Home | History | Annotate | Line # | Download | only in ltc
      1 /*	$NetBSD: nouveau_nvkm_subdev_ltc_gf100.c,v 1.4 2021/12/18 23:45:40 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright 2012 Red Hat Inc.
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the "Software"),
      8  * to deal in the Software without restriction, including without limitation
      9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     10  * and/or sell copies of the Software, and to permit persons to whom the
     11  * Software is furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice shall be included in
     14  * all copies or substantial portions of the Software.
     15  *
     16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
     20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
     21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
     22  * OTHER DEALINGS IN THE SOFTWARE.
     23  *
     24  * Authors: Ben Skeggs
     25  */
     26 #include <sys/cdefs.h>
     27 __KERNEL_RCSID(0, "$NetBSD: nouveau_nvkm_subdev_ltc_gf100.c,v 1.4 2021/12/18 23:45:40 riastradh Exp $");
     28 
     29 #include "priv.h"
     30 
     31 #include <core/memory.h>
     32 #include <subdev/fb.h>
     33 #include <subdev/timer.h>
     34 
     35 void
     36 gf100_ltc_cbc_clear(struct nvkm_ltc *ltc, u32 start, u32 limit)
     37 {
     38 	struct nvkm_device *device = ltc->subdev.device;
     39 	nvkm_wr32(device, 0x17e8cc, start);
     40 	nvkm_wr32(device, 0x17e8d0, limit);
     41 	nvkm_wr32(device, 0x17e8c8, 0x00000004);
     42 }
     43 
     44 void
     45 gf100_ltc_cbc_wait(struct nvkm_ltc *ltc)
     46 {
     47 	struct nvkm_device *device = ltc->subdev.device;
     48 	int c, s;
     49 	for (c = 0; c < ltc->ltc_nr; c++) {
     50 		for (s = 0; s < ltc->lts_nr; s++) {
     51 			const u32 addr = 0x1410c8 + (c * 0x2000) + (s * 0x400);
     52 			nvkm_msec(device, 2000,
     53 				if (!nvkm_rd32(device, addr))
     54 					break;
     55 			);
     56 		}
     57 	}
     58 }
     59 
     60 void
     61 gf100_ltc_zbc_clear_color(struct nvkm_ltc *ltc, int i, const u32 color[4])
     62 {
     63 	struct nvkm_device *device = ltc->subdev.device;
     64 	nvkm_mask(device, 0x17ea44, 0x0000000f, i);
     65 	nvkm_wr32(device, 0x17ea48, color[0]);
     66 	nvkm_wr32(device, 0x17ea4c, color[1]);
     67 	nvkm_wr32(device, 0x17ea50, color[2]);
     68 	nvkm_wr32(device, 0x17ea54, color[3]);
     69 }
     70 
     71 void
     72 gf100_ltc_zbc_clear_depth(struct nvkm_ltc *ltc, int i, const u32 depth)
     73 {
     74 	struct nvkm_device *device = ltc->subdev.device;
     75 	nvkm_mask(device, 0x17ea44, 0x0000000f, i);
     76 	nvkm_wr32(device, 0x17ea58, depth);
     77 }
     78 
     79 const struct nvkm_bitfield
     80 gf100_ltc_lts_intr_name[] = {
     81 	{ 0x00000001, "IDLE_ERROR_IQ" },
     82 	{ 0x00000002, "IDLE_ERROR_CBC" },
     83 	{ 0x00000004, "IDLE_ERROR_TSTG" },
     84 	{ 0x00000008, "IDLE_ERROR_DSTG" },
     85 	{ 0x00000010, "EVICTED_CB" },
     86 	{ 0x00000020, "ILLEGAL_COMPSTAT" },
     87 	{ 0x00000040, "BLOCKLINEAR_CB" },
     88 	{ 0x00000100, "ECC_SEC_ERROR" },
     89 	{ 0x00000200, "ECC_DED_ERROR" },
     90 	{ 0x00000400, "DEBUG" },
     91 	{ 0x00000800, "ATOMIC_TO_Z" },
     92 	{ 0x00001000, "ILLEGAL_ATOMIC" },
     93 	{ 0x00002000, "BLKACTIVITY_ERR" },
     94 	{}
     95 };
     96 
     97 static void
     98 gf100_ltc_lts_intr(struct nvkm_ltc *ltc, int c, int s)
     99 {
    100 	struct nvkm_subdev *subdev = &ltc->subdev;
    101 	struct nvkm_device *device = subdev->device;
    102 	u32 base = 0x141000 + (c * 0x2000) + (s * 0x400);
    103 	u32 intr = nvkm_rd32(device, base + 0x020);
    104 	u32 stat = intr & 0x0000ffff;
    105 	char msg[128];
    106 
    107 	if (stat) {
    108 		nvkm_snprintbf(msg, sizeof(msg), gf100_ltc_lts_intr_name, stat);
    109 		nvkm_error(subdev, "LTC%d_LTS%d: %08x [%s]\n", c, s, stat, msg);
    110 	}
    111 
    112 	nvkm_wr32(device, base + 0x020, intr);
    113 }
    114 
    115 void
    116 gf100_ltc_intr(struct nvkm_ltc *ltc)
    117 {
    118 	struct nvkm_device *device = ltc->subdev.device;
    119 	u32 mask;
    120 
    121 	mask = nvkm_rd32(device, 0x00017c);
    122 	while (mask) {
    123 		u32 s, c = __ffs(mask);
    124 		for (s = 0; s < ltc->lts_nr; s++)
    125 			gf100_ltc_lts_intr(ltc, c, s);
    126 		mask &= ~(1 << c);
    127 	}
    128 }
    129 
    130 void
    131 gf100_ltc_invalidate(struct nvkm_ltc *ltc)
    132 {
    133 	struct nvkm_device *device = ltc->subdev.device;
    134 	s64 taken;
    135 
    136 	nvkm_wr32(device, 0x70004, 0x00000001);
    137 	taken = nvkm_wait_msec(device, 2000, 0x70004, 0x00000003, 0x00000000);
    138 
    139 	if (taken > 0)
    140 		nvkm_debug(&ltc->subdev, "LTC invalidate took %"PRId64" ns\n", taken);
    141 }
    142 
    143 void
    144 gf100_ltc_flush(struct nvkm_ltc *ltc)
    145 {
    146 	struct nvkm_device *device = ltc->subdev.device;
    147 	s64 taken;
    148 
    149 	nvkm_wr32(device, 0x70010, 0x00000001);
    150 	taken = nvkm_wait_msec(device, 2000, 0x70010, 0x00000003, 0x00000000);
    151 
    152 	if (taken > 0)
    153 		nvkm_debug(&ltc->subdev, "LTC flush took %"PRId64" ns\n", taken);
    154 }
    155 
    156 /* TODO: Figure out tag memory details and drop the over-cautious allocation.
    157  */
    158 int
    159 gf100_ltc_oneinit_tag_ram(struct nvkm_ltc *ltc)
    160 {
    161 	struct nvkm_device *device = ltc->subdev.device;
    162 	struct nvkm_fb *fb = device->fb;
    163 	struct nvkm_ram *ram = fb->ram;
    164 	u32 bits = (nvkm_rd32(device, 0x100c80) & 0x00001000) ? 16 : 17;
    165 	u32 tag_size, tag_margin, tag_align;
    166 	int ret;
    167 
    168 	/* No VRAM, no tags for now. */
    169 	if (!ram) {
    170 		ltc->num_tags = 0;
    171 		goto mm_init;
    172 	}
    173 
    174 	/* tags for 1/4 of VRAM should be enough (8192/4 per GiB of VRAM) */
    175 	ltc->num_tags = (ram->size >> 17) / 4;
    176 	if (ltc->num_tags > (1 << bits))
    177 		ltc->num_tags = 1 << bits; /* we have 16/17 bits in PTE */
    178 	ltc->num_tags = (ltc->num_tags + 63) & ~63; /* round up to 64 */
    179 
    180 	tag_align = ltc->ltc_nr * 0x800;
    181 	tag_margin = (tag_align < 0x6000) ? 0x6000 : tag_align;
    182 
    183 	/* 4 part 4 sub: 0x2000 bytes for 56 tags */
    184 	/* 3 part 4 sub: 0x6000 bytes for 168 tags */
    185 	/*
    186 	 * About 147 bytes per tag. Let's be safe and allocate x2, which makes
    187 	 * 0x4980 bytes for 64 tags, and round up to 0x6000 bytes for 64 tags.
    188 	 *
    189 	 * For 4 GiB of memory we'll have 8192 tags which makes 3 MiB, < 0.1 %.
    190 	 */
    191 	tag_size  = (ltc->num_tags / 64) * 0x6000 + tag_margin;
    192 	tag_size += tag_align;
    193 
    194 	ret = nvkm_ram_get(device, NVKM_RAM_MM_NORMAL, 0x01, 12, tag_size,
    195 			   true, true, &ltc->tag_ram);
    196 	if (ret) {
    197 		ltc->num_tags = 0;
    198 	} else {
    199 		u64 tag_base = nvkm_memory_addr(ltc->tag_ram) + tag_margin;
    200 
    201 		tag_base += tag_align - 1;
    202 		do_div(tag_base, tag_align);
    203 
    204 		ltc->tag_base = tag_base;
    205 	}
    206 
    207 mm_init:
    208 	nvkm_mm_fini(&fb->tags);
    209 	return nvkm_mm_init(&fb->tags, 0, 0, ltc->num_tags, 1);
    210 }
    211 
    212 int
    213 gf100_ltc_oneinit(struct nvkm_ltc *ltc)
    214 {
    215 	struct nvkm_device *device = ltc->subdev.device;
    216 	const u32 parts = nvkm_rd32(device, 0x022438);
    217 	const u32  mask = nvkm_rd32(device, 0x022554);
    218 	const u32 slice = nvkm_rd32(device, 0x17e8dc) >> 28;
    219 	int i;
    220 
    221 	for (i = 0; i < parts; i++) {
    222 		if (!(mask & (1 << i)))
    223 			ltc->ltc_nr++;
    224 	}
    225 	ltc->lts_nr = slice;
    226 
    227 	return gf100_ltc_oneinit_tag_ram(ltc);
    228 }
    229 
    230 static void
    231 gf100_ltc_init(struct nvkm_ltc *ltc)
    232 {
    233 	struct nvkm_device *device = ltc->subdev.device;
    234 	u32 lpg128 = !(nvkm_rd32(device, 0x100c80) & 0x00000001);
    235 
    236 	nvkm_mask(device, 0x17e820, 0x00100000, 0x00000000); /* INTR_EN &= ~0x10 */
    237 	nvkm_wr32(device, 0x17e8d8, ltc->ltc_nr);
    238 	nvkm_wr32(device, 0x17e8d4, ltc->tag_base);
    239 	nvkm_mask(device, 0x17e8c0, 0x00000002, lpg128 ? 0x00000002 : 0x00000000);
    240 }
    241 
    242 static const struct nvkm_ltc_func
    243 gf100_ltc = {
    244 	.oneinit = gf100_ltc_oneinit,
    245 	.init = gf100_ltc_init,
    246 	.intr = gf100_ltc_intr,
    247 	.cbc_clear = gf100_ltc_cbc_clear,
    248 	.cbc_wait = gf100_ltc_cbc_wait,
    249 	.zbc = 16,
    250 	.zbc_clear_color = gf100_ltc_zbc_clear_color,
    251 	.zbc_clear_depth = gf100_ltc_zbc_clear_depth,
    252 	.invalidate = gf100_ltc_invalidate,
    253 	.flush = gf100_ltc_flush,
    254 };
    255 
    256 int
    257 gf100_ltc_new(struct nvkm_device *device, int index, struct nvkm_ltc **pltc)
    258 {
    259 	return nvkm_ltc_new_(&gf100_ltc, device, index, pltc);
    260 }
    261