1 /* $NetBSD: i915_gem_userptr.c,v 1.5 2021/12/19 12:32:15 riastradh Exp $ */ 2 3 /* 4 * SPDX-License-Identifier: MIT 5 * 6 * Copyright 2012-2014 Intel Corporation 7 */ 8 9 #include <sys/cdefs.h> 10 __KERNEL_RCSID(0, "$NetBSD: i915_gem_userptr.c,v 1.5 2021/12/19 12:32:15 riastradh Exp $"); 11 12 #include <linux/mmu_context.h> 13 #include <linux/mmu_notifier.h> 14 #include <linux/mempolicy.h> 15 #include <linux/swap.h> 16 #include <linux/sched/mm.h> 17 18 #include <drm/i915_drm.h> 19 20 #include "i915_drv.h" 21 #include "i915_gem_ioctls.h" 22 #include "i915_gem_object.h" 23 #include "i915_scatterlist.h" 24 25 #include <linux/nbsd-namespace.h> 26 27 struct i915_mm_struct { 28 #ifdef __NetBSD__ 29 struct vmspace *mm; 30 #else 31 struct mm_struct *mm; 32 #endif 33 struct drm_i915_private *i915; 34 struct i915_mmu_notifier *mn; 35 struct hlist_node node; 36 struct kref kref; 37 struct work_struct work; 38 }; 39 40 #if defined(CONFIG_MMU_NOTIFIER) 41 #include <linux/interval_tree.h> 42 43 struct i915_mmu_notifier { 44 spinlock_t lock; 45 struct hlist_node node; 46 struct mmu_notifier mn; 47 struct rb_root_cached objects; 48 struct i915_mm_struct *mm; 49 }; 50 51 struct i915_mmu_object { 52 struct i915_mmu_notifier *mn; 53 struct drm_i915_gem_object *obj; 54 struct interval_tree_node it; 55 }; 56 57 static void add_object(struct i915_mmu_object *mo) 58 { 59 GEM_BUG_ON(!RB_EMPTY_NODE(&mo->it.rb)); 60 interval_tree_insert(&mo->it, &mo->mn->objects); 61 } 62 63 static void del_object(struct i915_mmu_object *mo) 64 { 65 if (RB_EMPTY_NODE(&mo->it.rb)) 66 return; 67 68 interval_tree_remove(&mo->it, &mo->mn->objects); 69 RB_CLEAR_NODE(&mo->it.rb); 70 } 71 72 static void 73 __i915_gem_userptr_set_active(struct drm_i915_gem_object *obj, bool value) 74 { 75 struct i915_mmu_object *mo = obj->userptr.mmu_object; 76 77 /* 78 * During mm_invalidate_range we need to cancel any userptr that 79 * overlaps the range being invalidated. Doing so requires the 80 * struct_mutex, and that risks recursion. In order to cause 81 * recursion, the user must alias the userptr address space with 82 * a GTT mmapping (possible with a MAP_FIXED) - then when we have 83 * to invalidate that mmaping, mm_invalidate_range is called with 84 * the userptr address *and* the struct_mutex held. To prevent that 85 * we set a flag under the i915_mmu_notifier spinlock to indicate 86 * whether this object is valid. 87 */ 88 if (!mo) 89 return; 90 91 spin_lock(&mo->mn->lock); 92 if (value) 93 add_object(mo); 94 else 95 del_object(mo); 96 spin_unlock(&mo->mn->lock); 97 } 98 99 static int 100 userptr_mn_invalidate_range_start(struct mmu_notifier *_mn, 101 const struct mmu_notifier_range *range) 102 { 103 struct i915_mmu_notifier *mn = 104 container_of(_mn, struct i915_mmu_notifier, mn); 105 struct interval_tree_node *it; 106 unsigned long end; 107 int ret = 0; 108 109 if (RB_EMPTY_ROOT(&mn->objects.rb_root)) 110 return 0; 111 112 /* interval ranges are inclusive, but invalidate range is exclusive */ 113 end = range->end - 1; 114 115 spin_lock(&mn->lock); 116 it = interval_tree_iter_first(&mn->objects, range->start, end); 117 while (it) { 118 struct drm_i915_gem_object *obj; 119 120 if (!mmu_notifier_range_blockable(range)) { 121 ret = -EAGAIN; 122 break; 123 } 124 125 /* 126 * The mmu_object is released late when destroying the 127 * GEM object so it is entirely possible to gain a 128 * reference on an object in the process of being freed 129 * since our serialisation is via the spinlock and not 130 * the struct_mutex - and consequently use it after it 131 * is freed and then double free it. To prevent that 132 * use-after-free we only acquire a reference on the 133 * object if it is not in the process of being destroyed. 134 */ 135 obj = container_of(it, struct i915_mmu_object, it)->obj; 136 if (!kref_get_unless_zero(&obj->base.refcount)) { 137 it = interval_tree_iter_next(it, range->start, end); 138 continue; 139 } 140 spin_unlock(&mn->lock); 141 142 ret = i915_gem_object_unbind(obj, 143 I915_GEM_OBJECT_UNBIND_ACTIVE | 144 I915_GEM_OBJECT_UNBIND_BARRIER); 145 if (ret == 0) 146 ret = __i915_gem_object_put_pages(obj); 147 i915_gem_object_put(obj); 148 if (ret) 149 return ret; 150 151 spin_lock(&mn->lock); 152 153 /* 154 * As we do not (yet) protect the mmu from concurrent insertion 155 * over this range, there is no guarantee that this search will 156 * terminate given a pathologic workload. 157 */ 158 it = interval_tree_iter_first(&mn->objects, range->start, end); 159 } 160 spin_unlock(&mn->lock); 161 162 return ret; 163 164 } 165 166 static const struct mmu_notifier_ops i915_gem_userptr_notifier = { 167 .invalidate_range_start = userptr_mn_invalidate_range_start, 168 }; 169 170 static struct i915_mmu_notifier * 171 i915_mmu_notifier_create(struct i915_mm_struct *mm) 172 { 173 struct i915_mmu_notifier *mn; 174 175 mn = kmalloc(sizeof(*mn), GFP_KERNEL); 176 if (mn == NULL) 177 return ERR_PTR(-ENOMEM); 178 179 spin_lock_init(&mn->lock); 180 mn->mn.ops = &i915_gem_userptr_notifier; 181 mn->objects = RB_ROOT_CACHED; 182 mn->mm = mm; 183 184 return mn; 185 } 186 187 static void 188 i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj) 189 { 190 struct i915_mmu_object *mo; 191 192 mo = fetch_and_zero(&obj->userptr.mmu_object); 193 if (!mo) 194 return; 195 196 spin_lock(&mo->mn->lock); 197 del_object(mo); 198 spin_unlock(&mo->mn->lock); 199 kfree(mo); 200 } 201 202 static struct i915_mmu_notifier * 203 i915_mmu_notifier_find(struct i915_mm_struct *mm) 204 { 205 struct i915_mmu_notifier *mn; 206 int err = 0; 207 208 mn = mm->mn; 209 if (mn) 210 return mn; 211 212 mn = i915_mmu_notifier_create(mm); 213 if (IS_ERR(mn)) 214 err = PTR_ERR(mn); 215 216 down_write(&mm->mm->mmap_sem); 217 mutex_lock(&mm->i915->mm_lock); 218 if (mm->mn == NULL && !err) { 219 /* Protected by mmap_sem (write-lock) */ 220 err = __mmu_notifier_register(&mn->mn, mm->mm); 221 if (!err) { 222 /* Protected by mm_lock */ 223 mm->mn = fetch_and_zero(&mn); 224 } 225 } else if (mm->mn) { 226 /* 227 * Someone else raced and successfully installed the mmu 228 * notifier, we can cancel our own errors. 229 */ 230 err = 0; 231 } 232 mutex_unlock(&mm->i915->mm_lock); 233 up_write(&mm->mm->mmap_sem); 234 235 if (mn && !IS_ERR(mn)) { 236 spin_lock_destroy(&mn->lock); 237 kfree(mn); 238 } 239 240 return err ? ERR_PTR(err) : mm->mn; 241 } 242 243 static int 244 i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj, 245 unsigned flags) 246 { 247 struct i915_mmu_notifier *mn; 248 struct i915_mmu_object *mo; 249 250 if (flags & I915_USERPTR_UNSYNCHRONIZED) 251 return capable(CAP_SYS_ADMIN) ? 0 : -EPERM; 252 253 if (WARN_ON(obj->userptr.mm == NULL)) 254 return -EINVAL; 255 256 mn = i915_mmu_notifier_find(obj->userptr.mm); 257 if (IS_ERR(mn)) 258 return PTR_ERR(mn); 259 260 mo = kzalloc(sizeof(*mo), GFP_KERNEL); 261 if (!mo) 262 return -ENOMEM; 263 264 mo->mn = mn; 265 mo->obj = obj; 266 mo->it.start = obj->userptr.ptr; 267 mo->it.last = obj->userptr.ptr + obj->base.size - 1; 268 RB_CLEAR_NODE(&mo->it.rb); 269 270 obj->userptr.mmu_object = mo; 271 return 0; 272 } 273 274 static void 275 #ifdef __NetBSD__ 276 i915_mmu_notifier_free(struct i915_mmu_notifier *mn, 277 struct vmspace *mm) 278 #else 279 i915_mmu_notifier_free(struct i915_mmu_notifier *mn, 280 struct mm_struct *mm) 281 #endif 282 { 283 if (mn == NULL) 284 return; 285 286 mmu_notifier_unregister(&mn->mn, mm); 287 spin_lock_destroy(&mn->lock); 288 kfree(mn); 289 } 290 291 #else 292 293 static void 294 __i915_gem_userptr_set_active(struct drm_i915_gem_object *obj, bool value) 295 { 296 } 297 298 static void 299 i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj) 300 { 301 } 302 303 static int 304 i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj, 305 unsigned flags) 306 { 307 if ((flags & I915_USERPTR_UNSYNCHRONIZED) == 0) 308 return -ENODEV; 309 310 if (!capable(CAP_SYS_ADMIN)) 311 return -EPERM; 312 313 return 0; 314 } 315 316 static void 317 #ifdef __NetBSD__ 318 i915_mmu_notifier_free(struct i915_mmu_notifier *mn, 319 struct vmspace *mm) 320 #else 321 i915_mmu_notifier_free(struct i915_mmu_notifier *mn, 322 struct mm_struct *mm) 323 #endif 324 { 325 } 326 327 #endif 328 329 static struct i915_mm_struct * 330 #ifdef __NetBSD__ 331 __i915_mm_struct_find(struct drm_i915_private *dev_priv, struct vmspace *real) 332 #else 333 __i915_mm_struct_find(struct drm_i915_private *dev_priv, struct mm_struct *real) 334 #endif 335 { 336 struct i915_mm_struct *mm; 337 338 /* Protected by dev_priv->mm_lock */ 339 hash_for_each_possible(dev_priv->mm_structs, mm, node, (unsigned long)real) 340 if (mm->mm == real) 341 return mm; 342 343 return NULL; 344 } 345 346 static int 347 i915_gem_userptr_init__mm_struct(struct drm_i915_gem_object *obj) 348 { 349 struct drm_i915_private *dev_priv = to_i915(obj->base.dev); 350 struct i915_mm_struct *mm; 351 int ret = 0; 352 353 /* During release of the GEM object we hold the struct_mutex. This 354 * precludes us from calling mmput() at that time as that may be 355 * the last reference and so call exit_mmap(). exit_mmap() will 356 * attempt to reap the vma, and if we were holding a GTT mmap 357 * would then call drm_gem_vm_close() and attempt to reacquire 358 * the struct mutex. So in order to avoid that recursion, we have 359 * to defer releasing the mm reference until after we drop the 360 * struct_mutex, i.e. we need to schedule a worker to do the clean 361 * up. 362 */ 363 mutex_lock(&dev_priv->mm_lock); 364 #ifdef __NetBSD__ 365 mm = __i915_mm_struct_find(dev_priv, curproc->p_vmspace); 366 #else 367 mm = __i915_mm_struct_find(dev_priv, current->mm); 368 #endif 369 if (mm == NULL) { 370 mm = kmalloc(sizeof(*mm), GFP_KERNEL); 371 if (mm == NULL) { 372 ret = -ENOMEM; 373 goto out; 374 } 375 376 kref_init(&mm->kref); 377 mm->i915 = to_i915(obj->base.dev); 378 379 #ifdef __NetBSD__ 380 mm->mm = curproc->p_vmspace; 381 #else 382 mm->mm = current->mm; 383 #endif 384 mmgrab(mm->mm); 385 386 mm->mn = NULL; 387 388 /* Protected by dev_priv->mm_lock */ 389 hash_add(dev_priv->mm_structs, 390 &mm->node, (unsigned long)mm->mm); 391 } else 392 kref_get(&mm->kref); 393 394 obj->userptr.mm = mm; 395 out: 396 mutex_unlock(&dev_priv->mm_lock); 397 return ret; 398 } 399 400 static void 401 __i915_mm_struct_free__worker(struct work_struct *work) 402 { 403 struct i915_mm_struct *mm = container_of(work, typeof(*mm), work); 404 i915_mmu_notifier_free(mm->mn, mm->mm); 405 mmdrop(mm->mm); 406 kfree(mm); 407 } 408 409 static void 410 __i915_mm_struct_free(struct kref *kref) 411 { 412 struct i915_mm_struct *mm = container_of(kref, typeof(*mm), kref); 413 414 /* Protected by dev_priv->mm_lock */ 415 hash_del(&mm->node); 416 mutex_unlock(&mm->i915->mm_lock); 417 418 INIT_WORK(&mm->work, __i915_mm_struct_free__worker); 419 queue_work(mm->i915->mm.userptr_wq, &mm->work); 420 } 421 422 static void 423 i915_gem_userptr_release__mm_struct(struct drm_i915_gem_object *obj) 424 { 425 if (obj->userptr.mm == NULL) 426 return; 427 428 kref_put_mutex(&obj->userptr.mm->kref, 429 __i915_mm_struct_free, 430 &to_i915(obj->base.dev)->mm_lock); 431 obj->userptr.mm = NULL; 432 } 433 434 struct get_pages_work { 435 struct work_struct work; 436 struct drm_i915_gem_object *obj; 437 struct task_struct *task; 438 }; 439 440 static struct sg_table * 441 __i915_gem_userptr_alloc_pages(struct drm_i915_gem_object *obj, 442 struct page **pvec, unsigned long num_pages) 443 { 444 unsigned int max_segment = i915_sg_segment_size(); 445 struct sg_table *st; 446 unsigned int sg_page_sizes; 447 int ret; 448 449 st = kmalloc(sizeof(*st), GFP_KERNEL); 450 if (!st) 451 return ERR_PTR(-ENOMEM); 452 453 alloc_table: 454 ret = __sg_alloc_table_from_pages(st, pvec, num_pages, 455 0, num_pages << PAGE_SHIFT, 456 max_segment, 457 GFP_KERNEL); 458 if (ret) { 459 kfree(st); 460 return ERR_PTR(ret); 461 } 462 463 ret = i915_gem_gtt_prepare_pages(obj, st); 464 if (ret) { 465 sg_free_table(st); 466 467 if (max_segment > PAGE_SIZE) { 468 max_segment = PAGE_SIZE; 469 goto alloc_table; 470 } 471 472 kfree(st); 473 return ERR_PTR(ret); 474 } 475 476 sg_page_sizes = i915_sg_page_sizes(st->sgl); 477 478 __i915_gem_object_set_pages(obj, st, sg_page_sizes); 479 480 return st; 481 } 482 483 static void 484 __i915_gem_userptr_get_pages_worker(struct work_struct *_work) 485 { 486 struct get_pages_work *work = container_of(_work, typeof(*work), work); 487 struct drm_i915_gem_object *obj = work->obj; 488 const unsigned long npages = obj->base.size >> PAGE_SHIFT; 489 unsigned long pinned; 490 struct page **pvec; 491 int ret; 492 493 ret = -ENOMEM; 494 pinned = 0; 495 496 pvec = kvmalloc_array(npages, sizeof(struct page *), GFP_KERNEL); 497 if (pvec != NULL) { 498 #ifdef __NetBSD__ 499 struct vmspace *mm = obj->userptr.mm->mm; 500 #else 501 struct mm_struct *mm = obj->userptr.mm->mm; 502 #endif 503 unsigned int flags = 0; 504 int locked = 0; 505 506 if (!i915_gem_object_is_readonly(obj)) 507 flags |= FOLL_WRITE; 508 509 ret = -EFAULT; 510 if (mmget_not_zero(mm)) { 511 while (pinned < npages) { 512 if (!locked) { 513 down_read(&mm->mmap_sem); 514 locked = 1; 515 } 516 ret = get_user_pages_remote 517 (work->task, mm, 518 obj->userptr.ptr + pinned * PAGE_SIZE, 519 npages - pinned, 520 flags, 521 pvec + pinned, NULL, &locked); 522 if (ret < 0) 523 break; 524 525 pinned += ret; 526 } 527 if (locked) 528 up_read(&mm->mmap_sem); 529 mmput(mm); 530 } 531 } 532 533 mutex_lock_nested(&obj->mm.lock, I915_MM_GET_PAGES); 534 if (obj->userptr.work == &work->work) { 535 struct sg_table *pages = ERR_PTR(ret); 536 537 if (pinned == npages) { 538 pages = __i915_gem_userptr_alloc_pages(obj, pvec, 539 npages); 540 if (!IS_ERR(pages)) { 541 pinned = 0; 542 pages = NULL; 543 } 544 } 545 546 obj->userptr.work = ERR_CAST(pages); 547 if (IS_ERR(pages)) 548 __i915_gem_userptr_set_active(obj, false); 549 } 550 mutex_unlock(&obj->mm.lock); 551 552 release_pages(pvec, pinned); 553 kvfree(pvec); 554 555 i915_gem_object_put(obj); 556 put_task_struct(work->task); 557 kfree(work); 558 } 559 560 static struct sg_table * 561 __i915_gem_userptr_get_pages_schedule(struct drm_i915_gem_object *obj) 562 { 563 struct get_pages_work *work; 564 565 /* Spawn a worker so that we can acquire the 566 * user pages without holding our mutex. Access 567 * to the user pages requires mmap_sem, and we have 568 * a strict lock ordering of mmap_sem, struct_mutex - 569 * we already hold struct_mutex here and so cannot 570 * call gup without encountering a lock inversion. 571 * 572 * Userspace will keep on repeating the operation 573 * (thanks to EAGAIN) until either we hit the fast 574 * path or the worker completes. If the worker is 575 * cancelled or superseded, the task is still run 576 * but the results ignored. (This leads to 577 * complications that we may have a stray object 578 * refcount that we need to be wary of when 579 * checking for existing objects during creation.) 580 * If the worker encounters an error, it reports 581 * that error back to this function through 582 * obj->userptr.work = ERR_PTR. 583 */ 584 work = kmalloc(sizeof(*work), GFP_KERNEL); 585 if (work == NULL) 586 return ERR_PTR(-ENOMEM); 587 588 obj->userptr.work = &work->work; 589 590 work->obj = i915_gem_object_get(obj); 591 592 work->task = current; 593 get_task_struct(work->task); 594 595 INIT_WORK(&work->work, __i915_gem_userptr_get_pages_worker); 596 queue_work(to_i915(obj->base.dev)->mm.userptr_wq, &work->work); 597 598 return ERR_PTR(-EAGAIN); 599 } 600 601 static int i915_gem_userptr_get_pages(struct drm_i915_gem_object *obj) 602 { 603 const unsigned long num_pages = obj->base.size >> PAGE_SHIFT; 604 #ifdef __NetBSD__ 605 struct vmspace *mm = obj->userptr.mm->mm; 606 #else 607 struct mm_struct *mm = obj->userptr.mm->mm; 608 #endif 609 struct page **pvec; 610 struct sg_table *pages; 611 bool active; 612 int pinned; 613 614 /* If userspace should engineer that these pages are replaced in 615 * the vma between us binding this page into the GTT and completion 616 * of rendering... Their loss. If they change the mapping of their 617 * pages they need to create a new bo to point to the new vma. 618 * 619 * However, that still leaves open the possibility of the vma 620 * being copied upon fork. Which falls under the same userspace 621 * synchronisation issue as a regular bo, except that this time 622 * the process may not be expecting that a particular piece of 623 * memory is tied to the GPU. 624 * 625 * Fortunately, we can hook into the mmu_notifier in order to 626 * discard the page references prior to anything nasty happening 627 * to the vma (discard or cloning) which should prevent the more 628 * egregious cases from causing harm. 629 */ 630 631 if (obj->userptr.work) { 632 /* active flag should still be held for the pending work */ 633 if (IS_ERR(obj->userptr.work)) 634 return PTR_ERR(obj->userptr.work); 635 else 636 return -EAGAIN; 637 } 638 639 pvec = NULL; 640 pinned = 0; 641 642 #ifdef __NetBSD__ 643 if (mm == curproc->p_vmspace) 644 #else 645 if (mm == current->mm) 646 #endif 647 { 648 pvec = kvmalloc_array(num_pages, sizeof(struct page *), 649 GFP_KERNEL | 650 __GFP_NORETRY | 651 __GFP_NOWARN); 652 if (pvec) /* defer to worker if malloc fails */ 653 pinned = __get_user_pages_fast(obj->userptr.ptr, 654 num_pages, 655 !i915_gem_object_is_readonly(obj), 656 pvec); 657 } 658 659 active = false; 660 if (pinned < 0) { 661 pages = ERR_PTR(pinned); 662 pinned = 0; 663 } else if (pinned < num_pages) { 664 pages = __i915_gem_userptr_get_pages_schedule(obj); 665 active = pages == ERR_PTR(-EAGAIN); 666 } else { 667 pages = __i915_gem_userptr_alloc_pages(obj, pvec, num_pages); 668 active = !IS_ERR(pages); 669 } 670 if (active) 671 __i915_gem_userptr_set_active(obj, true); 672 673 if (IS_ERR(pages)) 674 release_pages(pvec, pinned); 675 kvfree(pvec); 676 677 return PTR_ERR_OR_ZERO(pages); 678 } 679 680 static void 681 i915_gem_userptr_put_pages(struct drm_i915_gem_object *obj, 682 struct sg_table *pages) 683 { 684 struct sgt_iter sgt_iter; 685 struct page *page; 686 687 /* Cancel any inflight work and force them to restart their gup */ 688 obj->userptr.work = NULL; 689 __i915_gem_userptr_set_active(obj, false); 690 if (!pages) 691 return; 692 693 __i915_gem_object_release_shmem(obj, pages, true); 694 i915_gem_gtt_finish_pages(obj, pages); 695 696 /* 697 * We always mark objects as dirty when they are used by the GPU, 698 * just in case. However, if we set the vma as being read-only we know 699 * that the object will never have been written to. 700 */ 701 if (i915_gem_object_is_readonly(obj)) 702 obj->mm.dirty = false; 703 704 for_each_sgt_page(page, sgt_iter, pages) { 705 if (obj->mm.dirty && trylock_page(page)) { 706 /* 707 * As this may not be anonymous memory (e.g. shmem) 708 * but exist on a real mapping, we have to lock 709 * the page in order to dirty it -- holding 710 * the page reference is not sufficient to 711 * prevent the inode from being truncated. 712 * Play safe and take the lock. 713 * 714 * However...! 715 * 716 * The mmu-notifier can be invalidated for a 717 * migrate_page, that is alreadying holding the lock 718 * on the page. Such a try_to_unmap() will result 719 * in us calling put_pages() and so recursively try 720 * to lock the page. We avoid that deadlock with 721 * a trylock_page() and in exchange we risk missing 722 * some page dirtying. 723 */ 724 set_page_dirty(page); 725 unlock_page(page); 726 } 727 728 mark_page_accessed(page); 729 put_page(page); 730 } 731 obj->mm.dirty = false; 732 733 sg_free_table(pages); 734 kfree(pages); 735 } 736 737 static void 738 i915_gem_userptr_release(struct drm_i915_gem_object *obj) 739 { 740 i915_gem_userptr_release__mmu_notifier(obj); 741 i915_gem_userptr_release__mm_struct(obj); 742 } 743 744 static int 745 i915_gem_userptr_dmabuf_export(struct drm_i915_gem_object *obj) 746 { 747 if (obj->userptr.mmu_object) 748 return 0; 749 750 return i915_gem_userptr_init__mmu_notifier(obj, 0); 751 } 752 753 static const struct drm_i915_gem_object_ops i915_gem_userptr_ops = { 754 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE | 755 I915_GEM_OBJECT_IS_SHRINKABLE | 756 I915_GEM_OBJECT_NO_GGTT | 757 I915_GEM_OBJECT_ASYNC_CANCEL, 758 .get_pages = i915_gem_userptr_get_pages, 759 .put_pages = i915_gem_userptr_put_pages, 760 .dmabuf_export = i915_gem_userptr_dmabuf_export, 761 .release = i915_gem_userptr_release, 762 }; 763 764 /* 765 * Creates a new mm object that wraps some normal memory from the process 766 * context - user memory. 767 * 768 * We impose several restrictions upon the memory being mapped 769 * into the GPU. 770 * 1. It must be page aligned (both start/end addresses, i.e ptr and size). 771 * 2. It must be normal system memory, not a pointer into another map of IO 772 * space (e.g. it must not be a GTT mmapping of another object). 773 * 3. We only allow a bo as large as we could in theory map into the GTT, 774 * that is we limit the size to the total size of the GTT. 775 * 4. The bo is marked as being snoopable. The backing pages are left 776 * accessible directly by the CPU, but reads and writes by the GPU may 777 * incur the cost of a snoop (unless you have an LLC architecture). 778 * 779 * Synchronisation between multiple users and the GPU is left to userspace 780 * through the normal set-domain-ioctl. The kernel will enforce that the 781 * GPU relinquishes the VMA before it is returned back to the system 782 * i.e. upon free(), munmap() or process termination. However, the userspace 783 * malloc() library may not immediately relinquish the VMA after free() and 784 * instead reuse it whilst the GPU is still reading and writing to the VMA. 785 * Caveat emptor. 786 * 787 * Also note, that the object created here is not currently a "first class" 788 * object, in that several ioctls are banned. These are the CPU access 789 * ioctls: mmap(), pwrite and pread. In practice, you are expected to use 790 * direct access via your pointer rather than use those ioctls. Another 791 * restriction is that we do not allow userptr surfaces to be pinned to the 792 * hardware and so we reject any attempt to create a framebuffer out of a 793 * userptr. 794 * 795 * If you think this is a good interface to use to pass GPU memory between 796 * drivers, please use dma-buf instead. In fact, wherever possible use 797 * dma-buf instead. 798 */ 799 int 800 i915_gem_userptr_ioctl(struct drm_device *dev, 801 void *data, 802 struct drm_file *file) 803 { 804 static struct lock_class_key lock_class; 805 struct drm_i915_private *dev_priv = to_i915(dev); 806 struct drm_i915_gem_userptr *args = data; 807 struct drm_i915_gem_object *obj; 808 int ret; 809 u32 handle; 810 811 if (!HAS_LLC(dev_priv) && !HAS_SNOOP(dev_priv)) { 812 /* We cannot support coherent userptr objects on hw without 813 * LLC and broken snooping. 814 */ 815 return -ENODEV; 816 } 817 818 if (args->flags & ~(I915_USERPTR_READ_ONLY | 819 I915_USERPTR_UNSYNCHRONIZED)) 820 return -EINVAL; 821 822 if (!args->user_size) 823 return -EINVAL; 824 825 if (offset_in_page(args->user_ptr | args->user_size)) 826 return -EINVAL; 827 828 if (!access_ok((char __user *)(unsigned long)args->user_ptr, args->user_size)) 829 return -EFAULT; 830 831 if (args->flags & I915_USERPTR_READ_ONLY) { 832 /* 833 * On almost all of the older hw, we cannot tell the GPU that 834 * a page is readonly. 835 */ 836 if (!dev_priv->gt.vm->has_read_only) 837 return -ENODEV; 838 } 839 840 obj = i915_gem_object_alloc(); 841 if (obj == NULL) 842 return -ENOMEM; 843 844 drm_gem_private_object_init(dev, &obj->base, args->user_size); 845 i915_gem_object_init(obj, &i915_gem_userptr_ops, &lock_class); 846 obj->read_domains = I915_GEM_DOMAIN_CPU; 847 obj->write_domain = I915_GEM_DOMAIN_CPU; 848 i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC); 849 850 obj->userptr.ptr = args->user_ptr; 851 if (args->flags & I915_USERPTR_READ_ONLY) 852 i915_gem_object_set_readonly(obj); 853 854 /* And keep a pointer to the current->mm for resolving the user pages 855 * at binding. This means that we need to hook into the mmu_notifier 856 * in order to detect if the mmu is destroyed. 857 */ 858 ret = i915_gem_userptr_init__mm_struct(obj); 859 if (ret == 0) 860 ret = i915_gem_userptr_init__mmu_notifier(obj, args->flags); 861 if (ret == 0) 862 ret = drm_gem_handle_create(file, &obj->base, &handle); 863 864 /* drop reference from allocate - handle holds it now */ 865 i915_gem_object_put(obj); 866 if (ret) 867 return ret; 868 869 args->handle = handle; 870 return 0; 871 } 872 873 int i915_gem_init_userptr(struct drm_i915_private *dev_priv) 874 { 875 mutex_init(&dev_priv->mm_lock); 876 hash_init(dev_priv->mm_structs); 877 878 dev_priv->mm.userptr_wq = 879 alloc_workqueue("i915-userptr-acquire", 880 WQ_HIGHPRI | WQ_UNBOUND, 881 0); 882 if (!dev_priv->mm.userptr_wq) 883 return -ENOMEM; 884 885 return 0; 886 } 887 888 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv) 889 { 890 destroy_workqueue(dev_priv->mm.userptr_wq); 891 mutex_destroy(&dev_priv->mm_lock); 892 } 893