1 /* $NetBSD: i915_gem_pages.c,v 1.7 2024/01/19 22:22:54 riastradh Exp $ */ 2 3 /* 4 * SPDX-License-Identifier: MIT 5 * 6 * Copyright 2014-2016 Intel Corporation 7 */ 8 9 #include <sys/cdefs.h> 10 __KERNEL_RCSID(0, "$NetBSD: i915_gem_pages.c,v 1.7 2024/01/19 22:22:54 riastradh Exp $"); 11 12 #include "i915_drv.h" 13 #include "i915_gem_object.h" 14 #include "i915_scatterlist.h" 15 #include "i915_gem_lmem.h" 16 #include "i915_gem_mman.h" 17 18 #ifdef __NetBSD__ 19 #include <sys/param.h> 20 #include <uvm/uvm_extern.h> 21 #endif 22 23 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj, 24 struct sg_table *pages, 25 unsigned int sg_page_sizes) 26 { 27 struct drm_i915_private *i915 = to_i915(obj->base.dev); 28 unsigned long supported = INTEL_INFO(i915)->page_sizes; 29 int i; 30 31 lockdep_assert_held(&obj->mm.lock); 32 33 if (i915_gem_object_is_volatile(obj)) 34 obj->mm.madv = I915_MADV_DONTNEED; 35 36 /* Make the pages coherent with the GPU (flushing any swapin). */ 37 if (obj->cache_dirty) { 38 obj->write_domain = 0; 39 if (i915_gem_object_has_struct_page(obj)) 40 drm_clflush_sg(pages); 41 obj->cache_dirty = false; 42 } 43 44 #ifndef __NetBSD__ 45 /* 46 * Paranoia: In NetBSD, a scatterlist is just an array of 47 * pages, not an array of segments that might be larger than 48 * pages, so the number of entries must exactly match the size 49 * of the object (which should also be page-aligned). 50 * 51 * Both vm_fault_cpu and i915_gem_object_release_mmap_offset in 52 * i915_gem_mman.c rely on this page array as such. 53 */ 54 KASSERTMSG(pages->sgl->sg_npgs == obj->base.size >> PAGE_SHIFT, 55 "npgs=%zu size=%zu", pages->sgl->sg_npgs, obj->base.size); 56 57 obj->mm.get_page.sg_pos = pages->sgl; 58 obj->mm.get_page.sg_idx = 0; 59 #endif 60 61 obj->mm.pages = pages; 62 63 if (i915_gem_object_is_tiled(obj) && 64 i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) { 65 GEM_BUG_ON(obj->mm.quirked); 66 __i915_gem_object_pin_pages(obj); 67 obj->mm.quirked = true; 68 } 69 70 GEM_BUG_ON(!sg_page_sizes); 71 obj->mm.page_sizes.phys = sg_page_sizes; 72 73 /* 74 * Calculate the supported page-sizes which fit into the given 75 * sg_page_sizes. This will give us the page-sizes which we may be able 76 * to use opportunistically when later inserting into the GTT. For 77 * example if phys=2G, then in theory we should be able to use 1G, 2M, 78 * 64K or 4K pages, although in practice this will depend on a number of 79 * other factors. 80 */ 81 obj->mm.page_sizes.sg = 0; 82 for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) { 83 if (obj->mm.page_sizes.phys & ~0u << i) 84 obj->mm.page_sizes.sg |= BIT(i); 85 } 86 GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg)); 87 88 if (i915_gem_object_is_shrinkable(obj)) { 89 struct list_head *list; 90 unsigned long flags; 91 92 spin_lock_irqsave(&i915->mm.obj_lock, flags); 93 94 i915->mm.shrink_count++; 95 i915->mm.shrink_memory += obj->base.size; 96 97 if (obj->mm.madv != I915_MADV_WILLNEED) 98 list = &i915->mm.purge_list; 99 else 100 list = &i915->mm.shrink_list; 101 list_add_tail(&obj->mm.link, list); 102 103 atomic_set(&obj->mm.shrink_pin, 0); 104 spin_unlock_irqrestore(&i915->mm.obj_lock, flags); 105 } 106 } 107 108 int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj) 109 { 110 int err; 111 112 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) { 113 DRM_DEBUG("Attempting to obtain a purgeable object\n"); 114 return -EFAULT; 115 } 116 117 err = obj->ops->get_pages(obj); 118 GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj)); 119 120 return err; 121 } 122 123 /* Ensure that the associated pages are gathered from the backing storage 124 * and pinned into our object. i915_gem_object_pin_pages() may be called 125 * multiple times before they are released by a single call to 126 * i915_gem_object_unpin_pages() - once the pages are no longer referenced 127 * either as a result of memory pressure (reaping pages under the shrinker) 128 * or as the object is itself released. 129 */ 130 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj) 131 { 132 int err; 133 134 err = mutex_lock_interruptible_nested(&obj->mm.lock, I915_MM_GET_PAGES); 135 if (err) 136 return err; 137 138 if (unlikely(!i915_gem_object_has_pages(obj))) { 139 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj)); 140 141 err = ____i915_gem_object_get_pages(obj); 142 if (err) 143 goto unlock; 144 145 smp_mb__before_atomic(); 146 } 147 atomic_inc(&obj->mm.pages_pin_count); 148 149 unlock: 150 mutex_unlock(&obj->mm.lock); 151 return err; 152 } 153 154 /* Immediately discard the backing storage */ 155 void i915_gem_object_truncate(struct drm_i915_gem_object *obj) 156 { 157 drm_gem_free_mmap_offset(&obj->base); 158 if (obj->ops->truncate) 159 obj->ops->truncate(obj); 160 } 161 162 /* Try to discard unwanted pages */ 163 void i915_gem_object_writeback(struct drm_i915_gem_object *obj) 164 { 165 lockdep_assert_held(&obj->mm.lock); 166 GEM_BUG_ON(i915_gem_object_has_pages(obj)); 167 168 if (obj->ops->writeback) 169 obj->ops->writeback(obj); 170 } 171 172 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj) 173 { 174 struct radix_tree_iter iter; 175 void __rcu **slot; 176 177 rcu_read_lock(); 178 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0) 179 radix_tree_delete(&obj->mm.get_page.radix, iter.index); 180 rcu_read_unlock(); 181 } 182 183 static void unmap_object(struct drm_i915_gem_object *obj, void *ptr) 184 { 185 #ifdef __NetBSD__ 186 pmap_kremove((vaddr_t)ptr, obj->base.size); 187 pmap_update(pmap_kernel()); 188 uvm_km_free(kernel_map, (vaddr_t)ptr, obj->base.size, UVM_KMF_VAONLY); 189 #else 190 if (is_vmalloc_addr(ptr)) 191 vunmap(ptr); 192 else 193 kunmap(kmap_to_page(ptr)); 194 #endif 195 } 196 197 struct sg_table * 198 __i915_gem_object_unset_pages(struct drm_i915_gem_object *obj) 199 { 200 struct sg_table *pages; 201 202 pages = fetch_and_zero(&obj->mm.pages); 203 if (IS_ERR_OR_NULL(pages)) 204 return pages; 205 206 if (i915_gem_object_is_volatile(obj)) 207 obj->mm.madv = I915_MADV_WILLNEED; 208 209 i915_gem_object_make_unshrinkable(obj); 210 211 if (obj->mm.mapping) { 212 unmap_object(obj, page_mask_bits(obj->mm.mapping)); 213 obj->mm.mapping = NULL; 214 } 215 216 __i915_gem_object_reset_page_iter(obj); 217 obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0; 218 219 return pages; 220 } 221 222 int __i915_gem_object_put_pages(struct drm_i915_gem_object *obj) 223 { 224 struct sg_table *pages; 225 int err; 226 227 if (i915_gem_object_has_pinned_pages(obj)) 228 return -EBUSY; 229 230 GEM_BUG_ON(atomic_read(&obj->bind_count)); 231 232 /* May be called by shrinker from within get_pages() (on another bo) */ 233 mutex_lock(&obj->mm.lock); 234 if (unlikely(atomic_read(&obj->mm.pages_pin_count))) { 235 err = -EBUSY; 236 goto unlock; 237 } 238 239 i915_gem_object_release_mmap_offset(obj); 240 241 /* 242 * ->put_pages might need to allocate memory for the bit17 swizzle 243 * array, hence protect them from being reaped by removing them from gtt 244 * lists early. 245 */ 246 pages = __i915_gem_object_unset_pages(obj); 247 248 /* 249 * XXX Temporary hijinx to avoid updating all backends to handle 250 * NULL pages. In the future, when we have more asynchronous 251 * get_pages backends we should be better able to handle the 252 * cancellation of the async task in a more uniform manner. 253 */ 254 if (!pages && !i915_gem_object_needs_async_cancel(obj)) 255 pages = ERR_PTR(-EINVAL); 256 257 if (!IS_ERR(pages)) 258 obj->ops->put_pages(obj, pages); 259 260 err = 0; 261 unlock: 262 mutex_unlock(&obj->mm.lock); 263 264 return err; 265 } 266 267 #ifndef __NetBSD__ 268 static inline pte_t iomap_pte(resource_size_t base, 269 dma_addr_t offset, 270 pgprot_t prot) 271 { 272 return pte_mkspecial(pfn_pte((base + offset) >> PAGE_SHIFT, prot)); 273 } 274 #endif 275 276 /* The 'mapping' part of i915_gem_object_pin_map() below */ 277 static void *i915_gem_object_map(struct drm_i915_gem_object *obj, 278 enum i915_map_type type) 279 { 280 #ifdef __NetBSD__ 281 vaddr_t va; 282 struct page *page; 283 paddr_t pa; 284 unsigned i; 285 int kmflags = UVM_KMF_VAONLY|UVM_KMF_WAITVA; 286 int prot = VM_PROT_READ|VM_PROT_WRITE; 287 int flags = 0; 288 289 /* 290 * XXX Be nice if we had bus_dmamem segments so we could use 291 * bus_dmamem_map, but we don't so we can't. 292 */ 293 294 /* Verify the object is reasonable to map. */ 295 /* XXX sync with below */ 296 if (!i915_gem_object_has_struct_page(obj) && type != I915_MAP_WC) 297 return NULL; 298 299 /* Incorporate mapping type into pmap flags. */ 300 switch (type) { 301 case I915_MAP_WC: 302 flags |= PMAP_WRITE_COMBINE; 303 break; 304 case I915_MAP_WB: 305 default: 306 break; 307 } 308 309 /* Allow failure if >1 page. */ 310 if (obj->base.size > PAGE_SIZE) 311 kmflags |= UVM_KMF_CANFAIL; 312 313 /* Allocate a contiguous chunk of KVA. */ 314 va = uvm_km_alloc(kernel_map, obj->base.size, PAGE_SIZE, kmflags); 315 if (va == 0) 316 return NULL; 317 318 /* Wire the KVA to the right physical addresses. */ 319 for (i = 0; i < obj->base.size >> PAGE_SHIFT; i++) { 320 page = obj->mm.pages->sgl->sg_pgs[i]; 321 pa = VM_PAGE_TO_PHYS(&page->p_vmp); 322 pmap_kenter_pa(va + i*PAGE_SIZE, pa, prot, flags); 323 } 324 pmap_update(pmap_kernel()); 325 326 return (void *)va; 327 #else 328 unsigned long n_pte = obj->base.size >> PAGE_SHIFT; 329 struct sg_table *sgt = obj->mm.pages; 330 pte_t *stack[32], **mem; 331 struct vm_struct *area; 332 pgprot_t pgprot; 333 334 if (!i915_gem_object_has_struct_page(obj) && type != I915_MAP_WC) 335 return NULL; 336 337 /* A single page can always be kmapped */ 338 if (n_pte == 1 && type == I915_MAP_WB) 339 return kmap(sg_page(sgt->sgl)); 340 341 mem = stack; 342 if (n_pte > ARRAY_SIZE(stack)) { 343 /* Too big for stack -- allocate temporary array instead */ 344 mem = kvmalloc_array(n_pte, sizeof(*mem), GFP_KERNEL); 345 if (!mem) 346 return NULL; 347 } 348 349 area = alloc_vm_area(obj->base.size, mem); 350 if (!area) { 351 if (mem != stack) 352 kvfree(mem); 353 return NULL; 354 } 355 356 switch (type) { 357 default: 358 MISSING_CASE(type); 359 /* fallthrough - to use PAGE_KERNEL anyway */ 360 case I915_MAP_WB: 361 pgprot = PAGE_KERNEL; 362 break; 363 case I915_MAP_WC: 364 pgprot = pgprot_writecombine(PAGE_KERNEL_IO); 365 break; 366 } 367 368 if (i915_gem_object_has_struct_page(obj)) { 369 struct sgt_iter iter; 370 struct page *page; 371 pte_t **ptes = mem; 372 373 for_each_sgt_page(page, iter, sgt) 374 **ptes++ = mk_pte(page, pgprot); 375 } else { 376 resource_size_t iomap; 377 struct sgt_iter iter; 378 pte_t **ptes = mem; 379 dma_addr_t addr; 380 381 iomap = obj->mm.region->iomap.base; 382 iomap -= obj->mm.region->region.start; 383 384 for_each_sgt_daddr(addr, iter, sgt) 385 **ptes++ = iomap_pte(iomap, addr, pgprot); 386 } 387 388 if (mem != stack) 389 kvfree(mem); 390 391 return area->addr; 392 #endif 393 } 394 395 /* get, pin, and map the pages of the object into kernel space */ 396 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj, 397 enum i915_map_type type) 398 { 399 enum i915_map_type has_type; 400 unsigned int flags; 401 bool pinned; 402 void *ptr; 403 int err; 404 405 flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE | I915_GEM_OBJECT_HAS_IOMEM; 406 if (!i915_gem_object_type_has(obj, flags)) 407 return ERR_PTR(-ENXIO); 408 409 err = mutex_lock_interruptible_nested(&obj->mm.lock, I915_MM_GET_PAGES); 410 if (err) 411 return ERR_PTR(err); 412 413 pinned = !(type & I915_MAP_OVERRIDE); 414 type &= ~I915_MAP_OVERRIDE; 415 416 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) { 417 if (unlikely(!i915_gem_object_has_pages(obj))) { 418 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj)); 419 420 err = ____i915_gem_object_get_pages(obj); 421 if (err) 422 goto err_unlock; 423 424 smp_mb__before_atomic(); 425 } 426 atomic_inc(&obj->mm.pages_pin_count); 427 pinned = false; 428 } 429 GEM_BUG_ON(!i915_gem_object_has_pages(obj)); 430 431 ptr = page_unpack_bits(obj->mm.mapping, &has_type); 432 if (ptr && has_type != type) { 433 if (pinned) { 434 err = -EBUSY; 435 goto err_unpin; 436 } 437 438 unmap_object(obj, ptr); 439 440 ptr = obj->mm.mapping = NULL; 441 } 442 443 if (!ptr) { 444 ptr = i915_gem_object_map(obj, type); 445 if (!ptr) { 446 err = -ENOMEM; 447 goto err_unpin; 448 } 449 450 obj->mm.mapping = page_pack_bits(ptr, type); 451 } 452 453 out_unlock: 454 mutex_unlock(&obj->mm.lock); 455 return ptr; 456 457 err_unpin: 458 atomic_dec(&obj->mm.pages_pin_count); 459 err_unlock: 460 ptr = ERR_PTR(err); 461 goto out_unlock; 462 } 463 464 void __i915_gem_object_flush_map(struct drm_i915_gem_object *obj, 465 unsigned long offset, 466 unsigned long size) 467 { 468 enum i915_map_type has_type; 469 void *ptr; 470 471 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); 472 GEM_BUG_ON(range_overflows_t(typeof(obj->base.size), 473 offset, size, obj->base.size)); 474 475 obj->mm.dirty = true; 476 477 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE) 478 return; 479 480 ptr = page_unpack_bits(obj->mm.mapping, &has_type); 481 if (has_type == I915_MAP_WC) 482 return; 483 484 drm_clflush_virt_range(ptr + offset, size); 485 if (size == obj->base.size) { 486 obj->write_domain &= ~I915_GEM_DOMAIN_CPU; 487 obj->cache_dirty = false; 488 } 489 } 490 491 #ifndef __NetBSD__ 492 struct scatterlist * 493 i915_gem_object_get_sg(struct drm_i915_gem_object *obj, 494 unsigned int n, 495 unsigned int *offset) 496 { 497 struct i915_gem_object_page_iter *iter = &obj->mm.get_page; 498 struct scatterlist *sg; 499 unsigned int idx, count; 500 501 might_sleep(); 502 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT); 503 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); 504 505 /* As we iterate forward through the sg, we record each entry in a 506 * radixtree for quick repeated (backwards) lookups. If we have seen 507 * this index previously, we will have an entry for it. 508 * 509 * Initial lookup is O(N), but this is amortized to O(1) for 510 * sequential page access (where each new request is consecutive 511 * to the previous one). Repeated lookups are O(lg(obj->base.size)), 512 * i.e. O(1) with a large constant! 513 */ 514 if (n < READ_ONCE(iter->sg_idx)) 515 goto lookup; 516 517 mutex_lock(&iter->lock); 518 519 /* We prefer to reuse the last sg so that repeated lookup of this 520 * (or the subsequent) sg are fast - comparing against the last 521 * sg is faster than going through the radixtree. 522 */ 523 524 sg = iter->sg_pos; 525 idx = iter->sg_idx; 526 count = __sg_page_count(sg); 527 528 while (idx + count <= n) { 529 void *entry; 530 unsigned long i; 531 int ret; 532 533 /* If we cannot allocate and insert this entry, or the 534 * individual pages from this range, cancel updating the 535 * sg_idx so that on this lookup we are forced to linearly 536 * scan onwards, but on future lookups we will try the 537 * insertion again (in which case we need to be careful of 538 * the error return reporting that we have already inserted 539 * this index). 540 */ 541 ret = radix_tree_insert(&iter->radix, idx, sg); 542 if (ret && ret != -EEXIST) 543 goto scan; 544 545 entry = xa_mk_value(idx); 546 for (i = 1; i < count; i++) { 547 ret = radix_tree_insert(&iter->radix, idx + i, entry); 548 if (ret && ret != -EEXIST) 549 goto scan; 550 } 551 552 idx += count; 553 sg = ____sg_next(sg); 554 count = __sg_page_count(sg); 555 } 556 557 scan: 558 iter->sg_pos = sg; 559 iter->sg_idx = idx; 560 561 mutex_unlock(&iter->lock); 562 563 if (unlikely(n < idx)) /* insertion completed by another thread */ 564 goto lookup; 565 566 /* In case we failed to insert the entry into the radixtree, we need 567 * to look beyond the current sg. 568 */ 569 while (idx + count <= n) { 570 idx += count; 571 sg = ____sg_next(sg); 572 count = __sg_page_count(sg); 573 } 574 575 *offset = n - idx; 576 return sg; 577 578 lookup: 579 rcu_read_lock(); 580 581 sg = radix_tree_lookup(&iter->radix, n); 582 GEM_BUG_ON(!sg); 583 584 /* If this index is in the middle of multi-page sg entry, 585 * the radix tree will contain a value entry that points 586 * to the start of that range. We will return the pointer to 587 * the base page and the offset of this page within the 588 * sg entry's range. 589 */ 590 *offset = 0; 591 if (unlikely(xa_is_value(sg))) { 592 unsigned long base = xa_to_value(sg); 593 594 sg = radix_tree_lookup(&iter->radix, base); 595 GEM_BUG_ON(!sg); 596 597 *offset = n - base; 598 } 599 600 rcu_read_unlock(); 601 602 return sg; 603 } 604 #endif 605 606 struct page * 607 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n) 608 { 609 #ifdef __NetBSD__ 610 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj)); 611 KASSERT(n < obj->mm.pages->sgl->sg_npgs); 612 return obj->mm.pages->sgl->sg_pgs[n]; 613 #else 614 struct scatterlist *sg; 615 unsigned int offset; 616 617 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj)); 618 619 sg = i915_gem_object_get_sg(obj, n, &offset); 620 return nth_page(sg_page(sg), offset); 621 #endif 622 } 623 624 /* Like i915_gem_object_get_page(), but mark the returned page dirty */ 625 struct page * 626 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, 627 unsigned int n) 628 { 629 struct page *page; 630 631 page = i915_gem_object_get_page(obj, n); 632 if (!obj->mm.dirty) 633 set_page_dirty(page); 634 635 return page; 636 } 637 638 dma_addr_t 639 i915_gem_object_get_dma_address_len(struct drm_i915_gem_object *obj, 640 unsigned long n, 641 unsigned int *len) 642 { 643 #ifdef __NetBSD__ 644 bus_dmamap_t map = obj->mm.pages->sgl->sg_dmamap; 645 bus_addr_t poff = (bus_addr_t)n << PAGE_SHIFT; 646 unsigned seg; 647 648 for (seg = 0; seg < map->dm_nsegs; seg++) { 649 if (poff < map->dm_segs[seg].ds_len) { 650 *len = map->dm_segs[seg].ds_len - poff; 651 return map->dm_segs[seg].ds_addr + poff; 652 } 653 poff -= map->dm_segs[seg].ds_len; 654 } 655 KASSERT(0); 656 return 0; 657 #else 658 struct scatterlist *sg; 659 unsigned int offset; 660 661 sg = i915_gem_object_get_sg(obj, n, &offset); 662 663 if (len) 664 *len = sg_dma_len(sg) - (offset << PAGE_SHIFT); 665 666 return sg_dma_address(sg) + (offset << PAGE_SHIFT); 667 #endif 668 } 669 670 dma_addr_t 671 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, 672 unsigned long n) 673 { 674 return i915_gem_object_get_dma_address_len(obj, n, NULL); 675 } 676