1 /* $NetBSD: i915_gem.c,v 1.75 2021/12/19 12:32:15 riastradh Exp $ */ 2 3 /* 4 * Copyright 2008-2015 Intel Corporation 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice (including the next 14 * paragraph) shall be included in all copies or substantial portions of the 15 * Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 23 * IN THE SOFTWARE. 24 * 25 * Authors: 26 * Eric Anholt <eric (at) anholt.net> 27 * 28 */ 29 30 #include <sys/cdefs.h> 31 __KERNEL_RCSID(0, "$NetBSD: i915_gem.c,v 1.75 2021/12/19 12:32:15 riastradh Exp $"); 32 33 #ifdef __NetBSD__ 34 #include <drm/bus_dma_hacks.h> 35 #endif 36 37 #include <drm/drm_vma_manager.h> 38 #include <drm/i915_drm.h> 39 #include <linux/dma-fence-array.h> 40 #include <linux/kthread.h> 41 #include <linux/dma-resv.h> 42 #include <linux/shmem_fs.h> 43 #include <linux/slab.h> 44 #include <linux/stop_machine.h> 45 #include <linux/swap.h> 46 #include <linux/pci.h> 47 #include <linux/dma-buf.h> 48 #include <linux/mman.h> 49 #include <linux/uaccess.h> 50 51 #include "display/intel_display.h" 52 #include "display/intel_frontbuffer.h" 53 54 #include "gem/i915_gem_clflush.h" 55 #include "gem/i915_gem_context.h" 56 #include "gem/i915_gem_ioctls.h" 57 #include "gem/i915_gem_mman.h" 58 #include "gem/i915_gem_region.h" 59 #include "gt/intel_engine_user.h" 60 #include "gt/intel_gt.h" 61 #include "gt/intel_gt_pm.h" 62 #include "gt/intel_workarounds.h" 63 64 #include "i915_drv.h" 65 #include "i915_trace.h" 66 #include "i915_vgpu.h" 67 68 #include "intel_pm.h" 69 70 #include <linux/nbsd-namespace.h> 71 72 static int 73 insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size) 74 { 75 int err; 76 77 err = mutex_lock_interruptible(&ggtt->vm.mutex); 78 if (err) 79 return err; 80 81 memset(node, 0, sizeof(*node)); 82 err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node, 83 size, 0, I915_COLOR_UNEVICTABLE, 84 0, ggtt->mappable_end, 85 DRM_MM_INSERT_LOW); 86 87 mutex_unlock(&ggtt->vm.mutex); 88 89 return err; 90 } 91 92 static void 93 remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node) 94 { 95 mutex_lock(&ggtt->vm.mutex); 96 drm_mm_remove_node(node); 97 mutex_unlock(&ggtt->vm.mutex); 98 } 99 100 int 101 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, 102 struct drm_file *file) 103 { 104 struct i915_ggtt *ggtt = &to_i915(dev)->ggtt; 105 struct drm_i915_gem_get_aperture *args = data; 106 struct i915_vma *vma; 107 u64 pinned; 108 109 if (mutex_lock_interruptible(&ggtt->vm.mutex)) 110 return -EINTR; 111 112 pinned = ggtt->vm.reserved; 113 list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link) 114 if (i915_vma_is_pinned(vma)) 115 pinned += vma->node.size; 116 117 mutex_unlock(&ggtt->vm.mutex); 118 119 args->aper_size = ggtt->vm.total; 120 args->aper_available_size = args->aper_size - pinned; 121 122 return 0; 123 } 124 125 int i915_gem_object_unbind(struct drm_i915_gem_object *obj, 126 unsigned long flags) 127 { 128 struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm; 129 LIST_HEAD(still_in_list); 130 intel_wakeref_t wakeref; 131 struct i915_vma *vma; 132 int ret; 133 134 if (!atomic_read(&obj->bind_count)) 135 return 0; 136 137 /* 138 * As some machines use ACPI to handle runtime-resume callbacks, and 139 * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex 140 * as they are required by the shrinker. Ergo, we wake the device up 141 * first just in case. 142 */ 143 wakeref = intel_runtime_pm_get(rpm); 144 145 try_again: 146 ret = 0; 147 spin_lock(&obj->vma.lock); 148 while (!ret && (vma = list_first_entry_or_null(&obj->vma.list, 149 struct i915_vma, 150 obj_link))) { 151 struct i915_address_space *vm = vma->vm; 152 153 list_move_tail(&vma->obj_link, &still_in_list); 154 if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK)) 155 continue; 156 157 ret = -EAGAIN; 158 if (!i915_vm_tryopen(vm)) 159 break; 160 161 /* Prevent vma being freed by i915_vma_parked as we unbind */ 162 vma = __i915_vma_get(vma); 163 spin_unlock(&obj->vma.lock); 164 165 if (vma) { 166 ret = -EBUSY; 167 if (flags & I915_GEM_OBJECT_UNBIND_ACTIVE || 168 !i915_vma_is_active(vma)) 169 ret = i915_vma_unbind(vma); 170 171 __i915_vma_put(vma); 172 } 173 174 i915_vm_close(vm); 175 spin_lock(&obj->vma.lock); 176 } 177 list_splice_init(&still_in_list, &obj->vma.list); 178 spin_unlock(&obj->vma.lock); 179 180 if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) { 181 rcu_barrier(); /* flush the i915_vm_release() */ 182 goto try_again; 183 } 184 185 intel_runtime_pm_put(rpm, wakeref); 186 187 return ret; 188 } 189 190 static int 191 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj, 192 struct drm_i915_gem_pwrite *args, 193 struct drm_file *file) 194 { 195 #ifdef __NetBSD__ 196 void *vaddr = obj->mm.u.phys.kva + args->offset; 197 #else 198 void *vaddr = sg_page(obj->mm.pages->sgl) + args->offset; 199 #endif 200 char __user *user_data = u64_to_user_ptr(args->data_ptr); 201 202 /* 203 * We manually control the domain here and pretend that it 204 * remains coherent i.e. in the GTT domain, like shmem_pwrite. 205 */ 206 i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU); 207 208 if (copy_from_user(vaddr, user_data, args->size)) 209 return -EFAULT; 210 211 drm_clflush_virt_range(vaddr, args->size); 212 intel_gt_chipset_flush(&to_i915(obj->base.dev)->gt); 213 214 i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU); 215 return 0; 216 } 217 218 static int 219 i915_gem_create(struct drm_file *file, 220 struct intel_memory_region *mr, 221 u64 *size_p, 222 u32 *handle_p) 223 { 224 struct drm_i915_gem_object *obj; 225 u32 handle; 226 u64 size; 227 int ret; 228 229 GEM_BUG_ON(!is_power_of_2(mr->min_page_size)); 230 size = ALIGN(*size_p, mr->min_page_size); 231 if (size == 0) 232 return -EINVAL; 233 234 /* For most of the ABI (e.g. mmap) we think in system pages */ 235 GEM_BUG_ON(!IS_ALIGNED(size, PAGE_SIZE)); 236 237 /* Allocate the new object */ 238 obj = i915_gem_object_create_region(mr, size, 0); 239 if (IS_ERR(obj)) 240 return PTR_ERR(obj); 241 242 ret = drm_gem_handle_create(file, &obj->base, &handle); 243 /* drop reference from allocate - handle holds it now */ 244 i915_gem_object_put(obj); 245 if (ret) 246 return ret; 247 248 *handle_p = handle; 249 *size_p = size; 250 return 0; 251 } 252 253 int 254 i915_gem_dumb_create(struct drm_file *file, 255 struct drm_device *dev, 256 struct drm_mode_create_dumb *args) 257 { 258 enum intel_memory_type mem_type; 259 int cpp = DIV_ROUND_UP(args->bpp, 8); 260 u32 format; 261 262 switch (cpp) { 263 case 1: 264 format = DRM_FORMAT_C8; 265 break; 266 case 2: 267 format = DRM_FORMAT_RGB565; 268 break; 269 case 4: 270 format = DRM_FORMAT_XRGB8888; 271 break; 272 default: 273 return -EINVAL; 274 } 275 276 /* have to work out size/pitch and return them */ 277 args->pitch = ALIGN(args->width * cpp, 64); 278 279 /* align stride to page size so that we can remap */ 280 if (args->pitch > intel_plane_fb_max_stride(to_i915(dev), format, 281 DRM_FORMAT_MOD_LINEAR)) 282 args->pitch = ALIGN(args->pitch, 4096); 283 284 if (args->pitch < args->width) 285 return -EINVAL; 286 287 args->size = mul_u32_u32(args->pitch, args->height); 288 289 mem_type = INTEL_MEMORY_SYSTEM; 290 if (HAS_LMEM(to_i915(dev))) 291 mem_type = INTEL_MEMORY_LOCAL; 292 293 return i915_gem_create(file, 294 intel_memory_region_by_type(to_i915(dev), 295 mem_type), 296 &args->size, &args->handle); 297 } 298 299 /** 300 * Creates a new mm object and returns a handle to it. 301 * @dev: drm device pointer 302 * @data: ioctl data blob 303 * @file: drm file pointer 304 */ 305 int 306 i915_gem_create_ioctl(struct drm_device *dev, void *data, 307 struct drm_file *file) 308 { 309 struct drm_i915_private *i915 = to_i915(dev); 310 struct drm_i915_gem_create *args = data; 311 312 i915_gem_flush_free_objects(i915); 313 314 return i915_gem_create(file, 315 intel_memory_region_by_type(i915, 316 INTEL_MEMORY_SYSTEM), 317 &args->size, &args->handle); 318 } 319 320 static int 321 shmem_pread(struct page *page, int offset, int len, char __user *user_data, 322 bool needs_clflush) 323 { 324 char *vaddr; 325 int ret; 326 327 vaddr = kmap(page); 328 329 if (needs_clflush) 330 drm_clflush_virt_range(vaddr + offset, len); 331 332 ret = __copy_to_user(user_data, vaddr + offset, len); 333 334 kunmap(page); 335 336 return ret ? -EFAULT : 0; 337 } 338 339 static int 340 i915_gem_shmem_pread(struct drm_i915_gem_object *obj, 341 struct drm_i915_gem_pread *args) 342 { 343 unsigned int needs_clflush; 344 unsigned int idx, offset; 345 struct dma_fence *fence; 346 char __user *user_data; 347 u64 remain; 348 int ret; 349 350 ret = i915_gem_object_prepare_read(obj, &needs_clflush); 351 if (ret) 352 return ret; 353 354 fence = i915_gem_object_lock_fence(obj); 355 i915_gem_object_finish_access(obj); 356 if (!fence) 357 return -ENOMEM; 358 359 remain = args->size; 360 user_data = u64_to_user_ptr(args->data_ptr); 361 offset = offset_in_page(args->offset); 362 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) { 363 struct page *page = i915_gem_object_get_page(obj, idx); 364 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset); 365 366 ret = shmem_pread(page, offset, length, user_data, 367 needs_clflush); 368 if (ret) 369 break; 370 371 remain -= length; 372 user_data += length; 373 offset = 0; 374 } 375 376 i915_gem_object_unlock_fence(obj, fence); 377 return ret; 378 } 379 380 #ifdef __NetBSD__ 381 #define __iomem 382 #endif 383 static inline bool 384 gtt_user_read(struct io_mapping *mapping, 385 loff_t base, int offset, 386 char __user *user_data, int length) 387 { 388 void __iomem *vaddr; 389 unsigned long unwritten; 390 391 #ifdef __NetBSD__ 392 // No fast path for us. 393 unwritten = -EFAULT; 394 #else 395 /* We can use the cpu mem copy function because this is X86. */ 396 vaddr = io_mapping_map_atomic_wc(mapping, base); 397 unwritten = __copy_to_user_inatomic(user_data, 398 (void __force *)vaddr + offset, 399 length); 400 io_mapping_unmap_atomic(vaddr); 401 #endif 402 if (unwritten) { 403 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE); 404 unwritten = copy_to_user(user_data, 405 (void __force *)vaddr + offset, 406 length); 407 #ifdef __NetBSD__ 408 io_mapping_unmap(mapping, vaddr, PAGE_SIZE); 409 #else 410 io_mapping_unmap(vaddr); 411 #endif 412 } 413 return unwritten; 414 } 415 #ifdef __NetBSD__ 416 #undef __iomem 417 #endif 418 419 static int 420 i915_gem_gtt_pread(struct drm_i915_gem_object *obj, 421 const struct drm_i915_gem_pread *args) 422 { 423 struct drm_i915_private *i915 = to_i915(obj->base.dev); 424 struct i915_ggtt *ggtt = &i915->ggtt; 425 intel_wakeref_t wakeref; 426 struct drm_mm_node node; 427 struct dma_fence *fence; 428 void __user *user_data; 429 struct i915_vma *vma; 430 u64 remain, offset; 431 int ret; 432 433 wakeref = intel_runtime_pm_get(&i915->runtime_pm); 434 vma = ERR_PTR(-ENODEV); 435 if (!i915_gem_object_is_tiled(obj)) 436 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 437 PIN_MAPPABLE | 438 PIN_NONBLOCK /* NOWARN */ | 439 PIN_NOEVICT); 440 if (!IS_ERR(vma)) { 441 node.start = i915_ggtt_offset(vma); 442 node.flags = 0; 443 } else { 444 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE); 445 if (ret) 446 goto out_rpm; 447 GEM_BUG_ON(!drm_mm_node_allocated(&node)); 448 } 449 450 ret = i915_gem_object_lock_interruptible(obj); 451 if (ret) 452 goto out_unpin; 453 454 ret = i915_gem_object_set_to_gtt_domain(obj, false); 455 if (ret) { 456 i915_gem_object_unlock(obj); 457 goto out_unpin; 458 } 459 460 fence = i915_gem_object_lock_fence(obj); 461 i915_gem_object_unlock(obj); 462 if (!fence) { 463 ret = -ENOMEM; 464 goto out_unpin; 465 } 466 467 user_data = u64_to_user_ptr(args->data_ptr); 468 remain = args->size; 469 offset = args->offset; 470 471 while (remain > 0) { 472 /* Operation in this page 473 * 474 * page_base = page offset within aperture 475 * page_offset = offset within page 476 * page_length = bytes to copy for this page 477 */ 478 u32 page_base = node.start; 479 unsigned page_offset = offset_in_page(offset); 480 unsigned page_length = PAGE_SIZE - page_offset; 481 page_length = remain < page_length ? remain : page_length; 482 if (drm_mm_node_allocated(&node)) { 483 ggtt->vm.insert_page(&ggtt->vm, 484 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT), 485 node.start, I915_CACHE_NONE, 0); 486 } else { 487 page_base += offset & PAGE_MASK; 488 } 489 490 if (gtt_user_read(&ggtt->iomap, page_base, page_offset, 491 user_data, page_length)) { 492 ret = -EFAULT; 493 break; 494 } 495 496 remain -= page_length; 497 user_data += page_length; 498 offset += page_length; 499 } 500 501 i915_gem_object_unlock_fence(obj, fence); 502 out_unpin: 503 if (drm_mm_node_allocated(&node)) { 504 ggtt->vm.clear_range(&ggtt->vm, node.start, node.size); 505 remove_mappable_node(ggtt, &node); 506 } else { 507 i915_vma_unpin(vma); 508 } 509 out_rpm: 510 intel_runtime_pm_put(&i915->runtime_pm, wakeref); 511 return ret; 512 } 513 514 /** 515 * Reads data from the object referenced by handle. 516 * @dev: drm device pointer 517 * @data: ioctl data blob 518 * @file: drm file pointer 519 * 520 * On error, the contents of *data are undefined. 521 */ 522 int 523 i915_gem_pread_ioctl(struct drm_device *dev, void *data, 524 struct drm_file *file) 525 { 526 struct drm_i915_gem_pread *args = data; 527 struct drm_i915_gem_object *obj; 528 int ret; 529 530 if (args->size == 0) 531 return 0; 532 533 if (!access_ok(u64_to_user_ptr(args->data_ptr), 534 args->size)) 535 return -EFAULT; 536 537 obj = i915_gem_object_lookup(file, args->handle); 538 if (!obj) 539 return -ENOENT; 540 541 /* Bounds check source. */ 542 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) { 543 ret = -EINVAL; 544 goto out; 545 } 546 547 trace_i915_gem_object_pread(obj, args->offset, args->size); 548 549 ret = i915_gem_object_wait(obj, 550 I915_WAIT_INTERRUPTIBLE, 551 MAX_SCHEDULE_TIMEOUT); 552 if (ret) 553 goto out; 554 555 ret = i915_gem_object_pin_pages(obj); 556 if (ret) 557 goto out; 558 559 ret = i915_gem_shmem_pread(obj, args); 560 if (ret == -EFAULT || ret == -ENODEV) 561 ret = i915_gem_gtt_pread(obj, args); 562 563 i915_gem_object_unpin_pages(obj); 564 out: 565 i915_gem_object_put(obj); 566 return ret; 567 } 568 569 /* This is the fast write path which cannot handle 570 * page faults in the source data 571 */ 572 573 static inline bool 574 ggtt_write(struct io_mapping *mapping, 575 loff_t base, int offset, 576 char __user *user_data, int length) 577 { 578 #ifdef __NetBSD__ 579 return length; 580 #else 581 void __iomem *vaddr; 582 unsigned long unwritten; 583 584 /* We can use the cpu mem copy function because this is X86. */ 585 vaddr = io_mapping_map_atomic_wc(mapping, base); 586 unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset, 587 user_data, length); 588 io_mapping_unmap_atomic(vaddr); 589 if (unwritten) { 590 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE); 591 unwritten = copy_from_user((void __force *)vaddr + offset, 592 user_data, length); 593 io_mapping_unmap(vaddr); 594 } 595 596 return unwritten; 597 #endif 598 } 599 600 /** 601 * This is the fast pwrite path, where we copy the data directly from the 602 * user into the GTT, uncached. 603 * @obj: i915 GEM object 604 * @args: pwrite arguments structure 605 */ 606 static int 607 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj, 608 const struct drm_i915_gem_pwrite *args) 609 { 610 struct drm_i915_private *i915 = to_i915(obj->base.dev); 611 struct i915_ggtt *ggtt = &i915->ggtt; 612 struct intel_runtime_pm *rpm = &i915->runtime_pm; 613 intel_wakeref_t wakeref; 614 struct drm_mm_node node; 615 struct dma_fence *fence; 616 struct i915_vma *vma; 617 u64 remain, offset; 618 void __user *user_data; 619 int ret; 620 621 if (i915_gem_object_has_struct_page(obj)) { 622 /* 623 * Avoid waking the device up if we can fallback, as 624 * waking/resuming is very slow (worst-case 10-100 ms 625 * depending on PCI sleeps and our own resume time). 626 * This easily dwarfs any performance advantage from 627 * using the cache bypass of indirect GGTT access. 628 */ 629 wakeref = intel_runtime_pm_get_if_in_use(rpm); 630 if (!wakeref) 631 return -EFAULT; 632 } else { 633 /* No backing pages, no fallback, we must force GGTT access */ 634 wakeref = intel_runtime_pm_get(rpm); 635 } 636 637 vma = ERR_PTR(-ENODEV); 638 if (!i915_gem_object_is_tiled(obj)) 639 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 640 PIN_MAPPABLE | 641 PIN_NONBLOCK /* NOWARN */ | 642 PIN_NOEVICT); 643 if (!IS_ERR(vma)) { 644 node.start = i915_ggtt_offset(vma); 645 node.flags = 0; 646 } else { 647 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE); 648 if (ret) 649 goto out_rpm; 650 GEM_BUG_ON(!drm_mm_node_allocated(&node)); 651 } 652 653 ret = i915_gem_object_lock_interruptible(obj); 654 if (ret) 655 goto out_unpin; 656 657 ret = i915_gem_object_set_to_gtt_domain(obj, true); 658 if (ret) { 659 i915_gem_object_unlock(obj); 660 goto out_unpin; 661 } 662 663 fence = i915_gem_object_lock_fence(obj); 664 i915_gem_object_unlock(obj); 665 if (!fence) { 666 ret = -ENOMEM; 667 goto out_unpin; 668 } 669 670 i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU); 671 672 user_data = u64_to_user_ptr(args->data_ptr); 673 offset = args->offset; 674 remain = args->size; 675 while (remain) { 676 /* Operation in this page 677 * 678 * page_base = page offset within aperture 679 * page_offset = offset within page 680 * page_length = bytes to copy for this page 681 */ 682 u32 page_base = node.start; 683 unsigned int page_offset = offset_in_page(offset); 684 unsigned int page_length = PAGE_SIZE - page_offset; 685 page_length = remain < page_length ? remain : page_length; 686 if (drm_mm_node_allocated(&node)) { 687 /* flush the write before we modify the GGTT */ 688 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 689 ggtt->vm.insert_page(&ggtt->vm, 690 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT), 691 node.start, I915_CACHE_NONE, 0); 692 wmb(); /* flush modifications to the GGTT (insert_page) */ 693 } else { 694 page_base += offset & PAGE_MASK; 695 } 696 /* If we get a fault while copying data, then (presumably) our 697 * source page isn't available. Return the error and we'll 698 * retry in the slow path. 699 * If the object is non-shmem backed, we retry again with the 700 * path that handles page fault. 701 */ 702 if (ggtt_write(&ggtt->iomap, page_base, page_offset, 703 user_data, page_length)) { 704 ret = -EFAULT; 705 break; 706 } 707 708 remain -= page_length; 709 user_data += page_length; 710 offset += page_length; 711 } 712 713 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 714 i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU); 715 716 i915_gem_object_unlock_fence(obj, fence); 717 out_unpin: 718 if (drm_mm_node_allocated(&node)) { 719 ggtt->vm.clear_range(&ggtt->vm, node.start, node.size); 720 remove_mappable_node(ggtt, &node); 721 } else { 722 i915_vma_unpin(vma); 723 } 724 out_rpm: 725 intel_runtime_pm_put(rpm, wakeref); 726 return ret; 727 } 728 729 /* Per-page copy function for the shmem pwrite fastpath. 730 * Flushes invalid cachelines before writing to the target if 731 * needs_clflush_before is set and flushes out any written cachelines after 732 * writing if needs_clflush is set. 733 */ 734 static int 735 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data, 736 bool needs_clflush_before, 737 bool needs_clflush_after) 738 { 739 char *vaddr; 740 int ret; 741 742 vaddr = kmap(page); 743 744 if (needs_clflush_before) 745 drm_clflush_virt_range(vaddr + offset, len); 746 747 ret = __copy_from_user(vaddr + offset, user_data, len); 748 if (!ret && needs_clflush_after) 749 drm_clflush_virt_range(vaddr + offset, len); 750 751 kunmap(page); 752 753 return ret ? -EFAULT : 0; 754 } 755 756 static int 757 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj, 758 const struct drm_i915_gem_pwrite *args) 759 { 760 unsigned int partial_cacheline_write; 761 unsigned int needs_clflush; 762 unsigned int offset, idx; 763 struct dma_fence *fence; 764 void __user *user_data; 765 u64 remain; 766 int ret; 767 768 ret = i915_gem_object_prepare_write(obj, &needs_clflush); 769 if (ret) 770 return ret; 771 772 fence = i915_gem_object_lock_fence(obj); 773 i915_gem_object_finish_access(obj); 774 if (!fence) 775 return -ENOMEM; 776 777 /* If we don't overwrite a cacheline completely we need to be 778 * careful to have up-to-date data by first clflushing. Don't 779 * overcomplicate things and flush the entire patch. 780 */ 781 partial_cacheline_write = 0; 782 if (needs_clflush & CLFLUSH_BEFORE) 783 #ifdef __NetBSD__ 784 partial_cacheline_write = cpu_info_primary.ci_cflush_lsize - 1; 785 #else 786 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1; 787 #endif 788 789 user_data = u64_to_user_ptr(args->data_ptr); 790 remain = args->size; 791 offset = offset_in_page(args->offset); 792 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) { 793 struct page *page = i915_gem_object_get_page(obj, idx); 794 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset); 795 796 ret = shmem_pwrite(page, offset, length, user_data, 797 (offset | length) & partial_cacheline_write, 798 needs_clflush & CLFLUSH_AFTER); 799 if (ret) 800 break; 801 802 remain -= length; 803 user_data += length; 804 offset = 0; 805 } 806 807 i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU); 808 i915_gem_object_unlock_fence(obj, fence); 809 810 return ret; 811 } 812 813 /** 814 * Writes data to the object referenced by handle. 815 * @dev: drm device 816 * @data: ioctl data blob 817 * @file: drm file 818 * 819 * On error, the contents of the buffer that were to be modified are undefined. 820 */ 821 int 822 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, 823 struct drm_file *file) 824 { 825 struct drm_i915_gem_pwrite *args = data; 826 struct drm_i915_gem_object *obj; 827 int ret; 828 829 if (args->size == 0) 830 return 0; 831 832 if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size)) 833 return -EFAULT; 834 835 obj = i915_gem_object_lookup(file, args->handle); 836 if (!obj) 837 return -ENOENT; 838 839 /* Bounds check destination. */ 840 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) { 841 ret = -EINVAL; 842 goto err; 843 } 844 845 /* Writes not allowed into this read-only object */ 846 if (i915_gem_object_is_readonly(obj)) { 847 ret = -EINVAL; 848 goto err; 849 } 850 851 trace_i915_gem_object_pwrite(obj, args->offset, args->size); 852 853 ret = -ENODEV; 854 if (obj->ops->pwrite) 855 ret = obj->ops->pwrite(obj, args); 856 if (ret != -ENODEV) 857 goto err; 858 859 ret = i915_gem_object_wait(obj, 860 I915_WAIT_INTERRUPTIBLE | 861 I915_WAIT_ALL, 862 MAX_SCHEDULE_TIMEOUT); 863 if (ret) 864 goto err; 865 866 ret = i915_gem_object_pin_pages(obj); 867 if (ret) 868 goto err; 869 870 ret = -EFAULT; 871 /* We can only do the GTT pwrite on untiled buffers, as otherwise 872 * it would end up going through the fenced access, and we'll get 873 * different detiling behavior between reading and writing. 874 * pread/pwrite currently are reading and writing from the CPU 875 * perspective, requiring manual detiling by the client. 876 */ 877 if (!i915_gem_object_has_struct_page(obj) || 878 cpu_write_needs_clflush(obj)) 879 /* Note that the gtt paths might fail with non-page-backed user 880 * pointers (e.g. gtt mappings when moving data between 881 * textures). Fallback to the shmem path in that case. 882 */ 883 ret = i915_gem_gtt_pwrite_fast(obj, args); 884 885 if (ret == -EFAULT || ret == -ENOSPC) { 886 if (i915_gem_object_has_struct_page(obj)) 887 ret = i915_gem_shmem_pwrite(obj, args); 888 else 889 ret = i915_gem_phys_pwrite(obj, args, file); 890 } 891 892 i915_gem_object_unpin_pages(obj); 893 err: 894 i915_gem_object_put(obj); 895 return ret; 896 } 897 898 /** 899 * Called when user space has done writes to this buffer 900 * @dev: drm device 901 * @data: ioctl data blob 902 * @file: drm file 903 */ 904 int 905 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, 906 struct drm_file *file) 907 { 908 struct drm_i915_gem_sw_finish *args = data; 909 struct drm_i915_gem_object *obj; 910 911 obj = i915_gem_object_lookup(file, args->handle); 912 if (!obj) 913 return -ENOENT; 914 915 /* 916 * Proxy objects are barred from CPU access, so there is no 917 * need to ban sw_finish as it is a nop. 918 */ 919 920 /* Pinned buffers may be scanout, so flush the cache */ 921 i915_gem_object_flush_if_display(obj); 922 i915_gem_object_put(obj); 923 924 return 0; 925 } 926 927 void i915_gem_runtime_suspend(struct drm_i915_private *i915) 928 { 929 struct drm_i915_gem_object *obj, *on; 930 int i; 931 932 /* 933 * Only called during RPM suspend. All users of the userfault_list 934 * must be holding an RPM wakeref to ensure that this can not 935 * run concurrently with themselves (and use the struct_mutex for 936 * protection between themselves). 937 */ 938 939 list_for_each_entry_safe(obj, on, 940 &i915->ggtt.userfault_list, userfault_link) 941 __i915_gem_object_release_mmap_gtt(obj); 942 943 /* 944 * The fence will be lost when the device powers down. If any were 945 * in use by hardware (i.e. they are pinned), we should not be powering 946 * down! All other fences will be reacquired by the user upon waking. 947 */ 948 for (i = 0; i < i915->ggtt.num_fences; i++) { 949 struct i915_fence_reg *reg = &i915->ggtt.fence_regs[i]; 950 951 /* 952 * Ideally we want to assert that the fence register is not 953 * live at this point (i.e. that no piece of code will be 954 * trying to write through fence + GTT, as that both violates 955 * our tracking of activity and associated locking/barriers, 956 * but also is illegal given that the hw is powered down). 957 * 958 * Previously we used reg->pin_count as a "liveness" indicator. 959 * That is not sufficient, and we need a more fine-grained 960 * tool if we want to have a sanity check here. 961 */ 962 963 if (!reg->vma) 964 continue; 965 966 GEM_BUG_ON(i915_vma_has_userfault(reg->vma)); 967 reg->dirty = true; 968 } 969 } 970 971 struct i915_vma * 972 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj, 973 const struct i915_ggtt_view *view, 974 u64 size, 975 u64 alignment, 976 u64 flags) 977 { 978 struct drm_i915_private *i915 = to_i915(obj->base.dev); 979 struct i915_ggtt *ggtt = &i915->ggtt; 980 struct i915_vma *vma; 981 int ret; 982 983 if (i915_gem_object_never_bind_ggtt(obj)) 984 return ERR_PTR(-ENODEV); 985 986 if (flags & PIN_MAPPABLE && 987 (!view || view->type == I915_GGTT_VIEW_NORMAL)) { 988 /* 989 * If the required space is larger than the available 990 * aperture, we will not able to find a slot for the 991 * object and unbinding the object now will be in 992 * vain. Worse, doing so may cause us to ping-pong 993 * the object in and out of the Global GTT and 994 * waste a lot of cycles under the mutex. 995 */ 996 if (obj->base.size > ggtt->mappable_end) 997 return ERR_PTR(-E2BIG); 998 999 /* 1000 * If NONBLOCK is set the caller is optimistically 1001 * trying to cache the full object within the mappable 1002 * aperture, and *must* have a fallback in place for 1003 * situations where we cannot bind the object. We 1004 * can be a little more lax here and use the fallback 1005 * more often to avoid costly migrations of ourselves 1006 * and other objects within the aperture. 1007 * 1008 * Half-the-aperture is used as a simple heuristic. 1009 * More interesting would to do search for a free 1010 * block prior to making the commitment to unbind. 1011 * That caters for the self-harm case, and with a 1012 * little more heuristics (e.g. NOFAULT, NOEVICT) 1013 * we could try to minimise harm to others. 1014 */ 1015 if (flags & PIN_NONBLOCK && 1016 obj->base.size > ggtt->mappable_end / 2) 1017 return ERR_PTR(-ENOSPC); 1018 } 1019 1020 vma = i915_vma_instance(obj, &ggtt->vm, view); 1021 if (IS_ERR(vma)) 1022 return vma; 1023 1024 if (i915_vma_misplaced(vma, size, alignment, flags)) { 1025 if (flags & PIN_NONBLOCK) { 1026 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) 1027 return ERR_PTR(-ENOSPC); 1028 1029 if (flags & PIN_MAPPABLE && 1030 vma->fence_size > ggtt->mappable_end / 2) 1031 return ERR_PTR(-ENOSPC); 1032 } 1033 1034 ret = i915_vma_unbind(vma); 1035 if (ret) 1036 return ERR_PTR(ret); 1037 } 1038 1039 if (vma->fence && !i915_gem_object_is_tiled(obj)) { 1040 mutex_lock(&ggtt->vm.mutex); 1041 ret = i915_vma_revoke_fence(vma); 1042 mutex_unlock(&ggtt->vm.mutex); 1043 if (ret) 1044 return ERR_PTR(ret); 1045 } 1046 1047 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL); 1048 if (ret) 1049 return ERR_PTR(ret); 1050 1051 return vma; 1052 } 1053 1054 int 1055 i915_gem_madvise_ioctl(struct drm_device *dev, void *data, 1056 struct drm_file *file_priv) 1057 { 1058 struct drm_i915_private *i915 = to_i915(dev); 1059 struct drm_i915_gem_madvise *args = data; 1060 struct drm_i915_gem_object *obj; 1061 int err; 1062 1063 switch (args->madv) { 1064 case I915_MADV_DONTNEED: 1065 case I915_MADV_WILLNEED: 1066 break; 1067 default: 1068 return -EINVAL; 1069 } 1070 1071 obj = i915_gem_object_lookup(file_priv, args->handle); 1072 if (!obj) 1073 return -ENOENT; 1074 1075 err = mutex_lock_interruptible(&obj->mm.lock); 1076 if (err) 1077 goto out; 1078 1079 if (i915_gem_object_has_pages(obj) && 1080 i915_gem_object_is_tiled(obj) && 1081 i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) { 1082 if (obj->mm.madv == I915_MADV_WILLNEED) { 1083 GEM_BUG_ON(!obj->mm.quirked); 1084 __i915_gem_object_unpin_pages(obj); 1085 obj->mm.quirked = false; 1086 } 1087 if (args->madv == I915_MADV_WILLNEED) { 1088 GEM_BUG_ON(obj->mm.quirked); 1089 __i915_gem_object_pin_pages(obj); 1090 obj->mm.quirked = true; 1091 } 1092 } 1093 1094 if (obj->mm.madv != __I915_MADV_PURGED) 1095 obj->mm.madv = args->madv; 1096 1097 if (i915_gem_object_has_pages(obj)) { 1098 struct list_head *list; 1099 1100 if (i915_gem_object_is_shrinkable(obj)) { 1101 unsigned long flags; 1102 1103 spin_lock_irqsave(&i915->mm.obj_lock, flags); 1104 1105 if (obj->mm.madv != I915_MADV_WILLNEED) 1106 list = &i915->mm.purge_list; 1107 else 1108 list = &i915->mm.shrink_list; 1109 list_move_tail(&obj->mm.link, list); 1110 1111 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 1112 } 1113 } 1114 1115 /* if the object is no longer attached, discard its backing storage */ 1116 if (obj->mm.madv == I915_MADV_DONTNEED && 1117 !i915_gem_object_has_pages(obj)) 1118 i915_gem_object_truncate(obj); 1119 1120 args->retained = obj->mm.madv != __I915_MADV_PURGED; 1121 mutex_unlock(&obj->mm.lock); 1122 1123 out: 1124 i915_gem_object_put(obj); 1125 return err; 1126 } 1127 1128 int i915_gem_init(struct drm_i915_private *dev_priv) 1129 { 1130 int ret; 1131 1132 /* We need to fallback to 4K pages if host doesn't support huge gtt. */ 1133 if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv)) 1134 mkwrite_device_info(dev_priv)->page_sizes = 1135 I915_GTT_PAGE_SIZE_4K; 1136 1137 ret = i915_gem_init_userptr(dev_priv); 1138 if (ret) 1139 return ret; 1140 1141 intel_uc_fetch_firmwares(&dev_priv->gt.uc); 1142 intel_wopcm_init(&dev_priv->wopcm); 1143 1144 ret = i915_init_ggtt(dev_priv); 1145 if (ret) { 1146 GEM_BUG_ON(ret == -EIO); 1147 goto err_unlock; 1148 } 1149 1150 /* 1151 * Despite its name intel_init_clock_gating applies both display 1152 * clock gating workarounds; GT mmio workarounds and the occasional 1153 * GT power context workaround. Worse, sometimes it includes a context 1154 * register workaround which we need to apply before we record the 1155 * default HW state for all contexts. 1156 * 1157 * FIXME: break up the workarounds and apply them at the right time! 1158 */ 1159 intel_init_clock_gating(dev_priv); 1160 1161 ret = intel_gt_init(&dev_priv->gt); 1162 if (ret) 1163 goto err_unlock; 1164 1165 return 0; 1166 1167 /* 1168 * Unwinding is complicated by that we want to handle -EIO to mean 1169 * disable GPU submission but keep KMS alive. We want to mark the 1170 * HW as irrevisibly wedged, but keep enough state around that the 1171 * driver doesn't explode during runtime. 1172 */ 1173 err_unlock: 1174 i915_gem_drain_workqueue(dev_priv); 1175 1176 if (ret != -EIO) { 1177 intel_uc_cleanup_firmwares(&dev_priv->gt.uc); 1178 i915_gem_cleanup_userptr(dev_priv); 1179 } 1180 1181 if (ret == -EIO) { 1182 /* 1183 * Allow engines or uC initialisation to fail by marking the GPU 1184 * as wedged. But we only want to do this when the GPU is angry, 1185 * for all other failure, such as an allocation failure, bail. 1186 */ 1187 if (!intel_gt_is_wedged(&dev_priv->gt)) { 1188 i915_probe_error(dev_priv, 1189 "Failed to initialize GPU, declaring it wedged!\n"); 1190 intel_gt_set_wedged(&dev_priv->gt); 1191 } 1192 1193 /* Minimal basic recovery for KMS */ 1194 ret = i915_ggtt_enable_hw(dev_priv); 1195 i915_gem_restore_gtt_mappings(dev_priv); 1196 i915_gem_restore_fences(&dev_priv->ggtt); 1197 intel_init_clock_gating(dev_priv); 1198 } 1199 1200 i915_gem_drain_freed_objects(dev_priv); 1201 return ret; 1202 } 1203 1204 void i915_gem_driver_register(struct drm_i915_private *i915) 1205 { 1206 i915_gem_driver_register__shrinker(i915); 1207 1208 intel_engines_driver_register(i915); 1209 } 1210 1211 void i915_gem_driver_unregister(struct drm_i915_private *i915) 1212 { 1213 i915_gem_driver_unregister__shrinker(i915); 1214 } 1215 1216 void i915_gem_driver_remove(struct drm_i915_private *dev_priv) 1217 { 1218 intel_wakeref_auto_fini(&dev_priv->ggtt.userfault_wakeref); 1219 1220 i915_gem_suspend_late(dev_priv); 1221 intel_gt_driver_remove(&dev_priv->gt); 1222 #ifndef __NetBSD__ /* XXX uabi_engines */ 1223 dev_priv->uabi_engines = RB_ROOT; 1224 #endif 1225 1226 /* Flush any outstanding unpin_work. */ 1227 i915_gem_drain_workqueue(dev_priv); 1228 1229 i915_gem_drain_freed_objects(dev_priv); 1230 } 1231 1232 void i915_gem_driver_release(struct drm_i915_private *dev_priv) 1233 { 1234 i915_gem_driver_release__contexts(dev_priv); 1235 1236 intel_gt_driver_release(&dev_priv->gt); 1237 1238 intel_wa_list_free(&dev_priv->gt_wa_list); 1239 1240 intel_uc_cleanup_firmwares(&dev_priv->gt.uc); 1241 i915_gem_cleanup_userptr(dev_priv); 1242 1243 i915_gem_drain_freed_objects(dev_priv); 1244 1245 WARN_ON(!list_empty(&dev_priv->gem.contexts.list)); 1246 } 1247 1248 static void i915_gem_init__mm(struct drm_i915_private *i915) 1249 { 1250 spin_lock_init(&i915->mm.obj_lock); 1251 1252 init_llist_head(&i915->mm.free_list); 1253 1254 INIT_LIST_HEAD(&i915->mm.purge_list); 1255 INIT_LIST_HEAD(&i915->mm.shrink_list); 1256 1257 i915_gem_init__objects(i915); 1258 } 1259 1260 void i915_gem_init_early(struct drm_i915_private *dev_priv) 1261 { 1262 i915_gem_init__mm(dev_priv); 1263 i915_gem_init__contexts(dev_priv); 1264 1265 spin_lock_init(&dev_priv->fb_tracking.lock); 1266 } 1267 1268 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv) 1269 { 1270 i915_gem_drain_freed_objects(dev_priv); 1271 GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list)); 1272 GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count)); 1273 WARN_ON(dev_priv->mm.shrink_count); 1274 spin_lock_destroy(&dev_priv->fb_tracking.lock); 1275 spin_lock_destroy(&dev_priv->mm.obj_lock); 1276 } 1277 1278 int i915_gem_freeze(struct drm_i915_private *dev_priv) 1279 { 1280 /* Discard all purgeable objects, let userspace recover those as 1281 * required after resuming. 1282 */ 1283 i915_gem_shrink_all(dev_priv); 1284 1285 return 0; 1286 } 1287 1288 int i915_gem_freeze_late(struct drm_i915_private *i915) 1289 { 1290 struct drm_i915_gem_object *obj; 1291 intel_wakeref_t wakeref; 1292 1293 /* 1294 * Called just before we write the hibernation image. 1295 * 1296 * We need to update the domain tracking to reflect that the CPU 1297 * will be accessing all the pages to create and restore from the 1298 * hibernation, and so upon restoration those pages will be in the 1299 * CPU domain. 1300 * 1301 * To make sure the hibernation image contains the latest state, 1302 * we update that state just before writing out the image. 1303 * 1304 * To try and reduce the hibernation image, we manually shrink 1305 * the objects as well, see i915_gem_freeze() 1306 */ 1307 1308 wakeref = intel_runtime_pm_get(&i915->runtime_pm); 1309 1310 i915_gem_shrink(i915, -1UL, NULL, ~0); 1311 i915_gem_drain_freed_objects(i915); 1312 1313 list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) { 1314 i915_gem_object_lock(obj); 1315 WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true)); 1316 i915_gem_object_unlock(obj); 1317 } 1318 1319 intel_runtime_pm_put(&i915->runtime_pm, wakeref); 1320 1321 return 0; 1322 } 1323 1324 void i915_gem_release(struct drm_device *dev, struct drm_file *file) 1325 { 1326 struct drm_i915_file_private *file_priv = file->driver_priv; 1327 struct i915_request *request; 1328 1329 /* Clean up our request list when the client is going away, so that 1330 * later retire_requests won't dereference our soon-to-be-gone 1331 * file_priv. 1332 */ 1333 spin_lock(&file_priv->mm.lock); 1334 list_for_each_entry(request, &file_priv->mm.request_list, client_link) 1335 request->file_priv = NULL; 1336 spin_unlock(&file_priv->mm.lock); 1337 1338 /* 1339 * XXX This is probably too early -- need to defer with 1340 * callrcu; caller already defers free with kfree_rcu. 1341 */ 1342 spin_lock_destroy(&file_priv->mm.lock); 1343 } 1344 1345 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file) 1346 { 1347 struct drm_i915_file_private *file_priv; 1348 int ret; 1349 1350 DRM_DEBUG("\n"); 1351 1352 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL); 1353 if (!file_priv) 1354 return -ENOMEM; 1355 1356 file->driver_priv = file_priv; 1357 file_priv->dev_priv = i915; 1358 file_priv->file = file; 1359 1360 spin_lock_init(&file_priv->mm.lock); 1361 INIT_LIST_HEAD(&file_priv->mm.request_list); 1362 1363 file_priv->bsd_engine = -1; 1364 file_priv->hang_timestamp = jiffies; 1365 1366 ret = i915_gem_context_open(i915, file); 1367 if (ret) 1368 kfree(file_priv); 1369 1370 return ret; 1371 } 1372 1373 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1374 #include "selftests/mock_gem_device.c" 1375 #include "selftests/i915_gem.c" 1376 #endif 1377