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
   1754 			ppgtt_set_shadow_entry(spt, &se, index);
   1755 		}
   1756 		ppgtt_set_post_shadow(spt, index);
   1757 	}
   1758 
   1759 	if (!enable_out_of_sync)
   1760 		return 0;
   1761 
   1762 	spt->guest_page.write_cnt++;
   1763 
   1764 	if (spt->guest_page.oos_page)
   1765 		ops->set_entry(spt->guest_page.oos_page->mem, &we, index,
   1766 				false, 0, vgpu);
   1767 
   1768 	if (can_do_out_of_sync(spt)) {
   1769 		if (!spt->guest_page.oos_page)
   1770 			ppgtt_allocate_oos_page(spt);
   1771 
   1772 		ret = ppgtt_set_guest_page_oos(spt);
   1773 		if (ret < 0)
   1774 			return ret;
   1775 	}
   1776 	return 0;
   1777 }
   1778 
   1779 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm)
   1780 {
   1781 	struct intel_vgpu *vgpu = mm->vgpu;
   1782 	struct intel_gvt *gvt = vgpu->gvt;
   1783 	struct intel_gvt_gtt *gtt = &gvt->gtt;
   1784 	struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
   1785 	struct intel_gvt_gtt_entry se;
   1786 	int index;
   1787 
   1788 	if (!mm->ppgtt_mm.shadowed)
   1789 		return;
   1790 
   1791 	for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) {
   1792 		ppgtt_get_shadow_root_entry(mm, &se, index);
   1793 
   1794 		if (!ops->test_present(&se))
   1795 			continue;
   1796 
   1797 		ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se);
   1798 		se.val64 = 0;
   1799 		ppgtt_set_shadow_root_entry(mm, &se, index);
   1800 
   1801 		trace_spt_guest_change(vgpu->id, "destroy root pointer",
   1802 				       NULL, se.type, se.val64, index);
   1803 	}
   1804 
   1805 	mm->ppgtt_mm.shadowed = false;
   1806 }
   1807 
   1808 
   1809 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm)
   1810 {
   1811 	struct intel_vgpu *vgpu = mm->vgpu;
   1812 	struct intel_gvt *gvt = vgpu->gvt;
   1813 	struct intel_gvt_gtt *gtt = &gvt->gtt;
   1814 	struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
   1815 	struct intel_vgpu_ppgtt_spt *spt;
   1816 	struct intel_gvt_gtt_entry ge, se;
   1817 	int index, ret;
   1818 
   1819 	if (mm->ppgtt_mm.shadowed)
   1820 		return 0;
   1821 
   1822 	mm->ppgtt_mm.shadowed = true;
   1823 
   1824 	for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) {
   1825 		ppgtt_get_guest_root_entry(mm, &ge, index);
   1826 
   1827 		if (!ops->test_present(&ge))
   1828 			continue;
   1829 
   1830 		trace_spt_guest_change(vgpu->id, __func__, NULL,
   1831 				       ge.type, ge.val64, index);
   1832 
   1833 		spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
   1834 		if (IS_ERR(spt)) {
   1835 			gvt_vgpu_err("fail to populate guest root pointer\n");
   1836 			ret = PTR_ERR(spt);
   1837 			goto fail;
   1838 		}
   1839 		ppgtt_generate_shadow_entry(&se, spt, &ge);
   1840 		ppgtt_set_shadow_root_entry(mm, &se, index);
   1841 
   1842 		trace_spt_guest_change(vgpu->id, "populate root pointer",
   1843 				       NULL, se.type, se.val64, index);
   1844 	}
   1845 
   1846 	return 0;
   1847 fail:
   1848 	invalidate_ppgtt_mm(mm);
   1849 	return ret;
   1850 }
   1851 
   1852 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu)
   1853 {
   1854 	struct intel_vgpu_mm *mm;
   1855 
   1856 	mm = kzalloc(sizeof(*mm), GFP_KERNEL);
   1857 	if (!mm)
   1858 		return NULL;
   1859 
   1860 	mm->vgpu = vgpu;
   1861 	kref_init(&mm->ref);
   1862 	atomic_set(&mm->pincount, 0);
   1863 
   1864 	return mm;
   1865 }
   1866 
   1867 static void vgpu_free_mm(struct intel_vgpu_mm *mm)
   1868 {
   1869 	kfree(mm);
   1870 }
   1871 
   1872 /**
   1873  * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU
   1874  * @vgpu: a vGPU
   1875  * @root_entry_type: ppgtt root entry type
   1876  * @pdps: guest pdps.
   1877  *
   1878  * This function is used to create a ppgtt mm object for a vGPU.
   1879  *
   1880  * Returns:
   1881  * Zero on success, negative error code in pointer if failed.
   1882  */
   1883 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu,
   1884 		enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
   1885 {
   1886 	struct intel_gvt *gvt = vgpu->gvt;
   1887 	struct intel_vgpu_mm *mm;
   1888 	int ret;
   1889 
   1890 	mm = vgpu_alloc_mm(vgpu);
   1891 	if (!mm)
   1892 		return ERR_PTR(-ENOMEM);
   1893 
   1894 	mm->type = INTEL_GVT_MM_PPGTT;
   1895 
   1896 	GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY &&
   1897 		   root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY);
   1898 	mm->ppgtt_mm.root_entry_type = root_entry_type;
   1899 
   1900 	INIT_LIST_HEAD(&mm->ppgtt_mm.list);
   1901 	INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list);
   1902 
   1903 	if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
   1904 		mm->ppgtt_mm.guest_pdps[0] = pdps[0];
   1905 	else
   1906 		memcpy(mm->ppgtt_mm.guest_pdps, pdps,
   1907 		       sizeof(mm->ppgtt_mm.guest_pdps));
   1908 
   1909 	ret = shadow_ppgtt_mm(mm);
   1910 	if (ret) {
   1911 		gvt_vgpu_err("failed to shadow ppgtt mm\n");
   1912 		vgpu_free_mm(mm);
   1913 		return ERR_PTR(ret);
   1914 	}
   1915 
   1916 	list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head);
   1917 
   1918 	mutex_lock(&gvt->gtt.ppgtt_mm_lock);
   1919 	list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head);
   1920 	mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
   1921 
   1922 	return mm;
   1923 }
   1924 
   1925 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu)
   1926 {
   1927 	struct intel_vgpu_mm *mm;
   1928 	unsigned long nr_entries;
   1929 
   1930 	mm = vgpu_alloc_mm(vgpu);
   1931 	if (!mm)
   1932 		return ERR_PTR(-ENOMEM);
   1933 
   1934 	mm->type = INTEL_GVT_MM_GGTT;
   1935 
   1936 	nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT;
   1937 	mm->ggtt_mm.virtual_ggtt =
   1938 		vzalloc(array_size(nr_entries,
   1939 				   vgpu->gvt->device_info.gtt_entry_size));
   1940 	if (!mm->ggtt_mm.virtual_ggtt) {
   1941 		vgpu_free_mm(mm);
   1942 		return ERR_PTR(-ENOMEM);
   1943 	}
   1944 
   1945 	return mm;
   1946 }
   1947 
   1948 /**
   1949  * _intel_vgpu_mm_release - destroy a mm object
   1950  * @mm_ref: a kref object
   1951  *
   1952  * This function is used to destroy a mm object for vGPU
   1953  *
   1954  */
   1955 void _intel_vgpu_mm_release(struct kref *mm_ref)
   1956 {
   1957 	struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
   1958 
   1959 	if (GEM_WARN_ON(atomic_read(&mm->pincount)))
   1960 		gvt_err("vgpu mm pin count bug detected\n");
   1961 
   1962 	if (mm->type == INTEL_GVT_MM_PPGTT) {
   1963 		list_del(&mm->ppgtt_mm.list);
   1964 
   1965 		mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
   1966 		list_del(&mm->ppgtt_mm.lru_list);
   1967 		mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
   1968 
   1969 		invalidate_ppgtt_mm(mm);
   1970 	} else {
   1971 		vfree(mm->ggtt_mm.virtual_ggtt);
   1972 	}
   1973 
   1974 	vgpu_free_mm(mm);
   1975 }
   1976 
   1977 /**
   1978  * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
   1979  * @mm: a vGPU mm object
   1980  *
   1981  * This function is called when user doesn't want to use a vGPU mm object
   1982  */
   1983 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
   1984 {
   1985 	atomic_dec_if_positive(&mm->pincount);
   1986 }
   1987 
   1988 /**
   1989  * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
   1990  * @mm: target vgpu mm
   1991  *
   1992  * This function is called when user wants to use a vGPU mm object. If this
   1993  * mm object hasn't been shadowed yet, the shadow will be populated at this
   1994  * time.
   1995  *
   1996  * Returns:
   1997  * Zero on success, negative error code if failed.
   1998  */
   1999 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
   2000 {
   2001 	int ret;
   2002 
   2003 	atomic_inc(&mm->pincount);
   2004 
   2005 	if (mm->type == INTEL_GVT_MM_PPGTT) {
   2006 		ret = shadow_ppgtt_mm(mm);
   2007 		if (ret)
   2008 			return ret;
   2009 
   2010 		mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
   2011 		list_move_tail(&mm->ppgtt_mm.lru_list,
   2012 			       &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head);
   2013 		mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
   2014 	}
   2015 
   2016 	return 0;
   2017 }
   2018 
   2019 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt)
   2020 {
   2021 	struct intel_vgpu_mm *mm;
   2022 	struct list_head *pos, *n;
   2023 
   2024 	mutex_lock(&gvt->gtt.ppgtt_mm_lock);
   2025 
   2026 	list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) {
   2027 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list);
   2028 
   2029 		if (atomic_read(&mm->pincount))
   2030 			continue;
   2031 
   2032 		list_del_init(&mm->ppgtt_mm.lru_list);
   2033 		mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
   2034 		invalidate_ppgtt_mm(mm);
   2035 		return 1;
   2036 	}
   2037 	mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
   2038 	return 0;
   2039 }
   2040 
   2041 /*
   2042  * GMA translation APIs.
   2043  */
   2044 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
   2045 		struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
   2046 {
   2047 	struct intel_vgpu *vgpu = mm->vgpu;
   2048 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
   2049 	struct intel_vgpu_ppgtt_spt *s;
   2050 
   2051 	s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
   2052 	if (!s)
   2053 		return -ENXIO;
   2054 
   2055 	if (!guest)
   2056 		ppgtt_get_shadow_entry(s, e, index);
   2057 	else
   2058 		ppgtt_get_guest_entry(s, e, index);
   2059 	return 0;
   2060 }
   2061 
   2062 /**
   2063  * intel_vgpu_gma_to_gpa - translate a gma to GPA
   2064  * @mm: mm object. could be a PPGTT or GGTT mm object
   2065  * @gma: graphics memory address in this mm object
   2066  *
   2067  * This function is used to translate a graphics memory address in specific
   2068  * graphics memory space to guest physical address.
   2069  *
   2070  * Returns:
   2071  * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
   2072  */
   2073 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
   2074 {
   2075 	struct intel_vgpu *vgpu = mm->vgpu;
   2076 	struct intel_gvt *gvt = vgpu->gvt;
   2077 	struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
   2078 	struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
   2079 	unsigned long gpa = INTEL_GVT_INVALID_ADDR;
   2080 	unsigned long gma_index[4];
   2081 	struct intel_gvt_gtt_entry e;
   2082 	int i, levels = 0;
   2083 	int ret;
   2084 
   2085 	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT &&
   2086 		   mm->type != INTEL_GVT_MM_PPGTT);
   2087 
   2088 	if (mm->type == INTEL_GVT_MM_GGTT) {
   2089 		if (!vgpu_gmadr_is_valid(vgpu, gma))
   2090 			goto err;
   2091 
   2092 		ggtt_get_guest_entry(mm, &e,
   2093 			gma_ops->gma_to_ggtt_pte_index(gma));
   2094 
   2095 		gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
   2096 			+ (gma & ~I915_GTT_PAGE_MASK);
   2097 
   2098 		trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
   2099 	} else {
   2100 		switch (mm->ppgtt_mm.root_entry_type) {
   2101 		case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
   2102 			ppgtt_get_shadow_root_entry(mm, &e, 0);
   2103 
   2104 			gma_index[0] = gma_ops->gma_to_pml4_index(gma);
   2105 			gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
   2106 			gma_index[2] = gma_ops->gma_to_pde_index(gma);
   2107 			gma_index[3] = gma_ops->gma_to_pte_index(gma);
   2108 			levels = 4;
   2109 			break;
   2110 		case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
   2111 			ppgtt_get_shadow_root_entry(mm, &e,
   2112 					gma_ops->gma_to_l3_pdp_index(gma));
   2113 
   2114 			gma_index[0] = gma_ops->gma_to_pde_index(gma);
   2115 			gma_index[1] = gma_ops->gma_to_pte_index(gma);
   2116 			levels = 2;
   2117 			break;
   2118 		default:
   2119 			GEM_BUG_ON(1);
   2120 		}
   2121 
   2122 		/* walk the shadow page table and get gpa from guest entry */
   2123 		for (i = 0; i < levels; i++) {
   2124 			ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
   2125 				(i == levels - 1));
   2126 			if (ret)
   2127 				goto err;
   2128 
   2129 			if (!pte_ops->test_present(&e)) {
   2130 				gvt_dbg_core("GMA 0x%lx is not present\n", gma);
   2131 				goto err;
   2132 			}
   2133 		}
   2134 
   2135 		gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) +
   2136 					(gma & ~I915_GTT_PAGE_MASK);
   2137 		trace_gma_translate(vgpu->id, "ppgtt", 0,
   2138 				    mm->ppgtt_mm.root_entry_type, gma, gpa);
   2139 	}
   2140 
   2141 	return gpa;
   2142 err:
   2143 	gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
   2144 	return INTEL_GVT_INVALID_ADDR;
   2145 }
   2146 
   2147 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu,
   2148 	unsigned int off, void *p_data, unsigned int bytes)
   2149 {
   2150 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
   2151 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
   2152 	unsigned long index = off >> info->gtt_entry_size_shift;
   2153 	unsigned long gma;
   2154 	struct intel_gvt_gtt_entry e;
   2155 
   2156 	if (bytes != 4 && bytes != 8)
   2157 		return -EINVAL;
   2158 
   2159 	gma = index << I915_GTT_PAGE_SHIFT;
   2160 	if (!intel_gvt_ggtt_validate_range(vgpu,
   2161 					   gma, 1 << I915_GTT_PAGE_SHIFT)) {
   2162 		gvt_dbg_mm("read invalid ggtt at 0x%lx\n", gma);
   2163 		memset(p_data, 0, bytes);
   2164 		return 0;
   2165 	}
   2166 
   2167 	ggtt_get_guest_entry(ggtt_mm, &e, index);
   2168 	memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
   2169 			bytes);
   2170 	return 0;
   2171 }
   2172 
   2173 /**
   2174  * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
   2175  * @vgpu: a vGPU
   2176  * @off: register offset
   2177  * @p_data: data will be returned to guest
   2178  * @bytes: data length
   2179  *
   2180  * This function is used to emulate the GTT MMIO register read
   2181  *
   2182  * Returns:
   2183  * Zero on success, error code if failed.
   2184  */
   2185 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
   2186 	void *p_data, unsigned int bytes)
   2187 {
   2188 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
   2189 	int ret;
   2190 
   2191 	if (bytes != 4 && bytes != 8)
   2192 		return -EINVAL;
   2193 
   2194 	off -= info->gtt_start_offset;
   2195 	ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes);
   2196 	return ret;
   2197 }
   2198 
   2199 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu,
   2200 		struct intel_gvt_gtt_entry *entry)
   2201 {
   2202 	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
   2203 	unsigned long pfn;
   2204 
   2205 	pfn = pte_ops->get_pfn(entry);
   2206 	if (pfn != vgpu->gvt->gtt.scratch_mfn)
   2207 		intel_gvt_hypervisor_dma_unmap_guest_page(vgpu,
   2208 						pfn << PAGE_SHIFT);
   2209 }
   2210 
   2211 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
   2212 	void *p_data, unsigned int bytes)
   2213 {
   2214 	struct intel_gvt *gvt = vgpu->gvt;
   2215 	const struct intel_gvt_device_info *info = &gvt->device_info;
   2216 	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
   2217 	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
   2218 	unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
   2219 	unsigned long gma, gfn;
   2220 	struct intel_gvt_gtt_entry e = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
   2221 	struct intel_gvt_gtt_entry m = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
   2222 	dma_addr_t dma_addr;
   2223 	int ret;
   2224 	struct intel_gvt_partial_pte *partial_pte, *pos, *n;
   2225 	bool partial_update = false;
   2226 
   2227 	if (bytes != 4 && bytes != 8)
   2228 		return -EINVAL;
   2229 
   2230 	gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
   2231 
   2232 	/* the VM may configure the whole GM space when ballooning is used */
   2233 	if (!vgpu_gmadr_is_valid(vgpu, gma))
   2234 		return 0;
   2235 
   2236 	e.type = GTT_TYPE_GGTT_PTE;
   2237 	memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
   2238 			bytes);
   2239 
   2240 	/* If ggtt entry size is 8 bytes, and it's split into two 4 bytes
   2241 	 * write, save the first 4 bytes in a list and update virtual
   2242 	 * PTE. Only update shadow PTE when the second 4 bytes comes.
   2243 	 */
   2244 	if (bytes < info->gtt_entry_size) {
   2245 		bool found = false;
   2246 
   2247 		list_for_each_entry_safe(pos, n,
   2248 				&ggtt_mm->ggtt_mm.partial_pte_list, list) {
   2249 			if (g_gtt_index == pos->offset >>
   2250 					info->gtt_entry_size_shift) {
   2251 				if (off != pos->offset) {
   2252 					/* the second partial part*/
   2253 					int last_off = pos->offset &
   2254 						(info->gtt_entry_size - 1);
   2255 
   2256 					memcpy((void *)&e.val64 + last_off,
   2257 						(void *)&pos->data + last_off,
   2258 						bytes);
   2259 
   2260 					list_del(&pos->list);
   2261 					kfree(pos);
   2262 					found = true;
   2263 					break;
   2264 				}
   2265 
   2266 				/* update of the first partial part */
   2267 				pos->data = e.val64;
   2268 				ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
   2269 				return 0;
   2270 			}
   2271 		}
   2272 
   2273 		if (!found) {
   2274 			/* the first partial part */
   2275 			partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL);
   2276 			if (!partial_pte)
   2277 				return -ENOMEM;
   2278 			partial_pte->offset = off;
   2279 			partial_pte->data = e.val64;
   2280 			list_add_tail(&partial_pte->list,
   2281 				&ggtt_mm->ggtt_mm.partial_pte_list);
   2282 			partial_update = true;
   2283 		}
   2284 	}
   2285 
   2286 	if (!partial_update && (ops->test_present(&e))) {
   2287 		gfn = ops->get_pfn(&e);
   2288 		m.val64 = e.val64;
   2289 		m.type = e.type;
   2290 
   2291 		/* one PTE update may be issued in multiple writes and the
   2292 		 * first write may not construct a valid gfn
   2293 		 */
   2294 		if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
   2295 			ops->set_pfn(&m, gvt->gtt.scratch_mfn);
   2296 			goto out;
   2297 		}
   2298 
   2299 		ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn,
   2300 							PAGE_SIZE, &dma_addr);
   2301 		if (ret) {
   2302 			gvt_vgpu_err("fail to populate guest ggtt entry\n");
   2303 			/* guest driver may read/write the entry when partial
   2304 			 * update the entry in this situation p2m will fail
   2305 			 * settting the shadow entry to point to a scratch page
   2306 			 */
   2307 			ops->set_pfn(&m, gvt->gtt.scratch_mfn);
   2308 		} else
   2309 			ops->set_pfn(&m, dma_addr >> PAGE_SHIFT);
   2310 	} else {
   2311 		ops->set_pfn(&m, gvt->gtt.scratch_mfn);
   2312 		ops->clear_present(&m);
   2313 	}
   2314 
   2315 out:
   2316 	ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
   2317 
   2318 	ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index);
   2319 	ggtt_invalidate_pte(vgpu, &e);
   2320 
   2321 	ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index);
   2322 	ggtt_invalidate(gvt->dev_priv);
   2323 	return 0;
   2324 }
   2325 
   2326 /*
   2327  * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write
   2328  * @vgpu: a vGPU
   2329  * @off: register offset
   2330  * @p_data: data from guest write
   2331  * @bytes: data length
   2332  *
   2333  * This function is used to emulate the GTT MMIO register write
   2334  *
   2335  * Returns:
   2336  * Zero on success, error code if failed.
   2337  */
   2338 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu,
   2339 		unsigned int off, void *p_data, unsigned int bytes)
   2340 {
   2341 	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
   2342 	int ret;
   2343 
   2344 	if (bytes != 4 && bytes != 8)
   2345 		return -EINVAL;
   2346 
   2347 	off -= info->gtt_start_offset;
   2348 	ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes);
   2349 	return ret;
   2350 }
   2351 
   2352 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
   2353 		enum intel_gvt_gtt_type type)
   2354 {
   2355 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
   2356 	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
   2357 	int page_entry_num = I915_GTT_PAGE_SIZE >>
   2358 				vgpu->gvt->device_info.gtt_entry_size_shift;
   2359 	void *scratch_pt;
   2360 	int i;
   2361 	struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
   2362 	dma_addr_t daddr;
   2363 
   2364 	if (WARN_ON(type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
   2365 		return -EINVAL;
   2366 
   2367 	scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
   2368 	if (!scratch_pt) {
   2369 		gvt_vgpu_err("fail to allocate scratch page\n");
   2370 		return -ENOMEM;
   2371 	}
   2372 
   2373 	daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
   2374 			4096, PCI_DMA_BIDIRECTIONAL);
   2375 	if (dma_mapping_error(dev, daddr)) {
   2376 		gvt_vgpu_err("fail to dmamap scratch_pt\n");
   2377 		__free_page(virt_to_page(scratch_pt));
   2378 		return -ENOMEM;
   2379 	}
   2380 	gtt->scratch_pt[type].page_mfn =
   2381 		(unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
   2382 	gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
   2383 	gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
   2384 			vgpu->id, type, gtt->scratch_pt[type].page_mfn);
   2385 
   2386 	/* Build the tree by full filled the scratch pt with the entries which
   2387 	 * point to the next level scratch pt or scratch page. The
   2388 	 * scratch_pt[type] indicate the scratch pt/scratch page used by the
   2389 	 * 'type' pt.
   2390 	 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
   2391 	 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
   2392 	 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
   2393 	 */
   2394 	if (type > GTT_TYPE_PPGTT_PTE_PT) {
   2395 		struct intel_gvt_gtt_entry se;
   2396 
   2397 		memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
   2398 		se.type = get_entry_type(type - 1);
   2399 		ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
   2400 
   2401 		/* The entry parameters like present/writeable/cache type
   2402 		 * set to the same as i915's scratch page tree.
   2403 		 */
   2404 		se.val64 |= _PAGE_PRESENT | _PAGE_RW;
   2405 		if (type == GTT_TYPE_PPGTT_PDE_PT)
   2406 			se.val64 |= PPAT_CACHED;
   2407 
   2408 		for (i = 0; i < page_entry_num; i++)
   2409 			ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
   2410 	}
   2411 
   2412 	return 0;
   2413 }
   2414 
   2415 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
   2416 {
   2417 	int i;
   2418 	struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
   2419 	dma_addr_t daddr;
   2420 
   2421 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
   2422 		if (vgpu->gtt.scratch_pt[i].page != NULL) {
   2423 			daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
   2424 					I915_GTT_PAGE_SHIFT);
   2425 			dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
   2426 			__free_page(vgpu->gtt.scratch_pt[i].page);
   2427 			vgpu->gtt.scratch_pt[i].page = NULL;
   2428 			vgpu->gtt.scratch_pt[i].page_mfn = 0;
   2429 		}
   2430 	}
   2431 
   2432 	return 0;
   2433 }
   2434 
   2435 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
   2436 {
   2437 	int i, ret;
   2438 
   2439 	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
   2440 		ret = alloc_scratch_pages(vgpu, i);
   2441 		if (ret)
   2442 			goto err;
   2443 	}
   2444 
   2445 	return 0;
   2446 
   2447 err:
   2448 	release_scratch_page_tree(vgpu);
   2449 	return ret;
   2450 }
   2451 
   2452 /**
   2453  * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
   2454  * @vgpu: a vGPU
   2455  *
   2456  * This function is used to initialize per-vGPU graphics memory virtualization
   2457  * components.
   2458  *
   2459  * Returns:
   2460  * Zero on success, error code if failed.
   2461  */
   2462 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
   2463 {
   2464 	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
   2465 
   2466 	INIT_RADIX_TREE(&gtt->spt_tree, GFP_KERNEL);
   2467 
   2468 	INIT_LIST_HEAD(&gtt->ppgtt_mm_list_head);
   2469 	INIT_LIST_HEAD(&gtt->oos_page_list_head);
   2470 	INIT_LIST_HEAD(&gtt->post_shadow_list_head);
   2471 
   2472 	gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu);
   2473 	if (IS_ERR(gtt->ggtt_mm)) {
   2474 		gvt_vgpu_err("fail to create mm for ggtt.\n");
   2475 		return PTR_ERR(gtt->ggtt_mm);
   2476 	}
   2477 
   2478 	intel_vgpu_reset_ggtt(vgpu, false);
   2479 
   2480 	INIT_LIST_HEAD(&gtt->ggtt_mm->ggtt_mm.partial_pte_list);
   2481 
   2482 	return create_scratch_page_tree(vgpu);
   2483 }
   2484 
   2485 static void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu)
   2486 {
   2487 	struct list_head *pos, *n;
   2488 	struct intel_vgpu_mm *mm;
   2489 
   2490 	list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
   2491 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
   2492 		intel_vgpu_destroy_mm(mm);
   2493 	}
   2494 
   2495 	if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head)))
   2496 		gvt_err("vgpu ppgtt mm is not fully destroyed\n");
   2497 
   2498 	if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) {
   2499 		gvt_err("Why we still has spt not freed?\n");
   2500 		ppgtt_free_all_spt(vgpu);
   2501 	}
   2502 }
   2503 
   2504 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu)
   2505 {
   2506 	struct intel_gvt_partial_pte *pos, *next;
   2507 
   2508 	list_for_each_entry_safe(pos, next,
   2509 				 &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list,
   2510 				 list) {
   2511 		gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n",
   2512 			pos->offset, pos->data);
   2513 		kfree(pos);
   2514 	}
   2515 	intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm);
   2516 	vgpu->gtt.ggtt_mm = NULL;
   2517 }
   2518 
   2519 /**
   2520  * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
   2521  * @vgpu: a vGPU
   2522  *
   2523  * This function is used to clean up per-vGPU graphics memory virtualization
   2524  * components.
   2525  *
   2526  * Returns:
   2527  * Zero on success, error code if failed.
   2528  */
   2529 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
   2530 {
   2531 	intel_vgpu_destroy_all_ppgtt_mm(vgpu);
   2532 	intel_vgpu_destroy_ggtt_mm(vgpu);
   2533 	release_scratch_page_tree(vgpu);
   2534 }
   2535 
   2536 static void clean_spt_oos(struct intel_gvt *gvt)
   2537 {
   2538 	struct intel_gvt_gtt *gtt = &gvt->gtt;
   2539 	struct list_head *pos, *n;
   2540 	struct intel_vgpu_oos_page *oos_page;
   2541 
   2542 	WARN(!list_empty(&gtt->oos_page_use_list_head),
   2543 		"someone is still using oos page\n");
   2544 
   2545 	list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
   2546 		oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
   2547 		list_del(&oos_page->list);
   2548 		free_page((unsigned long)oos_page->mem);
   2549 		kfree(oos_page);
   2550 	}
   2551 }
   2552 
   2553 static int setup_spt_oos(struct intel_gvt *gvt)
   2554 {
   2555 	struct intel_gvt_gtt *gtt = &gvt->gtt;
   2556 	struct intel_vgpu_oos_page *oos_page;
   2557 	int i;
   2558 	int ret;
   2559 
   2560 	INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
   2561 	INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
   2562 
   2563 	for (i = 0; i < preallocated_oos_pages; i++) {
   2564 		oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
   2565 		if (!oos_page) {
   2566 			ret = -ENOMEM;
   2567 			goto fail;
   2568 		}
   2569 		oos_page->mem = (void *)__get_free_pages(GFP_KERNEL, 0);
   2570 		if (!oos_page->mem) {
   2571 			ret = -ENOMEM;
   2572 			kfree(oos_page);
   2573 			goto fail;
   2574 		}
   2575 
   2576 		INIT_LIST_HEAD(&oos_page->list);
   2577 		INIT_LIST_HEAD(&oos_page->vm_list);
   2578 		oos_page->id = i;
   2579 		list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
   2580 	}
   2581 
   2582 	gvt_dbg_mm("%d oos pages preallocated\n", i);
   2583 
   2584 	return 0;
   2585 fail:
   2586 	clean_spt_oos(gvt);
   2587 	return ret;
   2588 }
   2589 
   2590 /**
   2591  * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
   2592  * @vgpu: a vGPU
   2593  * @pdps: pdp root array
   2594  *
   2595  * This function is used to find a PPGTT mm object from mm object pool
   2596  *
   2597  * Returns:
   2598  * pointer to mm object on success, NULL if failed.
   2599  */
   2600 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
   2601 		u64 pdps[])
   2602 {
   2603 	struct intel_vgpu_mm *mm;
   2604 	struct list_head *pos;
   2605 
   2606 	list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) {
   2607 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
   2608 
   2609 		switch (mm->ppgtt_mm.root_entry_type) {
   2610 		case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
   2611 			if (pdps[0] == mm->ppgtt_mm.guest_pdps[0])
   2612 				return mm;
   2613 			break;
   2614 		case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
   2615 			if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps,
   2616 				    sizeof(mm->ppgtt_mm.guest_pdps)))
   2617 				return mm;
   2618 			break;
   2619 		default:
   2620 			GEM_BUG_ON(1);
   2621 		}
   2622 	}
   2623 	return NULL;
   2624 }
   2625 
   2626 /**
   2627  * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object.
   2628  * @vgpu: a vGPU
   2629  * @root_entry_type: ppgtt root entry type
   2630  * @pdps: guest pdps
   2631  *
   2632  * This function is used to find or create a PPGTT mm object from a guest.
   2633  *
   2634  * Returns:
   2635  * Zero on success, negative error code if failed.
   2636  */
   2637 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu,
   2638 		enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
   2639 {
   2640 	struct intel_vgpu_mm *mm;
   2641 
   2642 	mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
   2643 	if (mm) {
   2644 		intel_vgpu_mm_get(mm);
   2645 	} else {
   2646 		mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps);
   2647 		if (IS_ERR(mm))
   2648 			gvt_vgpu_err("fail to create mm\n");
   2649 	}
   2650 	return mm;
   2651 }
   2652 
   2653 /**
   2654  * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object.
   2655  * @vgpu: a vGPU
   2656  * @pdps: guest pdps
   2657  *
   2658  * This function is used to find a PPGTT mm object from a guest and destroy it.
   2659  *
   2660  * Returns:
   2661  * Zero on success, negative error code if failed.
   2662  */
   2663 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[])
   2664 {
   2665 	struct intel_vgpu_mm *mm;
   2666 
   2667 	mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
   2668 	if (!mm) {
   2669 		gvt_vgpu_err("fail to find ppgtt instance.\n");
   2670 		return -EINVAL;
   2671 	}
   2672 	intel_vgpu_mm_put(mm);
   2673 	return 0;
   2674 }
   2675 
   2676 /**
   2677  * intel_gvt_init_gtt - initialize mm components of a GVT device
   2678  * @gvt: GVT device
   2679  *
   2680  * This function is called at the initialization stage, to initialize
   2681  * the mm components of a GVT device.
   2682  *
   2683  * Returns:
   2684  * zero on success, negative error code if failed.
   2685  */
   2686 int intel_gvt_init_gtt(struct intel_gvt *gvt)
   2687 {
   2688 	int ret;
   2689 	void *page;
   2690 	struct device *dev = &gvt->dev_priv->drm.pdev->dev;
   2691 	dma_addr_t daddr;
   2692 
   2693 	gvt_dbg_core("init gtt\n");
   2694 
   2695 	gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
   2696 	gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
   2697 
   2698 	page = (void *)get_zeroed_page(GFP_KERNEL);
   2699 	if (!page) {
   2700 		gvt_err("fail to allocate scratch ggtt page\n");
   2701 		return -ENOMEM;
   2702 	}
   2703 
   2704 	daddr = dma_map_page(dev, virt_to_page(page), 0,
   2705 			4096, PCI_DMA_BIDIRECTIONAL);
   2706 	if (dma_mapping_error(dev, daddr)) {
   2707 		gvt_err("fail to dmamap scratch ggtt page\n");
   2708 		__free_page(virt_to_page(page));
   2709 		return -ENOMEM;
   2710 	}
   2711 
   2712 	gvt->gtt.scratch_page = virt_to_page(page);
   2713 	gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
   2714 
   2715 	if (enable_out_of_sync) {
   2716 		ret = setup_spt_oos(gvt);
   2717 		if (ret) {
   2718 			gvt_err("fail to initialize SPT oos\n");
   2719 			dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
   2720 			__free_page(gvt->gtt.scratch_page);
   2721 			return ret;
   2722 		}
   2723 	}
   2724 	INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head);
   2725 	mutex_init(&gvt->gtt.ppgtt_mm_lock);
   2726 	return 0;
   2727 }
   2728 
   2729 /**
   2730  * intel_gvt_clean_gtt - clean up mm components of a GVT device
   2731  * @gvt: GVT device
   2732  *
   2733  * This function is called at the driver unloading stage, to clean up the
   2734  * the mm components of a GVT device.
   2735  *
   2736  */
   2737 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
   2738 {
   2739 	struct device *dev = &gvt->dev_priv->drm.pdev->dev;
   2740 	dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
   2741 					I915_GTT_PAGE_SHIFT);
   2742 
   2743 	dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
   2744 
   2745 	__free_page(gvt->gtt.scratch_page);
   2746 
   2747 	if (enable_out_of_sync)
   2748 		clean_spt_oos(gvt);
   2749 }
   2750 
   2751 /**
   2752  * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances
   2753  * @vgpu: a vGPU
   2754  *
   2755  * This function is called when invalidate all PPGTT instances of a vGPU.
   2756  *
   2757  */
   2758 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu)
   2759 {
   2760 	struct list_head *pos, *n;
   2761 	struct intel_vgpu_mm *mm;
   2762 
   2763 	list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
   2764 		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
   2765 		if (mm->type == INTEL_GVT_MM_PPGTT) {
   2766 			mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock);
   2767 			list_del_init(&mm->ppgtt_mm.lru_list);
   2768 			mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock);
   2769 			if (mm->ppgtt_mm.shadowed)
   2770 				invalidate_ppgtt_mm(mm);
   2771 		}
   2772 	}
   2773 }
   2774 
   2775 /**
   2776  * intel_vgpu_reset_ggtt - reset the GGTT entry
   2777  * @vgpu: a vGPU
   2778  * @invalidate_old: invalidate old entries
   2779  *
   2780  * This function is called at the vGPU create stage
   2781  * to reset all the GGTT entries.
   2782  *
   2783  */
   2784 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old)
   2785 {
   2786 	struct intel_gvt *gvt = vgpu->gvt;
   2787 	struct drm_i915_private *dev_priv = gvt->dev_priv;
   2788 	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
   2789 	struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE};
   2790 	struct intel_gvt_gtt_entry old_entry;
   2791 	u32 index;
   2792 	u32 num_entries;
   2793 
   2794 	pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn);
   2795 	pte_ops->set_present(&entry);
   2796 
   2797 	index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
   2798 	num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
   2799 	while (num_entries--) {
   2800 		if (invalidate_old) {
   2801 			ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
   2802 			ggtt_invalidate_pte(vgpu, &old_entry);
   2803 		}
   2804 		ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
   2805 	}
   2806 
   2807 	index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
   2808 	num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
   2809 	while (num_entries--) {
   2810 		if (invalidate_old) {
   2811 			ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
   2812 			ggtt_invalidate_pte(vgpu, &old_entry);
   2813 		}
   2814 		ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
   2815 	}
   2816 
   2817 	ggtt_invalidate(dev_priv);
   2818 }
   2819 
   2820 /**
   2821  * intel_vgpu_reset_gtt - reset the all GTT related status
   2822  * @vgpu: a vGPU
   2823  *
   2824  * This function is called from vfio core to reset reset all
   2825  * GTT related status, including GGTT, PPGTT, scratch page.
   2826  *
   2827  */
   2828 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu)
   2829 {
   2830 	/* Shadow pages are only created when there is no page
   2831 	 * table tracking data, so remove page tracking data after
   2832 	 * removing the shadow pages.
   2833 	 */
   2834 	intel_vgpu_destroy_all_ppgtt_mm(vgpu);
   2835 	intel_vgpu_reset_ggtt(vgpu, true);
   2836 }
   2837