Home | History | Annotate | Line # | Download | only in zaurus
      1 /*	$NetBSD: machdep.c,v 1.55 2024/05/13 00:08:06 msaitoh Exp $	*/
      2 /*	$OpenBSD: zaurus_machdep.c,v 1.25 2006/06/20 18:24:04 todd Exp $	*/
      3 
      4 /*
      5  * Copyright (c) 2002, 2003  Genetec Corporation.  All rights reserved.
      6  * Written by Hiroyuki Bessho for Genetec Corporation.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. The name of Genetec Corporation may not be used to endorse or
     17  *    promote products derived from this software without specific prior
     18  *    written permission.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
     21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL GENETEC CORPORATION
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  *
     32  * Machine dependent functions for kernel setup for
     33  * Intel DBPXA250 evaluation board (a.k.a. Lubbock).
     34  * Based on iq80310_machhdep.c
     35  */
     36 
     37 /*
     38  * Copyright (c) 2001 Wasabi Systems, Inc.
     39  * All rights reserved.
     40  *
     41  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed for the NetBSD Project by
     54  *	Wasabi Systems, Inc.
     55  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     56  *    or promote products derived from this software without specific prior
     57  *    written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     61  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     62  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     63  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     64  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     65  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     66  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     67  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     68  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     69  * POSSIBILITY OF SUCH DAMAGE.
     70  */
     71 
     72 /*
     73  * Copyright (c) 1997,1998 Mark Brinicombe.
     74  * Copyright (c) 1997,1998 Causality Limited.
     75  * All rights reserved.
     76  *
     77  * Redistribution and use in source and binary forms, with or without
     78  * modification, are permitted provided that the following conditions
     79  * are met:
     80  * 1. Redistributions of source code must retain the above copyright
     81  *    notice, this list of conditions and the following disclaimer.
     82  * 2. Redistributions in binary form must reproduce the above copyright
     83  *    notice, this list of conditions and the following disclaimer in the
     84  *    documentation and/or other materials provided with the distribution.
     85  * 3. All advertising materials mentioning features or use of this software
     86  *    must display the following acknowledgement:
     87  *	This product includes software developed by Mark Brinicombe
     88  *	for the NetBSD Project.
     89  * 4. The name of the company nor the name of the author may be used to
     90  *    endorse or promote products derived from this software without specific
     91  *    prior written permission.
     92  *
     93  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     94  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     95  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     96  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     97  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     98  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     99  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    100  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    101  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    102  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    103  * SUCH DAMAGE.
    104  *
    105  * Machine dependent functions for kernel setup for Intel IQ80310 evaluation
    106  * boards using RedBoot firmware.
    107  */
    108 
    109 #include <sys/cdefs.h>
    110 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.55 2024/05/13 00:08:06 msaitoh Exp $");
    111 
    112 #include "opt_ddb.h"
    113 #include "opt_kgdb.h"
    114 #include "opt_modular.h"
    115 #include "opt_md.h"
    116 #include "opt_com.h"
    117 #include "ksyms.h"
    118 
    119 #include "opt_kloader.h"
    120 #ifndef KLOADER_KERNEL_PATH
    121 #define KLOADER_KERNEL_PATH	"/netbsd"
    122 #endif
    123 
    124 #include <sys/param.h>
    125 #include <sys/device.h>
    126 #include <sys/systm.h>
    127 #include <sys/kernel.h>
    128 #include <sys/exec.h>
    129 #include <sys/proc.h>
    130 #include <sys/msgbuf.h>
    131 #include <sys/reboot.h>
    132 #include <sys/termios.h>
    133 #include <sys/boot_flag.h>
    134 #include <sys/cpu.h>
    135 #include <sys/conf.h>
    136 #include <sys/queue.h>
    137 #include <sys/bus.h>
    138 
    139 #include <uvm/uvm_extern.h>
    140 
    141 #include <dev/cons.h>
    142 
    143 #include <dev/ic/comreg.h>
    144 
    145 #include <machine/db_machdep.h>
    146 #include <ddb/db_sym.h>
    147 #include <ddb/db_extern.h>
    148 #ifdef KGDB
    149 #include <sys/kgdb.h>
    150 #endif
    151 
    152 #include <machine/bootconfig.h>
    153 #include <machine/bootinfo.h>
    154 #ifdef KLOADER
    155 #include <machine/kloader.h>
    156 #endif
    157 
    158 #include <arm/locore.h>
    159 #include <arm/undefined.h>
    160 #include <arm/arm32/machdep.h>
    161 
    162 #include <arm/xscale/pxa2x0cpu.h>
    163 #include <arm/xscale/pxa2x0reg.h>
    164 #include <arm/xscale/pxa2x0var.h>
    165 #include <arm/xscale/pxa2x0_gpio.h>
    166 
    167 #include <arm/sa11x0/sa11x0_ostvar.h>
    168 
    169 #include <arch/zaurus/zaurus/zaurus_reg.h>
    170 #include <arch/zaurus/zaurus/zaurus_var.h>
    171 
    172 #include <zaurus/dev/scoopreg.h>
    173 #include <zaurus/dev/zlcdvar.h>
    174 #include <zaurus/dev/w100lcdvar.h>
    175 
    176 #if 0	/* XXX */
    177 #include "apm.h"
    178 #endif	/* XXX */
    179 #if NAPM > 0
    180 #include <zaurus/dev/zapmvar.h>
    181 #endif
    182 
    183 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
    184 #define	KERNEL_TEXT_BASE	((vaddr_t)&KERNEL_BASE_virt)
    185 #ifndef	KERNEL_VM_BASE
    186 #define	KERNEL_VM_BASE		(KERNEL_BASE + 0x01000000)
    187 #endif
    188 
    189 /*
    190  * The range 0xc4000000 - 0xcfffffff is available for kernel VM space
    191  * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
    192  */
    193 #define KERNEL_VM_SIZE		0x0c000000
    194 
    195 int zaurusmod;			/* Zaurus model */
    196 
    197 BootConfig bootconfig;		/* Boot config storage */
    198 char *boot_file = NULL;
    199 char *boot_args = NULL;
    200 
    201 paddr_t physical_start;
    202 paddr_t physical_freestart;
    203 paddr_t physical_freeend;
    204 paddr_t physical_end;
    205 u_int free_pages;
    206 
    207 #ifndef PMAP_STATIC_L1S
    208 int max_processes = 64;			/* Default number */
    209 #endif	/* !PMAP_STATIC_L1S */
    210 
    211 /* Physical and virtual addresses for some global pages */
    212 pv_addr_t minidataclean;
    213 
    214 paddr_t msgbufphys;
    215 
    216 #define KERNEL_PT_SYS		0	/* Page table for mapping proc0 zero page */
    217 #define KERNEL_PT_KERNEL	1	/* Page table for mapping kernel */
    218 #define	KERNEL_PT_KERNEL_NUM	((KERNEL_VM_BASE - KERNEL_BASE) >> 22)
    219 #define KERNEL_PT_VMDATA	(KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
    220 				        /* Page tables for mapping kernel VM */
    221 #define	KERNEL_PT_VMDATA_NUM	4	/* start with 16MB of KVM */
    222 #define NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
    223 
    224 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
    225 
    226 const char *console =
    227 #ifdef FFUARTCONSOLE
    228 	"ffuart";
    229 #else
    230 	"glass";
    231 #endif
    232 int glass_console = 0;
    233 
    234 #ifdef KLOADER
    235 pv_addr_t bootinfo_pt;
    236 pv_addr_t bootinfo_pg;
    237 struct kloader_bootinfo kbootinfo;
    238 int kloader_howto = 0;
    239 #else
    240 struct bootinfo _bootinfo;
    241 #endif
    242 struct bootinfo *bootinfo;
    243 struct btinfo_howto *bi_howto;
    244 
    245 extern char etext[], end[];
    246 extern void *esym;
    247 #if NKSYMS || defined(DDB) || defined(MODULAR)
    248 #include <sys/exec_elf.h>
    249 #endif
    250 
    251 #define	KERNEL_BASE_PHYS	((paddr_t)&KERNEL_BASE_phys)
    252 #define	BOOTINFO_PAGE		(KERNEL_BASE_PHYS - PAGE_SIZE)
    253 
    254 /* Prototypes */
    255 void	consinit(void);
    256 void	dumpsys(void);
    257 #ifdef KGDB
    258 void	kgdb_port_init(void);
    259 #endif
    260 #ifdef KLOADER
    261 static int parseboot(char *arg, char **filename, int *howto);
    262 static char *gettrailer(char *arg);
    263 static int parseopts(const char *opts, int *howto);
    264 #endif
    265 
    266 #if defined(CPU_XSCALE_PXA250)
    267 static struct pxa2x0_gpioconf pxa25x_boarddep_gpioconf[] = {
    268 	{  34, GPIO_ALT_FN_1_IN },	/* FFRXD */
    269 	{  35, GPIO_ALT_FN_1_IN },	/* FFCTS */
    270 	{  39, GPIO_ALT_FN_2_OUT },	/* FFTXD */
    271 	{  40, GPIO_ALT_FN_2_OUT },	/* FFDTR */
    272 	{  41, GPIO_ALT_FN_2_OUT },	/* FFRTS */
    273 
    274 	{  44, GPIO_ALT_FN_1_IN },	/* BTCST */
    275 	{  45, GPIO_ALT_FN_2_OUT },	/* BTRST */
    276 
    277 	{ -1 }
    278 };
    279 static struct pxa2x0_gpioconf *pxa25x_zaurus_gpioconf[] = {
    280 	pxa25x_com_btuart_gpioconf,
    281 	pxa25x_com_ffuart_gpioconf,
    282 	pxa25x_com_stuart_gpioconf,
    283 	pxa25x_boarddep_gpioconf,
    284 	NULL
    285 };
    286 #else
    287 static struct pxa2x0_gpioconf *pxa25x_zaurus_gpioconf[] = {
    288 	NULL
    289 };
    290 #endif
    291 #if defined(CPU_XSCALE_PXA270)
    292 static struct pxa2x0_gpioconf pxa27x_boarddep_gpioconf[] = {
    293 	{  34, GPIO_ALT_FN_1_IN },	/* FFRXD */
    294 	{  35, GPIO_ALT_FN_1_IN },	/* FFCTS */
    295 	{  39, GPIO_ALT_FN_2_OUT },	/* FFTXD */
    296 	{  40, GPIO_ALT_FN_2_OUT },	/* FFDTR */
    297 	{  41, GPIO_ALT_FN_2_OUT },	/* FFRTS */
    298 
    299 	{  44, GPIO_ALT_FN_1_IN },	/* BTCST */
    300 	{  45, GPIO_ALT_FN_2_OUT },	/* BTRST */
    301 
    302 	{ 104, GPIO_ALT_FN_1_OUT },	/* pSKTSEL */
    303 
    304 	{ -1 }
    305 };
    306 static struct pxa2x0_gpioconf *pxa27x_zaurus_gpioconf[] = {
    307 	pxa27x_com_btuart_gpioconf,
    308 	pxa27x_com_ffuart_gpioconf,
    309 	pxa27x_com_stuart_gpioconf,
    310 	pxa27x_i2c_gpioconf,
    311 	pxa27x_i2s_gpioconf,
    312 	pxa27x_pxamci_gpioconf,
    313 	pxa27x_boarddep_gpioconf,
    314 	NULL
    315 };
    316 #else
    317 static struct pxa2x0_gpioconf *pxa27x_zaurus_gpioconf[] = {
    318 	NULL
    319 };
    320 #endif
    321 
    322 /*
    323  * void cpu_reboot(int howto, char *bootstr)
    324  *
    325  * Reboots the system
    326  *
    327  * Deal with any syncing, unmounting, dumping and shutdown hooks,
    328  * then reset the CPU.
    329  */
    330 void
    331 cpu_reboot(int howto, char *bootstr)
    332 {
    333 	/*
    334 	 * If we are still cold then hit the air brakes
    335 	 * and crash to earth fast
    336 	 */
    337 	if (cold) {
    338 		howto |= RB_HALT;
    339 		goto haltsys;
    340 	}
    341 
    342 	boothowto = howto;
    343 
    344 #ifdef KLOADER
    345 	if ((howto & RB_HALT) == 0 && panicstr == NULL) {
    346 		char *filename = NULL;
    347 
    348 		if ((howto & RB_STRING) && (bootstr != NULL)) {
    349 			if (parseboot(bootstr, &filename, &kloader_howto) == 0){
    350 				filename = NULL;
    351 				kloader_howto = 0;
    352 			}
    353 		}
    354 		if (kloader_howto != 0) {
    355 			printf("howto: 0x%x\n", kloader_howto);
    356 		}
    357 		if (filename != NULL) {
    358 			kloader_reboot_setup(filename);
    359 		} else {
    360 			kloader_reboot_setup(KLOADER_KERNEL_PATH);
    361 		}
    362 	}
    363 #endif
    364 
    365 	/*
    366 	 * If RB_NOSYNC was not specified sync the discs.
    367 	 * Note: Unless cold is set to 1 here, syslogd will die during the
    368 	 * unmount.  It looks like syslogd is getting woken up only to find
    369 	 * that it cannot page part of the binary in as the filesystem has
    370 	 * been unmounted.
    371 	 */
    372 	if (!(howto & RB_NOSYNC)) {
    373 		bootsync();
    374 	}
    375 
    376 	/* Wait 3s */
    377 	delay(3 * 1000 * 1000);
    378 
    379 	/* Say NO to interrupts */
    380 	splhigh();
    381 
    382 	/* Do a dump if requested. */
    383 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
    384 		dumpsys();
    385 
    386 haltsys:
    387 	/* Run any shutdown hooks */
    388 	doshutdownhooks();
    389 
    390 	pmf_system_shutdown(boothowto);
    391 
    392 	/* Make sure IRQ's are disabled */
    393 	IRQdisable;
    394 
    395 	if (howto & RB_HALT) {
    396 #if NAPM > 0
    397 		if (howto & RB_POWERDOWN) {
    398 			printf("\nAttempting to power down...\n");
    399 			zapm_poweroff();
    400 		}
    401 #endif
    402 		printf("The operating system has halted.\n");
    403 		printf("Please press any key to reboot.\n\n");
    404 		cngetc();
    405 	}
    406 #ifdef KLOADER
    407 	else if (panicstr == NULL) {
    408 		delay(1 * 1000 * 1000);
    409 		kloader_reboot();
    410 		printf("\n");
    411 		printf("Failed to load a new kernel.\n");
    412 		printf("Please press any key to reboot.\n\n");
    413 		cngetc();
    414 	}
    415 #endif
    416 
    417 	printf("rebooting...\n");
    418 	delay(1 * 1000 * 1000);
    419 	zaurus_restart();
    420 
    421 	printf("REBOOT FAILED!!!\n");
    422 	for (;;)
    423 		continue;
    424 	/*NOTREACHED*/
    425 }
    426 
    427 /*
    428  * Do a GPIO reset, immediately causing the processor to begin the normal
    429  * boot sequence.  See 2.7 Reset in the PXA27x Developer's Manual for the
    430  * summary of effects of this kind of reset.
    431  */
    432 void
    433 zaurus_restart(void)
    434 {
    435 	uint32_t rv;
    436 
    437 	if (ZAURUS_ISC1000 || ZAURUS_ISC3000) {
    438 		rv = pxa2x0_memctl_read(MEMCTL_MSC0);
    439 		if ((rv & 0xffff0000) == 0x7ff00000) {
    440 			pxa2x0_memctl_write(MEMCTL_MSC0,
    441 			    (rv & 0xffff) | 0x7ee00000);
    442 		}
    443 
    444 		/* External reset circuit presumably asserts nRESET_GPIO. */
    445 		pxa2x0_gpio_set_function(89, GPIO_OUT | GPIO_SET);
    446 	} else {
    447 		/* SL-C7x0/SL-C860 */
    448 		/* Clear all reset status */
    449 		ioreg_write(ZAURUS_POWMAN_VBASE + POWMAN_RCSR,
    450 		    POWMAN_HWR|POWMAN_WDR|POWMAN_SMR|POWMAN_GPR);
    451 
    452 		/* watchdog reset */
    453 		saost_reset();
    454 	}
    455 	delay(1 * 1000 * 1000);	/* wait 1s */
    456 }
    457 
    458 static inline pd_entry_t *
    459 read_ttb(void)
    460 {
    461 	u_long ttb;
    462 
    463 	__asm volatile("mrc p15, 0, %0, c2, c0, 0" : "=r" (ttb));
    464 
    465 	return (pd_entry_t *)(ttb & ~((1 << 14) - 1));
    466 }
    467 
    468 /*
    469  * Static device mappings. These peripheral registers are mapped at
    470  * fixed virtual addresses very early in initarm() so that we can use
    471  * them while booting the kernel, and stay at the same address
    472  * throughout whole kernel's life time.
    473  *
    474  * We use this table twice; once with bootstrap page table, and once
    475  * with kernel's page table which we build up in initarm().
    476  *
    477  * Since we map these registers into the bootstrap page table using
    478  * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
    479  * registers segment-aligned and segment-rounded in order to avoid
    480  * using the 2nd page tables.
    481  */
    482 static const struct pmap_devmap zaurus_devmap[] = {
    483     DEVMAP_ENTRY(
    484 	    ZAURUS_GPIO_VBASE,
    485 	    PXA2X0_GPIO_BASE,
    486 	    PXA2X0_GPIO_SIZE
    487     ),
    488     DEVMAP_ENTRY(
    489 	    ZAURUS_CLKMAN_VBASE,
    490 	    PXA2X0_CLKMAN_BASE,
    491 	    PXA2X0_CLKMAN_SIZE
    492     ),
    493     DEVMAP_ENTRY(
    494 	    ZAURUS_INTCTL_VBASE,
    495 	    PXA2X0_INTCTL_BASE,
    496 	    PXA2X0_INTCTL_SIZE
    497     ),
    498     DEVMAP_ENTRY(
    499 	    ZAURUS_MEMCTL_VBASE,
    500 	    PXA2X0_MEMCTL_BASE,
    501 	    PXA2X0_MEMCTL_SIZE
    502     ),
    503     DEVMAP_ENTRY(
    504 	    ZAURUS_SCOOP0_VBASE,
    505 	    C3000_SCOOP0_BASE,
    506 	    SCOOP_SIZE
    507     ),
    508     DEVMAP_ENTRY(
    509 	    ZAURUS_SCOOP1_VBASE,
    510 	    C3000_SCOOP1_BASE,
    511 	    SCOOP_SIZE
    512     ),
    513     DEVMAP_ENTRY(
    514 	    ZAURUS_FFUART_VBASE,
    515 	    PXA2X0_FFUART_BASE,
    516 	    4 * COM_NPORTS
    517     ),
    518     DEVMAP_ENTRY(
    519 	    ZAURUS_BTUART_VBASE,
    520 	    PXA2X0_BTUART_BASE,
    521 	    4 * COM_NPORTS
    522     ),
    523     DEVMAP_ENTRY(
    524 	    ZAURUS_STUART_VBASE,
    525 	    PXA2X0_STUART_BASE,
    526 	    4 * COM_NPORTS
    527     ),
    528     DEVMAP_ENTRY(
    529 	    ZAURUS_POWMAN_VBASE,
    530 	    PXA2X0_POWMAN_BASE,
    531 	    PXA2X0_POWMAN_SIZE
    532     ),
    533 
    534     DEVMAP_ENTRY_END
    535 };
    536 
    537 void green_on(int virt);
    538 void
    539 green_on(int virt)
    540 {
    541 	/* clobber green led p */
    542 	volatile uint16_t *p;
    543 
    544 	if (virt) {
    545 		p = (volatile uint16_t *)(ZAURUS_SCOOP0_VBASE + SCOOP_GPWR);
    546 	} else {
    547 		p = (volatile uint16_t *)(C3000_SCOOP0_BASE + SCOOP_GPWR);
    548 	}
    549 
    550 	*p |= (1 << SCOOP0_LED_GREEN);
    551 }
    552 
    553 void irda_on(int virt);
    554 void
    555 irda_on(int virt)
    556 {
    557 	/* clobber IrDA led p */
    558 	volatile uint16_t *p;
    559 
    560 	if (virt) {
    561 		/* XXX scoop1 registers are not page-aligned! */
    562 		int o = C3000_SCOOP1_BASE - trunc_page(C3000_SCOOP1_BASE);
    563 		p = (volatile uint16_t *)(ZAURUS_SCOOP1_VBASE + o + SCOOP_GPWR);
    564 	} else {
    565 		p = (volatile uint16_t *)(C3000_SCOOP1_BASE + SCOOP_GPWR);
    566 	}
    567 
    568 	*p &= ~(1 << SCOOP1_IR_ON);
    569 }
    570 
    571 static int
    572 hw_isc1000(void)
    573 {
    574 	/* XXX scoop1 registers are not page-aligned! */
    575 	const u_long baseaddr = ZAURUS_SCOOP1_VBASE +
    576 	    (C3000_SCOOP1_BASE - trunc_page(C3000_SCOOP1_BASE));
    577 	uint16_t mcr, cdr, csr, cpr, ccr, irr, irm, imr, isr;
    578 	uint16_t gpcr, gpwr, gprr;
    579 
    580 	mcr = ioreg16_read(baseaddr + SCOOP_MCR);
    581 	cdr = ioreg16_read(baseaddr + SCOOP_CDR);
    582 	csr = ioreg16_read(baseaddr + SCOOP_CSR);
    583 	cpr = ioreg16_read(baseaddr + SCOOP_CPR);
    584 	ccr = ioreg16_read(baseaddr + SCOOP_CCR);
    585 	irr = ioreg16_read(baseaddr + SCOOP_IRR);
    586 	irm = ioreg16_read(baseaddr + SCOOP_IRM);
    587 	imr = ioreg16_read(baseaddr + SCOOP_IMR);
    588 	isr = ioreg16_read(baseaddr + SCOOP_ISR);
    589 	gpcr = ioreg16_read(baseaddr + SCOOP_GPCR);
    590 	gpwr = ioreg16_read(baseaddr + SCOOP_GPWR);
    591 	gprr = ioreg16_read(baseaddr + SCOOP_GPRR);
    592 
    593 	if (mcr == 0 && cdr == 0 && csr == 0 && cpr == 0 && ccr == 0 &&
    594 	    irr == 0 && irm == 0 && imr == 0 && isr == 0 &&
    595 	    gpcr == 0 && gpwr == 0 && gprr == 0) {
    596 	    /* scoop1 isn't found: hardware is SL-C1000 */
    597 	    return 1;
    598 	}
    599 	return 0;
    600 }
    601 
    602 /*
    603  * vaddr_t initarm(...)
    604  *
    605  * Initial entry point on startup. This gets called before main() is
    606  * entered.
    607  * It should be responsible for setting up everything that must be
    608  * in place when main is called.
    609  * This includes
    610  *   Taking a copy of the boot configuration structure.
    611  *   Initialising the physical console so characters can be printed.
    612  *   Setting up page tables for the kernel
    613  *   Relocating the kernel to the bottom of physical memory
    614  */
    615 vaddr_t
    616 initarm(void *arg)
    617 {
    618 	extern char KERNEL_BASE_phys[], KERNEL_BASE_virt[];
    619 	int loop;
    620 	int loop1;
    621 	u_int l1pagetable;
    622 	paddr_t memstart;
    623 	psize_t memsize;
    624 	struct pxa2x0_gpioconf **zaurus_gpioconf;
    625 	u_int *magicaddr;
    626 #if NKSYMS || defined(DDB) || defined(MODULAR)
    627 	u_int symbolsize;
    628 #endif
    629 
    630 	/* Get ready for zaurus_restart() */
    631 	pxa2x0_memctl_bootstrap(PXA2X0_MEMCTL_BASE);
    632 
    633 	/*
    634 	 * Heads up ... Setup the CPU / MMU / TLB functions
    635 	 */
    636 	if (set_cpufuncs())
    637 		panic("cpu not recognized!");
    638 
    639 	/* Get ready for splfoo() */
    640 	pxa2x0_intr_bootstrap(PXA2X0_INTCTL_BASE);
    641 
    642 	/* map some peripheral registers at static I/O area */
    643 	pmap_devmap_bootstrap((vaddr_t)read_ttb(), zaurus_devmap);
    644 
    645 	/* set new memctl register address so that zaurus_restart() doesn't
    646 	   touch illegal address. */
    647 	pxa2x0_memctl_bootstrap(ZAURUS_MEMCTL_VBASE);
    648 
    649 	/* set new intc register address so that splfoo() doesn't
    650 	   touch illegal address.  */
    651 	pxa2x0_intr_bootstrap(ZAURUS_INTCTL_VBASE);
    652 
    653 	/*
    654 	 * Examine the boot args string for options we need to know about
    655 	 * now.
    656 	 */
    657 	magicaddr = (u_int *)(KERNEL_BASE_PHYS - BOOTARGS_BUFSIZ);
    658 	if (*magicaddr == BOOTARGS_MAGIC) {
    659 #ifdef KLOADER
    660 		bootinfo = &kbootinfo.bootinfo;
    661 #else
    662 		bootinfo = &_bootinfo;
    663 #endif
    664 		memcpy(bootinfo, (void *)(KERNEL_BASE_PHYS - BOOTINFO_MAXSIZE),
    665 		    BOOTINFO_MAXSIZE);
    666 		bi_howto = lookup_bootinfo(BTINFO_HOWTO);
    667 		boothowto = (bi_howto != NULL) ? bi_howto->howto : RB_AUTOBOOT;
    668 	} else {
    669 		boothowto = RB_AUTOBOOT;
    670 	}
    671 	*magicaddr = 0xdeadbeef;
    672 	if (boothowto & RB_MD1) {
    673 		/* serial console */
    674 		console = "ffuart";
    675 	}
    676 
    677 	memstart = PXA2X0_SDRAM0_START;
    678 	memsize =  0x04000000; /* 64MB */
    679 
    680 	/*
    681 	 * This test will work for now but has to be revised when support
    682 	 * for other models is added.
    683 	 */
    684 	if ((cputype & ~CPU_ID_XSCALE_COREREV_MASK) == CPU_ID_PXA27X) {
    685 		if (hw_isc1000())
    686 			zaurusmod = ZAURUS_C1000;	/* SL-C1000 */
    687 		else
    688 			zaurusmod = ZAURUS_C3000;	/* SL-C3x00 */
    689 		zaurus_gpioconf = pxa27x_zaurus_gpioconf;
    690 	} else {
    691 		zaurusmod = ZAURUS_C860;		/* SL-C7x0/860 */
    692 		if (cputype == CPU_ID_PXA250B) {
    693 			/* SL-C700 */
    694 			memsize =  0x02000000;		/* 32MB */
    695 		}
    696 		zaurus_gpioconf = pxa25x_zaurus_gpioconf;
    697 	}
    698 
    699 	/* setup a serial console for very early boot */
    700 	pxa2x0_gpio_bootstrap(ZAURUS_GPIO_VBASE);
    701 	pxa2x0_gpio_config(zaurus_gpioconf);
    702 	pxa2x0_clkman_bootstrap(ZAURUS_CLKMAN_VBASE);
    703 	if (strcmp(console, "glass") != 0)
    704 		consinit();
    705 #ifdef KGDB
    706 	kgdb_port_init();
    707 #endif
    708 
    709 #ifdef VERBOSE_INIT_ARM
    710 	/* Talk to the user */
    711 	printf("\nNetBSD/zaurus booting ...\n");
    712 #endif
    713 
    714 #ifdef KLOADER
    715 	/* copy boot parameter for kloader */
    716 	kloader_bootinfo_set(&kbootinfo, 0, NULL, NULL, true);
    717 #endif
    718 
    719 #ifdef VERBOSE_INIT_ARM
    720 	printf("initarm: Configuring system ...\n");
    721 #endif
    722 
    723 	/* Fake bootconfig structure for the benefit of pmap.c */
    724 	/* XXX must make the memory description h/w independent */
    725 	bootconfig.dramblocks = 1;
    726 	bootconfig.dram[0].address = memstart;
    727 	bootconfig.dram[0].pages = memsize / PAGE_SIZE;
    728 
    729 	/*
    730 	 * Set up the variables that define the availability of
    731 	 * physical memory.  For now, we're going to set
    732 	 * physical_freestart to 0xa0200000 (where the kernel
    733 	 * was loaded), and allocate the memory we need downwards.
    734 	 * If we get too close to the page tables that RedBoot
    735 	 * set up, we will panic.  We will update physical_freestart
    736 	 * and physical_freeend later to reflect what pmap_bootstrap()
    737 	 * wants to see.
    738 	 *
    739 	 * XXX pmap_bootstrap() needs an enema.
    740 	 */
    741 	physical_start = bootconfig.dram[0].address;
    742 	physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
    743 
    744 	physical_freestart = PXA2X0_SDRAM0_START + 0x9000;
    745 	physical_freeend = BOOTINFO_PAGE;
    746 
    747 	physmem = (physical_end - physical_start) / PAGE_SIZE;
    748 
    749 #ifdef VERBOSE_INIT_ARM
    750 	/* Tell the user about the memory */
    751 	printf("physmemory: %lu pages at 0x%08lx -> 0x%08lx\n", physmem,
    752 	    physical_start, physical_end - 1);
    753 #endif
    754 
    755 	/*
    756 	 * Okay, the kernel starts 2MB in from the bottom of physical
    757 	 * memory.  We are going to allocate our bootstrap pages downwards
    758 	 * from there.
    759 	 *
    760 	 * We need to allocate some fixed page tables to get the kernel
    761 	 * going.  We allocate one page directory and a number of page
    762 	 * tables and store the physical addresses in the kernel_pt_table
    763 	 * array.
    764 	 *
    765 	 * The kernel page directory must be on a 16K boundary.  The page
    766 	 * tables must be on 4K boundaries.  What we do is allocate the
    767 	 * page directory on the first 16K boundary that we encounter, and
    768 	 * the page tables on 4K boundaries otherwise.  Since we allocate
    769 	 * at least 3 L2 page tables, we are guaranteed to encounter at
    770 	 * least one 16K aligned region.
    771 	 */
    772 
    773 #ifdef VERBOSE_INIT_ARM
    774 	printf("Allocating page tables\n");
    775 #endif
    776 
    777 	free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
    778 
    779 #ifdef VERBOSE_INIT_ARM
    780 	printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
    781 	       physical_freestart, free_pages, free_pages);
    782 #endif
    783 
    784 	/* Define a macro to simplify memory allocation */
    785 #define	valloc_pages(var, np)				\
    786 	alloc_pages((var).pv_pa, (np));			\
    787 	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
    788 
    789 #define alloc_pages(var, np)				\
    790 	physical_freeend -= ((np) * PAGE_SIZE);		\
    791 	if (physical_freeend < physical_freestart)	\
    792 		panic("initarm: out of memory");	\
    793 	(var) = physical_freeend;			\
    794 	free_pages -= (np);				\
    795 	memset((char *)(var), 0, ((np) * PAGE_SIZE));
    796 
    797 	loop1 = 0;
    798 	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
    799 		/* Are we 16KB aligned for an L1 ? */
    800 		if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
    801 		    && kernel_l1pt.pv_pa == 0) {
    802 			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
    803 		} else {
    804 			valloc_pages(kernel_pt_table[loop1],
    805 			    L2_TABLE_SIZE / PAGE_SIZE);
    806 			++loop1;
    807 		}
    808 	}
    809 #ifdef KLOADER
    810 	valloc_pages(bootinfo_pt, L2_TABLE_SIZE / PAGE_SIZE);
    811 #endif
    812 
    813 	/* This should never be able to happen but better confirm that. */
    814 	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
    815 		panic("initarm: Failed to align the kernel page directory");
    816 
    817 	/*
    818 	 * Allocate a page for the system page mapped to V0x00000000
    819 	 * This page will just contain the system vectors and can be
    820 	 * shared by all processes.
    821 	 */
    822 	alloc_pages(systempage.pv_pa, 1);
    823 
    824 	/* Allocate stacks for all modes */
    825 	valloc_pages(irqstack, IRQ_STACK_SIZE);
    826 	valloc_pages(abtstack, ABT_STACK_SIZE);
    827 	valloc_pages(undstack, UND_STACK_SIZE);
    828 	valloc_pages(kernelstack, UPAGES);
    829 
    830 	/* Allocate enough pages for cleaning the Mini-Data cache. */
    831 #ifdef DIAGNOSTIC
    832 	KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
    833 #endif
    834 	valloc_pages(minidataclean, 1);
    835 
    836 #ifdef KLOADER
    837 	bootinfo_pg.pv_pa = BOOTINFO_PAGE;
    838 	bootinfo_pg.pv_va = KERNEL_BASE + bootinfo_pg.pv_pa - physical_start;
    839 #endif
    840 
    841 #ifdef VERBOSE_INIT_ARM
    842 	printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
    843 	    irqstack.pv_va);
    844 	printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
    845 	    abtstack.pv_va);
    846 	printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
    847 	    undstack.pv_va);
    848 	printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
    849 	    kernelstack.pv_va);
    850 	printf("minidataclean: p0x%08lx v0x%08lx, size = %ld\n",
    851 	    minidataclean.pv_pa, minidataclean.pv_va,
    852 	    xscale_minidata_clean_size);
    853 #ifdef KLOADER
    854 	printf("bootinfo_pg: p0x%08lx v0x%08lx\n", bootinfo_pg.pv_pa,
    855 	    bootinfo_pg.pv_va);
    856 #endif
    857 #endif
    858 
    859 	/*
    860 	 * XXX Defer this to later so that we can reclaim the memory
    861 	 * XXX used by the RedBoot page tables.
    862 	 */
    863 	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
    864 
    865 	/*
    866 	 * Ok we have allocated physical pages for the primary kernel
    867 	 * page tables
    868 	 */
    869 
    870 #ifdef VERBOSE_INIT_ARM
    871 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
    872 #endif
    873 
    874 	/*
    875 	 * Now we start construction of the L1 page table
    876 	 * We start by mapping the L2 page tables into the L1.
    877 	 * This means that we can replace L1 mappings later on if necessary
    878 	 */
    879 	l1pagetable = kernel_l1pt.pv_pa;
    880 
    881 	/* Map the L2 pages tables in the L1 page table */
    882 	pmap_link_l2pt(l1pagetable, 0x00000000,
    883 	    &kernel_pt_table[KERNEL_PT_SYS]);
    884 	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
    885 		pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
    886 		    &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
    887 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
    888 		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
    889 		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
    890 #ifdef KLOADER
    891 	pmap_link_l2pt(l1pagetable, PXA2X0_SDRAM0_START, &bootinfo_pt);
    892 #endif
    893 
    894 	/* update the top of the kernel VM */
    895 	pmap_curmaxkvaddr =
    896 	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
    897 
    898 	/* check symbol table loaded by bootloader (zbsdmod.o) */
    899 	esym = end;
    900 #if NKSYMS || defined(DDB) || defined(MODULAR)
    901 	symbolsize = 0;
    902 	Elf_Ehdr *eh = (Elf_Ehdr *)end;
    903 #ifdef VERBOSE_INIT_ARM
    904 	printf("Checking ELF MAGIC at end: %02x %02x %02x %02x\n",
    905 	    end[0], end[1], end[2], end[3]);
    906 #endif
    907 	if (memcmp(eh->e_ident, ELFMAG, SELFMAG) == 0) {
    908 		Elf_Shdr *sh;
    909 #ifdef VERBOSE_INIT_ARM
    910 		printf("ELF header found at end\n");
    911 #endif
    912 		sh = (Elf_Shdr *)((char *)end + eh->e_shoff);
    913 		for (loop = 0; loop < eh->e_shnum; loop++, sh++) {
    914 #ifdef VERBOSE_INIT_ARM
    915 			printf("Checking ELF header %d\n", loop);
    916 #endif
    917 			if (sh->sh_type != SHT_SYMTAB &&
    918 			    sh->sh_type != SHT_STRTAB) {
    919 				continue;
    920 			}
    921 #ifdef VERBOSE_INIT_ARM
    922 			printf("Section[%2d]: offset = %d, size = %d\n",
    923 			    loop, sh->sh_offset, sh->sh_size);
    924 #endif
    925 			if (sh->sh_offset > 0 &&
    926 			    (sh->sh_offset + sh->sh_size) > symbolsize) {
    927 				symbolsize = sh->sh_offset + sh->sh_size;
    928 			}
    929 #ifdef VERBOSE_INIT_ARM
    930 			printf("Updating symbolsize = %d\n", symbolsize);
    931 #endif
    932 		}
    933 		esym = (char *)esym + symbolsize;
    934 	}
    935 #ifdef VERBOSE_INIT_ARM
    936 	printf("symbolsize = %d\n", symbolsize);
    937 #endif
    938 #endif /* NKSYMS || defined(DDB) || defined(MODULAR) */
    939 
    940 #ifdef VERBOSE_INIT_ARM
    941 	printf("Mapping kernel\n");
    942 #endif
    943 
    944 	/* Now we fill in the L2 pagetable for the kernel static code/data
    945 	 * and the symbol table. */
    946 	{
    947 
    948 		size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
    949 		size_t totalsize = (uintptr_t) esym - KERNEL_TEXT_BASE;
    950 		u_int logical;
    951 
    952 		textsize = (textsize + PGOFSET) & ~PGOFSET;
    953 		totalsize = (totalsize + PGOFSET) & ~PGOFSET;
    954 
    955 		/* offset of kernel in RAM */
    956 		logical = KERNEL_TEXT_BASE - KERNEL_BASE;
    957 
    958 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
    959 		    physical_start + logical, textsize,
    960 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    961 		pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
    962 		    physical_start + logical, totalsize - textsize,
    963 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    964 	}
    965 
    966 #ifdef VERBOSE_INIT_ARM
    967 	printf("Constructing L2 page tables\n");
    968 #endif
    969 
    970 	/* Map the stack pages */
    971 	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
    972 	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    973 	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
    974 	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    975 	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
    976 	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    977 	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
    978 	    UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    979 
    980 	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
    981 	    L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
    982 
    983 	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
    984 		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
    985 		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
    986 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
    987 	}
    988 
    989 #ifdef KLOADER
    990 	pmap_map_chunk(l1pagetable, bootinfo_pt.pv_va, bootinfo_pt.pv_pa,
    991 	    L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
    992 	pmap_map_chunk(l1pagetable, bootinfo_pg.pv_va, bootinfo_pg.pv_pa,
    993 	    PAGE_SIZE, VM_PROT_ALL, PTE_CACHE);
    994 #endif
    995 
    996 	/* Map the Mini-Data cache clean area. */
    997 	xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
    998 	    minidataclean.pv_pa);
    999 
   1000 	/* Map the vector page. */
   1001 #if 0
   1002 	/* MULTI-ICE requires that page 0 is NC/NB so that it can download the
   1003 	 * cache-clean code there.  */
   1004 	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
   1005 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
   1006 #else
   1007 	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
   1008 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
   1009 #endif
   1010 
   1011 	/*
   1012 	 * map integrated peripherals at same address in l1pagetable
   1013 	 * so that we can continue to use console.
   1014 	 */
   1015 	pmap_devmap_bootstrap(l1pagetable, zaurus_devmap);
   1016 
   1017 	/*
   1018 	 * Give the XScale global cache clean code an appropriately
   1019 	 * sized chunk of unmapped VA space starting at 0xff000000
   1020 	 * (our device mappings end before this address).
   1021 	 */
   1022 	xscale_cache_clean_addr = 0xff000000U;
   1023 
   1024 	/*
   1025 	 * Now we have the real page tables in place so we can switch to them.
   1026 	 * Once this is done we will be running with the REAL kernel page
   1027 	 * tables.
   1028 	 */
   1029 
   1030 	/*
   1031 	 * Update the physical_freestart/physical_freeend/free_pages
   1032 	 * variables.
   1033 	 */
   1034 	{
   1035 
   1036 		physical_freestart = physical_start +
   1037 		    ((((uintptr_t) esym + PGOFSET) & ~PGOFSET) - KERNEL_BASE);
   1038 		physical_freeend = physical_end;
   1039 		free_pages =
   1040 		    (physical_freeend - physical_freestart) / PAGE_SIZE;
   1041 	}
   1042 
   1043 	/* Switch tables */
   1044 #ifdef VERBOSE_INIT_ARM
   1045 	printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
   1046 	       physical_freestart, free_pages, free_pages);
   1047 	printf("switching to new L1 page table  @%#lx...", kernel_l1pt.pv_pa);
   1048 #endif
   1049 
   1050 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
   1051 	cpu_setttb(kernel_l1pt.pv_pa, true);
   1052 	cpu_tlb_flushID();
   1053 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
   1054 
   1055 	/*
   1056 	 * Moved from cpu_startup() as data_abort_handler() references
   1057 	 * this during uvm init
   1058 	 */
   1059 	uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
   1060 
   1061 #ifdef VERBOSE_INIT_ARM
   1062 	printf("bootstrap done.\n");
   1063 #endif
   1064 
   1065 	arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
   1066 
   1067 	/*
   1068 	 * Pages were allocated during the secondary bootstrap for the
   1069 	 * stacks for different CPU modes.
   1070 	 * We must now set the r13 registers in the different CPU modes to
   1071 	 * point to these stacks.
   1072 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
   1073 	 * of the stack memory.
   1074 	 */
   1075 #ifdef VERBOSE_INIT_ARM
   1076 	printf("init subsystems: stacks ");
   1077 #endif
   1078 
   1079 	set_stackptr(PSR_IRQ32_MODE,
   1080 	    irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
   1081 	set_stackptr(PSR_ABT32_MODE,
   1082 	    abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
   1083 	set_stackptr(PSR_UND32_MODE,
   1084 	    undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
   1085 
   1086 	/*
   1087 	 * Well we should set a data abort handler.
   1088 	 * Once things get going this will change as we will need a proper
   1089 	 * handler.
   1090 	 * Until then we will use a handler that just panics but tells us
   1091 	 * why.
   1092 	 * Initialisation of the vectors will just panic on a data abort.
   1093 	 * This just fills in a slightly better one.
   1094 	 */
   1095 #ifdef VERBOSE_INIT_ARM
   1096 	printf("vectors ");
   1097 #endif
   1098 	data_abort_handler_address = (u_int)data_abort_handler;
   1099 	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
   1100 	undefined_handler_address = (u_int)undefinedinstruction_bounce;
   1101 
   1102 	/* Initialise the undefined instruction handlers */
   1103 #ifdef VERBOSE_INIT_ARM
   1104 	printf("undefined ");
   1105 #endif
   1106 	undefined_init();
   1107 
   1108 	/* Load memory into UVM. */
   1109 #ifdef VERBOSE_INIT_ARM
   1110 	printf("page ");
   1111 #endif
   1112 	uvm_md_init();
   1113 	uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
   1114 	    atop(physical_freestart), atop(physical_freeend),
   1115 	    VM_FREELIST_DEFAULT);
   1116 
   1117 	/* Boot strap pmap telling it where managed kernel virtual memory is */
   1118 #ifdef VERBOSE_INIT_ARM
   1119 	printf("pmap ");
   1120 #endif
   1121 	pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
   1122 
   1123 #ifdef VERBOSE_INIT_ARM
   1124 	printf("\n");
   1125 #endif
   1126 
   1127 #ifdef __HAVE_MEMORY_DISK__
   1128 	md_root_setconf(memory_disk, sizeof memory_disk);
   1129 #endif
   1130 
   1131 #if NKSYMS || defined(DDB) || defined(MODULAR)
   1132 	if (symbolsize > 0)
   1133 		ksyms_addsyms_elf(symbolsize, &end, esym);
   1134 #endif
   1135 
   1136 #ifdef KGDB
   1137 	if (boothowto & RB_KDB) {
   1138 		kgdb_debug_init = 1;
   1139 		kgdb_connect(1);
   1140 	}
   1141 #endif
   1142 
   1143 #ifdef DDB
   1144 	db_machine_init();
   1145 	if (boothowto & RB_KDB)
   1146 		Debugger();
   1147 #endif
   1148 
   1149 	/* We return the new stack pointer address */
   1150 	return kernelstack.pv_va + USPACE_SVC_STACK_TOP;
   1151 }
   1152 
   1153 void *
   1154 lookup_bootinfo(int type)
   1155 {
   1156 	struct btinfo_common *help;
   1157 	int n;
   1158 
   1159 	if (bootinfo == NULL)
   1160 		return (NULL);
   1161 
   1162 	n = bootinfo->nentries;
   1163 	help = (struct btinfo_common *)(bootinfo->info);
   1164 	while (n--) {
   1165 		if (help->type == type)
   1166 			return (help);
   1167 		help = (struct btinfo_common *)((char *)help + help->len);
   1168 	}
   1169 	return (NULL);
   1170 }
   1171 
   1172 #ifdef KLOADER
   1173 static int
   1174 parseboot(char *arg, char **filename, int *howto)
   1175 {
   1176 	char *opts = NULL;
   1177 
   1178 	*filename = NULL;
   1179 	*howto = 0;
   1180 
   1181 	/* if there were no arguments */
   1182 	if (arg == NULL || *arg == '\0')
   1183 		return 1;
   1184 
   1185 	/* format is... */
   1186 	/* [[xxNx:]filename] [-adqsv] */
   1187 
   1188 	/* check for just args */
   1189 	if (arg[0] == '-') {
   1190 		opts = arg;
   1191 	} else {
   1192 		/* there's a file name */
   1193 		*filename = arg;
   1194 
   1195 		opts = gettrailer(arg);
   1196 		if (opts == NULL || *opts == '\0') {
   1197 			opts = NULL;
   1198 		} else if (*opts != '-') {
   1199 			printf("invalid arguments\n");
   1200 			return 0;
   1201 		}
   1202 	}
   1203 
   1204 	/* at this point, we have dealt with filenames. */
   1205 
   1206 	/* now, deal with options */
   1207 	if (opts) {
   1208 		if (parseopts(opts, howto) == 0) {
   1209 			return 0;
   1210 		}
   1211 	}
   1212 	return 1;
   1213 }
   1214 
   1215 static char *
   1216 gettrailer(char *arg)
   1217 {
   1218 	static char nullstr[] = "";
   1219 	char *options;
   1220 
   1221 	if ((options = strchr(arg, ' ')) == NULL)
   1222 		return nullstr;
   1223 	else
   1224 		*options++ = '\0';
   1225 
   1226 	/* trim leading blanks */
   1227 	while (*options == ' ')
   1228 		options++;
   1229 
   1230 	return options;
   1231 }
   1232 
   1233 static int
   1234 parseopts(const char *opts, int *howto)
   1235 {
   1236 	int r, tmpopt = *howto;
   1237 
   1238 	opts++; 	/* skip - */
   1239 	while (*opts && *opts != ' ') {
   1240 		r = 0;
   1241 		BOOT_FLAG(*opts, r);
   1242 		if (r == 0) {
   1243 			printf("-%c: unknown flag\n", *opts);
   1244 			return 0;
   1245 		}
   1246 		tmpopt |= r;
   1247 		opts++;
   1248 	}
   1249 
   1250 	*howto = tmpopt;
   1251 	return 1;
   1252 }
   1253 #endif
   1254 
   1255 /*
   1256  * Console
   1257  */
   1258 #include "com.h"
   1259 #if (NCOM > 0)
   1260 #include <dev/ic/comvar.h>
   1261 #endif
   1262 
   1263 #include "lcd.h"
   1264 #include "w100lcd.h"
   1265 #include "wsdisplay.h"
   1266 
   1267 #ifndef CONSPEED
   1268 #define CONSPEED B9600
   1269 #endif
   1270 #ifndef CONMODE
   1271 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
   1272 #endif
   1273 
   1274 int comcnspeed = CONSPEED;
   1275 int comcnmode = CONMODE;
   1276 
   1277 #ifdef KGDB
   1278 #ifndef KGDB_DEVNAME
   1279 #define KGDB_DEVNAME	"ffuart"
   1280 #endif
   1281 const char kgdb_devname[] = KGDB_DEVNAME;
   1282 
   1283 #if (NCOM > 0)
   1284 #ifndef KGDB_DEVMODE
   1285 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
   1286 #endif
   1287 int comkgdbmode = KGDB_DEVMODE;
   1288 #endif /* NCOM */
   1289 #endif /* KGDB */
   1290 
   1291 void
   1292 consinit(void)
   1293 {
   1294 	static int consinit_called = 0;
   1295 #if (NCOM > 0) && defined(COM_PXA2X0)
   1296 	paddr_t paddr;
   1297 	u_int cken = 0;
   1298 #endif
   1299 
   1300 	if (consinit_called)
   1301 		return;
   1302 	consinit_called = 1;
   1303 
   1304 #if (NCOM > 0) && defined(COM_PXA2X0)
   1305 #ifdef KGDB
   1306 	if (strcmp(kgdb_devname, console) == 0) {
   1307 		/* port is reserved for kgdb */
   1308 	} else
   1309 #endif
   1310 	if (strcmp(console, "ffuart") == 0) {
   1311 		paddr = PXA2X0_FFUART_BASE;
   1312 		cken = CKEN_FFUART;
   1313 	} else if (strcmp(console, "btuart") == 0) {
   1314 		paddr = PXA2X0_BTUART_BASE;
   1315 		cken = CKEN_BTUART;
   1316 	} else if (strcmp(console, "stuart") == 0) {
   1317 		paddr = PXA2X0_STUART_BASE;
   1318 		cken = CKEN_STUART;
   1319 		irda_on(0);
   1320 	} else
   1321 #endif
   1322 	if (strcmp(console, "glass") == 0) {
   1323 #if ((NLCD > 0) || (NW100LCD > 0)) && (NWSDISPLAY > 0)
   1324 		glass_console = 1;
   1325 #if NLCD > 0
   1326 		if (ZAURUS_ISC1000 || ZAURUS_ISC3000)
   1327 			lcd_cnattach();
   1328 #endif
   1329 #if NW100LCD > 0
   1330 		if (ZAURUS_ISC860)
   1331 			w100lcd_cnattach();
   1332 #endif
   1333 #endif
   1334 	}
   1335 
   1336 #if (NCOM > 0) && defined(COM_PXA2X0)
   1337 	if (cken != 0 && comcnattach(&pxa2x0_a4x_bs_tag, paddr, comcnspeed,
   1338 	    PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode) == 0) {
   1339 		pxa2x0_clkman_config(cken, 1);
   1340 	}
   1341 #endif
   1342 }
   1343 
   1344 #ifdef KGDB
   1345 void
   1346 kgdb_port_init(void)
   1347 {
   1348 #if (NCOM > 0) && defined(COM_PXA2X0)
   1349 	paddr_t paddr;
   1350 	u_int cken;
   1351 
   1352 	if (strcmp(kgdb_devname, "ffuart") == 0) {
   1353 		paddr = PXA2X0_FFUART_BASE;
   1354 		cken = CKEN_FFUART;
   1355 	} else if (strcmp(kgdb_devname, "btuart") == 0) {
   1356 		paddr = PXA2X0_BTUART_BASE;
   1357 		cken = CKEN_BTUART;
   1358 	} else if (strcmp(kgdb_devname, "stuart") == 0) {
   1359 		paddr = PXA2X0_STUART_BASE;
   1360 		cken = CKEN_STUART;
   1361 		irda_on(0);
   1362 	} else
   1363 		return;
   1364 
   1365 	if (com_kgdb_attach(&pxa2x0_a4x_bs_tag, paddr,
   1366 	    kgdb_rate, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comkgdbmode) == 0) {
   1367 		pxa2x0_clkman_config(cken, 1);
   1368 	}
   1369 #endif
   1370 }
   1371 #endif
   1372