Home | History | Annotate | Line # | Download | only in fstyp
      1 /*        $NetBSD: hammer2_disk.h,v 1.4 2022/04/04 19:33:46 andvar Exp $      */
      2 
      3 /*
      4  * Copyright (c) 2011-2019 The DragonFly Project.  All rights reserved.
      5  *
      6  * This code is derived from software contributed to The DragonFly Project
      7  * by Matthew Dillon <dillon (at) dragonflybsd.org>
      8  * by Venkatesh Srinivas <vsrinivas (at) dragonflybsd.org>
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  *
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in
     18  *    the documentation and/or other materials provided with the
     19  *    distribution.
     20  * 3. Neither the name of The DragonFly Project nor the names of its
     21  *    contributors may be used to endorse or promote products derived
     22  *    from this software without specific, prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     26  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
     27  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
     28  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     29  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
     30  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     31  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     32  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     33  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     34  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     35  * SUCH DAMAGE.
     36  */
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: hammer2_disk.h,v 1.4 2022/04/04 19:33:46 andvar Exp $");
     39 
     40 #ifndef _VFS_HAMMER2_DISK_H_
     41 #define _VFS_HAMMER2_DISK_H_
     42 
     43 #ifndef _SYS_UUID_H_
     44 #include <sys/uuid.h>
     45 #endif
     46 #if 0
     47 #ifndef _SYS_DMSG_H_
     48 #include <sys/dmsg.h>
     49 #endif
     50 #endif
     51 
     52 /*
     53  * The structures below represent the on-disk media structures for the HAMMER2
     54  * filesystem.  Note that all fields for on-disk structures are naturally
     55  * aligned.  The host endian format is typically used - compatibility is
     56  * possible if the implementation detects reversed endian and adjusts accesses
     57  * accordingly.
     58  *
     59  * HAMMER2 primarily revolves around the directory topology:  inodes,
     60  * directory entries, and block tables.  Block device buffer cache buffers
     61  * are always 64KB.  Logical file buffers are typically 16KB.  All data
     62  * references utilize 64-bit byte offsets.
     63  *
     64  * Free block management is handled independently using blocks reserved by
     65  * the media topology.
     66  */
     67 
     68 /*
     69  * The data at the end of a file or directory may be a fragment in order
     70  * to optimize storage efficiency.  The minimum fragment size is 1KB.
     71  * Since allocations are in powers of 2 fragments must also be sized in
     72  * powers of 2 (1024, 2048, ... 65536).
     73  *
     74  * For the moment the maximum allocation size is HAMMER2_PBUFSIZE (64K),
     75  * which is 2^16.  Larger extents may be supported in the future.  Smaller
     76  * fragments might be supported in the future (down to 64 bytes is possible),
     77  * but probably will not be.
     78  *
     79  * A full indirect block use supports 512 x 128-byte blockrefs in a 64KB
     80  * buffer.  Indirect blocks down to 1KB are supported to keep small
     81  * directories small.
     82  *
     83  * A maximally sized file (2^64-1 bytes) requires ~6 indirect block levels
     84  * using 64KB indirect blocks (128 byte refs, 512 or radix 9 per indblk).
     85  *
     86  *	16(datablk) + 9 + 9 + 9 + 9 + 9 + 9 = ~70.
     87  *	16(datablk) + 7 + 9 + 9 + 9 + 9 + 9 = ~68.  (smaller top level indblk)
     88  *
     89  * The actual depth depends on copies redundancy and whether the filesystem
     90  * has chosen to use a smaller indirect block size at the top level or not.
     91  */
     92 #define HAMMER2_ALLOC_MIN	1024	/* minimum allocation size */
     93 #define HAMMER2_RADIX_MIN	10	/* minimum allocation size 2^N */
     94 #define HAMMER2_ALLOC_MAX	65536	/* maximum allocation size */
     95 #define HAMMER2_RADIX_MAX	16	/* maximum allocation size 2^N */
     96 #define HAMMER2_RADIX_KEY	64	/* number of bits in key */
     97 
     98 /*
     99  * HAMMER2_LBUFSIZE	- Nominal buffer size for I/O rollups.
    100  *
    101  * HAMMER2_PBUFSIZE	- Topological block size used by files for all
    102  *			  blocks except the block straddling EOF.
    103  *
    104  * HAMMER2_SEGSIZE	- Allocation map segment size, typically 4MB
    105  *			  (space represented by a level0 bitmap).
    106  */
    107 
    108 #define HAMMER2_SEGSIZE		(1 << HAMMER2_FREEMAP_LEVEL0_RADIX)
    109 #define HAMMER2_SEGRADIX	HAMMER2_FREEMAP_LEVEL0_RADIX
    110 
    111 #define HAMMER2_PBUFRADIX	16	/* physical buf (1<<16) bytes */
    112 #define HAMMER2_PBUFSIZE	65536
    113 #define HAMMER2_LBUFRADIX	14	/* logical buf (1<<14) bytes */
    114 #define HAMMER2_LBUFSIZE	16384
    115 
    116 #define HAMMER2_IND_BYTES_MIN	4096
    117 #define HAMMER2_IND_BYTES_NOM	HAMMER2_LBUFSIZE
    118 #define HAMMER2_IND_BYTES_MAX	HAMMER2_PBUFSIZE
    119 #define HAMMER2_IND_RADIX_MIN	12
    120 #define HAMMER2_IND_RADIX_NOM	HAMMER2_LBUFRADIX
    121 #define HAMMER2_IND_RADIX_MAX	HAMMER2_PBUFRADIX
    122 #define HAMMER2_IND_COUNT_MIN	(HAMMER2_IND_BYTES_MIN / \
    123 				 sizeof(hammer2_blockref_t))
    124 #define HAMMER2_IND_COUNT_MAX	(HAMMER2_IND_BYTES_MAX / \
    125 				 sizeof(hammer2_blockref_t))
    126 
    127 /*
    128  * In HAMMER2, arrays of blockrefs are fully set-associative, meaning that
    129  * any element can occur at any index and holes can be anywhere.
    130  *
    131  * Inodes embed either 512 bytes of direct data or an array of 4 blockrefs,
    132  * resulting in highly efficient storage for files <= 512 bytes and for files
    133  * <= 512KB.  Up to 4 directory entries can be referenced from a directory
    134  * without requiring an indirect block.
    135  */
    136 #define HAMMER2_SET_RADIX		2	/* radix 2 = 4 entries */
    137 #define HAMMER2_SET_COUNT		(1 << HAMMER2_SET_RADIX)
    138 #define HAMMER2_EMBEDDED_BYTES		512	/* inode blockset/dd size */
    139 #define HAMMER2_EMBEDDED_RADIX		9
    140 
    141 #define HAMMER2_PBUFMASK	(HAMMER2_PBUFSIZE - 1)
    142 #define HAMMER2_LBUFMASK	(HAMMER2_LBUFSIZE - 1)
    143 #define HAMMER2_SEGMASK		(HAMMER2_SEGSIZE - 1)
    144 
    145 #define HAMMER2_LBUFMASK64	((hammer2_off_t)HAMMER2_LBUFMASK)
    146 #define HAMMER2_PBUFSIZE64	((hammer2_off_t)HAMMER2_PBUFSIZE)
    147 #define HAMMER2_PBUFMASK64	((hammer2_off_t)HAMMER2_PBUFMASK)
    148 #define HAMMER2_SEGSIZE64	((hammer2_off_t)HAMMER2_SEGSIZE)
    149 #define HAMMER2_SEGMASK64	((hammer2_off_t)HAMMER2_SEGMASK)
    150 
    151 #define HAMMER2_UUID_STRING	"5cbb9ad1-862d-11dc-a94d-01301bb8a9f5"
    152 
    153 /*
    154  * A 4MB segment is reserved at the beginning of each 1GB.  This segment
    155  * contains the volume header (or backup volume header), the free block
    156  * table, and possibly other information in the future.
    157  *
    158  * 4MB = 64 x 64K blocks.  Each 4MB segment is broken down as follows:
    159  *
    160  * ==========
    161  *  0 volume header (for the first four 2GB zones)
    162  *  1 freemap00 level1 FREEMAP_LEAF (256 x 128B bitmap data per 1GB)
    163  *  2           level2 FREEMAP_NODE (256 x 128B indirect block per 256GB)
    164  *  3           level3 FREEMAP_NODE (256 x 128B indirect block per 64TB)
    165  *  4           level4 FREEMAP_NODE (256 x 128B indirect block per 16PB)
    166  *  5           level5 FREEMAP_NODE (256 x 128B indirect block per 4EB)
    167  *  6 freemap01 level1 (rotation)
    168  *  7           level2
    169  *  8           level3
    170  *  9           level4
    171  * 10           level5
    172  * 11 freemap02 level1 (rotation)
    173  * 12           level2
    174  * 13           level3
    175  * 14           level4
    176  * 15           level5
    177  * 16 freemap03 level1 (rotation)
    178  * 17           level2
    179  * 18           level3
    180  * 19           level4
    181  * 20           level5
    182  * 21 freemap04 level1 (rotation)
    183  * 22           level2
    184  * 23           level3
    185  * 24           level4
    186  * 25           level5
    187  * 26 freemap05 level1 (rotation)
    188  * 27           level2
    189  * 28           level3
    190  * 29           level4
    191  * 30           level5
    192  * 31 freemap06 level1 (rotation)
    193  * 32           level2
    194  * 33           level3
    195  * 34           level4
    196  * 35           level5
    197  * 36 freemap07 level1 (rotation)
    198  * 37           level2
    199  * 38           level3
    200  * 39           level4
    201  * 40           level5
    202  * 41 unused
    203  * .. unused
    204  * 63 unused
    205  * ==========
    206  *
    207  * The first four 2GB zones contain volume headers and volume header backups.
    208  * After that the volume header block# is reserved for future use.  Similarly,
    209  * there are many blocks related to various Freemap levels which are not
    210  * used in every segment and those are also reserved for future use.
    211  * Note that each FREEMAP_LEAF or FREEMAP_NODE uses 32KB out of 64KB slot.
    212  *
    213  *			Freemap (see the FREEMAP document)
    214  *
    215  * The freemap utilizes blocks #1-40 in 8 sets of 5 blocks.  Each block in
    216  * a set represents a level of depth in the freemap topology.  Eight sets
    217  * exist to prevent live updates from disturbing the state of the freemap
    218  * were a crash/reboot to occur.  That is, a live update is not committed
    219  * until the update's flush reaches the volume root.  There are FOUR volume
    220  * roots representing the last four synchronization points, so the freemap
    221  * must be consistent no matter which volume root is chosen by the mount
    222  * code.
    223  *
    224  * Each freemap set is 5 x 64K blocks and represents the 1GB, 256GB, 64TB,
    225  * 16PB and 4EB indirect map.  The volume header itself has a set of 4 freemap
    226  * blockrefs representing another 2 bits, giving us a total 64 bits of
    227  * representable address space.
    228  *
    229  * The Level 0 64KB block represents 1GB of storage represented by 32KB
    230  * (256 x struct hammer2_bmap_data).  Each structure represents 4MB of storage
    231  * and has a 512 bit bitmap, using 2 bits to represent a 16KB chunk of
    232  * storage.  These 2 bits represent the following states:
    233  *
    234  *	00	Free
    235  *	01	(reserved) (Possibly partially allocated)
    236  *	10	Possibly free
    237  *	11	Allocated
    238  *
    239  * One important thing to note here is that the freemap resolution is 16KB,
    240  * but the minimum storage allocation size is 1KB.  The hammer2 vfs keeps
    241  * track of sub-allocations in memory, which means that on a unmount or reboot
    242  * the entire 16KB of a partially allocated block will be considered fully
    243  * allocated.  It is possible for fragmentation to build up over time, but
    244  * defragmentation is fairly easy to accomplish since all modifications
    245  * allocate a new block.
    246  *
    247  * The Second thing to note is that due to the way snapshots and inode
    248  * replication works, deleting a file cannot immediately free the related
    249  * space.  Furthermore, deletions often do not bother to traverse the
    250  * block subhierarchy being deleted.  And to go even further, whole
    251  * sub-directory trees can be deleted simply by deleting the directory inode
    252  * at the top.  So even though we have a symbol to represent a 'possibly free'
    253  * block (binary 10), only the bulk free scanning code can actually use it.
    254  * Normal 'rm's or other deletions do not.
    255  *
    256  * WARNING!  ZONE_SEG and VOLUME_ALIGN must be a multiple of 1<<LEVEL0_RADIX
    257  *	     (i.e. a multiple of 4MB).  VOLUME_ALIGN must be >= ZONE_SEG.
    258  *
    259  * In Summary:
    260  *
    261  * (1) Modifications to freemap blocks 'allocate' a new copy (aka use a block
    262  *     from the next set).  The new copy is reused until a flush occurs at
    263  *     which point the next modification will then rotate to the next set.
    264  */
    265 #define HAMMER2_VOLUME_ALIGN		(8 * 1024 * 1024)
    266 #define HAMMER2_VOLUME_ALIGN64		((hammer2_off_t)HAMMER2_VOLUME_ALIGN)
    267 #define HAMMER2_VOLUME_ALIGNMASK	(HAMMER2_VOLUME_ALIGN - 1)
    268 #define HAMMER2_VOLUME_ALIGNMASK64	((hammer2_off_t)HAMMER2_VOLUME_ALIGNMASK)
    269 
    270 #define HAMMER2_NEWFS_ALIGN		(HAMMER2_VOLUME_ALIGN)
    271 #define HAMMER2_NEWFS_ALIGN64		((hammer2_off_t)HAMMER2_VOLUME_ALIGN)
    272 #define HAMMER2_NEWFS_ALIGNMASK		(HAMMER2_VOLUME_ALIGN - 1)
    273 #define HAMMER2_NEWFS_ALIGNMASK64	((hammer2_off_t)HAMMER2_NEWFS_ALIGNMASK)
    274 
    275 #define HAMMER2_ZONE_BYTES64		(2LLU * 1024 * 1024 * 1024)
    276 #define HAMMER2_ZONE_MASK64		(HAMMER2_ZONE_BYTES64 - 1)
    277 #define HAMMER2_ZONE_SEG		(4 * 1024 * 1024)
    278 #define HAMMER2_ZONE_SEG64		((hammer2_off_t)HAMMER2_ZONE_SEG)
    279 #define HAMMER2_ZONE_BLOCKS_SEG		(HAMMER2_ZONE_SEG / HAMMER2_PBUFSIZE)
    280 
    281 #define HAMMER2_ZONE_FREEMAP_INC	5	/* 5 deep */
    282 
    283 #define HAMMER2_ZONE_VOLHDR		0	/* volume header or backup */
    284 #define HAMMER2_ZONE_FREEMAP_00		1	/* normal freemap rotation */
    285 #define HAMMER2_ZONE_FREEMAP_01		6	/* normal freemap rotation */
    286 #define HAMMER2_ZONE_FREEMAP_02		11	/* normal freemap rotation */
    287 #define HAMMER2_ZONE_FREEMAP_03		16	/* normal freemap rotation */
    288 #define HAMMER2_ZONE_FREEMAP_04		21	/* normal freemap rotation */
    289 #define HAMMER2_ZONE_FREEMAP_05		26	/* normal freemap rotation */
    290 #define HAMMER2_ZONE_FREEMAP_06		31	/* normal freemap rotation */
    291 #define HAMMER2_ZONE_FREEMAP_07		36	/* normal freemap rotation */
    292 #define HAMMER2_ZONE_FREEMAP_END	41	/* (non-inclusive) */
    293 
    294 #define HAMMER2_ZONE_UNUSED41		41
    295 #define HAMMER2_ZONE_UNUSED42		42
    296 #define HAMMER2_ZONE_UNUSED43		43
    297 #define HAMMER2_ZONE_UNUSED44		44
    298 #define HAMMER2_ZONE_UNUSED45		45
    299 #define HAMMER2_ZONE_UNUSED46		46
    300 #define HAMMER2_ZONE_UNUSED47		47
    301 #define HAMMER2_ZONE_UNUSED48		48
    302 #define HAMMER2_ZONE_UNUSED49		49
    303 #define HAMMER2_ZONE_UNUSED50		50
    304 #define HAMMER2_ZONE_UNUSED51		51
    305 #define HAMMER2_ZONE_UNUSED52		52
    306 #define HAMMER2_ZONE_UNUSED53		53
    307 #define HAMMER2_ZONE_UNUSED54		54
    308 #define HAMMER2_ZONE_UNUSED55		55
    309 #define HAMMER2_ZONE_UNUSED56		56
    310 #define HAMMER2_ZONE_UNUSED57		57
    311 #define HAMMER2_ZONE_UNUSED58		58
    312 #define HAMMER2_ZONE_UNUSED59		59
    313 #define HAMMER2_ZONE_UNUSED60		60
    314 #define HAMMER2_ZONE_UNUSED61		61
    315 #define HAMMER2_ZONE_UNUSED62		62
    316 #define HAMMER2_ZONE_UNUSED63		63
    317 #define HAMMER2_ZONE_END		64	/* non-inclusive */
    318 
    319 #define HAMMER2_NFREEMAPS		8	/* FREEMAP_00 - FREEMAP_07 */
    320 
    321 						/* relative to FREEMAP_x */
    322 #define HAMMER2_ZONEFM_LEVEL1		0	/* 1GB leafmap */
    323 #define HAMMER2_ZONEFM_LEVEL2		1	/* 256GB indmap */
    324 #define HAMMER2_ZONEFM_LEVEL3		2	/* 64TB indmap */
    325 #define HAMMER2_ZONEFM_LEVEL4		3	/* 16PB indmap */
    326 #define HAMMER2_ZONEFM_LEVEL5		4	/* 4EB indmap */
    327 /* LEVEL6 is a set of 4 blockrefs in the volume header 16EB */
    328 
    329 /*
    330  * Freemap radix.  Assumes a set-count of 4, 128-byte blockrefs,
    331  * 32KB indirect block for freemap (LEVELN_PSIZE below).
    332  *
    333  * Leaf entry represents 4MB of storage broken down into a 512-bit
    334  * bitmap, 2-bits per entry.  So course bitmap item represents 16KB.
    335  */
    336 #if HAMMER2_SET_COUNT != 4
    337 #error "hammer2_disk.h - freemap assumes SET_COUNT is 4"
    338 #endif
    339 #define HAMMER2_FREEMAP_LEVEL6_RADIX	64	/* 16EB (end) */
    340 #define HAMMER2_FREEMAP_LEVEL5_RADIX	62	/* 4EB */
    341 #define HAMMER2_FREEMAP_LEVEL4_RADIX	54	/* 16PB */
    342 #define HAMMER2_FREEMAP_LEVEL3_RADIX	46	/* 64TB */
    343 #define HAMMER2_FREEMAP_LEVEL2_RADIX	38	/* 256GB */
    344 #define HAMMER2_FREEMAP_LEVEL1_RADIX	30	/* 1GB */
    345 #define HAMMER2_FREEMAP_LEVEL0_RADIX	22	/* 4MB (x 256 in l-1 leaf) */
    346 
    347 #define HAMMER2_FREEMAP_LEVELN_PSIZE	32768	/* physical bytes */
    348 
    349 #define HAMMER2_FREEMAP_LEVEL5_SIZE	((hammer2_off_t)1 <<		\
    350 					 HAMMER2_FREEMAP_LEVEL5_RADIX)
    351 #define HAMMER2_FREEMAP_LEVEL4_SIZE	((hammer2_off_t)1 <<		\
    352 					 HAMMER2_FREEMAP_LEVEL4_RADIX)
    353 #define HAMMER2_FREEMAP_LEVEL3_SIZE	((hammer2_off_t)1 <<		\
    354 					 HAMMER2_FREEMAP_LEVEL3_RADIX)
    355 #define HAMMER2_FREEMAP_LEVEL2_SIZE	((hammer2_off_t)1 <<		\
    356 					 HAMMER2_FREEMAP_LEVEL2_RADIX)
    357 #define HAMMER2_FREEMAP_LEVEL1_SIZE	((hammer2_off_t)1 <<		\
    358 					 HAMMER2_FREEMAP_LEVEL1_RADIX)
    359 #define HAMMER2_FREEMAP_LEVEL0_SIZE	((hammer2_off_t)1 <<		\
    360 					 HAMMER2_FREEMAP_LEVEL0_RADIX)
    361 
    362 #define HAMMER2_FREEMAP_LEVEL5_MASK	(HAMMER2_FREEMAP_LEVEL5_SIZE - 1)
    363 #define HAMMER2_FREEMAP_LEVEL4_MASK	(HAMMER2_FREEMAP_LEVEL4_SIZE - 1)
    364 #define HAMMER2_FREEMAP_LEVEL3_MASK	(HAMMER2_FREEMAP_LEVEL3_SIZE - 1)
    365 #define HAMMER2_FREEMAP_LEVEL2_MASK	(HAMMER2_FREEMAP_LEVEL2_SIZE - 1)
    366 #define HAMMER2_FREEMAP_LEVEL1_MASK	(HAMMER2_FREEMAP_LEVEL1_SIZE - 1)
    367 #define HAMMER2_FREEMAP_LEVEL0_MASK	(HAMMER2_FREEMAP_LEVEL0_SIZE - 1)
    368 
    369 #define HAMMER2_FREEMAP_COUNT		(int)(HAMMER2_FREEMAP_LEVELN_PSIZE / \
    370 					 sizeof(hammer2_bmap_data_t))
    371 
    372 /*
    373  * XXX I made a mistake and made the reserved area begin at each LEVEL1 zone,
    374  *     which is on a 1GB demark.  This will eat a little more space but for
    375  *     now we retain compatibility and make FMZONEBASE every 1GB
    376  */
    377 #define H2FMZONEBASE(key)	((key) & ~HAMMER2_FREEMAP_LEVEL1_MASK)
    378 #define H2FMBASE(key, radix)	rounddown2(key, (hammer2_off_t)1 << (radix))
    379 
    380 /*
    381  * 16KB bitmap granularity (x2 bits per entry).
    382  */
    383 #define HAMMER2_FREEMAP_BLOCK_RADIX	14
    384 #define HAMMER2_FREEMAP_BLOCK_SIZE	(1 << HAMMER2_FREEMAP_BLOCK_RADIX)
    385 #define HAMMER2_FREEMAP_BLOCK_MASK	(HAMMER2_FREEMAP_BLOCK_SIZE - 1)
    386 
    387 /*
    388  * bitmap[] structure.  2 bits per HAMMER2_FREEMAP_BLOCK_SIZE.
    389  *
    390  * 8 x 64-bit elements, 2 bits per block.
    391  * 32 blocks (radix 5) per element.
    392  * representing INDEX_SIZE bytes worth of storage per element.
    393  */
    394 
    395 typedef uint64_t			hammer2_bitmap_t;
    396 
    397 #define HAMMER2_BMAP_ALLONES		((hammer2_bitmap_t)-1)
    398 #define HAMMER2_BMAP_ELEMENTS		8
    399 #define HAMMER2_BMAP_BITS_PER_ELEMENT	64
    400 #define HAMMER2_BMAP_INDEX_RADIX	5	/* 32 blocks per element */
    401 #define HAMMER2_BMAP_BLOCKS_PER_ELEMENT	(1 << HAMMER2_BMAP_INDEX_RADIX)
    402 
    403 #define HAMMER2_BMAP_INDEX_SIZE		(HAMMER2_FREEMAP_BLOCK_SIZE * \
    404 					 HAMMER2_BMAP_BLOCKS_PER_ELEMENT)
    405 #define HAMMER2_BMAP_INDEX_MASK		(HAMMER2_BMAP_INDEX_SIZE - 1)
    406 
    407 #define HAMMER2_BMAP_SIZE		(HAMMER2_BMAP_INDEX_SIZE * \
    408 					 HAMMER2_BMAP_ELEMENTS)
    409 #define HAMMER2_BMAP_MASK		(HAMMER2_BMAP_SIZE - 1)
    410 
    411 /*
    412  * Two linear areas can be reserved after the initial 4MB segment in the base
    413  * zone (the one starting at offset 0).  These areas are NOT managed by the
    414  * block allocator and do not fall under HAMMER2 crc checking rules based
    415  * at the volume header (but can be self-CRCd internally, depending).
    416  */
    417 #define HAMMER2_BOOT_MIN_BYTES		HAMMER2_VOLUME_ALIGN
    418 #define HAMMER2_BOOT_NOM_BYTES		(64*1024*1024)
    419 #define HAMMER2_BOOT_MAX_BYTES		(256*1024*1024)
    420 
    421 #define HAMMER2_AUX_MIN_BYTES		HAMMER2_VOLUME_ALIGN
    422 #define HAMMER2_AUX_NOM_BYTES		(256*1024*1024)
    423 #define HAMMER2_AUX_MAX_BYTES		(1024*1024*1024)
    424 
    425 /*
    426  * Most HAMMER2 types are implemented as unsigned 64-bit integers.
    427  * Transaction ids are monotonic.
    428  *
    429  * We utilize 32-bit iSCSI CRCs.
    430  */
    431 typedef uint64_t hammer2_tid_t;
    432 typedef uint64_t hammer2_off_t;
    433 typedef uint64_t hammer2_key_t;
    434 typedef uint32_t hammer2_crc32_t;
    435 
    436 /*
    437  * Miscellaneous ranges (all are unsigned).
    438  */
    439 #define HAMMER2_TID_MIN		1ULL
    440 #define HAMMER2_TID_MAX		0xFFFFFFFFFFFFFFFFULL
    441 #define HAMMER2_KEY_MIN		0ULL
    442 #define HAMMER2_KEY_MAX		0xFFFFFFFFFFFFFFFFULL
    443 #define HAMMER2_OFFSET_MIN	0ULL
    444 #define HAMMER2_OFFSET_MAX	0xFFFFFFFFFFFFFFFFULL
    445 
    446 /*
    447  * HAMMER2 data offset special cases and masking.
    448  *
    449  * All HAMMER2 data offsets have to be broken down into a 64K buffer base
    450  * offset (HAMMER2_OFF_MASK_HI) and a 64K buffer index (HAMMER2_OFF_MASK_LO).
    451  *
    452  * Indexes into physical buffers are always 64-byte aligned.  The low 6 bits
    453  * of the data offset field specifies how large the data chunk being pointed
    454  * to as a power of 2.  The theoretical minimum radix is thus 6 (The space
    455  * needed in the low bits of the data offset field).  However, the practical
    456  * minimum allocation chunk size is 1KB (a radix of 10), so HAMMER2 sets
    457  * HAMMER2_RADIX_MIN to 10.  The maximum radix is currently 16 (64KB), but
    458  * we fully intend to support larger extents in the future.
    459  *
    460  * WARNING! A radix of 0 (such as when data_off is all 0's) is a special
    461  *	    case which means no data associated with the blockref, and
    462  *	    not the '1 byte' it would otherwise calculate to.
    463  */
    464 #define HAMMER2_OFF_MASK	0xFFFFFFFFFFFFFFC0ULL
    465 #define HAMMER2_OFF_MASK_LO	(HAMMER2_OFF_MASK & HAMMER2_PBUFMASK64)
    466 #define HAMMER2_OFF_MASK_HI	(~HAMMER2_PBUFMASK64)
    467 #define HAMMER2_OFF_MASK_RADIX	0x000000000000003FULL
    468 
    469 /*
    470  * HAMMER2 directory support and pre-defined keys
    471  */
    472 #define HAMMER2_DIRHASH_VISIBLE	0x8000000000000000ULL
    473 #define HAMMER2_DIRHASH_USERMSK	0x7FFFFFFFFFFFFFFFULL
    474 #define HAMMER2_DIRHASH_LOMASK	0x0000000000007FFFULL
    475 #define HAMMER2_DIRHASH_HIMASK	0xFFFFFFFFFFFF0000ULL
    476 #define HAMMER2_DIRHASH_FORCED	0x0000000000008000ULL	/* bit forced on */
    477 
    478 #define HAMMER2_SROOT_KEY	0x0000000000000000ULL	/* volume to sroot */
    479 #define HAMMER2_BOOT_KEY	0xd9b36ce135528000ULL	/* sroot to BOOT PFS */
    480 
    481 /************************************************************************
    482  *				DMSG SUPPORT				*
    483  ************************************************************************
    484  * LNK_VOLCONF
    485  *
    486  * All HAMMER2 directories directly under the super-root on your local
    487  * media can be mounted separately, even if they share the same physical
    488  * device.
    489  *
    490  * When you do a HAMMER2 mount you are effectively tying into a HAMMER2
    491  * cluster via local media.  The local media does not have to participate
    492  * in the cluster, other than to provide the hammer2_volconf[] array and
    493  * root inode for the mount.
    494  *
    495  * This is important: The mount device path you specify serves to bootstrap
    496  * your entry into the cluster, but your mount will make active connections
    497  * to ALL copy elements in the hammer2_volconf[] array which match the
    498  * PFSID of the directory in the super-root that you specified.  The local
    499  * media path does not have to be mentioned in this array but becomes part
    500  * of the cluster based on its type and access rights.  ALL ELEMENTS ARE
    501  * TREATED ACCORDING TO TYPE NO MATTER WHICH ONE YOU MOUNT FROM.
    502  *
    503  * The actual cluster may be far larger than the elements you list in the
    504  * hammer2_volconf[] array.  You list only the elements you wish to
    505  * directly connect to and you are able to access the rest of the cluster
    506  * indirectly through those connections.
    507  *
    508  * WARNING!  This structure must be exactly 128 bytes long for its config
    509  *	     array to fit in the volume header.
    510  */
    511 struct hammer2_volconf {
    512 	uint8_t	copyid;		/* 00	 copyid 0-255 (must match slot) */
    513 	uint8_t inprog;		/* 01	 operation in progress, or 0 */
    514 	uint8_t chain_to;	/* 02	 operation chaining to, or 0 */
    515 	uint8_t chain_from;	/* 03	 operation chaining from, or 0 */
    516 	uint16_t flags;		/* 04-05 flags field */
    517 	uint8_t error;		/* 06	 last operational error */
    518 	uint8_t priority;	/* 07	 priority and round-robin flag */
    519 	uint8_t remote_pfs_type;/* 08	 probed direct remote PFS type */
    520 	uint8_t reserved08[23];	/* 09-1F */
    521 	uuid_t	pfs_clid;	/* 20-2F copy target must match this uuid */
    522 	uint8_t label[16];	/* 30-3F import/export label */
    523 	uint8_t path[64];	/* 40-7F target specification string or key */
    524 } __packed;
    525 
    526 typedef struct hammer2_volconf hammer2_volconf_t;
    527 
    528 #define DMSG_VOLF_ENABLED	0x0001
    529 #define DMSG_VOLF_INPROG	0x0002
    530 #define DMSG_VOLF_CONN_RR	0x80	/* round-robin at same priority */
    531 #define DMSG_VOLF_CONN_EF	0x40	/* media errors flagged */
    532 #define DMSG_VOLF_CONN_PRI	0x0F	/* select priority 0-15 (15=best) */
    533 
    534 #if 0
    535 struct dmsg_lnk_hammer2_volconf {
    536 	dmsg_hdr_t		head;
    537 	hammer2_volconf_t	copy;	/* copy spec */
    538 	int32_t			index;
    539 	int32_t			unused01;
    540 	uuid_t			mediaid;
    541 	int64_t			reserved02[32];
    542 } __packed;
    543 #endif
    544 
    545 typedef struct dmsg_lnk_hammer2_volconf dmsg_lnk_hammer2_volconf_t;
    546 
    547 #define DMSG_LNK_HAMMER2_VOLCONF DMSG_LNK(DMSG_LNK_CMD_HAMMER2_VOLCONF, \
    548 					  dmsg_lnk_hammer2_volconf)
    549 
    550 #define H2_LNK_VOLCONF(msg)	((dmsg_lnk_hammer2_volconf_t *)(msg)->any.buf)
    551 
    552 /*
    553  * HAMMER2 directory entry header (embedded in blockref)  exactly 16 bytes
    554  */
    555 struct hammer2_dirent_head {
    556 	hammer2_tid_t		inum;		/* inode number */
    557 	uint16_t		namlen;		/* name length */
    558 	uint8_t			type;		/* OBJTYPE_*	*/
    559 	uint8_t			unused0B;
    560 	uint8_t			unused0C[4];
    561 } __packed;
    562 
    563 typedef struct hammer2_dirent_head hammer2_dirent_head_t;
    564 
    565 /*
    566  * The media block reference structure.  This forms the core of the HAMMER2
    567  * media topology recursion.  This 128-byte data structure is embedded in the
    568  * volume header, in inodes (which are also directory entries), and in
    569  * indirect blocks.
    570  *
    571  * A blockref references a single media item, which typically can be a
    572  * directory entry (aka inode), indirect block, or data block.
    573  *
    574  * The primary feature a blockref represents is the ability to validate
    575  * the entire tree underneath it via its check code.  Any modification to
    576  * anything propagates up the blockref tree all the way to the root, replacing
    577  * the related blocks and compounding the generated check code.
    578  *
    579  * The check code can be a simple 32-bit iscsi code, a 64-bit crc, or as
    580  * complex as a 512 bit cryptographic hash.  I originally used a 64-byte
    581  * blockref but later expanded it to 128 bytes to be able to support the
    582  * larger check code as well as to embed statistics for quota operation.
    583  *
    584  * Simple check codes are not sufficient for unverified dedup.  Even with
    585  * a maximally-sized check code unverified dedup should only be used in
    586  * in subdirectory trees where you do not need 100% data integrity.
    587  *
    588  * Unverified dedup is deduping based on meta-data only without verifying
    589  * that the data blocks are actually identical.  Verified dedup guarantees
    590  * integrity but is a far more I/O-expensive operation.
    591  *
    592  * --
    593  *
    594  * mirror_tid - per cluster node modified (propagated upward by flush)
    595  * modify_tid - clc record modified (not propagated).
    596  * update_tid - clc record updated (propagated upward on verification)
    597  *
    598  * CLC - Stands for 'Cluster Level Change', identifiers which are identical
    599  *	 within the topology across all cluster nodes (when fully
    600  *	 synchronized).
    601  *
    602  * NOTE: The range of keys represented by the blockref is (key) to
    603  *	 ((key) + (1LL << keybits) - 1).  HAMMER2 usually populates
    604  *	 blocks bottom-up, inserting a new root when radix expansion
    605  *	 is required.
    606  *
    607  * leaf_count  - Helps manage leaf collapse calculations when indirect
    608  *		 blocks become mostly empty.  This value caps out at
    609  *		 HAMMER2_BLOCKREF_LEAF_MAX (65535).
    610  *
    611  *		 Used by the chain code to determine when to pull leafs up
    612  *		 from nearly empty indirect blocks.  For the purposes of this
    613  *		 calculation, BREF_TYPE_INODE is considered a leaf, along
    614  *		 with DIRENT and DATA.
    615  *
    616  *				    RESERVED FIELDS
    617  *
    618  * A number of blockref fields are reserved and should generally be set to
    619  * 0 for future compatibility.
    620  *
    621  *				FUTURE BLOCKREF EXPANSION
    622  *
    623  * CONTENT ADDRESSABLE INDEXING (future) - Using a 256 or 512-bit check code.
    624  */
    625 struct hammer2_blockref {		/* MUST BE EXACTLY 64 BYTES */
    626 	uint8_t		type;		/* type of underlying item */
    627 	uint8_t		methods;	/* check method & compression method */
    628 	uint8_t		copyid;		/* specify which copy this is */
    629 	uint8_t		keybits;	/* #of keybits masked off 0=leaf */
    630 	uint8_t		vradix;		/* virtual data/meta-data size */
    631 	uint8_t		flags;		/* blockref flags */
    632 	uint16_t	leaf_count;	/* leaf aggregation count */
    633 	hammer2_key_t	key;		/* key specification */
    634 	hammer2_tid_t	mirror_tid;	/* media flush topology & freemap */
    635 	hammer2_tid_t	modify_tid;	/* clc modify (not propagated) */
    636 	hammer2_off_t	data_off;	/* low 6 bits is phys size (radix)*/
    637 	hammer2_tid_t	update_tid;	/* clc modify (propagated upward) */
    638 	union {
    639 		char	buf[16];
    640 
    641 		/*
    642 		 * Directory entry header (BREF_TYPE_DIRENT)
    643 		 *
    644 		 * NOTE: check.buf contains filename if <= 64 bytes.  Longer
    645 		 *	 filenames are stored in a data reference of size
    646 		 *	 HAMMER2_ALLOC_MIN (at least 256, typically 1024).
    647 		 *
    648 		 * NOTE: inode structure may contain a copy of a recently
    649 		 *	 associated filename, for recovery purposes.
    650 		 *
    651 		 * NOTE: Superroot entries are INODEs, not DIRENTs.  Code
    652 		 *	 allows both cases.
    653 		 */
    654 		hammer2_dirent_head_t dirent;
    655 
    656 		/*
    657 		 * Statistics aggregation (BREF_TYPE_INODE, BREF_TYPE_INDIRECT)
    658 		 */
    659 		struct {
    660 			hammer2_key_t	data_count;
    661 			hammer2_key_t	inode_count;
    662 		} stats;
    663 	} embed;
    664 	union {				/* check info */
    665 		char	buf[64];
    666 		struct {
    667 			uint32_t value;
    668 			uint32_t reserved[15];
    669 		} iscsi32;
    670 		struct {
    671 			uint64_t value;
    672 			uint64_t reserved[7];
    673 		} xxhash64;
    674 		struct {
    675 			char data[24];
    676 			char reserved[40];
    677 		} sha192;
    678 		struct {
    679 			char data[32];
    680 			char reserved[32];
    681 		} sha256;
    682 		struct {
    683 			char data[64];
    684 		} sha512;
    685 
    686 		/*
    687 		 * Freemap hints are embedded in addition to the icrc32.
    688 		 *
    689 		 * bigmask - Radixes available for allocation (0-31).
    690 		 *	     Heuristical (may be permissive but not
    691 		 *	     restrictive).  Typically only radix values
    692 		 *	     10-16 are used (i.e. (1<<10) through (1<<16)).
    693 		 *
    694 		 * avail   - Total available space remaining, in bytes
    695 		 */
    696 		struct {
    697 			uint32_t icrc32;
    698 			uint32_t bigmask;	/* available radixes */
    699 			uint64_t avail;		/* total available bytes */
    700 			char reserved[48];
    701 		} freemap;
    702 	} check;
    703 } __packed;
    704 
    705 typedef struct hammer2_blockref hammer2_blockref_t;
    706 
    707 #define HAMMER2_BLOCKREF_BYTES		128	/* blockref struct in bytes */
    708 #define HAMMER2_BLOCKREF_RADIX		7
    709 
    710 #define HAMMER2_BLOCKREF_LEAF_MAX	65535
    711 
    712 /*
    713  * On-media and off-media blockref types.
    714  *
    715  * types >= 128 are pseudo values that should never be present on-media.
    716  */
    717 #define HAMMER2_BREF_TYPE_EMPTY		0
    718 #define HAMMER2_BREF_TYPE_INODE		1
    719 #define HAMMER2_BREF_TYPE_INDIRECT	2
    720 #define HAMMER2_BREF_TYPE_DATA		3
    721 #define HAMMER2_BREF_TYPE_DIRENT	4
    722 #define HAMMER2_BREF_TYPE_FREEMAP_NODE	5
    723 #define HAMMER2_BREF_TYPE_FREEMAP_LEAF	6
    724 #define HAMMER2_BREF_TYPE_INVALID	7
    725 #define HAMMER2_BREF_TYPE_FREEMAP	254	/* pseudo-type */
    726 #define HAMMER2_BREF_TYPE_VOLUME	255	/* pseudo-type */
    727 
    728 #define HAMMER2_BREF_FLAG_PFSROOT	0x01	/* see also related opflag */
    729 #define HAMMER2_BREF_FLAG_ZERO		0x02	/* NO LONGER USED */
    730 #define HAMMER2_BREF_FLAG_EMERG_MIP	0x04	/* emerg modified-in-place */
    731 
    732 /*
    733  * Encode/decode check mode and compression mode for
    734  * bref.methods.  The compression level is not encoded in
    735  * bref.methods.
    736  */
    737 #define HAMMER2_ENC_CHECK(n)		(((n) & 15) << 4)
    738 #define HAMMER2_DEC_CHECK(n)		(((n) >> 4) & 15)
    739 #define HAMMER2_ENC_COMP(n)		((n) & 15)
    740 #define HAMMER2_DEC_COMP(n)		((n) & 15)
    741 
    742 #define HAMMER2_CHECK_NONE		0
    743 #define HAMMER2_CHECK_DISABLED		1
    744 #define HAMMER2_CHECK_ISCSI32		2
    745 #define HAMMER2_CHECK_XXHASH64		3
    746 #define HAMMER2_CHECK_SHA192		4
    747 #define HAMMER2_CHECK_FREEMAP		5
    748 
    749 #define HAMMER2_CHECK_DEFAULT		HAMMER2_CHECK_XXHASH64
    750 
    751 /* user-specifiable check modes only */
    752 #define HAMMER2_CHECK_STRINGS		{ "none", "disabled", "crc32", \
    753 					  "xxhash64", "sha192" }
    754 #define HAMMER2_CHECK_STRINGS_COUNT	5
    755 
    756 /*
    757  * Encode/decode check or compression algorithm request in
    758  * ipdata->meta.check_algo and ipdata->meta.comp_algo.
    759  */
    760 #define HAMMER2_ENC_ALGO(n)		(n)
    761 #define HAMMER2_DEC_ALGO(n)		((n) & 15)
    762 #define HAMMER2_ENC_LEVEL(n)		((n) << 4)
    763 #define HAMMER2_DEC_LEVEL(n)		(((n) >> 4) & 15)
    764 
    765 #define HAMMER2_COMP_NONE		0
    766 #define HAMMER2_COMP_AUTOZERO		1
    767 #define HAMMER2_COMP_LZ4		2
    768 #define HAMMER2_COMP_ZLIB		3
    769 
    770 #define HAMMER2_COMP_NEWFS_DEFAULT	HAMMER2_COMP_LZ4
    771 #define HAMMER2_COMP_STRINGS		{ "none", "autozero", "lz4", "zlib" }
    772 #define HAMMER2_COMP_STRINGS_COUNT	4
    773 
    774 /*
    775  * Passed to hammer2_chain_create(), causes methods to be inherited from
    776  * parent.
    777  */
    778 #define HAMMER2_METH_DEFAULT		-1
    779 
    780 /*
    781  * HAMMER2 block references are collected into sets of 4 blockrefs.  These
    782  * sets are fully associative, meaning the elements making up a set may
    783  * contain duplicate entries, holes, but valid elements are always sorted.
    784  *
    785  * When redundancy is desired a set may contain several duplicate
    786  * entries pointing to different copies of the same data.  Up to 4 copies
    787  * are supported. Not implemented.
    788  *
    789  * When a set fills up another level of indirection is inserted, moving
    790  * some or all of the set's contents into indirect blocks placed under the
    791  * set.  This is a top-down approach in that indirect blocks are not created
    792  * until the set actually becomes full (that is, the entries in the set can
    793  * shortcut the indirect blocks when the set is not full).  Depending on how
    794  * things are filled multiple indirect blocks will eventually be created.
    795  */
    796 struct hammer2_blockset {
    797 	hammer2_blockref_t	blockref[HAMMER2_SET_COUNT];
    798 };
    799 
    800 typedef struct hammer2_blockset hammer2_blockset_t;
    801 
    802 /*
    803  * Catch programmer snafus
    804  */
    805 #if (1 << HAMMER2_SET_RADIX) != HAMMER2_SET_COUNT
    806 #error "hammer2 direct radix is incorrect"
    807 #endif
    808 #if (1 << HAMMER2_PBUFRADIX) != HAMMER2_PBUFSIZE
    809 #error "HAMMER2_PBUFRADIX and HAMMER2_PBUFSIZE are inconsistent"
    810 #endif
    811 #if (1 << HAMMER2_RADIX_MIN) != HAMMER2_ALLOC_MIN
    812 #error "HAMMER2_RADIX_MIN and HAMMER2_ALLOC_MIN are inconsistent"
    813 #endif
    814 
    815 /*
    816  * hammer2_bmap_data - A freemap entry in the LEVEL1 block.
    817  *
    818  * Each 128-byte entry contains the bitmap and meta-data required to manage
    819  * a LEVEL0 (4MB) block of storage.  The storage is managed in 256 x 16KB
    820  * chunks.
    821  *
    822  * A smaller allocation granularity is supported via a linear iterator and/or
    823  * must otherwise be tracked in ram.
    824  *
    825  * (data structure must be 128 bytes exactly)
    826  *
    827  * linear  - A BYTE linear allocation offset used for sub-16KB allocations
    828  *	     only.  May contain values between 0 and 4MB.  Must be ignored
    829  *	     if 16KB-aligned (i.e. force bitmap scan), otherwise may be
    830  *	     used to sub-allocate within the 16KB block (which is already
    831  *	     marked as allocated in the bitmap).
    832  *
    833  *	     Sub-allocations need only be 1KB-aligned and do not have to be
    834  *	     size-aligned, and 16KB or larger allocations do not update this
    835  *	     field, resulting in pretty good packing.
    836  *
    837  *	     Please note that file data granularity may be limited by
    838  *	     other issues such as buffer cache direct-mapping and the
    839  *	     desire to support sector sizes up to 16KB (so H2 only issues
    840  *	     I/O's in multiples of 16KB anyway).
    841  *
    842  * class   - Clustering class.  Cleared to 0 only if the entire leaf becomes
    843  *	     free.  Used to cluster device buffers so all elements must have
    844  *	     the same device block size, but may mix logical sizes.
    845  *
    846  *	     Typically integrated with the blockref type in the upper 8 bits
    847  *	     to localize inodes and indrect blocks, improving bulk free scans
    848  *	     and directory scans.
    849  *
    850  * bitmap  - Two bits per 16KB allocation block arranged in arrays of
    851  *	     64-bit elements, 256x2 bits representing ~4MB worth of media
    852  *	     storage.  Bit patterns are as follows:
    853  *
    854  *	     00	Unallocated
    855  *	     01 (reserved)
    856  *	     10 Possibly free
    857  *           11 Allocated
    858  *
    859  * ==========
    860  * level6 freemap
    861  * blockref[0]       : 4EB
    862  * blockref[1]       : 4EB
    863  * blockref[2]       : 4EB
    864  * blockref[3]       : 4EB
    865  * -----------------------------------------------------------------------
    866  * 4 x 128B = 512B   : 4 x 4EB = 16EB
    867  *
    868  * level2-5 FREEMAP_NODE
    869  * blockref[0]       : 1GB,256GB,64TB,16PB
    870  * blockref[1]       : 1GB,256GB,64TB,16PB
    871  * ...
    872  * blockref[255]     : 1GB,256GB,64TB,16PB
    873  * -----------------------------------------------------------------------
    874  * 256 x 128B = 32KB : 256 x 1GB,256GB,64TB,16PB = 256GB,64TB,16PB,4EB
    875  *
    876  * level1 FREEMAP_LEAF
    877  * bmap_data[0]      : 8 x 8B = 512bits = 256 x 2bits -> 256 x 16KB = 4MB
    878  * bmap_data[1]      : 8 x 8B = 512bits = 256 x 2bits -> 256 x 16KB = 4MB
    879  * ...
    880  * bmap_data[255]    : 8 x 8B = 512bits = 256 x 2bits -> 256 x 16KB = 4MB
    881  * -----------------------------------------------------------------------
    882  * 256 x 128B = 32KB : 256 x 4MB = 1GB
    883  * ==========
    884  */
    885 struct hammer2_bmap_data {
    886 	int32_t linear;		/* 00 linear sub-granular allocation offset */
    887 	uint16_t class;		/* 04-05 clustering class ((type<<8)|radix) */
    888 	uint8_t reserved06;	/* 06 */
    889 	uint8_t reserved07;	/* 07 */
    890 	uint32_t reserved08;	/* 08 */
    891 	uint32_t reserved0C;	/* 0C */
    892 	uint32_t reserved10;	/* 10 */
    893 	uint32_t reserved14;	/* 14 */
    894 	uint32_t reserved18;	/* 18 */
    895 	uint32_t avail;		/* 1C */
    896 	uint32_t reserved20[8];	/* 20-3F 256 bits manages 128K/1KB/2-bits */
    897 				/* 40-7F 512 bits manages 4MB of storage */
    898 	hammer2_bitmap_t bitmapq[HAMMER2_BMAP_ELEMENTS];
    899 } __packed;
    900 
    901 typedef struct hammer2_bmap_data hammer2_bmap_data_t;
    902 
    903 /*
    904  * The inode number is stored in the inode rather than being
    905  * based on the location of the inode (since the location moves every time
    906  * the inode or anything underneath the inode is modified).
    907  *
    908  * The inode is 1024 bytes, made up of 256 bytes of meta-data, 256 bytes
    909  * for the filename, and 512 bytes worth of direct file data OR an embedded
    910  * blockset.  The in-memory hammer2_inode structure contains only the mostly-
    911  * node-independent meta-data portion (some flags are node-specific and will
    912  * not be synchronized).  The rest of the inode is node-specific and chain I/O
    913  * is required to obtain it.
    914  *
    915  * Directories represent one inode per blockref.  Inodes are not laid out
    916  * as a file but instead are represented by the related blockrefs.  The
    917  * blockrefs, in turn, are indexed by the 64-bit directory hash key.  Remember
    918  * that blocksets are fully associative, so a certain degree efficiency is
    919  * achieved just from that.
    920  *
    921  * Up to 512 bytes of direct data can be embedded in an inode, and since
    922  * inodes are essentially directory entries this also means that small data
    923  * files end up simply being laid out linearly in the directory, resulting
    924  * in fewer seeks and highly optimal access.
    925  *
    926  * The compression mode can be changed at any time in the inode and is
    927  * recorded on a blockref-by-blockref basis.
    928  */
    929 #define HAMMER2_INODE_BYTES		1024	/* (asserted by code) */
    930 #define HAMMER2_INODE_MAXNAME		256	/* maximum name in bytes */
    931 #define HAMMER2_INODE_VERSION_ONE	1
    932 
    933 #define HAMMER2_INODE_START		1024	/* dynamically allocated */
    934 
    935 struct hammer2_inode_meta {
    936 	uint16_t	version;	/* 0000 inode data version */
    937 	uint8_t		reserved02;	/* 0002 */
    938 	uint8_t		pfs_subtype;	/* 0003 pfs sub-type */
    939 
    940 	/*
    941 	 * core inode attributes, inode type, misc flags
    942 	 */
    943 	uint32_t	uflags;		/* 0004 chflags */
    944 	uint32_t	rmajor;		/* 0008 available for device nodes */
    945 	uint32_t	rminor;		/* 000C available for device nodes */
    946 	uint64_t	ctime;		/* 0010 inode change time */
    947 	uint64_t	mtime;		/* 0018 modified time */
    948 	uint64_t	atime;		/* 0020 access time (unsupported) */
    949 	uint64_t	btime;		/* 0028 birth time */
    950 	uuid_t		uid;		/* 0030 uid / degenerate unix uid */
    951 	uuid_t		gid;		/* 0040 gid / degenerate unix gid */
    952 
    953 	uint8_t		type;		/* 0050 object type */
    954 	uint8_t		op_flags;	/* 0051 operational flags */
    955 	uint16_t	cap_flags;	/* 0052 capability flags */
    956 	uint32_t	mode;		/* 0054 unix modes (typ low 16 bits) */
    957 
    958 	/*
    959 	 * inode size, identification, localized recursive configuration
    960 	 * for compression and backup copies.
    961 	 *
    962 	 * NOTE: Nominal parent inode number (iparent) is only applicable
    963 	 *	 for directories but can also help for files during
    964 	 *	 catastrophic recovery.
    965 	 */
    966 	hammer2_tid_t	inum;		/* 0058 inode number */
    967 	hammer2_off_t	size;		/* 0060 size of file */
    968 	uint64_t	nlinks;		/* 0068 hard links (typ only dirs) */
    969 	hammer2_tid_t	iparent;	/* 0070 nominal parent inum */
    970 	hammer2_key_t	name_key;	/* 0078 full filename key */
    971 	uint16_t	name_len;	/* 0080 filename length */
    972 	uint8_t		ncopies;	/* 0082 ncopies to local media */
    973 	uint8_t		comp_algo;	/* 0083 compression request & algo */
    974 
    975 	/*
    976 	 * These fields are currently only applicable to PFSROOTs.
    977 	 *
    978 	 * NOTE: We can't use {volume_data->fsid, pfs_clid} to uniquely
    979 	 *	 identify an instance of a PFS in the cluster because
    980 	 *	 a mount may contain more than one copy of the PFS as
    981 	 *	 a separate node.  {pfs_clid, pfs_fsid} must be used for
    982 	 *	 registration in the cluster.
    983 	 */
    984 	uint8_t		target_type;	/* 0084 hardlink target type */
    985 	uint8_t		check_algo;	/* 0085 check code request & algo */
    986 	uint8_t		pfs_nmasters;	/* 0086 (if PFSROOT) if multi-master */
    987 	uint8_t		pfs_type;	/* 0087 (if PFSROOT) node type */
    988 	hammer2_tid_t	pfs_inum;	/* 0088 (if PFSROOT) inum allocator */
    989 	uuid_t		pfs_clid;	/* 0090 (if PFSROOT) cluster uuid */
    990 	uuid_t		pfs_fsid;	/* 00A0 (if PFSROOT) unique uuid */
    991 
    992 	/*
    993 	 * Quotas and aggregate sub-tree inode and data counters.  Note that
    994 	 * quotas are not replicated downward, they are explicitly set by
    995 	 * the sysop and in-memory structures keep track of inheritance.
    996 	 */
    997 	hammer2_key_t	data_quota;	/* 00B0 subtree quota in bytes */
    998 	hammer2_key_t	unusedB8;	/* 00B8 subtree byte count */
    999 	hammer2_key_t	inode_quota;	/* 00C0 subtree quota inode count */
   1000 	hammer2_key_t	unusedC8;	/* 00C8 subtree inode count */
   1001 
   1002 	/*
   1003 	 * The last snapshot tid is tested against modify_tid to determine
   1004 	 * when a copy must be made of a data block whos check mode has been
   1005 	 * disabled (a disabled check mode allows data blocks to be updated
   1006 	 * in place instead of copy-on-write).
   1007 	 */
   1008 	hammer2_tid_t	pfs_lsnap_tid;	/* 00D0 last snapshot tid */
   1009 	hammer2_tid_t	reservedD8;	/* 00D8 (avail) */
   1010 
   1011 	/*
   1012 	 * Tracks (possibly degenerate) free areas covering all sub-tree
   1013 	 * allocations under inode, not counting the inode itself.
   1014 	 * 0/0 indicates empty entry.  fully set-associative.
   1015 	 *
   1016 	 * (not yet implemented)
   1017 	 */
   1018 	uint64_t	decrypt_check;	/* 00E0 decryption validator */
   1019 	hammer2_off_t	reservedE0[3];	/* 00E8/F0/F8 */
   1020 } __packed;
   1021 
   1022 typedef struct hammer2_inode_meta hammer2_inode_meta_t;
   1023 
   1024 struct hammer2_inode_data {
   1025 	hammer2_inode_meta_t	meta;	/* 0000-00FF */
   1026 	unsigned char	filename[HAMMER2_INODE_MAXNAME];
   1027 					/* 0100-01FF (256 char, unterminated) */
   1028 	union {				/* 0200-03FF (64x8 = 512 bytes) */
   1029 		hammer2_blockset_t blockset;
   1030 		char data[HAMMER2_EMBEDDED_BYTES];
   1031 	} u;
   1032 } __packed;
   1033 
   1034 typedef struct hammer2_inode_data hammer2_inode_data_t;
   1035 
   1036 #define HAMMER2_OPFLAG_DIRECTDATA	0x01
   1037 #define HAMMER2_OPFLAG_PFSROOT		0x02	/* (see also bref flag) */
   1038 #define HAMMER2_OPFLAG_COPYIDS		0x04	/* copyids override parent */
   1039 
   1040 #define HAMMER2_OBJTYPE_UNKNOWN		0
   1041 #define HAMMER2_OBJTYPE_DIRECTORY	1
   1042 #define HAMMER2_OBJTYPE_REGFILE		2
   1043 #define HAMMER2_OBJTYPE_FIFO		4
   1044 #define HAMMER2_OBJTYPE_CDEV		5
   1045 #define HAMMER2_OBJTYPE_BDEV		6
   1046 #define HAMMER2_OBJTYPE_SOFTLINK	7
   1047 #define HAMMER2_OBJTYPE_UNUSED08	8
   1048 #define HAMMER2_OBJTYPE_SOCKET		9
   1049 #define HAMMER2_OBJTYPE_WHITEOUT	10
   1050 
   1051 #define HAMMER2_COPYID_NONE		0
   1052 #define HAMMER2_COPYID_LOCAL		((uint8_t)-1)
   1053 
   1054 #define HAMMER2_COPYID_COUNT		256
   1055 
   1056 /*
   1057  * PFS types identify the role of a PFS within a cluster.  The PFS types
   1058  * is stored on media and in LNK_SPAN messages and used in other places.
   1059  *
   1060  * The low 4 bits specify the current active type while the high 4 bits
   1061  * specify the transition target if the PFS is being upgraded or downgraded,
   1062  * If the upper 4 bits are not zero it may effect how a PFS is used during
   1063  * the transition.
   1064  *
   1065  * Generally speaking, downgrading a MASTER to a SLAVE cannot complete until
   1066  * at least all MASTERs have updated their pfs_nmasters field.  And upgrading
   1067  * a SLAVE to a MASTER cannot complete until the new prospective master has
   1068  * been fully synchronized (though theoretically full synchronization is
   1069  * not required if a (new) quorum of other masters are fully synchronized).
   1070  *
   1071  * It generally does not matter which PFS element you actually mount, you
   1072  * are mounting 'the cluster'.  So, for example, a network mount will mount
   1073  * a DUMMY PFS type on a memory filesystem.  However, there are two exceptions.
   1074  * In order to gain the benefits of a SOFT_MASTER or SOFT_SLAVE, those PFSs
   1075  * must be directly mounted.
   1076  */
   1077 #define HAMMER2_PFSTYPE_NONE		0x00
   1078 #define HAMMER2_PFSTYPE_CACHE		0x01
   1079 #define HAMMER2_PFSTYPE_UNUSED02	0x02
   1080 #define HAMMER2_PFSTYPE_SLAVE		0x03
   1081 #define HAMMER2_PFSTYPE_SOFT_SLAVE	0x04
   1082 #define HAMMER2_PFSTYPE_SOFT_MASTER	0x05
   1083 #define HAMMER2_PFSTYPE_MASTER		0x06
   1084 #define HAMMER2_PFSTYPE_UNUSED07	0x07
   1085 #define HAMMER2_PFSTYPE_SUPROOT		0x08
   1086 #define HAMMER2_PFSTYPE_DUMMY		0x09
   1087 #define HAMMER2_PFSTYPE_MAX		16
   1088 
   1089 #define HAMMER2_PFSTRAN_NONE		0x00	/* no transition in progress */
   1090 #define HAMMER2_PFSTRAN_CACHE		0x10
   1091 #define HAMMER2_PFSTRAN_UNMUSED20	0x20
   1092 #define HAMMER2_PFSTRAN_SLAVE		0x30
   1093 #define HAMMER2_PFSTRAN_SOFT_SLAVE	0x40
   1094 #define HAMMER2_PFSTRAN_SOFT_MASTER	0x50
   1095 #define HAMMER2_PFSTRAN_MASTER		0x60
   1096 #define HAMMER2_PFSTRAN_UNUSED70	0x70
   1097 #define HAMMER2_PFSTRAN_SUPROOT		0x80
   1098 #define HAMMER2_PFSTRAN_DUMMY		0x90
   1099 
   1100 #define HAMMER2_PFS_DEC(n)		((n) & 0x0F)
   1101 #define HAMMER2_PFS_DEC_TRANSITION(n)	(((n) >> 4) & 0x0F)
   1102 #define HAMMER2_PFS_ENC_TRANSITION(n)	(((n) & 0x0F) << 4)
   1103 
   1104 #define HAMMER2_PFSSUBTYPE_NONE		0
   1105 #define HAMMER2_PFSSUBTYPE_SNAPSHOT	1	/* manual/managed snapshot */
   1106 #define HAMMER2_PFSSUBTYPE_AUTOSNAP	2	/* automatic snapshot */
   1107 
   1108 /*
   1109  * PFS mode of operation is a bitmask.  This is typically not stored
   1110  * on-media, but defined here because the field may be used in dmsgs.
   1111  */
   1112 #define HAMMER2_PFSMODE_QUORUM		0x01
   1113 #define HAMMER2_PFSMODE_RW		0x02
   1114 
   1115 /*
   1116  * The volume header eats a 64K block at the beginning of each 2GB zone
   1117  * up to four copies.
   1118  *
   1119  * All information is stored in host byte order.  The volume header's magic
   1120  * number may be checked to determine the byte order.  If you wish to mount
   1121  * between machines w/ different endian modes you'll need filesystem code
   1122  * which acts on the media data consistently (either all one way or all the
   1123  * other).  Our code currently does not do that.
   1124  *
   1125  * A read-write mount may have to recover missing allocations by doing an
   1126  * incremental mirror scan looking for modifications made after alloc_tid.
   1127  * If alloc_tid == last_tid then no recovery operation is needed.  Recovery
   1128  * operations are usually very, very fast.
   1129  *
   1130  * Read-only mounts do not need to do any recovery, access to the filesystem
   1131  * topology is always consistent after a crash (is always consistent, period).
   1132  * However, there may be shortcutted blockref updates present from deep in
   1133  * the tree which are stored in the volumeh eader and must be tracked on
   1134  * the fly.
   1135  *
   1136  * NOTE: The copyinfo[] array contains the configuration for both the
   1137  *	 cluster connections and any local media copies.  The volume
   1138  *	 header will be replicated for each local media copy.
   1139  *
   1140  *	 The mount command may specify multiple medias or just one and
   1141  *	 allow HAMMER2 to pick up the others when it checks the copyinfo[]
   1142  *	 array on mount.
   1143  *
   1144  * NOTE: sroot_blockset points to the super-root directory, not the root
   1145  *	 directory.  The root directory will be a subdirectory under the
   1146  *	 super-root.
   1147  *
   1148  *	 The super-root directory contains all root directories and all
   1149  *	 snapshots (readonly or writable).  It is possible to do a
   1150  *	 null-mount of the super-root using special path constructions
   1151  *	 relative to your mounted root.
   1152  */
   1153 #define HAMMER2_VOLUME_ID_HBO	0x48414d3205172011LLU
   1154 #define HAMMER2_VOLUME_ID_ABO	0x11201705324d4148LLU
   1155 
   1156 /*
   1157  * If volume version is HAMMER2_VOL_VERSION_MULTI_VOLUMES or above, max
   1158  * HAMMER2_MAX_VOLUMES volumes are supported. There must be 1 (and only 1)
   1159  * volume with volume id HAMMER2_ROOT_VOLUME.
   1160  * Otherwise filesystem only supports 1 volume, and that volume must have
   1161  * volume id HAMMER2_ROOT_VOLUME(0) which was a reserved field then.
   1162  */
   1163 #define HAMMER2_MAX_VOLUMES	64
   1164 #define HAMMER2_ROOT_VOLUME	0
   1165 
   1166 struct hammer2_volume_data {
   1167 	/*
   1168 	 * sector #0 - 512 bytes
   1169 	 */
   1170 	uint64_t	magic;			/* 0000 Signature */
   1171 	hammer2_off_t	boot_beg;		/* 0008 Boot area (future) */
   1172 	hammer2_off_t	boot_end;		/* 0010 (size = end - beg) */
   1173 	hammer2_off_t	aux_beg;		/* 0018 Aux area (future) */
   1174 	hammer2_off_t	aux_end;		/* 0020 (size = end - beg) */
   1175 	hammer2_off_t	volu_size;		/* 0028 Volume size, bytes */
   1176 
   1177 	uint32_t	version;		/* 0030 */
   1178 	uint32_t	flags;			/* 0034 */
   1179 	uint8_t		copyid;			/* 0038 copyid of phys vol */
   1180 	uint8_t		freemap_version;	/* 0039 freemap algorithm */
   1181 	uint8_t		peer_type;		/* 003A HAMMER2_PEER_xxx */
   1182 	uint8_t		volu_id;		/* 003B */
   1183 	uint8_t		nvolumes;		/* 003C */
   1184 	uint8_t		reserved003D;		/* 003D */
   1185 	uint16_t	reserved003E;		/* 003E */
   1186 
   1187 	uuid_t		fsid;			/* 0040 */
   1188 	uuid_t		fstype;			/* 0050 */
   1189 
   1190 	/*
   1191 	 * allocator_size is precalculated at newfs time and does not include
   1192 	 * reserved blocks, boot, or aux areas.
   1193 	 *
   1194 	 * Initial non-reserved-area allocations do not use the freemap
   1195 	 * but instead adjust alloc_iterator.  Dynamic allocations take
   1196 	 * over starting at (allocator_beg).  This makes newfs_hammer2's
   1197 	 * job a lot easier and can also serve as a testing jig.
   1198 	 */
   1199 	hammer2_off_t	allocator_size;		/* 0060 Total data space */
   1200 	hammer2_off_t   allocator_free;		/* 0068	Free space */
   1201 	hammer2_off_t	allocator_beg;		/* 0070 Initial allocations */
   1202 
   1203 	/*
   1204 	 * mirror_tid reflects the highest committed change for this
   1205 	 * block device regardless of whether it is to the super-root
   1206 	 * or to a PFS or whatever.
   1207 	 *
   1208 	 * freemap_tid reflects the highest committed freemap change for
   1209 	 * this block device.
   1210 	 */
   1211 	hammer2_tid_t	mirror_tid;		/* 0078 committed tid (vol) */
   1212 	hammer2_tid_t	reserved0080;		/* 0080 */
   1213 	hammer2_tid_t	reserved0088;		/* 0088 */
   1214 	hammer2_tid_t	freemap_tid;		/* 0090 committed tid (fmap) */
   1215 	hammer2_tid_t	bulkfree_tid;		/* 0098 bulkfree incremental */
   1216 	hammer2_tid_t	reserved00A0[4];	/* 00A0-00BF */
   1217 
   1218 	hammer2_off_t	total_size;		/* 00C0 Total volume size, bytes */
   1219 
   1220 	/*
   1221 	 * Copyids are allocated dynamically from the copyexists bitmap.
   1222 	 * An id from the active copies set (up to 8, see copyinfo later on)
   1223 	 * may still exist after the copy set has been removed from the
   1224 	 * volume header and its bit will remain active in the bitmap and
   1225 	 * cannot be reused until it is 100% removed from the hierarchy.
   1226 	 */
   1227 	uint32_t	copyexists[8];		/* 00C8-00E7 copy exists bmap */
   1228 	char		reserved0140[248];	/* 00E8-01DF */
   1229 
   1230 	/*
   1231 	 * 32 bit CRC array at the end of the first 512 byte sector.
   1232 	 *
   1233 	 * icrc_sects[7] - First 512-4 bytes of volume header (including all
   1234 	 *		   the other icrc's except this one).
   1235 	 *
   1236 	 * icrc_sects[6] - Sector 1 (512 bytes) of volume header, which is
   1237 	 *		   the blockset for the root.
   1238 	 *
   1239 	 * icrc_sects[5] - Sector 2
   1240 	 * icrc_sects[4] - Sector 3
   1241 	 * icrc_sects[3] - Sector 4 (the freemap blockset)
   1242 	 */
   1243 	hammer2_crc32_t	icrc_sects[8];		/* 01E0-01FF */
   1244 
   1245 	/*
   1246 	 * sector #1 - 512 bytes
   1247 	 *
   1248 	 * The entire sector is used by a blockset, but currently only first
   1249 	 * blockref is used.
   1250 	 */
   1251 	hammer2_blockset_t sroot_blockset;	/* 0200-03FF Superroot dir */
   1252 
   1253 	/*
   1254 	 * sector #2-6
   1255 	 */
   1256 	char	sector2[512];			/* 0400-05FF reserved */
   1257 	char	sector3[512];			/* 0600-07FF reserved */
   1258 	hammer2_blockset_t freemap_blockset;	/* 0800-09FF freemap  */
   1259 	char	sector5[512];			/* 0A00-0BFF reserved */
   1260 	char	sector6[512];			/* 0C00-0DFF reserved */
   1261 
   1262 	/*
   1263 	 * sector #7 - 512 bytes
   1264 	 * Maximum 64 volume offsets within logical offset.
   1265 	 */
   1266 	hammer2_off_t volu_loff[HAMMER2_MAX_VOLUMES];
   1267 
   1268 	/*
   1269 	 * sector #8-71	- 32768 bytes
   1270 	 *
   1271 	 * Contains the configuration for up to 256 copyinfo targets.  These
   1272 	 * specify local and remote copies operating as masters or slaves.
   1273 	 * copyid's 0 and 255 are reserved (0 indicates an empty slot and 255
   1274 	 * indicates the local media).
   1275 	 */
   1276 						/* 1000-8FFF copyinfo config */
   1277 	hammer2_volconf_t copyinfo[HAMMER2_COPYID_COUNT];
   1278 
   1279 	/*
   1280 	 * Remaining sections are reserved for future use.
   1281 	 */
   1282 	char		reserved0400[0x6FFC];	/* 9000-FFFB reserved */
   1283 
   1284 	/*
   1285 	 * icrc on entire volume header
   1286 	 */
   1287 	hammer2_crc32_t	icrc_volheader;		/* FFFC-FFFF full volume icrc*/
   1288 } __packed;
   1289 
   1290 typedef struct hammer2_volume_data hammer2_volume_data_t;
   1291 
   1292 /*
   1293  * Various parts of the volume header have their own iCRCs.
   1294  *
   1295  * The first 512 bytes has its own iCRC stored at the end of the 512 bytes
   1296  * and not included the icrc calculation.
   1297  *
   1298  * The second 512 bytes also has its own iCRC but it is stored in the first
   1299  * 512 bytes so it covers the entire second 512 bytes.
   1300  *
   1301  * The whole volume block (64KB) has an iCRC covering all but the last 4 bytes,
   1302  * which is where the iCRC for the whole volume is stored.  This is currently
   1303  * a catch-all for anything not individually iCRCd.
   1304  */
   1305 #define HAMMER2_VOL_ICRC_SECT0		7
   1306 #define HAMMER2_VOL_ICRC_SECT1		6
   1307 
   1308 #define HAMMER2_VOLUME_BYTES		65536
   1309 
   1310 #define HAMMER2_VOLUME_ICRC0_OFF	0
   1311 #define HAMMER2_VOLUME_ICRC1_OFF	512
   1312 #define HAMMER2_VOLUME_ICRCVH_OFF	0
   1313 
   1314 #define HAMMER2_VOLUME_ICRC0_SIZE	(512 - 4)
   1315 #define HAMMER2_VOLUME_ICRC1_SIZE	(512)
   1316 #define HAMMER2_VOLUME_ICRCVH_SIZE	(65536 - 4)
   1317 
   1318 #define HAMMER2_VOL_VERSION_MULTI_VOLUMES	2
   1319 
   1320 #define HAMMER2_VOL_VERSION_MIN		1
   1321 #define HAMMER2_VOL_VERSION_DEFAULT	HAMMER2_VOL_VERSION_MULTI_VOLUMES
   1322 #define HAMMER2_VOL_VERSION_WIP		(HAMMER2_VOL_VERSION_MULTI_VOLUMES + 1)
   1323 
   1324 #define HAMMER2_NUM_VOLHDRS		4
   1325 
   1326 union hammer2_media_data {
   1327 	hammer2_volume_data_t	voldata;
   1328         hammer2_inode_data_t    ipdata;
   1329 	hammer2_blockset_t	blkset;
   1330 	hammer2_blockref_t	npdata[HAMMER2_IND_COUNT_MAX];
   1331 	hammer2_bmap_data_t	bmdata[HAMMER2_FREEMAP_COUNT];
   1332 	char			buf[HAMMER2_PBUFSIZE];
   1333 } __packed;
   1334 
   1335 typedef union hammer2_media_data hammer2_media_data_t;
   1336 
   1337 #endif /* !_VFS_HAMMER2_DISK_H_ */
   1338