Home | History | Annotate | Line # | Download | only in i915
      1 /*	$NetBSD: i915_active.c,v 1.14 2022/03/16 23:32:52 riastradh Exp $	*/
      2 
      3 /*
      4  * SPDX-License-Identifier: MIT
      5  *
      6  * Copyright  2019 Intel Corporation
      7  */
      8 
      9 #include <sys/cdefs.h>
     10 __KERNEL_RCSID(0, "$NetBSD: i915_active.c,v 1.14 2022/03/16 23:32:52 riastradh Exp $");
     11 
     12 #include <linux/debugobjects.h>
     13 
     14 #include "gt/intel_context.h"
     15 #include "gt/intel_engine_pm.h"
     16 #include "gt/intel_ring.h"
     17 
     18 #include "i915_drv.h"
     19 #include "i915_active.h"
     20 #include "i915_globals.h"
     21 
     22 #include <linux/nbsd-namespace.h>
     23 
     24 /*
     25  * Active refs memory management
     26  *
     27  * To be more economical with memory, we reap all the i915_active trees as
     28  * they idle (when we know the active requests are inactive) and allocate the
     29  * nodes from a local slab cache to hopefully reduce the fragmentation.
     30  */
     31 static struct i915_global_active {
     32 	struct i915_global base;
     33 	struct kmem_cache *slab_cache;
     34 } global;
     35 
     36 struct active_node {
     37 	struct i915_active_fence base;
     38 	struct i915_active *ref;
     39 	struct rb_node node;
     40 	u64 timeline;
     41 	struct intel_engine_cs *engine;
     42 };
     43 
     44 static inline struct active_node *
     45 node_from_active(struct i915_active_fence *active)
     46 {
     47 	return container_of(active, struct active_node, base);
     48 }
     49 
     50 #define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers)
     51 
     52 static inline bool is_barrier(const struct i915_active_fence *active)
     53 {
     54 	return IS_ERR(rcu_access_pointer(active->fence));
     55 }
     56 
     57 static inline struct llist_node *barrier_to_ll(struct active_node *node)
     58 {
     59 	GEM_BUG_ON(!is_barrier(&node->base));
     60 	return &node->base.llist;
     61 }
     62 
     63 static inline struct intel_engine_cs *
     64 __barrier_to_engine(struct active_node *node)
     65 {
     66 	return READ_ONCE(node->engine);
     67 }
     68 
     69 static inline struct intel_engine_cs *
     70 barrier_to_engine(struct active_node *node)
     71 {
     72 	GEM_BUG_ON(!is_barrier(&node->base));
     73 	return __barrier_to_engine(node);
     74 }
     75 
     76 static inline struct active_node *barrier_from_ll(struct llist_node *x)
     77 {
     78 	return container_of(x, struct active_node, base.llist);
     79 }
     80 
     81 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS)
     82 
     83 static void *active_debug_hint(void *addr)
     84 {
     85 	struct i915_active *ref = addr;
     86 
     87 	return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref;
     88 }
     89 
     90 static struct debug_obj_descr active_debug_desc = {
     91 	.name = "i915_active",
     92 	.debug_hint = active_debug_hint,
     93 };
     94 
     95 static void debug_active_init(struct i915_active *ref)
     96 {
     97 	debug_object_init(ref, &active_debug_desc);
     98 }
     99 
    100 static void debug_active_activate(struct i915_active *ref)
    101 {
    102 	lockdep_assert_held(&ref->tree_lock);
    103 	if (!atomic_read(&ref->count)) /* before the first inc */
    104 		debug_object_activate(ref, &active_debug_desc);
    105 }
    106 
    107 static void debug_active_deactivate(struct i915_active *ref)
    108 {
    109 	lockdep_assert_held(&ref->tree_lock);
    110 	if (!atomic_read(&ref->count)) /* after the last dec */
    111 		debug_object_deactivate(ref, &active_debug_desc);
    112 }
    113 
    114 static void debug_active_fini(struct i915_active *ref)
    115 {
    116 	debug_object_free(ref, &active_debug_desc);
    117 }
    118 
    119 static void debug_active_assert(struct i915_active *ref)
    120 {
    121 	debug_object_assert_init(ref, &active_debug_desc);
    122 }
    123 
    124 #else
    125 
    126 static inline void debug_active_init(struct i915_active *ref) { }
    127 static inline void debug_active_activate(struct i915_active *ref) { }
    128 static inline void debug_active_deactivate(struct i915_active *ref) { }
    129 static inline void debug_active_fini(struct i915_active *ref) { }
    130 static inline void debug_active_assert(struct i915_active *ref) { }
    131 
    132 #endif
    133 
    134 #ifdef __NetBSD__
    135 
    136 static int
    137 compare_nodes(void *cookie, const void *va, const void *vb)
    138 {
    139 	const struct active_node *a = va;
    140 	const struct active_node *b = vb;
    141 
    142 	if (a->timeline < b->timeline)
    143 		return -1;
    144 	if (a->timeline > b->timeline)
    145 		return +1;
    146 	if ((uintptr_t)a < (uintptr_t)b)
    147 		return -1;
    148 	if ((uintptr_t)a > (uintptr_t)b)
    149 		return +1;
    150 	return 0;
    151 }
    152 
    153 static int
    154 compare_node_key(void *cookie, const void *vn, const void *vk)
    155 {
    156 	const struct active_node *a = vn;
    157 	const uint64_t *k = vk;
    158 
    159 	if (a->timeline < *k)
    160 		return -1;
    161 	if (a->timeline > *k)
    162 		return +1;
    163 	return 0;
    164 }
    165 
    166 static const rb_tree_ops_t active_rb_ops = {
    167 	.rbto_compare_nodes = compare_nodes,
    168 	.rbto_compare_key = compare_node_key,
    169 	.rbto_node_offset = offsetof(struct active_node, node),
    170 };
    171 
    172 #endif
    173 
    174 static void
    175 __active_retire(struct i915_active *ref)
    176 {
    177 	struct active_node *it, *n;
    178 	struct rb_root root;
    179 	unsigned long flags;
    180 
    181 	GEM_BUG_ON(i915_active_is_idle(ref));
    182 
    183 	/* return the unused nodes to our slabcache -- flushing the allocator */
    184 	if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags))
    185 		return;
    186 
    187 	GEM_BUG_ON(rcu_access_pointer(ref->excl.fence));
    188 	debug_active_deactivate(ref);
    189 
    190 #ifdef __NetBSD__
    191 	rb_move(&root, &ref->tree);
    192 	rb_tree_init(&ref->tree.rbr_tree, &active_rb_ops);
    193 #else
    194 	root = ref->tree;
    195 	ref->tree = RB_ROOT;
    196 #endif
    197 	ref->cache = NULL;
    198 
    199 	DRM_SPIN_WAKEUP_ALL(&ref->tree_wq, &ref->tree_lock);
    200 
    201 	spin_unlock_irqrestore(&ref->tree_lock, flags);
    202 
    203 	/* After the final retire, the entire struct may be freed */
    204 	if (ref->retire)
    205 		ref->retire(ref);
    206 
    207 	/* ... except if you wait on it, you must manage your own references! */
    208 
    209 	rbtree_postorder_for_each_entry_safe(it, n, &root, node) {
    210 		GEM_BUG_ON(i915_active_fence_isset(&it->base));
    211 		kmem_cache_free(global.slab_cache, it);
    212 	}
    213 }
    214 
    215 static void
    216 active_work(struct work_struct *wrk)
    217 {
    218 	struct i915_active *ref = container_of(wrk, typeof(*ref), work);
    219 
    220 	GEM_BUG_ON(!atomic_read(&ref->count));
    221 	if (atomic_add_unless(&ref->count, -1, 1))
    222 		return;
    223 
    224 	__active_retire(ref);
    225 }
    226 
    227 static void
    228 active_retire(struct i915_active *ref)
    229 {
    230 	GEM_BUG_ON(!atomic_read(&ref->count));
    231 	if (atomic_add_unless(&ref->count, -1, 1))
    232 		return;
    233 
    234 	if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) {
    235 		queue_work(system_unbound_wq, &ref->work);
    236 		return;
    237 	}
    238 
    239 	__active_retire(ref);
    240 }
    241 
    242 static inline struct dma_fence **
    243 __active_fence_slot(struct i915_active_fence *active)
    244 {
    245 	return (struct dma_fence ** __force)&active->fence;
    246 }
    247 
    248 static inline bool
    249 active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
    250 {
    251 	struct i915_active_fence *active =
    252 		container_of(cb, typeof(*active), cb);
    253 
    254 	return cmpxchg(__active_fence_slot(active), fence, NULL) == fence;
    255 }
    256 
    257 static void
    258 node_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
    259 {
    260 	if (active_fence_cb(fence, cb))
    261 		active_retire(container_of(cb, struct active_node, base.cb)->ref);
    262 }
    263 
    264 static void
    265 excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
    266 {
    267 	if (active_fence_cb(fence, cb))
    268 		active_retire(container_of(cb, struct i915_active, excl.cb));
    269 }
    270 
    271 static struct i915_active_fence *
    272 active_instance(struct i915_active *ref, struct intel_timeline *tl)
    273 {
    274 	struct active_node *node, *prealloc;
    275 	struct rb_node **p, *parent;
    276 	u64 idx = tl->fence_context;
    277 
    278 	/*
    279 	 * We track the most recently used timeline to skip a rbtree search
    280 	 * for the common case, under typical loads we never need the rbtree
    281 	 * at all. We can reuse the last slot if it is empty, that is
    282 	 * after the previous activity has been retired, or if it matches the
    283 	 * current timeline.
    284 	 */
    285 	node = READ_ONCE(ref->cache);
    286 	if (node && node->timeline == idx)
    287 		return &node->base;
    288 
    289 	/* Preallocate a replacement, just in case */
    290 	prealloc = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
    291 	if (!prealloc)
    292 		return NULL;
    293 	memset(prealloc, 0, sizeof(*prealloc));
    294 
    295 	spin_lock_irq(&ref->tree_lock);
    296 	GEM_BUG_ON(i915_active_is_idle(ref));
    297 
    298 #ifdef __NetBSD__
    299 	__USE(parent);
    300 	__USE(p);
    301 	node = rb_tree_find_node(&ref->tree.rbr_tree, &idx);
    302 	if (node) {
    303 		KASSERT(node->timeline == idx);
    304 		goto out;
    305 	}
    306 #else
    307 	parent = NULL;
    308 	p = &ref->tree.rb_node;
    309 	while (*p) {
    310 		parent = *p;
    311 
    312 		node = rb_entry(parent, struct active_node, node);
    313 		if (node->timeline == idx) {
    314 			kmem_cache_free(global.slab_cache, prealloc);
    315 			goto out;
    316 		}
    317 
    318 		if (node->timeline < idx)
    319 			p = &parent->rb_right;
    320 		else
    321 			p = &parent->rb_left;
    322 	}
    323 #endif
    324 
    325 	node = prealloc;
    326 	prealloc = NULL;
    327 	__i915_active_fence_init(&node->base, NULL, node_retire);
    328 	node->ref = ref;
    329 	node->timeline = idx;
    330 
    331 #ifdef __NetBSD__
    332 	struct active_node *collision __diagused;
    333 	collision = rb_tree_insert_node(&ref->tree.rbr_tree, node);
    334 	KASSERT(collision == node);
    335 #else
    336 	rb_link_node(&node->node, parent, p);
    337 	rb_insert_color(&node->node, &ref->tree);
    338 #endif
    339 
    340 out:
    341 	ref->cache = node;
    342 	spin_unlock_irq(&ref->tree_lock);
    343 
    344 #ifdef __NetBSD__
    345 	if (prealloc)
    346 		kmem_cache_free(global.slab_cache, prealloc);
    347 #endif
    348 
    349 	BUILD_BUG_ON(offsetof(typeof(*node), base));
    350 	return &node->base;
    351 }
    352 
    353 void __i915_active_init(struct i915_active *ref,
    354 			int (*active)(struct i915_active *ref),
    355 			void (*retire)(struct i915_active *ref),
    356 			struct lock_class_key *mkey,
    357 			struct lock_class_key *wkey)
    358 {
    359 	unsigned long bits;
    360 
    361 	debug_active_init(ref);
    362 
    363 	ref->flags = 0;
    364 	ref->active = active;
    365 	ref->retire = ptr_unpack_bits(retire, &bits, 2);
    366 	if (bits & I915_ACTIVE_MAY_SLEEP)
    367 		ref->flags |= I915_ACTIVE_RETIRE_SLEEPS;
    368 
    369 	spin_lock_init(&ref->tree_lock);
    370 	DRM_INIT_WAITQUEUE(&ref->tree_wq, "i915act");
    371 #ifdef __NetBSD__
    372 	rb_tree_init(&ref->tree.rbr_tree, &active_rb_ops);
    373 #else
    374 	ref->tree = RB_ROOT;
    375 #endif
    376 	ref->cache = NULL;
    377 
    378 	init_llist_head(&ref->preallocated_barriers);
    379 	atomic_set(&ref->count, 0);
    380 	__mutex_init(&ref->mutex, "i915_active", mkey);
    381 	__i915_active_fence_init(&ref->excl, NULL, excl_retire);
    382 	INIT_WORK(&ref->work, active_work);
    383 #if IS_ENABLED(CONFIG_LOCKDEP)
    384 	lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0);
    385 #endif
    386 }
    387 
    388 static bool ____active_del_barrier(struct i915_active *ref,
    389 				   struct active_node *node,
    390 				   struct intel_engine_cs *engine)
    391 
    392 {
    393 	struct llist_node *head = NULL, *tail = NULL;
    394 	struct llist_node *pos, *next;
    395 
    396 	GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context);
    397 
    398 	/*
    399 	 * Rebuild the llist excluding our node. We may perform this
    400 	 * outside of the kernel_context timeline mutex and so someone
    401 	 * else may be manipulating the engine->barrier_tasks, in
    402 	 * which case either we or they will be upset :)
    403 	 *
    404 	 * A second __active_del_barrier() will report failure to claim
    405 	 * the active_node and the caller will just shrug and know not to
    406 	 * claim ownership of its node.
    407 	 *
    408 	 * A concurrent i915_request_add_active_barriers() will miss adding
    409 	 * any of the tasks, but we will try again on the next -- and since
    410 	 * we are actively using the barrier, we know that there will be
    411 	 * at least another opportunity when we idle.
    412 	 */
    413 	llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) {
    414 		if (node == barrier_from_ll(pos)) {
    415 			node = NULL;
    416 			continue;
    417 		}
    418 
    419 		pos->next = head;
    420 		head = pos;
    421 		if (!tail)
    422 			tail = pos;
    423 	}
    424 	if (head)
    425 		llist_add_batch(head, tail, &engine->barrier_tasks);
    426 
    427 	return !node;
    428 }
    429 
    430 static bool
    431 __active_del_barrier(struct i915_active *ref, struct active_node *node)
    432 {
    433 	return ____active_del_barrier(ref, node, barrier_to_engine(node));
    434 }
    435 
    436 int i915_active_ref(struct i915_active *ref,
    437 		    struct intel_timeline *tl,
    438 		    struct dma_fence *fence)
    439 {
    440 	struct i915_active_fence *active;
    441 	int err;
    442 
    443 	lockdep_assert_held(&tl->mutex);
    444 
    445 	/* Prevent reaping in case we malloc/wait while building the tree */
    446 	err = i915_active_acquire(ref);
    447 	if (err)
    448 		return err;
    449 
    450 	active = active_instance(ref, tl);
    451 	if (!active) {
    452 		err = -ENOMEM;
    453 		goto out;
    454 	}
    455 
    456 	if (is_barrier(active)) { /* proto-node used by our idle barrier */
    457 		/*
    458 		 * This request is on the kernel_context timeline, and so
    459 		 * we can use it to substitute for the pending idle-barrer
    460 		 * request that we want to emit on the kernel_context.
    461 		 */
    462 		__active_del_barrier(ref, node_from_active(active));
    463 		RCU_INIT_POINTER(active->fence, NULL);
    464 		atomic_dec(&ref->count);
    465 	}
    466 	if (!__i915_active_fence_set(active, fence))
    467 		atomic_inc(&ref->count);
    468 
    469 out:
    470 	i915_active_release(ref);
    471 	return err;
    472 }
    473 
    474 void i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f)
    475 {
    476 	/* We expect the caller to manage the exclusive timeline ordering */
    477 	GEM_BUG_ON(i915_active_is_idle(ref));
    478 
    479 	if (!__i915_active_fence_set(&ref->excl, f))
    480 		atomic_inc(&ref->count);
    481 }
    482 
    483 bool i915_active_acquire_if_busy(struct i915_active *ref)
    484 {
    485 	debug_active_assert(ref);
    486 	return atomic_add_unless(&ref->count, 1, 0);
    487 }
    488 
    489 int i915_active_acquire(struct i915_active *ref)
    490 {
    491 	int err;
    492 
    493 	if (i915_active_acquire_if_busy(ref))
    494 		return 0;
    495 
    496 	err = mutex_lock_interruptible(&ref->mutex);
    497 	if (err)
    498 		return err;
    499 
    500 	if (likely(!i915_active_acquire_if_busy(ref))) {
    501 		if (ref->active)
    502 			err = ref->active(ref);
    503 		if (!err) {
    504 			spin_lock_irq(&ref->tree_lock); /* __active_retire() */
    505 			debug_active_activate(ref);
    506 			atomic_inc(&ref->count);
    507 			spin_unlock_irq(&ref->tree_lock);
    508 		}
    509 	}
    510 
    511 	mutex_unlock(&ref->mutex);
    512 
    513 	return err;
    514 }
    515 
    516 void i915_active_release(struct i915_active *ref)
    517 {
    518 	debug_active_assert(ref);
    519 	active_retire(ref);
    520 }
    521 
    522 static void enable_signaling(struct i915_active_fence *active)
    523 {
    524 	struct dma_fence *fence;
    525 
    526 	fence = i915_active_fence_get(active);
    527 	if (!fence)
    528 		return;
    529 
    530 	dma_fence_enable_sw_signaling(fence);
    531 	dma_fence_put(fence);
    532 }
    533 
    534 int i915_active_wait(struct i915_active *ref)
    535 {
    536 	struct active_node *it, *n;
    537 	int err = 0;
    538 
    539 	might_sleep();
    540 
    541 	if (!i915_active_acquire_if_busy(ref))
    542 		return 0;
    543 
    544 	/* Flush lazy signals */
    545 	enable_signaling(&ref->excl);
    546 	rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
    547 		if (is_barrier(&it->base)) /* unconnected idle barrier */
    548 			continue;
    549 
    550 		enable_signaling(&it->base);
    551 	}
    552 	/* Any fence added after the wait begins will not be auto-signaled */
    553 
    554 	i915_active_release(ref);
    555 	if (err)
    556 		return err;
    557 
    558 	spin_lock(&ref->tree_lock);
    559 	DRM_SPIN_WAIT_UNTIL(err, &ref->tree_wq, &ref->tree_lock,
    560 	    i915_active_is_idle(ref));
    561 	spin_unlock(&ref->tree_lock);
    562 	if (err)
    563 		return err;
    564 
    565 	flush_work(&ref->work);
    566 	return 0;
    567 }
    568 
    569 int i915_request_await_active(struct i915_request *rq, struct i915_active *ref)
    570 {
    571 	int err = 0;
    572 
    573 	if (rcu_access_pointer(ref->excl.fence)) {
    574 		struct dma_fence *fence;
    575 
    576 		rcu_read_lock();
    577 		fence = dma_fence_get_rcu_safe(&ref->excl.fence);
    578 		rcu_read_unlock();
    579 		if (fence) {
    580 			err = i915_request_await_dma_fence(rq, fence);
    581 			dma_fence_put(fence);
    582 		}
    583 	}
    584 
    585 	/* In the future we may choose to await on all fences */
    586 
    587 	return err;
    588 }
    589 
    590 void i915_active_fini(struct i915_active *ref)
    591 {
    592 	debug_active_fini(ref);
    593 	GEM_BUG_ON(atomic_read(&ref->count));
    594 	GEM_BUG_ON(work_pending(&ref->work));
    595 	GEM_BUG_ON(!RB_EMPTY_ROOT(&ref->tree));
    596 	mutex_destroy(&ref->mutex);
    597 	spin_lock_destroy(&ref->tree_lock);
    598 }
    599 
    600 static inline bool is_idle_barrier(struct active_node *node, u64 idx)
    601 {
    602 	return node->timeline == idx && !i915_active_fence_isset(&node->base);
    603 }
    604 
    605 static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx)
    606 {
    607 	struct rb_node *prev, *p;
    608 
    609 	if (RB_EMPTY_ROOT(&ref->tree))
    610 		return NULL;
    611 
    612 	spin_lock_irq(&ref->tree_lock);
    613 	GEM_BUG_ON(i915_active_is_idle(ref));
    614 
    615 	/*
    616 	 * Try to reuse any existing barrier nodes already allocated for this
    617 	 * i915_active, due to overlapping active phases there is likely a
    618 	 * node kept alive (as we reuse before parking). We prefer to reuse
    619 	 * completely idle barriers (less hassle in manipulating the llists),
    620 	 * but otherwise any will do.
    621 	 */
    622 	if (ref->cache && is_idle_barrier(ref->cache, idx)) {
    623 		p = &ref->cache->node;
    624 		goto match;
    625 	}
    626 
    627 #ifdef __NetBSD__
    628     {
    629 	struct active_node *node =
    630 	    rb_tree_find_node_leq(&ref->tree.rbr_tree, &idx);
    631 	if (node) {
    632 		if (node->timeline == idx && is_idle_barrier(node, idx)) {
    633 			p = &node->node;
    634 			goto match;
    635 		}
    636 		prev = &node->node;
    637 	} else {
    638 		prev = NULL;
    639 	}
    640     }
    641 #else
    642 	prev = NULL;
    643 	p = ref->tree.rb_node;
    644 	while (p) {
    645 		struct active_node *node =
    646 			rb_entry(p, struct active_node, node);
    647 
    648 		if (is_idle_barrier(node, idx))
    649 			goto match;
    650 
    651 		prev = p;
    652 		if (node->timeline < idx)
    653 			p = p->rb_right;
    654 		else
    655 			p = p->rb_left;
    656 	}
    657 #endif
    658 
    659 	/*
    660 	 * No quick match, but we did find the leftmost rb_node for the
    661 	 * kernel_context. Walk the rb_tree in-order to see if there were
    662 	 * any idle-barriers on this timeline that we missed, or just use
    663 	 * the first pending barrier.
    664 	 */
    665 	for (p = prev; p; p = rb_next2(&ref->tree, p)) {
    666 		struct active_node *node =
    667 			rb_entry(p, struct active_node, node);
    668 		struct intel_engine_cs *engine;
    669 
    670 		if (node->timeline > idx)
    671 			break;
    672 
    673 		if (node->timeline < idx)
    674 			continue;
    675 
    676 		if (is_idle_barrier(node, idx))
    677 			goto match;
    678 
    679 		/*
    680 		 * The list of pending barriers is protected by the
    681 		 * kernel_context timeline, which notably we do not hold
    682 		 * here. i915_request_add_active_barriers() may consume
    683 		 * the barrier before we claim it, so we have to check
    684 		 * for success.
    685 		 */
    686 		engine = __barrier_to_engine(node);
    687 		smp_rmb(); /* serialise with add_active_barriers */
    688 		if (is_barrier(&node->base) &&
    689 		    ____active_del_barrier(ref, node, engine))
    690 			goto match;
    691 	}
    692 
    693 	spin_unlock_irq(&ref->tree_lock);
    694 
    695 	return NULL;
    696 
    697 match:
    698 	rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */
    699 	if (p == &ref->cache->node)
    700 		ref->cache = NULL;
    701 	spin_unlock_irq(&ref->tree_lock);
    702 
    703 	return rb_entry(p, struct active_node, node);
    704 }
    705 
    706 int i915_active_acquire_preallocate_barrier(struct i915_active *ref,
    707 					    struct intel_engine_cs *engine)
    708 {
    709 	intel_engine_mask_t tmp, mask = engine->mask;
    710 	struct llist_node *first = NULL, *last = NULL;
    711 	struct intel_gt *gt = engine->gt;
    712 	int err;
    713 
    714 	GEM_BUG_ON(i915_active_is_idle(ref));
    715 
    716 	/* Wait until the previous preallocation is completed */
    717 	while (!llist_empty(&ref->preallocated_barriers))
    718 		cond_resched();
    719 
    720 	/*
    721 	 * Preallocate a node for each physical engine supporting the target
    722 	 * engine (remember virtual engines have more than one sibling).
    723 	 * We can then use the preallocated nodes in
    724 	 * i915_active_acquire_barrier()
    725 	 */
    726 	for_each_engine_masked(engine, gt, mask, tmp) {
    727 		u64 idx = engine->kernel_context->timeline->fence_context;
    728 		struct llist_node *prev = first;
    729 		struct active_node *node;
    730 
    731 		node = reuse_idle_barrier(ref, idx);
    732 		if (!node) {
    733 			node = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
    734 			if (!node) {
    735 				err = ENOMEM;
    736 				goto unwind;
    737 			}
    738 
    739 			memset(node, 0, sizeof(*node));
    740 			RCU_INIT_POINTER(node->base.fence, NULL);
    741 			node->base.cb.func = node_retire;
    742 			node->timeline = idx;
    743 			node->ref = ref;
    744 		}
    745 
    746 		if (!i915_active_fence_isset(&node->base)) {
    747 			/*
    748 			 * Mark this as being *our* unconnected proto-node.
    749 			 *
    750 			 * Since this node is not in any list, and we have
    751 			 * decoupled it from the rbtree, we can reuse the
    752 			 * request to indicate this is an idle-barrier node
    753 			 * and then we can use the rb_node and list pointers
    754 			 * for our tracking of the pending barrier.
    755 			 */
    756 			RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN));
    757 			node->engine = engine;
    758 			atomic_inc(&ref->count);
    759 		}
    760 		GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN));
    761 
    762 		GEM_BUG_ON(barrier_to_engine(node) != engine);
    763 		first = barrier_to_ll(node);
    764 		first->next = prev;
    765 		if (!last)
    766 			last = first;
    767 		intel_engine_pm_get(engine);
    768 	}
    769 
    770 	GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers));
    771 	llist_add_batch(first, last, &ref->preallocated_barriers);
    772 
    773 	return 0;
    774 
    775 unwind:
    776 	while (first) {
    777 		struct active_node *node = barrier_from_ll(first);
    778 
    779 		first = first->next;
    780 
    781 		atomic_dec(&ref->count);
    782 		intel_engine_pm_put(barrier_to_engine(node));
    783 
    784 		kmem_cache_free(global.slab_cache, node);
    785 	}
    786 	return err;
    787 }
    788 
    789 void i915_active_acquire_barrier(struct i915_active *ref)
    790 {
    791 	struct llist_node *pos, *next;
    792 	unsigned long flags;
    793 
    794 	GEM_BUG_ON(i915_active_is_idle(ref));
    795 
    796 	/*
    797 	 * Transfer the list of preallocated barriers into the
    798 	 * i915_active rbtree, but only as proto-nodes. They will be
    799 	 * populated by i915_request_add_active_barriers() to point to the
    800 	 * request that will eventually release them.
    801 	 */
    802 	llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) {
    803 		struct active_node *node = barrier_from_ll(pos);
    804 		struct intel_engine_cs *engine = barrier_to_engine(node);
    805 		struct rb_node **p, *parent;
    806 
    807 		spin_lock_irqsave_nested(&ref->tree_lock, flags,
    808 					 SINGLE_DEPTH_NESTING);
    809 #ifdef __NetBSD__
    810 		__USE(p);
    811 		__USE(parent);
    812 		struct active_node *collision __diagused;
    813 		collision = rb_tree_insert_node(&ref->tree.rbr_tree, node);
    814 		KASSERT(collision == node);
    815 #else
    816 		parent = NULL;
    817 		p = &ref->tree.rb_node;
    818 		while (*p) {
    819 			struct active_node *it;
    820 
    821 			parent = *p;
    822 
    823 			it = rb_entry(parent, struct active_node, node);
    824 			if (it->timeline < node->timeline)
    825 				p = &parent->rb_right;
    826 			else
    827 				p = &parent->rb_left;
    828 		}
    829 		rb_link_node(&node->node, parent, p);
    830 		rb_insert_color(&node->node, &ref->tree);
    831 #endif
    832 		spin_unlock_irqrestore(&ref->tree_lock, flags);
    833 
    834 		GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
    835 		llist_add(barrier_to_ll(node), &engine->barrier_tasks);
    836 		intel_engine_pm_put(engine);
    837 	}
    838 }
    839 
    840 static struct dma_fence **ll_to_fence_slot(struct llist_node *node)
    841 {
    842 	return __active_fence_slot(&barrier_from_ll(node)->base);
    843 }
    844 
    845 void i915_request_add_active_barriers(struct i915_request *rq)
    846 {
    847 	struct intel_engine_cs *engine = rq->engine;
    848 	struct llist_node *node, *next;
    849 	unsigned long flags;
    850 
    851 	GEM_BUG_ON(!intel_context_is_barrier(rq->context));
    852 	GEM_BUG_ON(intel_engine_is_virtual(engine));
    853 	GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline);
    854 
    855 	node = llist_del_all(&engine->barrier_tasks);
    856 	if (!node)
    857 		return;
    858 	/*
    859 	 * Attach the list of proto-fences to the in-flight request such
    860 	 * that the parent i915_active will be released when this request
    861 	 * is retired.
    862 	 */
    863 	spin_lock_irqsave(&rq->lock, flags);
    864 	llist_for_each_safe(node, next, node) {
    865 		/* serialise with reuse_idle_barrier */
    866 		smp_store_mb(*ll_to_fence_slot(node), &rq->fence);
    867 #ifdef __NetBSD__
    868 		/* XXX ugh bletch */
    869 		struct i915_active_fence *active =
    870 		    container_of(node, struct i915_active_fence, llist);
    871 		/* XXX something bad went wrong in making this code */
    872 		KASSERT(active->cb.func == node_retire ||
    873 		    active->cb.func == excl_retire ||
    874 		    active->cb.func == i915_active_noop);
    875 		KASSERTMSG(active->fence == &rq->fence,
    876 		    "active=%p fence=%p; rq=%p fence=%p",
    877 		    active, active->fence, rq, &rq->fence);
    878 		KASSERTMSG(!active->cb.fcb_onqueue, "active=%p", active);
    879 		active->cb.fcb_onqueue = true;
    880 		TAILQ_INSERT_TAIL(&rq->fence.f_callbacks, &active->cb,
    881 		    fcb_entry);
    882 #else
    883 		list_add_tail((struct list_head *)node, &rq->fence.cb_list);
    884 #endif
    885 	}
    886 	spin_unlock_irqrestore(&rq->lock, flags);
    887 }
    888 
    889 /*
    890  * __i915_active_fence_set: Update the last active fence along its timeline
    891  * @active: the active tracker
    892  * @fence: the new fence (under construction)
    893  *
    894  * Records the new @fence as the last active fence along its timeline in
    895  * this active tracker, moving the tracking callbacks from the previous
    896  * fence onto this one. Returns the previous fence (if not already completed),
    897  * which the caller must ensure is executed before the new fence. To ensure
    898  * that the order of fences within the timeline of the i915_active_fence is
    899  * understood, it should be locked by the caller.
    900  */
    901 struct dma_fence *
    902 __i915_active_fence_set(struct i915_active_fence *active,
    903 			struct dma_fence *fence)
    904 {
    905 	struct dma_fence *prev;
    906 	unsigned long flags;
    907 
    908 	if (fence == rcu_access_pointer(active->fence))
    909 		return fence;
    910 
    911 	GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags));
    912 
    913 	/*
    914 	 * Consider that we have two threads arriving (A and B), with
    915 	 * C already resident as the active->fence.
    916 	 *
    917 	 * A does the xchg first, and so it sees C or NULL depending
    918 	 * on the timing of the interrupt handler. If it is NULL, the
    919 	 * previous fence must have been signaled and we know that
    920 	 * we are first on the timeline. If it is still present,
    921 	 * we acquire the lock on that fence and serialise with the interrupt
    922 	 * handler, in the process removing it from any future interrupt
    923 	 * callback. A will then wait on C before executing (if present).
    924 	 *
    925 	 * As B is second, it sees A as the previous fence and so waits for
    926 	 * it to complete its transition and takes over the occupancy for
    927 	 * itself -- remembering that it needs to wait on A before executing.
    928 	 *
    929 	 * Note the strong ordering of the timeline also provides consistent
    930 	 * nesting rules for the fence->lock; the inner lock is always the
    931 	 * older lock.
    932 	 */
    933 	spin_lock_irqsave(fence->lock, flags);
    934 	prev = xchg(__active_fence_slot(active), fence);
    935 	if (prev) {
    936 		GEM_BUG_ON(prev == fence);
    937 		spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING);
    938 #ifdef __NetBSD__
    939 		/* XXX ugh bletch */
    940 		KASSERT(active->cb.func == node_retire ||
    941 		    active->cb.func == excl_retire ||
    942 		    active->cb.func == i915_active_noop);
    943 		if (active->cb.fcb_onqueue) {
    944 			TAILQ_REMOVE(&prev->f_callbacks, &active->cb,
    945 			    fcb_entry);
    946 			active->cb.fcb_onqueue = false;
    947 		}
    948 #else
    949 		__list_del_entry(&active->cb.node);
    950 #endif
    951 		spin_unlock(prev->lock); /* serialise with prev->cb_list */
    952 	}
    953 	GEM_BUG_ON(rcu_access_pointer(active->fence) != fence);
    954 #ifdef __NetBSD__
    955 	/* XXX ugh bletch */
    956 	KASSERT(!active->cb.fcb_onqueue);
    957 	active->cb.fcb_onqueue = true;
    958 	TAILQ_INSERT_TAIL(&fence->f_callbacks, &active->cb, fcb_entry);
    959 #else
    960 	list_add_tail(&active->cb.node, &fence->cb_list);
    961 #endif
    962 	spin_unlock_irqrestore(fence->lock, flags);
    963 
    964 	return prev;
    965 }
    966 
    967 int i915_active_fence_set(struct i915_active_fence *active,
    968 			  struct i915_request *rq)
    969 {
    970 	struct dma_fence *fence;
    971 	int err = 0;
    972 
    973 	/* Must maintain timeline ordering wrt previous active requests */
    974 	rcu_read_lock();
    975 	fence = __i915_active_fence_set(active, &rq->fence);
    976 	if (fence) /* but the previous fence may not belong to that timeline! */
    977 		fence = dma_fence_get_rcu(fence);
    978 	rcu_read_unlock();
    979 	if (fence) {
    980 		err = i915_request_await_dma_fence(rq, fence);
    981 		dma_fence_put(fence);
    982 	}
    983 
    984 	return err;
    985 }
    986 
    987 void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb)
    988 {
    989 	active_fence_cb(fence, cb);
    990 }
    991 
    992 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
    993 #include "selftests/i915_active.c"
    994 #endif
    995 
    996 static void i915_global_active_shrink(void)
    997 {
    998 	kmem_cache_shrink(global.slab_cache);
    999 }
   1000 
   1001 static void i915_global_active_exit(void)
   1002 {
   1003 	kmem_cache_destroy(global.slab_cache);
   1004 }
   1005 
   1006 static struct i915_global_active global = { {
   1007 	.shrink = i915_global_active_shrink,
   1008 	.exit = i915_global_active_exit,
   1009 } };
   1010 
   1011 int __init i915_global_active_init(void)
   1012 {
   1013 	global.slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN);
   1014 	if (!global.slab_cache)
   1015 		return -ENOMEM;
   1016 
   1017 	i915_global_register(&global.base);
   1018 	return 0;
   1019 }
   1020