Home | History | Annotate | Line # | Download | only in src
      1 /*-
      2  * Copyright (c) 2013 Bruce D. Evans
      3  * All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  * 1. Redistributions of source code must retain the above copyright
      9  *    notice unmodified, this list of conditions, and the following
     10  *    disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  *
     15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     25  */
     26 
     27 #include <sys/cdefs.h>
     28 #include <complex.h>
     29 #include <float.h>
     30 
     31 #include "fpmath.h"
     32 #include "math.h"
     33 #include "math_private.h"
     34 
     35 #define	MANT_DIG	LDBL_MANT_DIG
     36 #define	MAX_EXP		LDBL_MAX_EXP
     37 #define	MIN_EXP		LDBL_MIN_EXP
     38 
     39 static const double
     40 ln2_hi = 6.9314718055829871e-1;		/*  0x162e42fefa0000.0p-53 */
     41 
     42 #if LDBL_MANT_DIG == 64
     43 #define	MULT_REDUX	0x1p32		/* exponent MANT_DIG / 2 rounded up */
     44 static const double
     45 ln2l_lo = 1.6465949582897082e-12;	/*  0x1cf79abc9e3b3a.0p-92 */
     46 #elif LDBL_MANT_DIG == 113
     47 #define	MULT_REDUX	0x1p57
     48 static const long double
     49 ln2l_lo = 1.64659495828970812809844307550013433e-12L;	/*  0x1cf79abc9e3b39803f2f6af40f343.0p-152L */
     50 #else
     51 #error "Unsupported long double format"
     52 #endif
     53 
     54 long double complex
     55 clogl(long double complex z)
     56 {
     57 	long double ax, ax2h, ax2l, axh, axl, ay, ay2h, ay2l, ayh, ayl;
     58 	long double sh, sl, t;
     59 	long double x, y, v;
     60 	uint16_t hax, hay;
     61 	int kx, ky;
     62 
     63 	ENTERIT(long double complex);
     64 
     65 	x = creall(z);
     66 	y = cimagl(z);
     67 	v = atan2l(y, x);
     68 
     69 	ax = fabsl(x);
     70 	ay = fabsl(y);
     71 	if (ax < ay) {
     72 		t = ax;
     73 		ax = ay;
     74 		ay = t;
     75 	}
     76 
     77 	GET_LDBL_EXPSIGN(hax, ax);
     78 	kx = hax - 16383;
     79 	GET_LDBL_EXPSIGN(hay, ay);
     80 	ky = hay - 16383;
     81 
     82 	/* Handle NaNs and Infs using the general formula. */
     83 	if (kx == MAX_EXP || ky == MAX_EXP)
     84 		RETURNI(CMPLXL(logl(hypotl(x, y)), v));
     85 
     86 	/* Avoid spurious underflow, and reduce inaccuracies when ax is 1. */
     87 	if (ax == 1) {
     88 		if (ky < (MIN_EXP - 1) / 2)
     89 			RETURNI(CMPLXL((ay / 2) * ay, v));
     90 		RETURNI(CMPLXL(log1pl(ay * ay) / 2, v));
     91 	}
     92 
     93 	/* Avoid underflow when ax is not small.  Also handle zero args. */
     94 	if (kx - ky > MANT_DIG || ay == 0)
     95 		RETURNI(CMPLXL(logl(ax), v));
     96 
     97 	/* Avoid overflow. */
     98 	if (kx >= MAX_EXP - 1)
     99 		RETURNI(CMPLXL(logl(hypotl(x * 0x1p-16382L, y * 0x1p-16382L)) +
    100 		    (MAX_EXP - 2) * ln2l_lo + (MAX_EXP - 2) * ln2_hi, v));
    101 	if (kx >= (MAX_EXP - 1) / 2)
    102 		RETURNI(CMPLXL(logl(hypotl(x, y)), v));
    103 
    104 	/* Reduce inaccuracies and avoid underflow when ax is denormal. */
    105 	if (kx <= MIN_EXP - 2)
    106 		RETURNI(CMPLXL(logl(hypotl(x * 0x1p16383L, y * 0x1p16383L)) +
    107 		    (MIN_EXP - 2) * ln2l_lo + (MIN_EXP - 2) * ln2_hi, v));
    108 
    109 	/* Avoid remaining underflows (when ax is small but not denormal). */
    110 	if (ky < (MIN_EXP - 1) / 2 + MANT_DIG)
    111 		RETURNI(CMPLXL(logl(hypotl(x, y)), v));
    112 
    113 	/* Calculate ax*ax and ay*ay exactly using Dekker's algorithm. */
    114 	t = (long double)(ax * (MULT_REDUX + 1));
    115 	axh = (long double)(ax - t) + t;
    116 	axl = ax - axh;
    117 	ax2h = ax * ax;
    118 	ax2l = axh * axh - ax2h + 2 * axh * axl + axl * axl;
    119 	t = (long double)(ay * (MULT_REDUX + 1));
    120 	ayh = (long double)(ay - t) + t;
    121 	ayl = ay - ayh;
    122 	ay2h = ay * ay;
    123 	ay2l = ayh * ayh - ay2h + 2 * ayh * ayl + ayl * ayl;
    124 
    125 	/*
    126 	 * When log(|z|) is far from 1, accuracy in calculating the sum
    127 	 * of the squares is not very important since log() reduces
    128 	 * inaccuracies.  We depended on this to use the general
    129 	 * formula when log(|z|) is very far from 1.  When log(|z|) is
    130 	 * moderately far from 1, we go through the extra-precision
    131 	 * calculations to reduce branches and gain a little accuracy.
    132 	 *
    133 	 * When |z| is near 1, we subtract 1 and use log1p() and don't
    134 	 * leave it to log() to subtract 1, since we gain at least 1 bit
    135 	 * of accuracy in this way.
    136 	 *
    137 	 * When |z| is very near 1, subtracting 1 can cancel almost
    138 	 * 3*MANT_DIG bits.  We arrange that subtracting 1 is exact in
    139 	 * doubled precision, and then do the rest of the calculation
    140 	 * in sloppy doubled precision.  Although large cancellations
    141 	 * often lose lots of accuracy, here the final result is exact
    142 	 * in doubled precision if the large calculation occurs (because
    143 	 * then it is exact in tripled precision and the cancellation
    144 	 * removes enough bits to fit in doubled precision).  Thus the
    145 	 * result is accurate in sloppy doubled precision, and the only
    146 	 * significant loss of accuracy is when it is summed and passed
    147 	 * to log1p().
    148 	 */
    149 	sh = ax2h;
    150 	sl = ay2h;
    151 	_2sumF(sh, sl);
    152 	if (sh < 0.5 || sh >= 3)
    153 		RETURNI(CMPLXL(logl(ay2l + ax2l + sl + sh) / 2, v));
    154 	sh -= 1;
    155 	_2sum(sh, sl);
    156 	_2sum(ax2l, ay2l);
    157 	/* Briggs-Kahan algorithm (except we discard the final low term): */
    158 	_2sum(sh, ax2l);
    159 	_2sum(sl, ay2l);
    160 	t = ax2l + sl;
    161 	_2sumF(sh, t);
    162 	RETURNI(CMPLXL(log1pl(ay2l + t + sh) / 2, v));
    163 }
    164