1 /* $NetBSD: nouveau_nvkm_subdev_instmem_gk20a.c,v 1.10 2024/06/04 21:43:39 riastradh Exp $ */ 2 3 /* 4 * Copyright (c) 2015, NVIDIA CORPORATION. All rights reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 22 * DEALINGS IN THE SOFTWARE. 23 */ 24 25 /* 26 * GK20A does not have dedicated video memory, and to accurately represent this 27 * fact Nouveau will not create a RAM device for it. Therefore its instmem 28 * implementation must be done directly on top of system memory, while 29 * preserving coherency for read and write operations. 30 * 31 * Instmem can be allocated through two means: 32 * 1) If an IOMMU unit has been probed, the IOMMU API is used to make memory 33 * pages contiguous to the GPU. This is the preferred way. 34 * 2) If no IOMMU unit is probed, the DMA API is used to allocate physically 35 * contiguous memory. 36 * 37 * In both cases CPU read and writes are performed by creating a write-combined 38 * mapping. The GPU L2 cache must thus be flushed/invalidated when required. To 39 * be conservative we do this every time we acquire or release an instobj, but 40 * ideally L2 management should be handled at a higher level. 41 * 42 * To improve performance, CPU mappings are not removed upon instobj release. 43 * Instead they are placed into a LRU list to be recycled when the mapped space 44 * goes beyond a certain threshold. At the moment this limit is 1MB. 45 */ 46 #include <sys/cdefs.h> 47 __KERNEL_RCSID(0, "$NetBSD: nouveau_nvkm_subdev_instmem_gk20a.c,v 1.10 2024/06/04 21:43:39 riastradh Exp $"); 48 49 #include "priv.h" 50 51 #include <core/memory.h> 52 #include <core/tegra.h> 53 #include <subdev/ltc.h> 54 #include <subdev/mmu.h> 55 56 #include <linux/nbsd-namespace.h> 57 58 #ifdef __NetBSD__ 59 # define __iomem __nvkm_memory_iomem 60 #endif 61 62 struct gk20a_instobj { 63 struct nvkm_memory memory; 64 struct nvkm_mm_node *mn; 65 struct gk20a_instmem *imem; 66 67 /* CPU mapping */ 68 u32 *vaddr; 69 }; 70 #define gk20a_instobj(p) container_of((p), struct gk20a_instobj, memory) 71 72 #ifndef __NetBSD__ 73 /* 74 * Used for objects allocated using the DMA API 75 */ 76 struct gk20a_instobj_dma { 77 struct gk20a_instobj base; 78 79 dma_addr_t handle; 80 struct nvkm_mm_node r; 81 }; 82 #define gk20a_instobj_dma(p) \ 83 container_of(gk20a_instobj(p), struct gk20a_instobj_dma, base) 84 #endif 85 86 /* 87 * Used for objects flattened using the IOMMU API 88 */ 89 struct gk20a_instobj_iommu { 90 struct gk20a_instobj base; 91 92 /* to link into gk20a_instmem::vaddr_lru */ 93 struct list_head vaddr_node; 94 /* how many clients are using vaddr? */ 95 u32 use_cpt; 96 97 #ifdef __NetBSD__ 98 struct nvkm_mm_node mm_node; /* XXX */ 99 bus_dmamap_t map; 100 int nsegs; 101 bus_dma_segment_t segs[]; 102 #else 103 /* will point to the higher half of pages */ 104 dma_addr_t *dma_addrs; 105 /* array of base.mem->size pages (+ dma_addr_ts) */ 106 struct page *pages[]; 107 #endif 108 }; 109 #define gk20a_instobj_iommu(p) \ 110 container_of(gk20a_instobj(p), struct gk20a_instobj_iommu, base) 111 112 struct gk20a_instmem { 113 struct nvkm_instmem base; 114 115 /* protects vaddr_* and gk20a_instobj::vaddr* */ 116 struct mutex lock; 117 118 /* CPU mappings LRU */ 119 unsigned int vaddr_use; 120 unsigned int vaddr_max; 121 struct list_head vaddr_lru; 122 123 #ifdef __NetBSD__ 124 bus_dma_tag_t dmat; 125 #else 126 /* Only used if IOMMU if present */ 127 struct mutex *mm_mutex; 128 struct nvkm_mm *mm; 129 struct iommu_domain *domain; 130 unsigned long iommu_pgshift; 131 u16 iommu_bit; 132 133 /* Only used by DMA API */ 134 unsigned long attrs; 135 #endif 136 }; 137 #define gk20a_instmem(p) container_of((p), struct gk20a_instmem, base) 138 139 static enum nvkm_memory_target 140 gk20a_instobj_target(struct nvkm_memory *memory) 141 { 142 return NVKM_MEM_TARGET_NCOH; 143 } 144 145 static u8 146 gk20a_instobj_page(struct nvkm_memory *memory) 147 { 148 return 12; 149 } 150 151 static u64 152 gk20a_instobj_addr(struct nvkm_memory *memory) 153 { 154 return (u64)gk20a_instobj(memory)->mn->offset << 12; 155 } 156 157 static u64 158 gk20a_instobj_size(struct nvkm_memory *memory) 159 { 160 return (u64)gk20a_instobj(memory)->mn->length << 12; 161 } 162 163 /* 164 * Recycle the vaddr of obj. Must be called with gk20a_instmem::lock held. 165 */ 166 static void 167 gk20a_instobj_iommu_recycle_vaddr(struct gk20a_instobj_iommu *obj) 168 { 169 struct gk20a_instmem *imem = obj->base.imem; 170 /* there should not be any user left... */ 171 WARN_ON(obj->use_cpt); 172 list_del(&obj->vaddr_node); 173 #ifdef __NetBSD__ 174 bus_size_t size = nvkm_memory_size(&obj->base.memory); 175 bus_dmamem_unmap(imem->dmat, obj->base.vaddr, size); 176 #else 177 vunmap(obj->base.vaddr); 178 #endif 179 obj->base.vaddr = NULL; 180 imem->vaddr_use -= nvkm_memory_size(&obj->base.memory); 181 nvkm_debug(&imem->base.subdev, "vaddr used: %x/%x\n", imem->vaddr_use, 182 imem->vaddr_max); 183 } 184 185 186 /* 187 * Must be called while holding gk20a_instmem::lock 188 */ 189 static void 190 gk20a_instmem_vaddr_gc(struct gk20a_instmem *imem, const u64 size) 191 { 192 while (imem->vaddr_use + size > imem->vaddr_max) { 193 /* no candidate that can be unmapped, abort... */ 194 if (list_empty(&imem->vaddr_lru)) 195 break; 196 197 gk20a_instobj_iommu_recycle_vaddr( 198 list_first_entry(&imem->vaddr_lru, 199 struct gk20a_instobj_iommu, vaddr_node)); 200 } 201 } 202 203 #ifndef __NetBSD__ 204 static void __iomem * 205 gk20a_instobj_acquire_dma(struct nvkm_memory *memory) 206 { 207 struct gk20a_instobj *node = gk20a_instobj(memory); 208 struct gk20a_instmem *imem = node->imem; 209 struct nvkm_ltc *ltc = imem->base.subdev.device->ltc; 210 211 nvkm_ltc_flush(ltc); 212 213 return node->vaddr; 214 } 215 #endif 216 217 static void __iomem * 218 gk20a_instobj_acquire_iommu(struct nvkm_memory *memory) 219 { 220 struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory); 221 struct gk20a_instmem *imem = node->base.imem; 222 struct nvkm_ltc *ltc = imem->base.subdev.device->ltc; 223 const u64 size = nvkm_memory_size(memory); 224 225 nvkm_ltc_flush(ltc); 226 227 mutex_lock(&imem->lock); 228 229 if (node->base.vaddr) { 230 if (!node->use_cpt) { 231 /* remove from LRU list since mapping in use again */ 232 list_del(&node->vaddr_node); 233 } 234 goto out; 235 } 236 237 /* try to free some address space if we reached the limit */ 238 gk20a_instmem_vaddr_gc(imem, size); 239 240 /* map the pages */ 241 #ifdef __NetBSD__ 242 void *kva; 243 if (bus_dmamem_map(imem->dmat, node->segs, node->nsegs, size, 244 &kva, BUS_DMA_WAITOK|BUS_DMA_PREFETCHABLE)) 245 node->base.vaddr = NULL; 246 else 247 node->base.vaddr = kva; 248 #else 249 node->base.vaddr = vmap(node->pages, size >> PAGE_SHIFT, VM_MAP, 250 pgprot_writecombine(PAGE_KERNEL)); 251 #endif 252 if (!node->base.vaddr) { 253 nvkm_error(&imem->base.subdev, "cannot map instobj - " 254 "this is not going to end well...\n"); 255 goto out; 256 } 257 258 imem->vaddr_use += size; 259 nvkm_debug(&imem->base.subdev, "vaddr used: %x/%x\n", 260 imem->vaddr_use, imem->vaddr_max); 261 262 out: 263 node->use_cpt++; 264 mutex_unlock(&imem->lock); 265 266 return node->base.vaddr; 267 } 268 269 #ifndef __NetBSD__ 270 static void 271 gk20a_instobj_release_dma(struct nvkm_memory *memory) 272 { 273 struct gk20a_instobj *node = gk20a_instobj(memory); 274 struct gk20a_instmem *imem = node->imem; 275 struct nvkm_ltc *ltc = imem->base.subdev.device->ltc; 276 277 /* in case we got a write-combined mapping */ 278 wmb(); 279 nvkm_ltc_invalidate(ltc); 280 } 281 #endif 282 283 static void 284 gk20a_instobj_release_iommu(struct nvkm_memory *memory) 285 { 286 struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory); 287 struct gk20a_instmem *imem = node->base.imem; 288 struct nvkm_ltc *ltc = imem->base.subdev.device->ltc; 289 290 mutex_lock(&imem->lock); 291 292 /* we should at least have one user to release... */ 293 if (WARN_ON(node->use_cpt == 0)) 294 goto out; 295 296 /* add unused objs to the LRU list to recycle their mapping */ 297 if (--node->use_cpt == 0) 298 list_add_tail(&node->vaddr_node, &imem->vaddr_lru); 299 300 out: 301 mutex_unlock(&imem->lock); 302 303 wmb(); 304 nvkm_ltc_invalidate(ltc); 305 } 306 307 static u32 308 gk20a_instobj_rd32(struct nvkm_memory *memory, u64 offset) 309 { 310 struct gk20a_instobj *node = gk20a_instobj(memory); 311 312 return node->vaddr[offset / 4]; 313 } 314 315 static void 316 gk20a_instobj_wr32(struct nvkm_memory *memory, u64 offset, u32 data) 317 { 318 struct gk20a_instobj *node = gk20a_instobj(memory); 319 320 node->vaddr[offset / 4] = data; 321 } 322 323 static int 324 gk20a_instobj_map(struct nvkm_memory *memory, u64 offset, struct nvkm_vmm *vmm, 325 struct nvkm_vma *vma, void *argv, u32 argc) 326 { 327 struct gk20a_instobj *node = gk20a_instobj(memory); 328 struct nvkm_vmm_map map = { 329 .memory = &node->memory, 330 .offset = offset, 331 .mem = node->mn, 332 }; 333 334 return nvkm_vmm_map(vmm, vma, argv, argc, &map); 335 } 336 337 #ifndef __NetBSD__ 338 static void * 339 gk20a_instobj_dtor_dma(struct nvkm_memory *memory) 340 { 341 struct gk20a_instobj_dma *node = gk20a_instobj_dma(memory); 342 struct gk20a_instmem *imem = node->base.imem; 343 struct device *dev = imem->base.subdev.device->dev; 344 345 if (unlikely(!node->base.vaddr)) 346 goto out; 347 348 dma_free_attrs(dev, (u64)node->base.mn->length << PAGE_SHIFT, 349 node->base.vaddr, node->handle, imem->attrs); 350 351 out: 352 return node; 353 } 354 #endif 355 356 static void * 357 gk20a_instobj_dtor_iommu(struct nvkm_memory *memory) 358 { 359 struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory); 360 struct gk20a_instmem *imem = node->base.imem; 361 struct device *dev = imem->base.subdev.device->dev; 362 struct nvkm_mm_node *r = node->base.mn; 363 int i; 364 365 if (unlikely(!r)) 366 goto out; 367 368 mutex_lock(&imem->lock); 369 370 /* vaddr has already been recycled */ 371 if (node->base.vaddr) 372 gk20a_instobj_iommu_recycle_vaddr(node); 373 374 mutex_unlock(&imem->lock); 375 376 #ifdef __NetBSD__ 377 __USE(i); 378 __USE(dev); 379 bus_dmamap_unload(imem->dmat, node->map); 380 bus_dmamap_destroy(imem->dmat, node->map); 381 bus_dmamem_free(imem->dmat, node->segs, node->nsegs); 382 #else 383 /* clear IOMMU bit to unmap pages */ 384 r->offset &= ~BIT(imem->iommu_bit - imem->iommu_pgshift); 385 386 /* Unmap pages from GPU address space and free them */ 387 for (i = 0; i < node->base.mn->length; i++) { 388 iommu_unmap(imem->domain, 389 (r->offset + i) << imem->iommu_pgshift, PAGE_SIZE); 390 dma_unmap_page(dev, node->dma_addrs[i], PAGE_SIZE, 391 DMA_BIDIRECTIONAL); 392 __free_page(node->pages[i]); 393 } 394 395 /* Release area from GPU address space */ 396 mutex_lock(imem->mm_mutex); 397 nvkm_mm_free(imem->mm, &r); 398 mutex_unlock(imem->mm_mutex); 399 #endif 400 401 out: 402 return node; 403 } 404 405 #ifndef __NetBSD__ 406 static const struct nvkm_memory_func 407 gk20a_instobj_func_dma = { 408 .dtor = gk20a_instobj_dtor_dma, 409 .target = gk20a_instobj_target, 410 .page = gk20a_instobj_page, 411 .addr = gk20a_instobj_addr, 412 .size = gk20a_instobj_size, 413 .acquire = gk20a_instobj_acquire_dma, 414 .release = gk20a_instobj_release_dma, 415 .map = gk20a_instobj_map, 416 }; 417 #endif 418 419 static const struct nvkm_memory_func 420 gk20a_instobj_func_iommu = { 421 .dtor = gk20a_instobj_dtor_iommu, 422 .target = gk20a_instobj_target, 423 .page = gk20a_instobj_page, 424 .addr = gk20a_instobj_addr, 425 .size = gk20a_instobj_size, 426 .acquire = gk20a_instobj_acquire_iommu, 427 .release = gk20a_instobj_release_iommu, 428 .map = gk20a_instobj_map, 429 }; 430 431 static const struct nvkm_memory_ptrs 432 gk20a_instobj_ptrs = { 433 .rd32 = gk20a_instobj_rd32, 434 .wr32 = gk20a_instobj_wr32, 435 }; 436 437 #ifndef __NetBSD__ 438 static int 439 gk20a_instobj_ctor_dma(struct gk20a_instmem *imem, u32 npages, u32 align, 440 struct gk20a_instobj **_node) 441 { 442 struct gk20a_instobj_dma *node; 443 struct nvkm_subdev *subdev = &imem->base.subdev; 444 struct device *dev = subdev->device->dev; 445 446 if (!(node = kzalloc(sizeof(*node), GFP_KERNEL))) 447 return -ENOMEM; 448 *_node = &node->base; 449 450 nvkm_memory_ctor(&gk20a_instobj_func_dma, &node->base.memory); 451 node->base.memory.ptrs = &gk20a_instobj_ptrs; 452 453 node->base.vaddr = dma_alloc_attrs(dev, npages << PAGE_SHIFT, 454 &node->handle, GFP_KERNEL, 455 imem->attrs); 456 if (!node->base.vaddr) { 457 nvkm_error(subdev, "cannot allocate DMA memory\n"); 458 return -ENOMEM; 459 } 460 461 /* alignment check */ 462 if (unlikely(node->handle & (align - 1))) 463 nvkm_warn(subdev, 464 "memory not aligned as requested: %pad (0x%x)\n", 465 &node->handle, align); 466 467 /* present memory for being mapped using small pages */ 468 node->r.type = 12; 469 node->r.offset = node->handle >> 12; 470 node->r.length = (npages << PAGE_SHIFT) >> 12; 471 472 node->base.mn = &node->r; 473 return 0; 474 } 475 #endif 476 477 static int 478 gk20a_instobj_ctor_iommu(struct gk20a_instmem *imem, u32 npages, u32 align, 479 struct gk20a_instobj **_node) 480 { 481 struct gk20a_instobj_iommu *node; 482 struct nvkm_subdev *subdev = &imem->base.subdev; 483 struct device *dev = subdev->device->dev; 484 struct nvkm_mm_node *r; 485 int ret; 486 int i; 487 488 /* 489 * despite their variable size, instmem allocations are small enough 490 * (< 1 page) to be handled by kzalloc 491 */ 492 #ifdef __NetBSD__ 493 node = kzalloc(struct_size(node, segs, npages), GFP_KERNEL); 494 if (node == NULL) 495 return -ENOMEM; 496 #else 497 if (!(node = kzalloc(sizeof(*node) + ((sizeof(node->pages[0]) + 498 sizeof(*node->dma_addrs)) * npages), GFP_KERNEL))) 499 return -ENOMEM; 500 #endif 501 *_node = &node->base; 502 #ifndef __NetBSD__ 503 node->dma_addrs = (void *)(node->pages + npages); 504 #endif 505 506 nvkm_memory_ctor(&gk20a_instobj_func_iommu, &node->base.memory); 507 node->base.memory.ptrs = &gk20a_instobj_ptrs; 508 509 #ifdef __NetBSD__ 510 bus_size_t nbytes = (bus_size_t)npages << PAGE_SHIFT; 511 __USE(i); 512 __USE(r); 513 __USE(dev); 514 /* XXX errno NetBSD->Linux */ 515 ret = -bus_dmamem_alloc(imem->dmat, nbytes, PAGE_SIZE, 516 PAGE_SIZE, node->segs, npages, &node->nsegs, BUS_DMA_WAITOK); 517 if (ret) 518 fail0: goto out; 519 /* XXX errno NetBSD->Linux */ 520 ret = -bus_dmamap_create(imem->dmat, nbytes, 1, nbytes, PAGE_SIZE, 521 BUS_DMA_WAITOK, &node->map); 522 if (ret) { 523 fail1: bus_dmamem_free(imem->dmat, node->segs, node->nsegs); 524 goto fail0; 525 } 526 /* XXX errno NetBSD->Linux */ 527 ret = -bus_dmamap_load_raw(imem->dmat, node->map, node->segs, 528 node->nsegs, nbytes, BUS_DMA_WAITOK); 529 if (ret) { 530 fail2: __unused 531 bus_dmamap_destroy(imem->dmat, node->map); 532 goto fail1; 533 } 534 node->mm_node.type = 12; /* XXX ??? */ 535 node->mm_node.offset = node->map->dm_segs[0].ds_addr; 536 node->mm_node.length = node->map->dm_segs[0].ds_len; 537 node->base.mn = &node->mm_node; 538 out: 539 #else 540 /* Allocate backing memory */ 541 for (i = 0; i < npages; i++) { 542 struct page *p = alloc_page(GFP_KERNEL); 543 dma_addr_t dma_adr; 544 545 if (p == NULL) { 546 ret = -ENOMEM; 547 goto free_pages; 548 } 549 node->pages[i] = p; 550 dma_adr = dma_map_page(dev, p, 0, PAGE_SIZE, DMA_BIDIRECTIONAL); 551 if (dma_mapping_error(dev, dma_adr)) { 552 nvkm_error(subdev, "DMA mapping error!\n"); 553 ret = -ENOMEM; 554 goto free_pages; 555 } 556 node->dma_addrs[i] = dma_adr; 557 } 558 559 mutex_lock(imem->mm_mutex); 560 /* Reserve area from GPU address space */ 561 ret = nvkm_mm_head(imem->mm, 0, 1, npages, npages, 562 align >> imem->iommu_pgshift, &r); 563 mutex_unlock(imem->mm_mutex); 564 if (ret) { 565 nvkm_error(subdev, "IOMMU space is full!\n"); 566 goto free_pages; 567 } 568 569 /* Map into GPU address space */ 570 for (i = 0; i < npages; i++) { 571 u32 offset = (r->offset + i) << imem->iommu_pgshift; 572 573 ret = iommu_map(imem->domain, offset, node->dma_addrs[i], 574 PAGE_SIZE, IOMMU_READ | IOMMU_WRITE); 575 if (ret < 0) { 576 nvkm_error(subdev, "IOMMU mapping failure: %d\n", ret); 577 578 while (i-- > 0) { 579 offset -= PAGE_SIZE; 580 iommu_unmap(imem->domain, offset, PAGE_SIZE); 581 } 582 goto release_area; 583 } 584 } 585 586 /* IOMMU bit tells that an address is to be resolved through the IOMMU */ 587 r->offset |= BIT(imem->iommu_bit - imem->iommu_pgshift); 588 589 node->base.mn = r; 590 return 0; 591 592 release_area: 593 mutex_lock(imem->mm_mutex); 594 nvkm_mm_free(imem->mm, &r); 595 mutex_unlock(imem->mm_mutex); 596 597 free_pages: 598 for (i = 0; i < npages && node->pages[i] != NULL; i++) { 599 dma_addr_t dma_addr = node->dma_addrs[i]; 600 if (dma_addr) 601 dma_unmap_page(dev, dma_addr, PAGE_SIZE, 602 DMA_BIDIRECTIONAL); 603 __free_page(node->pages[i]); 604 } 605 #endif 606 607 return ret; 608 } 609 610 static int 611 gk20a_instobj_new(struct nvkm_instmem *base, u32 size, u32 align, bool zero, 612 struct nvkm_memory **pmemory) 613 { 614 struct gk20a_instmem *imem = gk20a_instmem(base); 615 struct nvkm_subdev *subdev = &imem->base.subdev; 616 struct gk20a_instobj *node = NULL; 617 int ret = 0; 618 619 #ifdef __NetBSD__ 620 nvkm_debug(subdev, "%s (%s): size: %x align: %x\n", __func__, 621 "bus_dma", size, align); 622 #else 623 nvkm_debug(subdev, "%s (%s): size: %x align: %x\n", __func__, 624 imem->domain ? "IOMMU" : "DMA", size, align); 625 #endif 626 627 /* Round size and align to page bounds */ 628 size = max(roundup(size, PAGE_SIZE), PAGE_SIZE); 629 align = max(roundup(align, PAGE_SIZE), PAGE_SIZE); 630 631 #ifdef __NetBSD__ 632 ret = gk20a_instobj_ctor_iommu(imem, size >> PAGE_SHIFT, align, &node); 633 #else 634 if (imem->domain) 635 ret = gk20a_instobj_ctor_iommu(imem, size >> PAGE_SHIFT, 636 align, &node); 637 else 638 ret = gk20a_instobj_ctor_dma(imem, size >> PAGE_SHIFT, 639 align, &node); 640 #endif 641 *pmemory = node ? &node->memory : NULL; 642 if (ret) 643 return ret; 644 645 node->imem = imem; 646 647 nvkm_debug(subdev, "alloc size: 0x%x, align: 0x%x, gaddr: 0x%"PRIx64"\n", 648 size, align, (u64)node->mn->offset << 12); 649 650 return 0; 651 } 652 653 static void * 654 gk20a_instmem_dtor(struct nvkm_instmem *base) 655 { 656 struct gk20a_instmem *imem = gk20a_instmem(base); 657 658 /* perform some sanity checks... */ 659 if (!list_empty(&imem->vaddr_lru)) 660 nvkm_warn(&base->subdev, "instobj LRU not empty!\n"); 661 662 if (imem->vaddr_use != 0) 663 nvkm_warn(&base->subdev, "instobj vmap area not empty! " 664 "0x%x bytes still mapped\n", imem->vaddr_use); 665 666 mutex_destroy(&imem->lock); 667 668 return imem; 669 } 670 671 static const struct nvkm_instmem_func 672 gk20a_instmem = { 673 .dtor = gk20a_instmem_dtor, 674 .memory_new = gk20a_instobj_new, 675 .zero = false, 676 }; 677 678 int 679 gk20a_instmem_new(struct nvkm_device *device, int index, 680 struct nvkm_instmem **pimem) 681 { 682 #ifndef __NetBSD__ 683 struct nvkm_device_tegra *tdev = device->func->tegra(device); 684 #endif 685 struct gk20a_instmem *imem; 686 687 if (!(imem = kzalloc(sizeof(*imem), GFP_KERNEL))) 688 return -ENOMEM; 689 nvkm_instmem_ctor(&gk20a_instmem, device, index, &imem->base); 690 mutex_init(&imem->lock); 691 *pimem = &imem->base; 692 693 /* do not allow more than 1MB of CPU-mapped instmem */ 694 imem->vaddr_use = 0; 695 imem->vaddr_max = 0x100000; 696 INIT_LIST_HEAD(&imem->vaddr_lru); 697 698 #ifdef __NetBSD__ 699 imem->dmat = device->func->dma_tag(device); 700 nvkm_info(&imem->base.subdev, "using bus_dma\n"); 701 #else 702 if (tdev->iommu.domain) { 703 imem->mm_mutex = &tdev->iommu.mutex; 704 imem->mm = &tdev->iommu.mm; 705 imem->domain = tdev->iommu.domain; 706 imem->iommu_pgshift = tdev->iommu.pgshift; 707 imem->iommu_bit = tdev->func->iommu_bit; 708 709 nvkm_info(&imem->base.subdev, "using IOMMU\n"); 710 } else { 711 imem->attrs = DMA_ATTR_NON_CONSISTENT | 712 DMA_ATTR_WEAK_ORDERING | 713 DMA_ATTR_WRITE_COMBINE; 714 715 nvkm_info(&imem->base.subdev, "using DMA API\n"); 716 } 717 #endif 718 719 return 0; 720 } 721