1 /* $NetBSD: gtt.c,v 1.2 2021/12/18 23:45:31 riastradh Exp $ */ 2 3 /* 4 * GTT virtualization 5 * 6 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a 9 * copy of this software and associated documentation files (the "Software"), 10 * to deal in the Software without restriction, including without limitation 11 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 12 * and/or sell copies of the Software, and to permit persons to whom the 13 * Software is furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice (including the next 16 * paragraph) shall be included in all copies or substantial portions of the 17 * Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 24 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 25 * SOFTWARE. 26 * 27 * Authors: 28 * Zhi Wang <zhi.a.wang (at) intel.com> 29 * Zhenyu Wang <zhenyuw (at) linux.intel.com> 30 * Xiao Zheng <xiao.zheng (at) intel.com> 31 * 32 * Contributors: 33 * Min He <min.he (at) intel.com> 34 * Bing Niu <bing.niu (at) intel.com> 35 * 36 */ 37 38 #include <sys/cdefs.h> 39 __KERNEL_RCSID(0, "$NetBSD: gtt.c,v 1.2 2021/12/18 23:45:31 riastradh Exp $"); 40 41 #include "i915_drv.h" 42 #include "gvt.h" 43 #include "i915_pvinfo.h" 44 #include "trace.h" 45 46 #if defined(VERBOSE_DEBUG) 47 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args) 48 #else 49 #define gvt_vdbg_mm(fmt, args...) 50 #endif 51 52 static bool enable_out_of_sync = false; 53 static int preallocated_oos_pages = 8192; 54 55 /* 56 * validate a gm address and related range size, 57 * translate it to host gm address 58 */ 59 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size) 60 { 61 if (size == 0) 62 return vgpu_gmadr_is_valid(vgpu, addr); 63 64 if (vgpu_gmadr_is_aperture(vgpu, addr) && 65 vgpu_gmadr_is_aperture(vgpu, addr + size - 1)) 66 return true; 67 else if (vgpu_gmadr_is_hidden(vgpu, addr) && 68 vgpu_gmadr_is_hidden(vgpu, addr + size - 1)) 69 return true; 70 71 gvt_dbg_mm("Invalid ggtt range at 0x%llx, size: 0x%x\n", 72 addr, size); 73 return false; 74 } 75 76 /* translate a guest gmadr to host gmadr */ 77 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr) 78 { 79 if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr), 80 "invalid guest gmadr %llx\n", g_addr)) 81 return -EACCES; 82 83 if (vgpu_gmadr_is_aperture(vgpu, g_addr)) 84 *h_addr = vgpu_aperture_gmadr_base(vgpu) 85 + (g_addr - vgpu_aperture_offset(vgpu)); 86 else 87 *h_addr = vgpu_hidden_gmadr_base(vgpu) 88 + (g_addr - vgpu_hidden_offset(vgpu)); 89 return 0; 90 } 91 92 /* translate a host gmadr to guest gmadr */ 93 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr) 94 { 95 if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr), 96 "invalid host gmadr %llx\n", h_addr)) 97 return -EACCES; 98 99 if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr)) 100 *g_addr = vgpu_aperture_gmadr_base(vgpu) 101 + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt)); 102 else 103 *g_addr = vgpu_hidden_gmadr_base(vgpu) 104 + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt)); 105 return 0; 106 } 107 108 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index, 109 unsigned long *h_index) 110 { 111 u64 h_addr; 112 int ret; 113 114 ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT, 115 &h_addr); 116 if (ret) 117 return ret; 118 119 *h_index = h_addr >> I915_GTT_PAGE_SHIFT; 120 return 0; 121 } 122 123 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index, 124 unsigned long *g_index) 125 { 126 u64 g_addr; 127 int ret; 128 129 ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT, 130 &g_addr); 131 if (ret) 132 return ret; 133 134 *g_index = g_addr >> I915_GTT_PAGE_SHIFT; 135 return 0; 136 } 137 138 #define gtt_type_is_entry(type) \ 139 (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \ 140 && type != GTT_TYPE_PPGTT_PTE_ENTRY \ 141 && type != GTT_TYPE_PPGTT_ROOT_ENTRY) 142 143 #define gtt_type_is_pt(type) \ 144 (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX) 145 146 #define gtt_type_is_pte_pt(type) \ 147 (type == GTT_TYPE_PPGTT_PTE_PT) 148 149 #define gtt_type_is_root_pointer(type) \ 150 (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY) 151 152 #define gtt_init_entry(e, t, p, v) do { \ 153 (e)->type = t; \ 154 (e)->pdev = p; \ 155 memcpy(&(e)->val64, &v, sizeof(v)); \ 156 } while (0) 157 158 /* 159 * Mappings between GTT_TYPE* enumerations. 160 * Following information can be found according to the given type: 161 * - type of next level page table 162 * - type of entry inside this level page table 163 * - type of entry with PSE set 164 * 165 * If the given type doesn't have such a kind of information, 166 * e.g. give a l4 root entry type, then request to get its PSE type, 167 * give a PTE page table type, then request to get its next level page 168 * table type, as we know l4 root entry doesn't have a PSE bit, 169 * and a PTE page table doesn't have a next level page table type, 170 * GTT_TYPE_INVALID will be returned. This is useful when traversing a 171 * page table. 172 */ 173 174 struct gtt_type_table_entry { 175 int entry_type; 176 int pt_type; 177 int next_pt_type; 178 int pse_entry_type; 179 }; 180 181 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \ 182 [type] = { \ 183 .entry_type = e_type, \ 184 .pt_type = cpt_type, \ 185 .next_pt_type = npt_type, \ 186 .pse_entry_type = pse_type, \ 187 } 188 189 static struct gtt_type_table_entry gtt_type_table[] = { 190 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY, 191 GTT_TYPE_PPGTT_ROOT_L4_ENTRY, 192 GTT_TYPE_INVALID, 193 GTT_TYPE_PPGTT_PML4_PT, 194 GTT_TYPE_INVALID), 195 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT, 196 GTT_TYPE_PPGTT_PML4_ENTRY, 197 GTT_TYPE_PPGTT_PML4_PT, 198 GTT_TYPE_PPGTT_PDP_PT, 199 GTT_TYPE_INVALID), 200 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY, 201 GTT_TYPE_PPGTT_PML4_ENTRY, 202 GTT_TYPE_PPGTT_PML4_PT, 203 GTT_TYPE_PPGTT_PDP_PT, 204 GTT_TYPE_INVALID), 205 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT, 206 GTT_TYPE_PPGTT_PDP_ENTRY, 207 GTT_TYPE_PPGTT_PDP_PT, 208 GTT_TYPE_PPGTT_PDE_PT, 209 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 210 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY, 211 GTT_TYPE_PPGTT_ROOT_L3_ENTRY, 212 GTT_TYPE_INVALID, 213 GTT_TYPE_PPGTT_PDE_PT, 214 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 215 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY, 216 GTT_TYPE_PPGTT_PDP_ENTRY, 217 GTT_TYPE_PPGTT_PDP_PT, 218 GTT_TYPE_PPGTT_PDE_PT, 219 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 220 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT, 221 GTT_TYPE_PPGTT_PDE_ENTRY, 222 GTT_TYPE_PPGTT_PDE_PT, 223 GTT_TYPE_PPGTT_PTE_PT, 224 GTT_TYPE_PPGTT_PTE_2M_ENTRY), 225 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY, 226 GTT_TYPE_PPGTT_PDE_ENTRY, 227 GTT_TYPE_PPGTT_PDE_PT, 228 GTT_TYPE_PPGTT_PTE_PT, 229 GTT_TYPE_PPGTT_PTE_2M_ENTRY), 230 /* We take IPS bit as 'PSE' for PTE level. */ 231 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT, 232 GTT_TYPE_PPGTT_PTE_4K_ENTRY, 233 GTT_TYPE_PPGTT_PTE_PT, 234 GTT_TYPE_INVALID, 235 GTT_TYPE_PPGTT_PTE_64K_ENTRY), 236 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY, 237 GTT_TYPE_PPGTT_PTE_4K_ENTRY, 238 GTT_TYPE_PPGTT_PTE_PT, 239 GTT_TYPE_INVALID, 240 GTT_TYPE_PPGTT_PTE_64K_ENTRY), 241 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY, 242 GTT_TYPE_PPGTT_PTE_4K_ENTRY, 243 GTT_TYPE_PPGTT_PTE_PT, 244 GTT_TYPE_INVALID, 245 GTT_TYPE_PPGTT_PTE_64K_ENTRY), 246 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY, 247 GTT_TYPE_PPGTT_PDE_ENTRY, 248 GTT_TYPE_PPGTT_PDE_PT, 249 GTT_TYPE_INVALID, 250 GTT_TYPE_PPGTT_PTE_2M_ENTRY), 251 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY, 252 GTT_TYPE_PPGTT_PDP_ENTRY, 253 GTT_TYPE_PPGTT_PDP_PT, 254 GTT_TYPE_INVALID, 255 GTT_TYPE_PPGTT_PTE_1G_ENTRY), 256 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE, 257 GTT_TYPE_GGTT_PTE, 258 GTT_TYPE_INVALID, 259 GTT_TYPE_INVALID, 260 GTT_TYPE_INVALID), 261 }; 262 263 static inline int get_next_pt_type(int type) 264 { 265 return gtt_type_table[type].next_pt_type; 266 } 267 268 static inline int get_pt_type(int type) 269 { 270 return gtt_type_table[type].pt_type; 271 } 272 273 static inline int get_entry_type(int type) 274 { 275 return gtt_type_table[type].entry_type; 276 } 277 278 static inline int get_pse_type(int type) 279 { 280 return gtt_type_table[type].pse_entry_type; 281 } 282 283 static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index) 284 { 285 void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index; 286 287 return readq(addr); 288 } 289 290 static void ggtt_invalidate(struct drm_i915_private *dev_priv) 291 { 292 mmio_hw_access_pre(dev_priv); 293 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 294 mmio_hw_access_post(dev_priv); 295 } 296 297 static void write_pte64(struct drm_i915_private *dev_priv, 298 unsigned long index, u64 pte) 299 { 300 void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index; 301 302 writeq(pte, addr); 303 } 304 305 static inline int gtt_get_entry64(void *pt, 306 struct intel_gvt_gtt_entry *e, 307 unsigned long index, bool hypervisor_access, unsigned long gpa, 308 struct intel_vgpu *vgpu) 309 { 310 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 311 int ret; 312 313 if (WARN_ON(info->gtt_entry_size != 8)) 314 return -EINVAL; 315 316 if (hypervisor_access) { 317 ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa + 318 (index << info->gtt_entry_size_shift), 319 &e->val64, 8); 320 if (WARN_ON(ret)) 321 return ret; 322 } else if (!pt) { 323 e->val64 = read_pte64(vgpu->gvt->dev_priv, index); 324 } else { 325 e->val64 = *((u64 *)pt + index); 326 } 327 return 0; 328 } 329 330 static inline int gtt_set_entry64(void *pt, 331 struct intel_gvt_gtt_entry *e, 332 unsigned long index, bool hypervisor_access, unsigned long gpa, 333 struct intel_vgpu *vgpu) 334 { 335 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 336 int ret; 337 338 if (WARN_ON(info->gtt_entry_size != 8)) 339 return -EINVAL; 340 341 if (hypervisor_access) { 342 ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa + 343 (index << info->gtt_entry_size_shift), 344 &e->val64, 8); 345 if (WARN_ON(ret)) 346 return ret; 347 } else if (!pt) { 348 write_pte64(vgpu->gvt->dev_priv, index, e->val64); 349 } else { 350 *((u64 *)pt + index) = e->val64; 351 } 352 return 0; 353 } 354 355 #define GTT_HAW 46 356 357 #define ADDR_1G_MASK GENMASK_ULL(GTT_HAW - 1, 30) 358 #define ADDR_2M_MASK GENMASK_ULL(GTT_HAW - 1, 21) 359 #define ADDR_64K_MASK GENMASK_ULL(GTT_HAW - 1, 16) 360 #define ADDR_4K_MASK GENMASK_ULL(GTT_HAW - 1, 12) 361 362 #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52) 363 #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */ 364 365 #define GTT_64K_PTE_STRIDE 16 366 367 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e) 368 { 369 unsigned long pfn; 370 371 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) 372 pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT; 373 else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) 374 pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT; 375 else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) 376 pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT; 377 else 378 pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT; 379 return pfn; 380 } 381 382 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn) 383 { 384 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) { 385 e->val64 &= ~ADDR_1G_MASK; 386 pfn &= (ADDR_1G_MASK >> PAGE_SHIFT); 387 } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) { 388 e->val64 &= ~ADDR_2M_MASK; 389 pfn &= (ADDR_2M_MASK >> PAGE_SHIFT); 390 } else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) { 391 e->val64 &= ~ADDR_64K_MASK; 392 pfn &= (ADDR_64K_MASK >> PAGE_SHIFT); 393 } else { 394 e->val64 &= ~ADDR_4K_MASK; 395 pfn &= (ADDR_4K_MASK >> PAGE_SHIFT); 396 } 397 398 e->val64 |= (pfn << PAGE_SHIFT); 399 } 400 401 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e) 402 { 403 return !!(e->val64 & _PAGE_PSE); 404 } 405 406 static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e) 407 { 408 if (gen8_gtt_test_pse(e)) { 409 switch (e->type) { 410 case GTT_TYPE_PPGTT_PTE_2M_ENTRY: 411 e->val64 &= ~_PAGE_PSE; 412 e->type = GTT_TYPE_PPGTT_PDE_ENTRY; 413 break; 414 case GTT_TYPE_PPGTT_PTE_1G_ENTRY: 415 e->type = GTT_TYPE_PPGTT_PDP_ENTRY; 416 e->val64 &= ~_PAGE_PSE; 417 break; 418 default: 419 WARN_ON(1); 420 } 421 } 422 } 423 424 static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e) 425 { 426 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY)) 427 return false; 428 429 return !!(e->val64 & GEN8_PDE_IPS_64K); 430 } 431 432 static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e) 433 { 434 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY)) 435 return; 436 437 e->val64 &= ~GEN8_PDE_IPS_64K; 438 } 439 440 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e) 441 { 442 /* 443 * i915 writes PDP root pointer registers without present bit, 444 * it also works, so we need to treat root pointer entry 445 * specifically. 446 */ 447 if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY 448 || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) 449 return (e->val64 != 0); 450 else 451 return (e->val64 & _PAGE_PRESENT); 452 } 453 454 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e) 455 { 456 e->val64 &= ~_PAGE_PRESENT; 457 } 458 459 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e) 460 { 461 e->val64 |= _PAGE_PRESENT; 462 } 463 464 static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e) 465 { 466 return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED); 467 } 468 469 static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e) 470 { 471 e->val64 |= GTT_SPTE_FLAG_64K_SPLITED; 472 } 473 474 static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e) 475 { 476 e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED; 477 } 478 479 /* 480 * Per-platform GMA routines. 481 */ 482 static unsigned long gma_to_ggtt_pte_index(unsigned long gma) 483 { 484 unsigned long x = (gma >> I915_GTT_PAGE_SHIFT); 485 486 trace_gma_index(__func__, gma, x); 487 return x; 488 } 489 490 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \ 491 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \ 492 { \ 493 unsigned long x = (exp); \ 494 trace_gma_index(__func__, gma, x); \ 495 return x; \ 496 } 497 498 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff)); 499 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff)); 500 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3)); 501 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff)); 502 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff)); 503 504 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = { 505 .get_entry = gtt_get_entry64, 506 .set_entry = gtt_set_entry64, 507 .clear_present = gtt_entry_clear_present, 508 .set_present = gtt_entry_set_present, 509 .test_present = gen8_gtt_test_present, 510 .test_pse = gen8_gtt_test_pse, 511 .clear_pse = gen8_gtt_clear_pse, 512 .clear_ips = gen8_gtt_clear_ips, 513 .test_ips = gen8_gtt_test_ips, 514 .clear_64k_splited = gen8_gtt_clear_64k_splited, 515 .set_64k_splited = gen8_gtt_set_64k_splited, 516 .test_64k_splited = gen8_gtt_test_64k_splited, 517 .get_pfn = gen8_gtt_get_pfn, 518 .set_pfn = gen8_gtt_set_pfn, 519 }; 520 521 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = { 522 .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index, 523 .gma_to_pte_index = gen8_gma_to_pte_index, 524 .gma_to_pde_index = gen8_gma_to_pde_index, 525 .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index, 526 .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index, 527 .gma_to_pml4_index = gen8_gma_to_pml4_index, 528 }; 529 530 /* Update entry type per pse and ips bit. */ 531 static void update_entry_type_for_real(struct intel_gvt_gtt_pte_ops *pte_ops, 532 struct intel_gvt_gtt_entry *entry, bool ips) 533 { 534 switch (entry->type) { 535 case GTT_TYPE_PPGTT_PDE_ENTRY: 536 case GTT_TYPE_PPGTT_PDP_ENTRY: 537 if (pte_ops->test_pse(entry)) 538 entry->type = get_pse_type(entry->type); 539 break; 540 case GTT_TYPE_PPGTT_PTE_4K_ENTRY: 541 if (ips) 542 entry->type = get_pse_type(entry->type); 543 break; 544 default: 545 GEM_BUG_ON(!gtt_type_is_entry(entry->type)); 546 } 547 548 GEM_BUG_ON(entry->type == GTT_TYPE_INVALID); 549 } 550 551 /* 552 * MM helpers. 553 */ 554 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm, 555 struct intel_gvt_gtt_entry *entry, unsigned long index, 556 bool guest) 557 { 558 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 559 560 GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT); 561 562 entry->type = mm->ppgtt_mm.root_entry_type; 563 pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps : 564 mm->ppgtt_mm.shadow_pdps, 565 entry, index, false, 0, mm->vgpu); 566 update_entry_type_for_real(pte_ops, entry, false); 567 } 568 569 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm, 570 struct intel_gvt_gtt_entry *entry, unsigned long index) 571 { 572 _ppgtt_get_root_entry(mm, entry, index, true); 573 } 574 575 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm, 576 struct intel_gvt_gtt_entry *entry, unsigned long index) 577 { 578 _ppgtt_get_root_entry(mm, entry, index, false); 579 } 580 581 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm, 582 struct intel_gvt_gtt_entry *entry, unsigned long index, 583 bool guest) 584 { 585 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 586 587 pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps : 588 mm->ppgtt_mm.shadow_pdps, 589 entry, index, false, 0, mm->vgpu); 590 } 591 592 static inline void ppgtt_set_guest_root_entry(struct intel_vgpu_mm *mm, 593 struct intel_gvt_gtt_entry *entry, unsigned long index) 594 { 595 _ppgtt_set_root_entry(mm, entry, index, true); 596 } 597 598 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm, 599 struct intel_gvt_gtt_entry *entry, unsigned long index) 600 { 601 _ppgtt_set_root_entry(mm, entry, index, false); 602 } 603 604 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm, 605 struct intel_gvt_gtt_entry *entry, unsigned long index) 606 { 607 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 608 609 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 610 611 entry->type = GTT_TYPE_GGTT_PTE; 612 pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index, 613 false, 0, mm->vgpu); 614 } 615 616 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm, 617 struct intel_gvt_gtt_entry *entry, unsigned long index) 618 { 619 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 620 621 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 622 623 pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index, 624 false, 0, mm->vgpu); 625 } 626 627 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm, 628 struct intel_gvt_gtt_entry *entry, unsigned long index) 629 { 630 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 631 632 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 633 634 pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu); 635 } 636 637 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm, 638 struct intel_gvt_gtt_entry *entry, unsigned long index) 639 { 640 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops; 641 642 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT); 643 644 pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu); 645 } 646 647 /* 648 * PPGTT shadow page table helpers. 649 */ 650 static inline int ppgtt_spt_get_entry( 651 struct intel_vgpu_ppgtt_spt *spt, 652 void *page_table, int type, 653 struct intel_gvt_gtt_entry *e, unsigned long index, 654 bool guest) 655 { 656 struct intel_gvt *gvt = spt->vgpu->gvt; 657 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 658 int ret; 659 660 e->type = get_entry_type(type); 661 662 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n")) 663 return -EINVAL; 664 665 ret = ops->get_entry(page_table, e, index, guest, 666 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT, 667 spt->vgpu); 668 if (ret) 669 return ret; 670 671 update_entry_type_for_real(ops, e, guest ? 672 spt->guest_page.pde_ips : false); 673 674 gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n", 675 type, e->type, index, e->val64); 676 return 0; 677 } 678 679 static inline int ppgtt_spt_set_entry( 680 struct intel_vgpu_ppgtt_spt *spt, 681 void *page_table, int type, 682 struct intel_gvt_gtt_entry *e, unsigned long index, 683 bool guest) 684 { 685 struct intel_gvt *gvt = spt->vgpu->gvt; 686 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 687 688 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n")) 689 return -EINVAL; 690 691 gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n", 692 type, e->type, index, e->val64); 693 694 return ops->set_entry(page_table, e, index, guest, 695 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT, 696 spt->vgpu); 697 } 698 699 #define ppgtt_get_guest_entry(spt, e, index) \ 700 ppgtt_spt_get_entry(spt, NULL, \ 701 spt->guest_page.type, e, index, true) 702 703 #define ppgtt_set_guest_entry(spt, e, index) \ 704 ppgtt_spt_set_entry(spt, NULL, \ 705 spt->guest_page.type, e, index, true) 706 707 #define ppgtt_get_shadow_entry(spt, e, index) \ 708 ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \ 709 spt->shadow_page.type, e, index, false) 710 711 #define ppgtt_set_shadow_entry(spt, e, index) \ 712 ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \ 713 spt->shadow_page.type, e, index, false) 714 715 static void *alloc_spt(gfp_t gfp_mask) 716 { 717 struct intel_vgpu_ppgtt_spt *spt; 718 719 spt = kzalloc(sizeof(*spt), gfp_mask); 720 if (!spt) 721 return NULL; 722 723 spt->shadow_page.page = alloc_page(gfp_mask); 724 if (!spt->shadow_page.page) { 725 kfree(spt); 726 return NULL; 727 } 728 return spt; 729 } 730 731 static void free_spt(struct intel_vgpu_ppgtt_spt *spt) 732 { 733 __free_page(spt->shadow_page.page); 734 kfree(spt); 735 } 736 737 static int detach_oos_page(struct intel_vgpu *vgpu, 738 struct intel_vgpu_oos_page *oos_page); 739 740 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt) 741 { 742 struct device *kdev = &spt->vgpu->gvt->dev_priv->drm.pdev->dev; 743 744 trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type); 745 746 dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096, 747 PCI_DMA_BIDIRECTIONAL); 748 749 radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn); 750 751 if (spt->guest_page.gfn) { 752 if (spt->guest_page.oos_page) 753 detach_oos_page(spt->vgpu, spt->guest_page.oos_page); 754 755 intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn); 756 } 757 758 list_del_init(&spt->post_shadow_list); 759 free_spt(spt); 760 } 761 762 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu) 763 { 764 struct intel_vgpu_ppgtt_spt *spt, *spn; 765 struct radix_tree_iter iter; 766 LIST_HEAD(all_spt); 767 void __rcu **slot; 768 769 rcu_read_lock(); 770 radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) { 771 spt = radix_tree_deref_slot(slot); 772 list_move(&spt->post_shadow_list, &all_spt); 773 } 774 rcu_read_unlock(); 775 776 list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list) 777 ppgtt_free_spt(spt); 778 } 779 780 static int ppgtt_handle_guest_write_page_table_bytes( 781 struct intel_vgpu_ppgtt_spt *spt, 782 u64 pa, void *p_data, int bytes); 783 784 static int ppgtt_write_protection_handler( 785 struct intel_vgpu_page_track *page_track, 786 u64 gpa, void *data, int bytes) 787 { 788 struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data; 789 790 int ret; 791 792 if (bytes != 4 && bytes != 8) 793 return -EINVAL; 794 795 ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes); 796 if (ret) 797 return ret; 798 return ret; 799 } 800 801 /* Find a spt by guest gfn. */ 802 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn( 803 struct intel_vgpu *vgpu, unsigned long gfn) 804 { 805 struct intel_vgpu_page_track *track; 806 807 track = intel_vgpu_find_page_track(vgpu, gfn); 808 if (track && track->handler == ppgtt_write_protection_handler) 809 return track->priv_data; 810 811 return NULL; 812 } 813 814 /* Find the spt by shadow page mfn. */ 815 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn( 816 struct intel_vgpu *vgpu, unsigned long mfn) 817 { 818 return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn); 819 } 820 821 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt); 822 823 /* Allocate shadow page table without guest page. */ 824 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt( 825 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type) 826 { 827 struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev; 828 struct intel_vgpu_ppgtt_spt *spt = NULL; 829 dma_addr_t daddr; 830 int ret; 831 832 retry: 833 spt = alloc_spt(GFP_KERNEL | __GFP_ZERO); 834 if (!spt) { 835 if (reclaim_one_ppgtt_mm(vgpu->gvt)) 836 goto retry; 837 838 gvt_vgpu_err("fail to allocate ppgtt shadow page\n"); 839 return ERR_PTR(-ENOMEM); 840 } 841 842 spt->vgpu = vgpu; 843 atomic_set(&spt->refcount, 1); 844 INIT_LIST_HEAD(&spt->post_shadow_list); 845 846 /* 847 * Init shadow_page. 848 */ 849 spt->shadow_page.type = type; 850 daddr = dma_map_page(kdev, spt->shadow_page.page, 851 0, 4096, PCI_DMA_BIDIRECTIONAL); 852 if (dma_mapping_error(kdev, daddr)) { 853 gvt_vgpu_err("fail to map dma addr\n"); 854 ret = -EINVAL; 855 goto err_free_spt; 856 } 857 spt->shadow_page.vaddr = page_address(spt->shadow_page.page); 858 spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT; 859 860 ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt); 861 if (ret) 862 goto err_unmap_dma; 863 864 return spt; 865 866 err_unmap_dma: 867 dma_unmap_page(kdev, daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); 868 err_free_spt: 869 free_spt(spt); 870 return ERR_PTR(ret); 871 } 872 873 /* Allocate shadow page table associated with specific gfn. */ 874 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn( 875 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type, 876 unsigned long gfn, bool guest_pde_ips) 877 { 878 struct intel_vgpu_ppgtt_spt *spt; 879 int ret; 880 881 spt = ppgtt_alloc_spt(vgpu, type); 882 if (IS_ERR(spt)) 883 return spt; 884 885 /* 886 * Init guest_page. 887 */ 888 ret = intel_vgpu_register_page_track(vgpu, gfn, 889 ppgtt_write_protection_handler, spt); 890 if (ret) { 891 ppgtt_free_spt(spt); 892 return ERR_PTR(ret); 893 } 894 895 spt->guest_page.type = type; 896 spt->guest_page.gfn = gfn; 897 spt->guest_page.pde_ips = guest_pde_ips; 898 899 trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn); 900 901 return spt; 902 } 903 904 #define pt_entry_size_shift(spt) \ 905 ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift) 906 907 #define pt_entries(spt) \ 908 (I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt)) 909 910 #define for_each_present_guest_entry(spt, e, i) \ 911 for (i = 0; i < pt_entries(spt); \ 912 i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \ 913 if (!ppgtt_get_guest_entry(spt, e, i) && \ 914 spt->vgpu->gvt->gtt.pte_ops->test_present(e)) 915 916 #define for_each_present_shadow_entry(spt, e, i) \ 917 for (i = 0; i < pt_entries(spt); \ 918 i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \ 919 if (!ppgtt_get_shadow_entry(spt, e, i) && \ 920 spt->vgpu->gvt->gtt.pte_ops->test_present(e)) 921 922 #define for_each_shadow_entry(spt, e, i) \ 923 for (i = 0; i < pt_entries(spt); \ 924 i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \ 925 if (!ppgtt_get_shadow_entry(spt, e, i)) 926 927 static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt) 928 { 929 int v = atomic_read(&spt->refcount); 930 931 trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1)); 932 atomic_inc(&spt->refcount); 933 } 934 935 static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt) 936 { 937 int v = atomic_read(&spt->refcount); 938 939 trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1)); 940 return atomic_dec_return(&spt->refcount); 941 } 942 943 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt); 944 945 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu, 946 struct intel_gvt_gtt_entry *e) 947 { 948 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 949 struct intel_vgpu_ppgtt_spt *s; 950 enum intel_gvt_gtt_type cur_pt_type; 951 952 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type))); 953 954 if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY 955 && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { 956 cur_pt_type = get_next_pt_type(e->type); 957 958 if (!gtt_type_is_pt(cur_pt_type) || 959 !gtt_type_is_pt(cur_pt_type + 1)) { 960 WARN(1, "Invalid page table type, cur_pt_type is: %d\n", cur_pt_type); 961 return -EINVAL; 962 } 963 964 cur_pt_type += 1; 965 966 if (ops->get_pfn(e) == 967 vgpu->gtt.scratch_pt[cur_pt_type].page_mfn) 968 return 0; 969 } 970 s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e)); 971 if (!s) { 972 gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n", 973 ops->get_pfn(e)); 974 return -ENXIO; 975 } 976 return ppgtt_invalidate_spt(s); 977 } 978 979 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt, 980 struct intel_gvt_gtt_entry *entry) 981 { 982 struct intel_vgpu *vgpu = spt->vgpu; 983 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 984 unsigned long pfn; 985 int type; 986 987 pfn = ops->get_pfn(entry); 988 type = spt->shadow_page.type; 989 990 /* Uninitialized spte or unshadowed spte. */ 991 if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn) 992 return; 993 994 intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT); 995 } 996 997 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt) 998 { 999 struct intel_vgpu *vgpu = spt->vgpu; 1000 struct intel_gvt_gtt_entry e; 1001 unsigned long index; 1002 int ret; 1003 1004 trace_spt_change(spt->vgpu->id, "die", spt, 1005 spt->guest_page.gfn, spt->shadow_page.type); 1006 1007 if (ppgtt_put_spt(spt) > 0) 1008 return 0; 1009 1010 for_each_present_shadow_entry(spt, &e, index) { 1011 switch (e.type) { 1012 case GTT_TYPE_PPGTT_PTE_4K_ENTRY: 1013 gvt_vdbg_mm("invalidate 4K entry\n"); 1014 ppgtt_invalidate_pte(spt, &e); 1015 break; 1016 case GTT_TYPE_PPGTT_PTE_64K_ENTRY: 1017 /* We don't setup 64K shadow entry so far. */ 1018 WARN(1, "suspicious 64K gtt entry\n"); 1019 continue; 1020 case GTT_TYPE_PPGTT_PTE_2M_ENTRY: 1021 gvt_vdbg_mm("invalidate 2M entry\n"); 1022 continue; 1023 case GTT_TYPE_PPGTT_PTE_1G_ENTRY: 1024 WARN(1, "GVT doesn't support 1GB page\n"); 1025 continue; 1026 case GTT_TYPE_PPGTT_PML4_ENTRY: 1027 case GTT_TYPE_PPGTT_PDP_ENTRY: 1028 case GTT_TYPE_PPGTT_PDE_ENTRY: 1029 gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n"); 1030 ret = ppgtt_invalidate_spt_by_shadow_entry( 1031 spt->vgpu, &e); 1032 if (ret) 1033 goto fail; 1034 break; 1035 default: 1036 GEM_BUG_ON(1); 1037 } 1038 } 1039 1040 trace_spt_change(spt->vgpu->id, "release", spt, 1041 spt->guest_page.gfn, spt->shadow_page.type); 1042 ppgtt_free_spt(spt); 1043 return 0; 1044 fail: 1045 gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n", 1046 spt, e.val64, e.type); 1047 return ret; 1048 } 1049 1050 static bool vgpu_ips_enabled(struct intel_vgpu *vgpu) 1051 { 1052 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv; 1053 1054 if (INTEL_GEN(dev_priv) == 9 || INTEL_GEN(dev_priv) == 10) { 1055 u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) & 1056 GAMW_ECO_ENABLE_64K_IPS_FIELD; 1057 1058 return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD; 1059 } else if (INTEL_GEN(dev_priv) >= 11) { 1060 /* 64K paging only controlled by IPS bit in PTE now. */ 1061 return true; 1062 } else 1063 return false; 1064 } 1065 1066 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt); 1067 1068 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry( 1069 struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we) 1070 { 1071 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1072 struct intel_vgpu_ppgtt_spt *spt = NULL; 1073 bool ips = false; 1074 int ret; 1075 1076 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type))); 1077 1078 if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY) 1079 ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we); 1080 1081 spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we)); 1082 if (spt) { 1083 ppgtt_get_spt(spt); 1084 1085 if (ips != spt->guest_page.pde_ips) { 1086 spt->guest_page.pde_ips = ips; 1087 1088 gvt_dbg_mm("reshadow PDE since ips changed\n"); 1089 clear_page(spt->shadow_page.vaddr); 1090 ret = ppgtt_populate_spt(spt); 1091 if (ret) { 1092 ppgtt_put_spt(spt); 1093 goto err; 1094 } 1095 } 1096 } else { 1097 int type = get_next_pt_type(we->type); 1098 1099 if (!gtt_type_is_pt(type)) { 1100 ret = -EINVAL; 1101 goto err; 1102 } 1103 1104 spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips); 1105 if (IS_ERR(spt)) { 1106 ret = PTR_ERR(spt); 1107 goto err; 1108 } 1109 1110 ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn); 1111 if (ret) 1112 goto err_free_spt; 1113 1114 ret = ppgtt_populate_spt(spt); 1115 if (ret) 1116 goto err_free_spt; 1117 1118 trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn, 1119 spt->shadow_page.type); 1120 } 1121 return spt; 1122 1123 err_free_spt: 1124 ppgtt_free_spt(spt); 1125 spt = NULL; 1126 err: 1127 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", 1128 spt, we->val64, we->type); 1129 return ERR_PTR(ret); 1130 } 1131 1132 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se, 1133 struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge) 1134 { 1135 struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops; 1136 1137 se->type = ge->type; 1138 se->val64 = ge->val64; 1139 1140 /* Because we always split 64KB pages, so clear IPS in shadow PDE. */ 1141 if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY) 1142 ops->clear_ips(se); 1143 1144 ops->set_pfn(se, s->shadow_page.mfn); 1145 } 1146 1147 /** 1148 * Check if can do 2M page 1149 * @vgpu: target vgpu 1150 * @entry: target pfn's gtt entry 1151 * 1152 * Return 1 if 2MB huge gtt shadowing is possilbe, 0 if miscondition, 1153 * negtive if found err. 1154 */ 1155 static int is_2MB_gtt_possible(struct intel_vgpu *vgpu, 1156 struct intel_gvt_gtt_entry *entry) 1157 { 1158 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1159 unsigned long pfn; 1160 1161 if (!HAS_PAGE_SIZES(vgpu->gvt->dev_priv, I915_GTT_PAGE_SIZE_2M)) 1162 return 0; 1163 1164 pfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, ops->get_pfn(entry)); 1165 if (pfn == INTEL_GVT_INVALID_ADDR) 1166 return -EINVAL; 1167 1168 return PageTransHuge(pfn_to_page(pfn)); 1169 } 1170 1171 static int split_2MB_gtt_entry(struct intel_vgpu *vgpu, 1172 struct intel_vgpu_ppgtt_spt *spt, unsigned long index, 1173 struct intel_gvt_gtt_entry *se) 1174 { 1175 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1176 struct intel_vgpu_ppgtt_spt *sub_spt; 1177 struct intel_gvt_gtt_entry sub_se; 1178 unsigned long start_gfn; 1179 dma_addr_t dma_addr; 1180 unsigned long sub_index; 1181 int ret; 1182 1183 gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index); 1184 1185 start_gfn = ops->get_pfn(se); 1186 1187 sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT); 1188 if (IS_ERR(sub_spt)) 1189 return PTR_ERR(sub_spt); 1190 1191 for_each_shadow_entry(sub_spt, &sub_se, sub_index) { 1192 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, 1193 start_gfn + sub_index, PAGE_SIZE, &dma_addr); 1194 if (ret) { 1195 ppgtt_invalidate_spt(spt); 1196 return ret; 1197 } 1198 sub_se.val64 = se->val64; 1199 1200 /* Copy the PAT field from PDE. */ 1201 sub_se.val64 &= ~_PAGE_PAT; 1202 sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5; 1203 1204 ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT); 1205 ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index); 1206 } 1207 1208 /* Clear dirty field. */ 1209 se->val64 &= ~_PAGE_DIRTY; 1210 1211 ops->clear_pse(se); 1212 ops->clear_ips(se); 1213 ops->set_pfn(se, sub_spt->shadow_page.mfn); 1214 ppgtt_set_shadow_entry(spt, se, index); 1215 return 0; 1216 } 1217 1218 static int split_64KB_gtt_entry(struct intel_vgpu *vgpu, 1219 struct intel_vgpu_ppgtt_spt *spt, unsigned long index, 1220 struct intel_gvt_gtt_entry *se) 1221 { 1222 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1223 struct intel_gvt_gtt_entry entry = *se; 1224 unsigned long start_gfn; 1225 dma_addr_t dma_addr; 1226 int i, ret; 1227 1228 gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index); 1229 1230 GEM_BUG_ON(index % GTT_64K_PTE_STRIDE); 1231 1232 start_gfn = ops->get_pfn(se); 1233 1234 entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY; 1235 ops->set_64k_splited(&entry); 1236 1237 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) { 1238 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, 1239 start_gfn + i, PAGE_SIZE, &dma_addr); 1240 if (ret) 1241 return ret; 1242 1243 ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT); 1244 ppgtt_set_shadow_entry(spt, &entry, index + i); 1245 } 1246 return 0; 1247 } 1248 1249 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu, 1250 struct intel_vgpu_ppgtt_spt *spt, unsigned long index, 1251 struct intel_gvt_gtt_entry *ge) 1252 { 1253 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops; 1254 struct intel_gvt_gtt_entry se = *ge; 1255 unsigned long gfn, page_size = PAGE_SIZE; 1256 dma_addr_t dma_addr; 1257 int ret; 1258 1259 if (!pte_ops->test_present(ge)) 1260 return 0; 1261 1262 gfn = pte_ops->get_pfn(ge); 1263 1264 switch (ge->type) { 1265 case GTT_TYPE_PPGTT_PTE_4K_ENTRY: 1266 gvt_vdbg_mm("shadow 4K gtt entry\n"); 1267 break; 1268 case GTT_TYPE_PPGTT_PTE_64K_ENTRY: 1269 gvt_vdbg_mm("shadow 64K gtt entry\n"); 1270 /* 1271 * The layout of 64K page is special, the page size is 1272 * controlled by uper PDE. To be simple, we always split 1273 * 64K page to smaller 4K pages in shadow PT. 1274 */ 1275 return split_64KB_gtt_entry(vgpu, spt, index, &se); 1276 case GTT_TYPE_PPGTT_PTE_2M_ENTRY: 1277 gvt_vdbg_mm("shadow 2M gtt entry\n"); 1278 ret = is_2MB_gtt_possible(vgpu, ge); 1279 if (ret == 0) 1280 return split_2MB_gtt_entry(vgpu, spt, index, &se); 1281 else if (ret < 0) 1282 return ret; 1283 page_size = I915_GTT_PAGE_SIZE_2M; 1284 break; 1285 case GTT_TYPE_PPGTT_PTE_1G_ENTRY: 1286 gvt_vgpu_err("GVT doesn't support 1GB entry\n"); 1287 return -EINVAL; 1288 default: 1289 GEM_BUG_ON(1); 1290 } 1291 1292 /* direct shadow */ 1293 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, page_size, 1294 &dma_addr); 1295 if (ret) 1296 return -ENXIO; 1297 1298 pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT); 1299 ppgtt_set_shadow_entry(spt, &se, index); 1300 return 0; 1301 } 1302 1303 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt) 1304 { 1305 struct intel_vgpu *vgpu = spt->vgpu; 1306 struct intel_gvt *gvt = vgpu->gvt; 1307 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 1308 struct intel_vgpu_ppgtt_spt *s; 1309 struct intel_gvt_gtt_entry se, ge; 1310 unsigned long gfn, i; 1311 int ret; 1312 1313 trace_spt_change(spt->vgpu->id, "born", spt, 1314 spt->guest_page.gfn, spt->shadow_page.type); 1315 1316 for_each_present_guest_entry(spt, &ge, i) { 1317 if (gtt_type_is_pt(get_next_pt_type(ge.type))) { 1318 s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge); 1319 if (IS_ERR(s)) { 1320 ret = PTR_ERR(s); 1321 goto fail; 1322 } 1323 ppgtt_get_shadow_entry(spt, &se, i); 1324 ppgtt_generate_shadow_entry(&se, s, &ge); 1325 ppgtt_set_shadow_entry(spt, &se, i); 1326 } else { 1327 gfn = ops->get_pfn(&ge); 1328 if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) { 1329 ops->set_pfn(&se, gvt->gtt.scratch_mfn); 1330 ppgtt_set_shadow_entry(spt, &se, i); 1331 continue; 1332 } 1333 1334 ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge); 1335 if (ret) 1336 goto fail; 1337 } 1338 } 1339 return 0; 1340 fail: 1341 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", 1342 spt, ge.val64, ge.type); 1343 return ret; 1344 } 1345 1346 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt, 1347 struct intel_gvt_gtt_entry *se, unsigned long index) 1348 { 1349 struct intel_vgpu *vgpu = spt->vgpu; 1350 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1351 int ret; 1352 1353 trace_spt_guest_change(spt->vgpu->id, "remove", spt, 1354 spt->shadow_page.type, se->val64, index); 1355 1356 gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n", 1357 se->type, index, se->val64); 1358 1359 if (!ops->test_present(se)) 1360 return 0; 1361 1362 if (ops->get_pfn(se) == 1363 vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn) 1364 return 0; 1365 1366 if (gtt_type_is_pt(get_next_pt_type(se->type))) { 1367 struct intel_vgpu_ppgtt_spt *s = 1368 intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se)); 1369 if (!s) { 1370 gvt_vgpu_err("fail to find guest page\n"); 1371 ret = -ENXIO; 1372 goto fail; 1373 } 1374 ret = ppgtt_invalidate_spt(s); 1375 if (ret) 1376 goto fail; 1377 } else { 1378 /* We don't setup 64K shadow entry so far. */ 1379 WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY, 1380 "suspicious 64K entry\n"); 1381 ppgtt_invalidate_pte(spt, se); 1382 } 1383 1384 return 0; 1385 fail: 1386 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n", 1387 spt, se->val64, se->type); 1388 return ret; 1389 } 1390 1391 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt, 1392 struct intel_gvt_gtt_entry *we, unsigned long index) 1393 { 1394 struct intel_vgpu *vgpu = spt->vgpu; 1395 struct intel_gvt_gtt_entry m; 1396 struct intel_vgpu_ppgtt_spt *s; 1397 int ret; 1398 1399 trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type, 1400 we->val64, index); 1401 1402 gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n", 1403 we->type, index, we->val64); 1404 1405 if (gtt_type_is_pt(get_next_pt_type(we->type))) { 1406 s = ppgtt_populate_spt_by_guest_entry(vgpu, we); 1407 if (IS_ERR(s)) { 1408 ret = PTR_ERR(s); 1409 goto fail; 1410 } 1411 ppgtt_get_shadow_entry(spt, &m, index); 1412 ppgtt_generate_shadow_entry(&m, s, we); 1413 ppgtt_set_shadow_entry(spt, &m, index); 1414 } else { 1415 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we); 1416 if (ret) 1417 goto fail; 1418 } 1419 return 0; 1420 fail: 1421 gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n", 1422 spt, we->val64, we->type); 1423 return ret; 1424 } 1425 1426 static int sync_oos_page(struct intel_vgpu *vgpu, 1427 struct intel_vgpu_oos_page *oos_page) 1428 { 1429 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 1430 struct intel_gvt *gvt = vgpu->gvt; 1431 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 1432 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt; 1433 struct intel_gvt_gtt_entry old, new; 1434 int index; 1435 int ret; 1436 1437 trace_oos_change(vgpu->id, "sync", oos_page->id, 1438 spt, spt->guest_page.type); 1439 1440 old.type = new.type = get_entry_type(spt->guest_page.type); 1441 old.val64 = new.val64 = 0; 1442 1443 for (index = 0; index < (I915_GTT_PAGE_SIZE >> 1444 info->gtt_entry_size_shift); index++) { 1445 ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu); 1446 ops->get_entry(NULL, &new, index, true, 1447 spt->guest_page.gfn << PAGE_SHIFT, vgpu); 1448 1449 if (old.val64 == new.val64 1450 && !test_and_clear_bit(index, spt->post_shadow_bitmap)) 1451 continue; 1452 1453 trace_oos_sync(vgpu->id, oos_page->id, 1454 spt, spt->guest_page.type, 1455 new.val64, index); 1456 1457 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new); 1458 if (ret) 1459 return ret; 1460 1461 ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu); 1462 } 1463 1464 spt->guest_page.write_cnt = 0; 1465 list_del_init(&spt->post_shadow_list); 1466 return 0; 1467 } 1468 1469 static int detach_oos_page(struct intel_vgpu *vgpu, 1470 struct intel_vgpu_oos_page *oos_page) 1471 { 1472 struct intel_gvt *gvt = vgpu->gvt; 1473 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt; 1474 1475 trace_oos_change(vgpu->id, "detach", oos_page->id, 1476 spt, spt->guest_page.type); 1477 1478 spt->guest_page.write_cnt = 0; 1479 spt->guest_page.oos_page = NULL; 1480 oos_page->spt = NULL; 1481 1482 list_del_init(&oos_page->vm_list); 1483 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head); 1484 1485 return 0; 1486 } 1487 1488 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page, 1489 struct intel_vgpu_ppgtt_spt *spt) 1490 { 1491 struct intel_gvt *gvt = spt->vgpu->gvt; 1492 int ret; 1493 1494 ret = intel_gvt_hypervisor_read_gpa(spt->vgpu, 1495 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT, 1496 oos_page->mem, I915_GTT_PAGE_SIZE); 1497 if (ret) 1498 return ret; 1499 1500 oos_page->spt = spt; 1501 spt->guest_page.oos_page = oos_page; 1502 1503 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head); 1504 1505 trace_oos_change(spt->vgpu->id, "attach", oos_page->id, 1506 spt, spt->guest_page.type); 1507 return 0; 1508 } 1509 1510 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt) 1511 { 1512 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page; 1513 int ret; 1514 1515 ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn); 1516 if (ret) 1517 return ret; 1518 1519 trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id, 1520 spt, spt->guest_page.type); 1521 1522 list_del_init(&oos_page->vm_list); 1523 return sync_oos_page(spt->vgpu, oos_page); 1524 } 1525 1526 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt) 1527 { 1528 struct intel_gvt *gvt = spt->vgpu->gvt; 1529 struct intel_gvt_gtt *gtt = &gvt->gtt; 1530 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page; 1531 int ret; 1532 1533 WARN(oos_page, "shadow PPGTT page has already has a oos page\n"); 1534 1535 if (list_empty(>t->oos_page_free_list_head)) { 1536 oos_page = container_of(gtt->oos_page_use_list_head.next, 1537 struct intel_vgpu_oos_page, list); 1538 ret = ppgtt_set_guest_page_sync(oos_page->spt); 1539 if (ret) 1540 return ret; 1541 ret = detach_oos_page(spt->vgpu, oos_page); 1542 if (ret) 1543 return ret; 1544 } else 1545 oos_page = container_of(gtt->oos_page_free_list_head.next, 1546 struct intel_vgpu_oos_page, list); 1547 return attach_oos_page(oos_page, spt); 1548 } 1549 1550 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt) 1551 { 1552 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page; 1553 1554 if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n")) 1555 return -EINVAL; 1556 1557 trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id, 1558 spt, spt->guest_page.type); 1559 1560 list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head); 1561 return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn); 1562 } 1563 1564 /** 1565 * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU 1566 * @vgpu: a vGPU 1567 * 1568 * This function is called before submitting a guest workload to host, 1569 * to sync all the out-of-synced shadow for vGPU 1570 * 1571 * Returns: 1572 * Zero on success, negative error code if failed. 1573 */ 1574 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu) 1575 { 1576 struct list_head *pos, *n; 1577 struct intel_vgpu_oos_page *oos_page; 1578 int ret; 1579 1580 if (!enable_out_of_sync) 1581 return 0; 1582 1583 list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) { 1584 oos_page = container_of(pos, 1585 struct intel_vgpu_oos_page, vm_list); 1586 ret = ppgtt_set_guest_page_sync(oos_page->spt); 1587 if (ret) 1588 return ret; 1589 } 1590 return 0; 1591 } 1592 1593 /* 1594 * The heart of PPGTT shadow page table. 1595 */ 1596 static int ppgtt_handle_guest_write_page_table( 1597 struct intel_vgpu_ppgtt_spt *spt, 1598 struct intel_gvt_gtt_entry *we, unsigned long index) 1599 { 1600 struct intel_vgpu *vgpu = spt->vgpu; 1601 int type = spt->shadow_page.type; 1602 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1603 struct intel_gvt_gtt_entry old_se; 1604 int new_present; 1605 int i, ret; 1606 1607 new_present = ops->test_present(we); 1608 1609 /* 1610 * Adding the new entry first and then removing the old one, that can 1611 * guarantee the ppgtt table is validated during the window between 1612 * adding and removal. 1613 */ 1614 ppgtt_get_shadow_entry(spt, &old_se, index); 1615 1616 if (new_present) { 1617 ret = ppgtt_handle_guest_entry_add(spt, we, index); 1618 if (ret) 1619 goto fail; 1620 } 1621 1622 ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index); 1623 if (ret) 1624 goto fail; 1625 1626 if (!new_present) { 1627 /* For 64KB splited entries, we need clear them all. */ 1628 if (ops->test_64k_splited(&old_se) && 1629 !(index % GTT_64K_PTE_STRIDE)) { 1630 gvt_vdbg_mm("remove splited 64K shadow entries\n"); 1631 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) { 1632 ops->clear_64k_splited(&old_se); 1633 ops->set_pfn(&old_se, 1634 vgpu->gtt.scratch_pt[type].page_mfn); 1635 ppgtt_set_shadow_entry(spt, &old_se, index + i); 1636 } 1637 } else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY || 1638 old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) { 1639 ops->clear_pse(&old_se); 1640 ops->set_pfn(&old_se, 1641 vgpu->gtt.scratch_pt[type].page_mfn); 1642 ppgtt_set_shadow_entry(spt, &old_se, index); 1643 } else { 1644 ops->set_pfn(&old_se, 1645 vgpu->gtt.scratch_pt[type].page_mfn); 1646 ppgtt_set_shadow_entry(spt, &old_se, index); 1647 } 1648 } 1649 1650 return 0; 1651 fail: 1652 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n", 1653 spt, we->val64, we->type); 1654 return ret; 1655 } 1656 1657 1658 1659 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt) 1660 { 1661 return enable_out_of_sync 1662 && gtt_type_is_pte_pt(spt->guest_page.type) 1663 && spt->guest_page.write_cnt >= 2; 1664 } 1665 1666 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt, 1667 unsigned long index) 1668 { 1669 set_bit(index, spt->post_shadow_bitmap); 1670 if (!list_empty(&spt->post_shadow_list)) 1671 return; 1672 1673 list_add_tail(&spt->post_shadow_list, 1674 &spt->vgpu->gtt.post_shadow_list_head); 1675 } 1676 1677 /** 1678 * intel_vgpu_flush_post_shadow - flush the post shadow transactions 1679 * @vgpu: a vGPU 1680 * 1681 * This function is called before submitting a guest workload to host, 1682 * to flush all the post shadows for a vGPU. 1683 * 1684 * Returns: 1685 * Zero on success, negative error code if failed. 1686 */ 1687 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu) 1688 { 1689 struct list_head *pos, *n; 1690 struct intel_vgpu_ppgtt_spt *spt; 1691 struct intel_gvt_gtt_entry ge; 1692 unsigned long index; 1693 int ret; 1694 1695 list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) { 1696 spt = container_of(pos, struct intel_vgpu_ppgtt_spt, 1697 post_shadow_list); 1698 1699 for_each_set_bit(index, spt->post_shadow_bitmap, 1700 GTT_ENTRY_NUM_IN_ONE_PAGE) { 1701 ppgtt_get_guest_entry(spt, &ge, index); 1702 1703 ret = ppgtt_handle_guest_write_page_table(spt, 1704 &ge, index); 1705 if (ret) 1706 return ret; 1707 clear_bit(index, spt->post_shadow_bitmap); 1708 } 1709 list_del_init(&spt->post_shadow_list); 1710 } 1711 return 0; 1712 } 1713 1714 static int ppgtt_handle_guest_write_page_table_bytes( 1715 struct intel_vgpu_ppgtt_spt *spt, 1716 u64 pa, void *p_data, int bytes) 1717 { 1718 struct intel_vgpu *vgpu = spt->vgpu; 1719 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 1720 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 1721 struct intel_gvt_gtt_entry we, se; 1722 unsigned long index; 1723 int ret; 1724 1725 index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift; 1726 1727 ppgtt_get_guest_entry(spt, &we, index); 1728 1729 /* 1730 * For page table which has 64K gtt entry, only PTE#0, PTE#16, 1731 * PTE#32, ... PTE#496 are used. Unused PTEs update should be 1732 * ignored. 1733 */ 1734 if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY && 1735 (index % GTT_64K_PTE_STRIDE)) { 1736 gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n", 1737 index); 1738 return 0; 1739 } 1740 1741 if (bytes == info->gtt_entry_size) { 1742 ret = ppgtt_handle_guest_write_page_table(spt, &we, index); 1743 if (ret) 1744 return ret; 1745 } else { 1746 if (!test_bit(index, spt->post_shadow_bitmap)) { 1747 int type = spt->shadow_page.type; 1748 1749 ppgtt_get_shadow_entry(spt, &se, index); 1750 ret = ppgtt_handle_guest_entry_removal(spt, &se, index); 1751 if (ret) 1752 return ret; 1753 ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn); 1754 ppgtt_set_shadow_entry(spt, &se, index); 1755 } 1756 ppgtt_set_post_shadow(spt, index); 1757 } 1758 1759 if (!enable_out_of_sync) 1760 return 0; 1761 1762 spt->guest_page.write_cnt++; 1763 1764 if (spt->guest_page.oos_page) 1765 ops->set_entry(spt->guest_page.oos_page->mem, &we, index, 1766 false, 0, vgpu); 1767 1768 if (can_do_out_of_sync(spt)) { 1769 if (!spt->guest_page.oos_page) 1770 ppgtt_allocate_oos_page(spt); 1771 1772 ret = ppgtt_set_guest_page_oos(spt); 1773 if (ret < 0) 1774 return ret; 1775 } 1776 return 0; 1777 } 1778 1779 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm) 1780 { 1781 struct intel_vgpu *vgpu = mm->vgpu; 1782 struct intel_gvt *gvt = vgpu->gvt; 1783 struct intel_gvt_gtt *gtt = &gvt->gtt; 1784 struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops; 1785 struct intel_gvt_gtt_entry se; 1786 int index; 1787 1788 if (!mm->ppgtt_mm.shadowed) 1789 return; 1790 1791 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) { 1792 ppgtt_get_shadow_root_entry(mm, &se, index); 1793 1794 if (!ops->test_present(&se)) 1795 continue; 1796 1797 ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se); 1798 se.val64 = 0; 1799 ppgtt_set_shadow_root_entry(mm, &se, index); 1800 1801 trace_spt_guest_change(vgpu->id, "destroy root pointer", 1802 NULL, se.type, se.val64, index); 1803 } 1804 1805 mm->ppgtt_mm.shadowed = false; 1806 } 1807 1808 1809 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm) 1810 { 1811 struct intel_vgpu *vgpu = mm->vgpu; 1812 struct intel_gvt *gvt = vgpu->gvt; 1813 struct intel_gvt_gtt *gtt = &gvt->gtt; 1814 struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops; 1815 struct intel_vgpu_ppgtt_spt *spt; 1816 struct intel_gvt_gtt_entry ge, se; 1817 int index, ret; 1818 1819 if (mm->ppgtt_mm.shadowed) 1820 return 0; 1821 1822 mm->ppgtt_mm.shadowed = true; 1823 1824 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) { 1825 ppgtt_get_guest_root_entry(mm, &ge, index); 1826 1827 if (!ops->test_present(&ge)) 1828 continue; 1829 1830 trace_spt_guest_change(vgpu->id, __func__, NULL, 1831 ge.type, ge.val64, index); 1832 1833 spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge); 1834 if (IS_ERR(spt)) { 1835 gvt_vgpu_err("fail to populate guest root pointer\n"); 1836 ret = PTR_ERR(spt); 1837 goto fail; 1838 } 1839 ppgtt_generate_shadow_entry(&se, spt, &ge); 1840 ppgtt_set_shadow_root_entry(mm, &se, index); 1841 1842 trace_spt_guest_change(vgpu->id, "populate root pointer", 1843 NULL, se.type, se.val64, index); 1844 } 1845 1846 return 0; 1847 fail: 1848 invalidate_ppgtt_mm(mm); 1849 return ret; 1850 } 1851 1852 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu) 1853 { 1854 struct intel_vgpu_mm *mm; 1855 1856 mm = kzalloc(sizeof(*mm), GFP_KERNEL); 1857 if (!mm) 1858 return NULL; 1859 1860 mm->vgpu = vgpu; 1861 kref_init(&mm->ref); 1862 atomic_set(&mm->pincount, 0); 1863 1864 return mm; 1865 } 1866 1867 static void vgpu_free_mm(struct intel_vgpu_mm *mm) 1868 { 1869 kfree(mm); 1870 } 1871 1872 /** 1873 * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU 1874 * @vgpu: a vGPU 1875 * @root_entry_type: ppgtt root entry type 1876 * @pdps: guest pdps. 1877 * 1878 * This function is used to create a ppgtt mm object for a vGPU. 1879 * 1880 * Returns: 1881 * Zero on success, negative error code in pointer if failed. 1882 */ 1883 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu, 1884 enum intel_gvt_gtt_type root_entry_type, u64 pdps[]) 1885 { 1886 struct intel_gvt *gvt = vgpu->gvt; 1887 struct intel_vgpu_mm *mm; 1888 int ret; 1889 1890 mm = vgpu_alloc_mm(vgpu); 1891 if (!mm) 1892 return ERR_PTR(-ENOMEM); 1893 1894 mm->type = INTEL_GVT_MM_PPGTT; 1895 1896 GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY && 1897 root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY); 1898 mm->ppgtt_mm.root_entry_type = root_entry_type; 1899 1900 INIT_LIST_HEAD(&mm->ppgtt_mm.list); 1901 INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list); 1902 1903 if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) 1904 mm->ppgtt_mm.guest_pdps[0] = pdps[0]; 1905 else 1906 memcpy(mm->ppgtt_mm.guest_pdps, pdps, 1907 sizeof(mm->ppgtt_mm.guest_pdps)); 1908 1909 ret = shadow_ppgtt_mm(mm); 1910 if (ret) { 1911 gvt_vgpu_err("failed to shadow ppgtt mm\n"); 1912 vgpu_free_mm(mm); 1913 return ERR_PTR(ret); 1914 } 1915 1916 list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head); 1917 1918 mutex_lock(&gvt->gtt.ppgtt_mm_lock); 1919 list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head); 1920 mutex_unlock(&gvt->gtt.ppgtt_mm_lock); 1921 1922 return mm; 1923 } 1924 1925 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu) 1926 { 1927 struct intel_vgpu_mm *mm; 1928 unsigned long nr_entries; 1929 1930 mm = vgpu_alloc_mm(vgpu); 1931 if (!mm) 1932 return ERR_PTR(-ENOMEM); 1933 1934 mm->type = INTEL_GVT_MM_GGTT; 1935 1936 nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT; 1937 mm->ggtt_mm.virtual_ggtt = 1938 vzalloc(array_size(nr_entries, 1939 vgpu->gvt->device_info.gtt_entry_size)); 1940 if (!mm->ggtt_mm.virtual_ggtt) { 1941 vgpu_free_mm(mm); 1942 return ERR_PTR(-ENOMEM); 1943 } 1944 1945 return mm; 1946 } 1947 1948 /** 1949 * _intel_vgpu_mm_release - destroy a mm object 1950 * @mm_ref: a kref object 1951 * 1952 * This function is used to destroy a mm object for vGPU 1953 * 1954 */ 1955 void _intel_vgpu_mm_release(struct kref *mm_ref) 1956 { 1957 struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref); 1958 1959 if (GEM_WARN_ON(atomic_read(&mm->pincount))) 1960 gvt_err("vgpu mm pin count bug detected\n"); 1961 1962 if (mm->type == INTEL_GVT_MM_PPGTT) { 1963 list_del(&mm->ppgtt_mm.list); 1964 1965 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); 1966 list_del(&mm->ppgtt_mm.lru_list); 1967 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); 1968 1969 invalidate_ppgtt_mm(mm); 1970 } else { 1971 vfree(mm->ggtt_mm.virtual_ggtt); 1972 } 1973 1974 vgpu_free_mm(mm); 1975 } 1976 1977 /** 1978 * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object 1979 * @mm: a vGPU mm object 1980 * 1981 * This function is called when user doesn't want to use a vGPU mm object 1982 */ 1983 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm) 1984 { 1985 atomic_dec_if_positive(&mm->pincount); 1986 } 1987 1988 /** 1989 * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object 1990 * @mm: target vgpu mm 1991 * 1992 * This function is called when user wants to use a vGPU mm object. If this 1993 * mm object hasn't been shadowed yet, the shadow will be populated at this 1994 * time. 1995 * 1996 * Returns: 1997 * Zero on success, negative error code if failed. 1998 */ 1999 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm) 2000 { 2001 int ret; 2002 2003 atomic_inc(&mm->pincount); 2004 2005 if (mm->type == INTEL_GVT_MM_PPGTT) { 2006 ret = shadow_ppgtt_mm(mm); 2007 if (ret) 2008 return ret; 2009 2010 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); 2011 list_move_tail(&mm->ppgtt_mm.lru_list, 2012 &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head); 2013 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock); 2014 } 2015 2016 return 0; 2017 } 2018 2019 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt) 2020 { 2021 struct intel_vgpu_mm *mm; 2022 struct list_head *pos, *n; 2023 2024 mutex_lock(&gvt->gtt.ppgtt_mm_lock); 2025 2026 list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) { 2027 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list); 2028 2029 if (atomic_read(&mm->pincount)) 2030 continue; 2031 2032 list_del_init(&mm->ppgtt_mm.lru_list); 2033 mutex_unlock(&gvt->gtt.ppgtt_mm_lock); 2034 invalidate_ppgtt_mm(mm); 2035 return 1; 2036 } 2037 mutex_unlock(&gvt->gtt.ppgtt_mm_lock); 2038 return 0; 2039 } 2040 2041 /* 2042 * GMA translation APIs. 2043 */ 2044 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm, 2045 struct intel_gvt_gtt_entry *e, unsigned long index, bool guest) 2046 { 2047 struct intel_vgpu *vgpu = mm->vgpu; 2048 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 2049 struct intel_vgpu_ppgtt_spt *s; 2050 2051 s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e)); 2052 if (!s) 2053 return -ENXIO; 2054 2055 if (!guest) 2056 ppgtt_get_shadow_entry(s, e, index); 2057 else 2058 ppgtt_get_guest_entry(s, e, index); 2059 return 0; 2060 } 2061 2062 /** 2063 * intel_vgpu_gma_to_gpa - translate a gma to GPA 2064 * @mm: mm object. could be a PPGTT or GGTT mm object 2065 * @gma: graphics memory address in this mm object 2066 * 2067 * This function is used to translate a graphics memory address in specific 2068 * graphics memory space to guest physical address. 2069 * 2070 * Returns: 2071 * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed. 2072 */ 2073 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma) 2074 { 2075 struct intel_vgpu *vgpu = mm->vgpu; 2076 struct intel_gvt *gvt = vgpu->gvt; 2077 struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops; 2078 struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops; 2079 unsigned long gpa = INTEL_GVT_INVALID_ADDR; 2080 unsigned long gma_index[4]; 2081 struct intel_gvt_gtt_entry e; 2082 int i, levels = 0; 2083 int ret; 2084 2085 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT && 2086 mm->type != INTEL_GVT_MM_PPGTT); 2087 2088 if (mm->type == INTEL_GVT_MM_GGTT) { 2089 if (!vgpu_gmadr_is_valid(vgpu, gma)) 2090 goto err; 2091 2092 ggtt_get_guest_entry(mm, &e, 2093 gma_ops->gma_to_ggtt_pte_index(gma)); 2094 2095 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) 2096 + (gma & ~I915_GTT_PAGE_MASK); 2097 2098 trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa); 2099 } else { 2100 switch (mm->ppgtt_mm.root_entry_type) { 2101 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY: 2102 ppgtt_get_shadow_root_entry(mm, &e, 0); 2103 2104 gma_index[0] = gma_ops->gma_to_pml4_index(gma); 2105 gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma); 2106 gma_index[2] = gma_ops->gma_to_pde_index(gma); 2107 gma_index[3] = gma_ops->gma_to_pte_index(gma); 2108 levels = 4; 2109 break; 2110 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY: 2111 ppgtt_get_shadow_root_entry(mm, &e, 2112 gma_ops->gma_to_l3_pdp_index(gma)); 2113 2114 gma_index[0] = gma_ops->gma_to_pde_index(gma); 2115 gma_index[1] = gma_ops->gma_to_pte_index(gma); 2116 levels = 2; 2117 break; 2118 default: 2119 GEM_BUG_ON(1); 2120 } 2121 2122 /* walk the shadow page table and get gpa from guest entry */ 2123 for (i = 0; i < levels; i++) { 2124 ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i], 2125 (i == levels - 1)); 2126 if (ret) 2127 goto err; 2128 2129 if (!pte_ops->test_present(&e)) { 2130 gvt_dbg_core("GMA 0x%lx is not present\n", gma); 2131 goto err; 2132 } 2133 } 2134 2135 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) + 2136 (gma & ~I915_GTT_PAGE_MASK); 2137 trace_gma_translate(vgpu->id, "ppgtt", 0, 2138 mm->ppgtt_mm.root_entry_type, gma, gpa); 2139 } 2140 2141 return gpa; 2142 err: 2143 gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma); 2144 return INTEL_GVT_INVALID_ADDR; 2145 } 2146 2147 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, 2148 unsigned int off, void *p_data, unsigned int bytes) 2149 { 2150 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm; 2151 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 2152 unsigned long index = off >> info->gtt_entry_size_shift; 2153 unsigned long gma; 2154 struct intel_gvt_gtt_entry e; 2155 2156 if (bytes != 4 && bytes != 8) 2157 return -EINVAL; 2158 2159 gma = index << I915_GTT_PAGE_SHIFT; 2160 if (!intel_gvt_ggtt_validate_range(vgpu, 2161 gma, 1 << I915_GTT_PAGE_SHIFT)) { 2162 gvt_dbg_mm("read invalid ggtt at 0x%lx\n", gma); 2163 memset(p_data, 0, bytes); 2164 return 0; 2165 } 2166 2167 ggtt_get_guest_entry(ggtt_mm, &e, index); 2168 memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)), 2169 bytes); 2170 return 0; 2171 } 2172 2173 /** 2174 * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read 2175 * @vgpu: a vGPU 2176 * @off: register offset 2177 * @p_data: data will be returned to guest 2178 * @bytes: data length 2179 * 2180 * This function is used to emulate the GTT MMIO register read 2181 * 2182 * Returns: 2183 * Zero on success, error code if failed. 2184 */ 2185 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off, 2186 void *p_data, unsigned int bytes) 2187 { 2188 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 2189 int ret; 2190 2191 if (bytes != 4 && bytes != 8) 2192 return -EINVAL; 2193 2194 off -= info->gtt_start_offset; 2195 ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes); 2196 return ret; 2197 } 2198 2199 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu, 2200 struct intel_gvt_gtt_entry *entry) 2201 { 2202 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops; 2203 unsigned long pfn; 2204 2205 pfn = pte_ops->get_pfn(entry); 2206 if (pfn != vgpu->gvt->gtt.scratch_mfn) 2207 intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, 2208 pfn << PAGE_SHIFT); 2209 } 2210 2211 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off, 2212 void *p_data, unsigned int bytes) 2213 { 2214 struct intel_gvt *gvt = vgpu->gvt; 2215 const struct intel_gvt_device_info *info = &gvt->device_info; 2216 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm; 2217 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops; 2218 unsigned long g_gtt_index = off >> info->gtt_entry_size_shift; 2219 unsigned long gma, gfn; 2220 struct intel_gvt_gtt_entry e = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE}; 2221 struct intel_gvt_gtt_entry m = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE}; 2222 dma_addr_t dma_addr; 2223 int ret; 2224 struct intel_gvt_partial_pte *partial_pte, *pos, *n; 2225 bool partial_update = false; 2226 2227 if (bytes != 4 && bytes != 8) 2228 return -EINVAL; 2229 2230 gma = g_gtt_index << I915_GTT_PAGE_SHIFT; 2231 2232 /* the VM may configure the whole GM space when ballooning is used */ 2233 if (!vgpu_gmadr_is_valid(vgpu, gma)) 2234 return 0; 2235 2236 e.type = GTT_TYPE_GGTT_PTE; 2237 memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data, 2238 bytes); 2239 2240 /* If ggtt entry size is 8 bytes, and it's split into two 4 bytes 2241 * write, save the first 4 bytes in a list and update virtual 2242 * PTE. Only update shadow PTE when the second 4 bytes comes. 2243 */ 2244 if (bytes < info->gtt_entry_size) { 2245 bool found = false; 2246 2247 list_for_each_entry_safe(pos, n, 2248 &ggtt_mm->ggtt_mm.partial_pte_list, list) { 2249 if (g_gtt_index == pos->offset >> 2250 info->gtt_entry_size_shift) { 2251 if (off != pos->offset) { 2252 /* the second partial part*/ 2253 int last_off = pos->offset & 2254 (info->gtt_entry_size - 1); 2255 2256 memcpy((void *)&e.val64 + last_off, 2257 (void *)&pos->data + last_off, 2258 bytes); 2259 2260 list_del(&pos->list); 2261 kfree(pos); 2262 found = true; 2263 break; 2264 } 2265 2266 /* update of the first partial part */ 2267 pos->data = e.val64; 2268 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index); 2269 return 0; 2270 } 2271 } 2272 2273 if (!found) { 2274 /* the first partial part */ 2275 partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL); 2276 if (!partial_pte) 2277 return -ENOMEM; 2278 partial_pte->offset = off; 2279 partial_pte->data = e.val64; 2280 list_add_tail(&partial_pte->list, 2281 &ggtt_mm->ggtt_mm.partial_pte_list); 2282 partial_update = true; 2283 } 2284 } 2285 2286 if (!partial_update && (ops->test_present(&e))) { 2287 gfn = ops->get_pfn(&e); 2288 m.val64 = e.val64; 2289 m.type = e.type; 2290 2291 /* one PTE update may be issued in multiple writes and the 2292 * first write may not construct a valid gfn 2293 */ 2294 if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) { 2295 ops->set_pfn(&m, gvt->gtt.scratch_mfn); 2296 goto out; 2297 } 2298 2299 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, 2300 PAGE_SIZE, &dma_addr); 2301 if (ret) { 2302 gvt_vgpu_err("fail to populate guest ggtt entry\n"); 2303 /* guest driver may read/write the entry when partial 2304 * update the entry in this situation p2m will fail 2305 * settting the shadow entry to point to a scratch page 2306 */ 2307 ops->set_pfn(&m, gvt->gtt.scratch_mfn); 2308 } else 2309 ops->set_pfn(&m, dma_addr >> PAGE_SHIFT); 2310 } else { 2311 ops->set_pfn(&m, gvt->gtt.scratch_mfn); 2312 ops->clear_present(&m); 2313 } 2314 2315 out: 2316 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index); 2317 2318 ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index); 2319 ggtt_invalidate_pte(vgpu, &e); 2320 2321 ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index); 2322 ggtt_invalidate(gvt->dev_priv); 2323 return 0; 2324 } 2325 2326 /* 2327 * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write 2328 * @vgpu: a vGPU 2329 * @off: register offset 2330 * @p_data: data from guest write 2331 * @bytes: data length 2332 * 2333 * This function is used to emulate the GTT MMIO register write 2334 * 2335 * Returns: 2336 * Zero on success, error code if failed. 2337 */ 2338 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, 2339 unsigned int off, void *p_data, unsigned int bytes) 2340 { 2341 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info; 2342 int ret; 2343 2344 if (bytes != 4 && bytes != 8) 2345 return -EINVAL; 2346 2347 off -= info->gtt_start_offset; 2348 ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes); 2349 return ret; 2350 } 2351 2352 static int alloc_scratch_pages(struct intel_vgpu *vgpu, 2353 enum intel_gvt_gtt_type type) 2354 { 2355 struct intel_vgpu_gtt *gtt = &vgpu->gtt; 2356 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops; 2357 int page_entry_num = I915_GTT_PAGE_SIZE >> 2358 vgpu->gvt->device_info.gtt_entry_size_shift; 2359 void *scratch_pt; 2360 int i; 2361 struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev; 2362 dma_addr_t daddr; 2363 2364 if (WARN_ON(type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX)) 2365 return -EINVAL; 2366 2367 scratch_pt = (void *)get_zeroed_page(GFP_KERNEL); 2368 if (!scratch_pt) { 2369 gvt_vgpu_err("fail to allocate scratch page\n"); 2370 return -ENOMEM; 2371 } 2372 2373 daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0, 2374 4096, PCI_DMA_BIDIRECTIONAL); 2375 if (dma_mapping_error(dev, daddr)) { 2376 gvt_vgpu_err("fail to dmamap scratch_pt\n"); 2377 __free_page(virt_to_page(scratch_pt)); 2378 return -ENOMEM; 2379 } 2380 gtt->scratch_pt[type].page_mfn = 2381 (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT); 2382 gtt->scratch_pt[type].page = virt_to_page(scratch_pt); 2383 gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n", 2384 vgpu->id, type, gtt->scratch_pt[type].page_mfn); 2385 2386 /* Build the tree by full filled the scratch pt with the entries which 2387 * point to the next level scratch pt or scratch page. The 2388 * scratch_pt[type] indicate the scratch pt/scratch page used by the 2389 * 'type' pt. 2390 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by 2391 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self 2392 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn. 2393 */ 2394 if (type > GTT_TYPE_PPGTT_PTE_PT) { 2395 struct intel_gvt_gtt_entry se; 2396 2397 memset(&se, 0, sizeof(struct intel_gvt_gtt_entry)); 2398 se.type = get_entry_type(type - 1); 2399 ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn); 2400 2401 /* The entry parameters like present/writeable/cache type 2402 * set to the same as i915's scratch page tree. 2403 */ 2404 se.val64 |= _PAGE_PRESENT | _PAGE_RW; 2405 if (type == GTT_TYPE_PPGTT_PDE_PT) 2406 se.val64 |= PPAT_CACHED; 2407 2408 for (i = 0; i < page_entry_num; i++) 2409 ops->set_entry(scratch_pt, &se, i, false, 0, vgpu); 2410 } 2411 2412 return 0; 2413 } 2414 2415 static int release_scratch_page_tree(struct intel_vgpu *vgpu) 2416 { 2417 int i; 2418 struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev; 2419 dma_addr_t daddr; 2420 2421 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) { 2422 if (vgpu->gtt.scratch_pt[i].page != NULL) { 2423 daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn << 2424 I915_GTT_PAGE_SHIFT); 2425 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL); 2426 __free_page(vgpu->gtt.scratch_pt[i].page); 2427 vgpu->gtt.scratch_pt[i].page = NULL; 2428 vgpu->gtt.scratch_pt[i].page_mfn = 0; 2429 } 2430 } 2431 2432 return 0; 2433 } 2434 2435 static int create_scratch_page_tree(struct intel_vgpu *vgpu) 2436 { 2437 int i, ret; 2438 2439 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) { 2440 ret = alloc_scratch_pages(vgpu, i); 2441 if (ret) 2442 goto err; 2443 } 2444 2445 return 0; 2446 2447 err: 2448 release_scratch_page_tree(vgpu); 2449 return ret; 2450 } 2451 2452 /** 2453 * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization 2454 * @vgpu: a vGPU 2455 * 2456 * This function is used to initialize per-vGPU graphics memory virtualization 2457 * components. 2458 * 2459 * Returns: 2460 * Zero on success, error code if failed. 2461 */ 2462 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu) 2463 { 2464 struct intel_vgpu_gtt *gtt = &vgpu->gtt; 2465 2466 INIT_RADIX_TREE(>t->spt_tree, GFP_KERNEL); 2467 2468 INIT_LIST_HEAD(>t->ppgtt_mm_list_head); 2469 INIT_LIST_HEAD(>t->oos_page_list_head); 2470 INIT_LIST_HEAD(>t->post_shadow_list_head); 2471 2472 gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu); 2473 if (IS_ERR(gtt->ggtt_mm)) { 2474 gvt_vgpu_err("fail to create mm for ggtt.\n"); 2475 return PTR_ERR(gtt->ggtt_mm); 2476 } 2477 2478 intel_vgpu_reset_ggtt(vgpu, false); 2479 2480 INIT_LIST_HEAD(>t->ggtt_mm->ggtt_mm.partial_pte_list); 2481 2482 return create_scratch_page_tree(vgpu); 2483 } 2484 2485 static void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu) 2486 { 2487 struct list_head *pos, *n; 2488 struct intel_vgpu_mm *mm; 2489 2490 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) { 2491 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list); 2492 intel_vgpu_destroy_mm(mm); 2493 } 2494 2495 if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head))) 2496 gvt_err("vgpu ppgtt mm is not fully destroyed\n"); 2497 2498 if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) { 2499 gvt_err("Why we still has spt not freed?\n"); 2500 ppgtt_free_all_spt(vgpu); 2501 } 2502 } 2503 2504 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu) 2505 { 2506 struct intel_gvt_partial_pte *pos, *next; 2507 2508 list_for_each_entry_safe(pos, next, 2509 &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list, 2510 list) { 2511 gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n", 2512 pos->offset, pos->data); 2513 kfree(pos); 2514 } 2515 intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm); 2516 vgpu->gtt.ggtt_mm = NULL; 2517 } 2518 2519 /** 2520 * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization 2521 * @vgpu: a vGPU 2522 * 2523 * This function is used to clean up per-vGPU graphics memory virtualization 2524 * components. 2525 * 2526 * Returns: 2527 * Zero on success, error code if failed. 2528 */ 2529 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu) 2530 { 2531 intel_vgpu_destroy_all_ppgtt_mm(vgpu); 2532 intel_vgpu_destroy_ggtt_mm(vgpu); 2533 release_scratch_page_tree(vgpu); 2534 } 2535 2536 static void clean_spt_oos(struct intel_gvt *gvt) 2537 { 2538 struct intel_gvt_gtt *gtt = &gvt->gtt; 2539 struct list_head *pos, *n; 2540 struct intel_vgpu_oos_page *oos_page; 2541 2542 WARN(!list_empty(>t->oos_page_use_list_head), 2543 "someone is still using oos page\n"); 2544 2545 list_for_each_safe(pos, n, >t->oos_page_free_list_head) { 2546 oos_page = container_of(pos, struct intel_vgpu_oos_page, list); 2547 list_del(&oos_page->list); 2548 free_page((unsigned long)oos_page->mem); 2549 kfree(oos_page); 2550 } 2551 } 2552 2553 static int setup_spt_oos(struct intel_gvt *gvt) 2554 { 2555 struct intel_gvt_gtt *gtt = &gvt->gtt; 2556 struct intel_vgpu_oos_page *oos_page; 2557 int i; 2558 int ret; 2559 2560 INIT_LIST_HEAD(>t->oos_page_free_list_head); 2561 INIT_LIST_HEAD(>t->oos_page_use_list_head); 2562 2563 for (i = 0; i < preallocated_oos_pages; i++) { 2564 oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL); 2565 if (!oos_page) { 2566 ret = -ENOMEM; 2567 goto fail; 2568 } 2569 oos_page->mem = (void *)__get_free_pages(GFP_KERNEL, 0); 2570 if (!oos_page->mem) { 2571 ret = -ENOMEM; 2572 kfree(oos_page); 2573 goto fail; 2574 } 2575 2576 INIT_LIST_HEAD(&oos_page->list); 2577 INIT_LIST_HEAD(&oos_page->vm_list); 2578 oos_page->id = i; 2579 list_add_tail(&oos_page->list, >t->oos_page_free_list_head); 2580 } 2581 2582 gvt_dbg_mm("%d oos pages preallocated\n", i); 2583 2584 return 0; 2585 fail: 2586 clean_spt_oos(gvt); 2587 return ret; 2588 } 2589 2590 /** 2591 * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object 2592 * @vgpu: a vGPU 2593 * @pdps: pdp root array 2594 * 2595 * This function is used to find a PPGTT mm object from mm object pool 2596 * 2597 * Returns: 2598 * pointer to mm object on success, NULL if failed. 2599 */ 2600 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu, 2601 u64 pdps[]) 2602 { 2603 struct intel_vgpu_mm *mm; 2604 struct list_head *pos; 2605 2606 list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) { 2607 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list); 2608 2609 switch (mm->ppgtt_mm.root_entry_type) { 2610 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY: 2611 if (pdps[0] == mm->ppgtt_mm.guest_pdps[0]) 2612 return mm; 2613 break; 2614 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY: 2615 if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps, 2616 sizeof(mm->ppgtt_mm.guest_pdps))) 2617 return mm; 2618 break; 2619 default: 2620 GEM_BUG_ON(1); 2621 } 2622 } 2623 return NULL; 2624 } 2625 2626 /** 2627 * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object. 2628 * @vgpu: a vGPU 2629 * @root_entry_type: ppgtt root entry type 2630 * @pdps: guest pdps 2631 * 2632 * This function is used to find or create a PPGTT mm object from a guest. 2633 * 2634 * Returns: 2635 * Zero on success, negative error code if failed. 2636 */ 2637 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu, 2638 enum intel_gvt_gtt_type root_entry_type, u64 pdps[]) 2639 { 2640 struct intel_vgpu_mm *mm; 2641 2642 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps); 2643 if (mm) { 2644 intel_vgpu_mm_get(mm); 2645 } else { 2646 mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps); 2647 if (IS_ERR(mm)) 2648 gvt_vgpu_err("fail to create mm\n"); 2649 } 2650 return mm; 2651 } 2652 2653 /** 2654 * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object. 2655 * @vgpu: a vGPU 2656 * @pdps: guest pdps 2657 * 2658 * This function is used to find a PPGTT mm object from a guest and destroy it. 2659 * 2660 * Returns: 2661 * Zero on success, negative error code if failed. 2662 */ 2663 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[]) 2664 { 2665 struct intel_vgpu_mm *mm; 2666 2667 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps); 2668 if (!mm) { 2669 gvt_vgpu_err("fail to find ppgtt instance.\n"); 2670 return -EINVAL; 2671 } 2672 intel_vgpu_mm_put(mm); 2673 return 0; 2674 } 2675 2676 /** 2677 * intel_gvt_init_gtt - initialize mm components of a GVT device 2678 * @gvt: GVT device 2679 * 2680 * This function is called at the initialization stage, to initialize 2681 * the mm components of a GVT device. 2682 * 2683 * Returns: 2684 * zero on success, negative error code if failed. 2685 */ 2686 int intel_gvt_init_gtt(struct intel_gvt *gvt) 2687 { 2688 int ret; 2689 void *page; 2690 struct device *dev = &gvt->dev_priv->drm.pdev->dev; 2691 dma_addr_t daddr; 2692 2693 gvt_dbg_core("init gtt\n"); 2694 2695 gvt->gtt.pte_ops = &gen8_gtt_pte_ops; 2696 gvt->gtt.gma_ops = &gen8_gtt_gma_ops; 2697 2698 page = (void *)get_zeroed_page(GFP_KERNEL); 2699 if (!page) { 2700 gvt_err("fail to allocate scratch ggtt page\n"); 2701 return -ENOMEM; 2702 } 2703 2704 daddr = dma_map_page(dev, virt_to_page(page), 0, 2705 4096, PCI_DMA_BIDIRECTIONAL); 2706 if (dma_mapping_error(dev, daddr)) { 2707 gvt_err("fail to dmamap scratch ggtt page\n"); 2708 __free_page(virt_to_page(page)); 2709 return -ENOMEM; 2710 } 2711 2712 gvt->gtt.scratch_page = virt_to_page(page); 2713 gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT); 2714 2715 if (enable_out_of_sync) { 2716 ret = setup_spt_oos(gvt); 2717 if (ret) { 2718 gvt_err("fail to initialize SPT oos\n"); 2719 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL); 2720 __free_page(gvt->gtt.scratch_page); 2721 return ret; 2722 } 2723 } 2724 INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head); 2725 mutex_init(&gvt->gtt.ppgtt_mm_lock); 2726 return 0; 2727 } 2728 2729 /** 2730 * intel_gvt_clean_gtt - clean up mm components of a GVT device 2731 * @gvt: GVT device 2732 * 2733 * This function is called at the driver unloading stage, to clean up the 2734 * the mm components of a GVT device. 2735 * 2736 */ 2737 void intel_gvt_clean_gtt(struct intel_gvt *gvt) 2738 { 2739 struct device *dev = &gvt->dev_priv->drm.pdev->dev; 2740 dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn << 2741 I915_GTT_PAGE_SHIFT); 2742 2743 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL); 2744 2745 __free_page(gvt->gtt.scratch_page); 2746 2747 if (enable_out_of_sync) 2748 clean_spt_oos(gvt); 2749 } 2750 2751 /** 2752 * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances 2753 * @vgpu: a vGPU 2754 * 2755 * This function is called when invalidate all PPGTT instances of a vGPU. 2756 * 2757 */ 2758 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu) 2759 { 2760 struct list_head *pos, *n; 2761 struct intel_vgpu_mm *mm; 2762 2763 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) { 2764 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list); 2765 if (mm->type == INTEL_GVT_MM_PPGTT) { 2766 mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock); 2767 list_del_init(&mm->ppgtt_mm.lru_list); 2768 mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock); 2769 if (mm->ppgtt_mm.shadowed) 2770 invalidate_ppgtt_mm(mm); 2771 } 2772 } 2773 } 2774 2775 /** 2776 * intel_vgpu_reset_ggtt - reset the GGTT entry 2777 * @vgpu: a vGPU 2778 * @invalidate_old: invalidate old entries 2779 * 2780 * This function is called at the vGPU create stage 2781 * to reset all the GGTT entries. 2782 * 2783 */ 2784 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old) 2785 { 2786 struct intel_gvt *gvt = vgpu->gvt; 2787 struct drm_i915_private *dev_priv = gvt->dev_priv; 2788 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops; 2789 struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE}; 2790 struct intel_gvt_gtt_entry old_entry; 2791 u32 index; 2792 u32 num_entries; 2793 2794 pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn); 2795 pte_ops->set_present(&entry); 2796 2797 index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT; 2798 num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT; 2799 while (num_entries--) { 2800 if (invalidate_old) { 2801 ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index); 2802 ggtt_invalidate_pte(vgpu, &old_entry); 2803 } 2804 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++); 2805 } 2806 2807 index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT; 2808 num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT; 2809 while (num_entries--) { 2810 if (invalidate_old) { 2811 ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index); 2812 ggtt_invalidate_pte(vgpu, &old_entry); 2813 } 2814 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++); 2815 } 2816 2817 ggtt_invalidate(dev_priv); 2818 } 2819 2820 /** 2821 * intel_vgpu_reset_gtt - reset the all GTT related status 2822 * @vgpu: a vGPU 2823 * 2824 * This function is called from vfio core to reset reset all 2825 * GTT related status, including GGTT, PPGTT, scratch page. 2826 * 2827 */ 2828 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu) 2829 { 2830 /* Shadow pages are only created when there is no page 2831 * table tracking data, so remove page tracking data after 2832 * removing the shadow pages. 2833 */ 2834 intel_vgpu_destroy_all_ppgtt_mm(vgpu); 2835 intel_vgpu_reset_ggtt(vgpu, true); 2836 } 2837