Home | History | Annotate | Line # | Download | only in xscale
      1 /*	$NetBSD: i80321_timer.c,v 1.22 2018/07/12 10:46:42 maxv Exp $ */
      2 
      3 /*
      4  * Copyright (c) 2001, 2002 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Timer/clock support for the Intel i80321 I/O processor.
     40  */
     41 
     42 #include <sys/cdefs.h>
     43 __KERNEL_RCSID(0, "$NetBSD: i80321_timer.c,v 1.22 2018/07/12 10:46:42 maxv Exp $");
     44 
     45 #include "opt_i80321.h"
     46 
     47 #include <sys/param.h>
     48 #include <sys/systm.h>
     49 #include <sys/kernel.h>
     50 #include <sys/time.h>
     51 #include <sys/timetc.h>
     52 
     53 #include <dev/clock_subr.h>
     54 
     55 #include <sys/bus.h>
     56 #include <arm/cpufunc.h>
     57 
     58 #include <arm/xscale/i80321reg.h>
     59 #include <arm/xscale/i80321var.h>
     60 
     61 void	(*i80321_hardclock_hook)(void);
     62 
     63 #ifndef COUNTS_PER_SEC
     64 #define	COUNTS_PER_SEC		200000000	/* 200MHz */
     65 #endif
     66 #define	COUNTS_PER_USEC		(COUNTS_PER_SEC / 1000000)
     67 
     68 static void tmr1_tc_init(void);
     69 
     70 static void *clock_ih;
     71 
     72 static uint32_t counts_per_hz;
     73 
     74 int	clockhandler(void *);
     75 
     76 __unused static inline uint32_t
     77 tmr0_read(void)
     78 {
     79 	uint32_t rv;
     80 
     81 	__asm volatile("mrc p6, 0, %0, c0, c1, 0"
     82 		: "=r" (rv));
     83 	return (rv);
     84 }
     85 
     86 static inline void
     87 tmr0_write(uint32_t val)
     88 {
     89 
     90 	__asm volatile("mcr p6, 0, %0, c0, c1, 0"
     91 		:
     92 		: "r" (val));
     93 }
     94 
     95 static inline uint32_t
     96 tcr0_read(void)
     97 {
     98 	uint32_t rv;
     99 
    100 	__asm volatile("mrc p6, 0, %0, c2, c1, 0"
    101 		: "=r" (rv));
    102 	return (rv);
    103 }
    104 
    105 static inline void
    106 tcr0_write(uint32_t val)
    107 {
    108 
    109 	__asm volatile("mcr p6, 0, %0, c2, c1, 0"
    110 		:
    111 		: "r" (val));
    112 }
    113 
    114 static inline void
    115 trr0_write(uint32_t val)
    116 {
    117 
    118 	__asm volatile("mcr p6, 0, %0, c4, c1, 0"
    119 		:
    120 		: "r" (val));
    121 }
    122 
    123 __unused static inline uint32_t
    124 tmr1_read(void)
    125 {
    126 	uint32_t rv;
    127 
    128 	__asm volatile("mrc p6, 0, %0, c1, c1, 0"
    129 		: "=r" (rv));
    130 	return (rv);
    131 }
    132 
    133 static inline void
    134 tmr1_write(uint32_t val)
    135 {
    136 
    137 	__asm volatile("mcr p6, 0, %0, c1, c1, 0"
    138 		:
    139 		: "r" (val));
    140 }
    141 
    142 static inline uint32_t
    143 tcr1_read(void)
    144 {
    145 	uint32_t rv;
    146 
    147 	__asm volatile("mrc p6, 0, %0, c3, c1, 0"
    148 		: "=r" (rv));
    149 	return (rv);
    150 }
    151 
    152 static inline void
    153 tcr1_write(uint32_t val)
    154 {
    155 
    156 	__asm volatile("mcr p6, 0, %0, c3, c1, 0"
    157 		:
    158 		: "r" (val));
    159 }
    160 
    161 static inline void
    162 trr1_write(uint32_t val)
    163 {
    164 
    165 	__asm volatile("mcr p6, 0, %0, c5, c1, 0"
    166 		:
    167 		: "r" (val));
    168 }
    169 
    170 static inline void
    171 tisr_write(uint32_t val)
    172 {
    173 
    174 	__asm volatile("mcr p6, 0, %0, c6, c1, 0"
    175 		:
    176 		: "r" (val));
    177 }
    178 
    179 /*
    180  * i80321_calibrate_delay:
    181  *
    182  *	Calibrate the delay loop.
    183  */
    184 void
    185 i80321_calibrate_delay(void)
    186 {
    187 
    188 	/*
    189 	 * Just use hz=100 for now -- we'll adjust it, if necessary,
    190 	 * in cpu_initclocks().
    191 	 */
    192 	counts_per_hz = COUNTS_PER_SEC / 100;
    193 
    194 	tmr0_write(0);			/* stop timer */
    195 	tisr_write(TISR_TMR0);		/* clear interrupt */
    196 	trr0_write(counts_per_hz);	/* reload value */
    197 	tcr0_write(counts_per_hz);	/* current value */
    198 
    199 	tmr0_write(TMRx_ENABLE|TMRx_RELOAD|TMRx_CSEL_CORE);
    200 }
    201 
    202 /*
    203  * cpu_initclocks:
    204  *
    205  *	Initialize the clock and get them going.
    206  */
    207 void
    208 cpu_initclocks(void)
    209 {
    210 	u_int oldirqstate;
    211 
    212 	if (hz < 50 || COUNTS_PER_SEC % hz) {
    213 		aprint_error("Cannot get %d Hz clock; using 100 Hz\n", hz);
    214 		hz = 100;
    215 	}
    216 
    217 	/*
    218 	 * We only have one timer available; stathz and profhz are
    219 	 * always left as 0 (the upper-layer clock code deals with
    220 	 * this situation).
    221 	 */
    222 	if (stathz != 0)
    223 		aprint_error("Cannot get %d Hz statclock\n", stathz);
    224 	stathz = 0;
    225 
    226 	if (profhz != 0)
    227 		aprint_error("Cannot get %d Hz profclock\n", profhz);
    228 	profhz = 0;
    229 
    230 	/* Report the clock frequency. */
    231 	aprint_normal("clock: hz=%d stathz=%d profhz=%d\n", hz, stathz, profhz);
    232 
    233 	oldirqstate = disable_interrupts(I32_bit);
    234 
    235 	/* Hook up the clock interrupt handler. */
    236 	clock_ih = i80321_intr_establish(ICU_INT_TMR0, IPL_CLOCK,
    237 	    clockhandler, NULL);
    238 	if (clock_ih == NULL)
    239 		panic("cpu_initclocks: unable to register timer interrupt");
    240 
    241 	/* Set up the new clock parameters. */
    242 
    243 	tmr0_write(0);			/* stop timer */
    244 	tisr_write(TISR_TMR0);		/* clear interrupt */
    245 
    246 	counts_per_hz = COUNTS_PER_SEC / hz;
    247 
    248 	trr0_write(counts_per_hz);	/* reload value */
    249 	tcr0_write(counts_per_hz);	/* current value */
    250 
    251 	tmr0_write(TMRx_ENABLE|TMRx_RELOAD|TMRx_CSEL_CORE);
    252 
    253 	restore_interrupts(oldirqstate);
    254 
    255 	tmr1_tc_init();
    256 }
    257 
    258 /*
    259  * setstatclockrate:
    260  *
    261  *	Set the rate of the statistics clock.
    262  *
    263  *	We assume that hz is either stathz or profhz, and that neither
    264  *	will change after being set by cpu_initclocks().  We could
    265  *	recalculate the intervals here, but that would be a pain.
    266  */
    267 void
    268 setstatclockrate(int newhz)
    269 {
    270 
    271 	/*
    272 	 * XXX Use TMR1?
    273 	 */
    274 }
    275 
    276 static inline uint32_t
    277 tmr1_tc_get(struct timecounter *tch)
    278 {
    279 	return (~tcr1_read());
    280 }
    281 
    282 void
    283 tmr1_tc_init(void)
    284 {
    285 	static struct timecounter tmr1_tc = {
    286 		.tc_get_timecount = tmr1_tc_get,
    287 		.tc_frequency = COUNTS_PER_SEC,
    288 		.tc_counter_mask = ~0,
    289 		.tc_name = "tmr1_count",
    290 		.tc_quality = 100,
    291 	};
    292 
    293 	/* program the tc */
    294 	trr1_write(~0);	/* reload value */
    295 	tcr1_write(~0);	/* current value */
    296 
    297 	tmr1_write(TMRx_ENABLE|TMRx_RELOAD|TMRx_CSEL_CORE);
    298 
    299 
    300 	trr1_write(~0);
    301 	tc_init(&tmr1_tc);
    302 }
    303 
    304 /*
    305  * delay:
    306  *
    307  *	Delay for at least N microseconds.
    308  */
    309 void
    310 delay(u_int n)
    311 {
    312 	uint32_t cur, last, delta, usecs;
    313 
    314 	/*
    315 	 * This works by polling the timer and counting the
    316 	 * number of microseconds that go by.
    317 	 */
    318 	last = tcr0_read();
    319 	delta = usecs = 0;
    320 
    321 	while (n > usecs) {
    322 		cur = tcr0_read();
    323 
    324 		/* Check to see if the timer has wrapped around. */
    325 		if (last < cur)
    326 			delta += (last + (counts_per_hz - cur));
    327 		else
    328 			delta += (last - cur);
    329 
    330 		last = cur;
    331 
    332 		if (delta >= COUNTS_PER_USEC) {
    333 			usecs += delta / COUNTS_PER_USEC;
    334 			delta %= COUNTS_PER_USEC;
    335 		}
    336 	}
    337 }
    338 
    339 /*
    340  * clockhandler:
    341  *
    342  *	Handle the hardclock interrupt.
    343  */
    344 int
    345 clockhandler(void *arg)
    346 {
    347 	struct clockframe *frame = arg;
    348 
    349 	tisr_write(TISR_TMR0);
    350 
    351 	hardclock(frame);
    352 
    353 	if (i80321_hardclock_hook != NULL)
    354 		(*i80321_hardclock_hook)();
    355 
    356 	return (1);
    357 }
    358