Home | History | Annotate | Line # | Download | only in i915
      1 /*	$NetBSD: i915_request.h,v 1.4 2021/12/19 11:36:17 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright  2008-2018 Intel Corporation
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the "Software"),
      8  * to deal in the Software without restriction, including without limitation
      9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     10  * and/or sell copies of the Software, and to permit persons to whom the
     11  * Software is furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice (including the next
     14  * paragraph) shall be included in all copies or substantial portions of the
     15  * Software.
     16  *
     17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     22  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     23  * IN THE SOFTWARE.
     24  *
     25  */
     26 
     27 #ifndef I915_REQUEST_H
     28 #define I915_REQUEST_H
     29 
     30 #include <linux/dma-fence.h>
     31 #include <linux/lockdep.h>
     32 
     33 #include "gem/i915_gem_context_types.h"
     34 #include "gt/intel_context_types.h"
     35 #include "gt/intel_engine_types.h"
     36 #include "gt/intel_timeline_types.h"
     37 
     38 #include "i915_gem.h"
     39 #include "i915_scheduler.h"
     40 #include "i915_selftest.h"
     41 #include "i915_sw_fence.h"
     42 
     43 #include <uapi/drm/i915_drm.h>
     44 
     45 struct drm_file;
     46 struct drm_i915_gem_object;
     47 struct i915_request;
     48 
     49 struct i915_capture_list {
     50 	struct i915_capture_list *next;
     51 	struct i915_vma *vma;
     52 };
     53 
     54 #define RQ_TRACE(rq, fmt, ...) do {					\
     55 	const struct i915_request *rq__ = (rq);				\
     56 	ENGINE_TRACE(rq__->engine, "fence %llx:%lld, current %d " fmt,	\
     57 		     rq__->fence.context, rq__->fence.seqno,		\
     58 		     hwsp_seqno(rq__), ##__VA_ARGS__);			\
     59 } while (0)
     60 
     61 enum {
     62 	/*
     63 	 * I915_FENCE_FLAG_ACTIVE - this request is currently submitted to HW.
     64 	 *
     65 	 * Set by __i915_request_submit() on handing over to HW, and cleared
     66 	 * by __i915_request_unsubmit() if we preempt this request.
     67 	 *
     68 	 * Finally cleared for consistency on retiring the request, when
     69 	 * we know the HW is no longer running this request.
     70 	 *
     71 	 * See i915_request_is_active()
     72 	 */
     73 	I915_FENCE_FLAG_ACTIVE = DMA_FENCE_FLAG_USER_BITS,
     74 
     75 	/*
     76 	 * I915_FENCE_FLAG_PQUEUE - this request is ready for execution
     77 	 *
     78 	 * Using the scheduler, when a request is ready for execution it is put
     79 	 * into the priority queue, and removed from that queue when transferred
     80 	 * to the HW runlists. We want to track its membership within the
     81 	 * priority queue so that we can easily check before rescheduling.
     82 	 *
     83 	 * See i915_request_in_priority_queue()
     84 	 */
     85 	I915_FENCE_FLAG_PQUEUE,
     86 
     87 	/*
     88 	 * I915_FENCE_FLAG_SIGNAL - this request is currently on signal_list
     89 	 *
     90 	 * Internal bookkeeping used by the breadcrumb code to track when
     91 	 * a request is on the various signal_list.
     92 	 */
     93 	I915_FENCE_FLAG_SIGNAL,
     94 
     95 	/*
     96 	 * I915_FENCE_FLAG_HOLD - this request is currently on hold
     97 	 *
     98 	 * This request has been suspended, pending an ongoing investigation.
     99 	 */
    100 	I915_FENCE_FLAG_HOLD,
    101 
    102 	/*
    103 	 * I915_FENCE_FLAG_NOPREEMPT - this request should not be preempted
    104 	 *
    105 	 * The execution of some requests should not be interrupted. This is
    106 	 * a sensitive operation as it makes the request super important,
    107 	 * blocking other higher priority work. Abuse of this flag will
    108 	 * lead to quality of service issues.
    109 	 */
    110 	I915_FENCE_FLAG_NOPREEMPT,
    111 
    112 	/*
    113 	 * I915_FENCE_FLAG_SENTINEL - this request should be last in the queue
    114 	 *
    115 	 * A high priority sentinel request may be submitted to clear the
    116 	 * submission queue. As it will be the only request in-flight, upon
    117 	 * execution all other active requests will have been preempted and
    118 	 * unsubmitted. This preemptive pulse is used to re-evaluate the
    119 	 * in-flight requests, particularly in cases where an active context
    120 	 * is banned and those active requests need to be cancelled.
    121 	 */
    122 	I915_FENCE_FLAG_SENTINEL,
    123 
    124 	/*
    125 	 * I915_FENCE_FLAG_BOOST - upclock the gpu for this request
    126 	 *
    127 	 * Some requests are more important than others! In particular, a
    128 	 * request that the user is waiting on is typically required for
    129 	 * interactive latency, for which we want to minimise by upclocking
    130 	 * the GPU. Here we track such boost requests on a per-request basis.
    131 	 */
    132 	I915_FENCE_FLAG_BOOST,
    133 };
    134 
    135 /**
    136  * Request queue structure.
    137  *
    138  * The request queue allows us to note sequence numbers that have been emitted
    139  * and may be associated with active buffers to be retired.
    140  *
    141  * By keeping this list, we can avoid having to do questionable sequence
    142  * number comparisons on buffer last_read|write_seqno. It also allows an
    143  * emission time to be associated with the request for tracking how far ahead
    144  * of the GPU the submission is.
    145  *
    146  * When modifying this structure be very aware that we perform a lockless
    147  * RCU lookup of it that may race against reallocation of the struct
    148  * from the slab freelist. We intentionally do not zero the structure on
    149  * allocation so that the lookup can use the dangling pointers (and is
    150  * cogniscent that those pointers may be wrong). Instead, everything that
    151  * needs to be initialised must be done so explicitly.
    152  *
    153  * The requests are reference counted.
    154  */
    155 struct i915_request {
    156 	struct dma_fence fence;
    157 	spinlock_t lock;
    158 
    159 	/** On Which ring this request was generated */
    160 	struct drm_i915_private *i915;
    161 
    162 	/**
    163 	 * Context and ring buffer related to this request
    164 	 * Contexts are refcounted, so when this request is associated with a
    165 	 * context, we must increment the context's refcount, to guarantee that
    166 	 * it persists while any request is linked to it. Requests themselves
    167 	 * are also refcounted, so the request will only be freed when the last
    168 	 * reference to it is dismissed, and the code in
    169 	 * i915_request_free() will then decrement the refcount on the
    170 	 * context.
    171 	 */
    172 	struct intel_engine_cs *engine;
    173 	struct intel_context *context;
    174 	struct intel_ring *ring;
    175 	struct intel_timeline __rcu *timeline;
    176 	struct list_head signal_link;
    177 
    178 	/*
    179 	 * The rcu epoch of when this request was allocated. Used to judiciously
    180 	 * apply backpressure on future allocations to ensure that under
    181 	 * mempressure there is sufficient RCU ticks for us to reclaim our
    182 	 * RCU protected slabs.
    183 	 */
    184 	unsigned long rcustate;
    185 
    186 	/*
    187 	 * We pin the timeline->mutex while constructing the request to
    188 	 * ensure that no caller accidentally drops it during construction.
    189 	 * The timeline->mutex must be held to ensure that only this caller
    190 	 * can use the ring and manipulate the associated timeline during
    191 	 * construction.
    192 	 */
    193 	struct pin_cookie cookie;
    194 
    195 	/*
    196 	 * Fences for the various phases in the request's lifetime.
    197 	 *
    198 	 * The submit fence is used to await upon all of the request's
    199 	 * dependencies. When it is signaled, the request is ready to run.
    200 	 * It is used by the driver to then queue the request for execution.
    201 	 */
    202 	struct i915_sw_fence submit;
    203 	union {
    204 #ifdef __NetBSD__		/* XXX */
    205 		struct i915_sw_fence_waiter submitq;
    206 #else
    207 		wait_queue_entry_t submitq;
    208 #endif
    209 		struct i915_sw_dma_fence_cb dmaq;
    210 		struct i915_request_duration_cb {
    211 			struct dma_fence_cb cb;
    212 			ktime_t emitted;
    213 		} duration;
    214 	};
    215 	struct list_head execute_cb;
    216 	struct i915_sw_fence semaphore;
    217 
    218 	/*
    219 	 * A list of everyone we wait upon, and everyone who waits upon us.
    220 	 * Even though we will not be submitted to the hardware before the
    221 	 * submit fence is signaled (it waits for all external events as well
    222 	 * as our own requests), the scheduler still needs to know the
    223 	 * dependency tree for the lifetime of the request (from execbuf
    224 	 * to retirement), i.e. bidirectional dependency information for the
    225 	 * request not tied to individual fences.
    226 	 */
    227 	struct i915_sched_node sched;
    228 	struct i915_dependency dep;
    229 	intel_engine_mask_t execution_mask;
    230 
    231 	/*
    232 	 * A convenience pointer to the current breadcrumb value stored in
    233 	 * the HW status page (or our timeline's local equivalent). The full
    234 	 * path would be rq->hw_context->ring->timeline->hwsp_seqno.
    235 	 */
    236 	const u32 *hwsp_seqno;
    237 
    238 	/*
    239 	 * If we need to access the timeline's seqno for this request in
    240 	 * another request, we need to keep a read reference to this associated
    241 	 * cacheline, so that we do not free and recycle it before the foreign
    242 	 * observers have completed. Hence, we keep a pointer to the cacheline
    243 	 * inside the timeline's HWSP vma, but it is only valid while this
    244 	 * request has not completed and guarded by the timeline mutex.
    245 	 */
    246 	struct intel_timeline_cacheline __rcu *hwsp_cacheline;
    247 
    248 	/** Position in the ring of the start of the request */
    249 	u32 head;
    250 
    251 	/** Position in the ring of the start of the user packets */
    252 	u32 infix;
    253 
    254 	/**
    255 	 * Position in the ring of the start of the postfix.
    256 	 * This is required to calculate the maximum available ring space
    257 	 * without overwriting the postfix.
    258 	 */
    259 	u32 postfix;
    260 
    261 	/** Position in the ring of the end of the whole request */
    262 	u32 tail;
    263 
    264 	/** Position in the ring of the end of any workarounds after the tail */
    265 	u32 wa_tail;
    266 
    267 	/** Preallocate space in the ring for the emitting the request */
    268 	u32 reserved_space;
    269 
    270 	/** Batch buffer related to this request if any (used for
    271 	 * error state dump only).
    272 	 */
    273 	struct i915_vma *batch;
    274 	/**
    275 	 * Additional buffers requested by userspace to be captured upon
    276 	 * a GPU hang. The vma/obj on this list are protected by their
    277 	 * active reference - all objects on this list must also be
    278 	 * on the active_list (of their final request).
    279 	 */
    280 	struct i915_capture_list *capture_list;
    281 
    282 	/** Time at which this request was emitted, in jiffies. */
    283 	unsigned long emitted_jiffies;
    284 
    285 	/** timeline->request entry for this request */
    286 	struct list_head link;
    287 
    288 	struct drm_i915_file_private *file_priv;
    289 	/** file_priv list entry for this request */
    290 	struct list_head client_link;
    291 
    292 	I915_SELFTEST_DECLARE(struct {
    293 		struct list_head link;
    294 		unsigned long delay;
    295 	} mock;)
    296 };
    297 
    298 #define I915_FENCE_GFP (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
    299 
    300 extern const struct dma_fence_ops i915_fence_ops;
    301 
    302 static inline bool dma_fence_is_i915(const struct dma_fence *fence)
    303 {
    304 	return fence->ops == &i915_fence_ops;
    305 }
    306 
    307 struct i915_request * __must_check
    308 __i915_request_create(struct intel_context *ce, gfp_t gfp);
    309 struct i915_request * __must_check
    310 i915_request_create(struct intel_context *ce);
    311 
    312 struct i915_request *__i915_request_commit(struct i915_request *request);
    313 void __i915_request_queue(struct i915_request *rq,
    314 			  const struct i915_sched_attr *attr);
    315 
    316 bool i915_request_retire(struct i915_request *rq);
    317 void i915_request_retire_upto(struct i915_request *rq);
    318 
    319 static inline struct i915_request *
    320 to_request(struct dma_fence *fence)
    321 {
    322 	/* We assume that NULL fence/request are interoperable */
    323 	BUILD_BUG_ON(offsetof(struct i915_request, fence) != 0);
    324 	GEM_BUG_ON(fence && !dma_fence_is_i915(fence));
    325 	return container_of(fence, struct i915_request, fence);
    326 }
    327 
    328 static inline struct i915_request *
    329 i915_request_get(struct i915_request *rq)
    330 {
    331 	return to_request(dma_fence_get(&rq->fence));
    332 }
    333 
    334 static inline struct i915_request *
    335 i915_request_get_rcu(struct i915_request *rq)
    336 {
    337 	return to_request(dma_fence_get_rcu(&rq->fence));
    338 }
    339 
    340 static inline void
    341 i915_request_put(struct i915_request *rq)
    342 {
    343 	dma_fence_put(&rq->fence);
    344 }
    345 
    346 int i915_request_await_object(struct i915_request *to,
    347 			      struct drm_i915_gem_object *obj,
    348 			      bool write);
    349 int i915_request_await_dma_fence(struct i915_request *rq,
    350 				 struct dma_fence *fence);
    351 int i915_request_await_execution(struct i915_request *rq,
    352 				 struct dma_fence *fence,
    353 				 void (*hook)(struct i915_request *rq,
    354 					      struct dma_fence *signal));
    355 
    356 void i915_request_add(struct i915_request *rq);
    357 
    358 bool __i915_request_submit(struct i915_request *request);
    359 void i915_request_submit(struct i915_request *request);
    360 
    361 void i915_request_skip(struct i915_request *request, int error);
    362 
    363 void __i915_request_unsubmit(struct i915_request *request);
    364 void i915_request_unsubmit(struct i915_request *request);
    365 
    366 /* Note: part of the intel_breadcrumbs family */
    367 bool i915_request_enable_breadcrumb(struct i915_request *request);
    368 void i915_request_cancel_breadcrumb(struct i915_request *request);
    369 
    370 long i915_request_wait(struct i915_request *rq,
    371 		       unsigned int flags,
    372 		       long timeout)
    373 	__attribute__((nonnull(1)));
    374 #define I915_WAIT_INTERRUPTIBLE	BIT(0)
    375 #define I915_WAIT_PRIORITY	BIT(1) /* small priority bump for the request */
    376 #define I915_WAIT_ALL		BIT(2) /* used by i915_gem_object_wait() */
    377 
    378 static inline bool i915_request_signaled(const struct i915_request *rq)
    379 {
    380 	/* The request may live longer than its HWSP, so check flags first! */
    381 	return test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags);
    382 }
    383 
    384 static inline bool i915_request_is_active(const struct i915_request *rq)
    385 {
    386 	return test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
    387 }
    388 
    389 static inline bool i915_request_in_priority_queue(const struct i915_request *rq)
    390 {
    391 	return test_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
    392 }
    393 
    394 /**
    395  * Returns true if seq1 is later than seq2.
    396  */
    397 static inline bool i915_seqno_passed(u32 seq1, u32 seq2)
    398 {
    399 	return (s32)(seq1 - seq2) >= 0;
    400 }
    401 
    402 static inline u32 __hwsp_seqno(const struct i915_request *rq)
    403 {
    404 	return READ_ONCE(*rq->hwsp_seqno);
    405 }
    406 
    407 /**
    408  * hwsp_seqno - the current breadcrumb value in the HW status page
    409  * @rq: the request, to chase the relevant HW status page
    410  *
    411  * The emphasis in naming here is that hwsp_seqno() is not a property of the
    412  * request, but an indication of the current HW state (associated with this
    413  * request). Its value will change as the GPU executes more requests.
    414  *
    415  * Returns the current breadcrumb value in the associated HW status page (or
    416  * the local timeline's equivalent) for this request. The request itself
    417  * has the associated breadcrumb value of rq->fence.seqno, when the HW
    418  * status page has that breadcrumb or later, this request is complete.
    419  */
    420 static inline u32 hwsp_seqno(const struct i915_request *rq)
    421 {
    422 	u32 seqno;
    423 
    424 	rcu_read_lock(); /* the HWSP may be freed at runtime */
    425 	seqno = __hwsp_seqno(rq);
    426 	rcu_read_unlock();
    427 
    428 	return seqno;
    429 }
    430 
    431 static inline bool __i915_request_has_started(const struct i915_request *rq)
    432 {
    433 	return i915_seqno_passed(hwsp_seqno(rq), rq->fence.seqno - 1);
    434 }
    435 
    436 /**
    437  * i915_request_started - check if the request has begun being executed
    438  * @rq: the request
    439  *
    440  * If the timeline is not using initial breadcrumbs, a request is
    441  * considered started if the previous request on its timeline (i.e.
    442  * context) has been signaled.
    443  *
    444  * If the timeline is using semaphores, it will also be emitting an
    445  * "initial breadcrumb" after the semaphores are complete and just before
    446  * it began executing the user payload. A request can therefore be active
    447  * on the HW and not yet started as it is still busywaiting on its
    448  * dependencies (via HW semaphores).
    449  *
    450  * If the request has started, its dependencies will have been signaled
    451  * (either by fences or by semaphores) and it will have begun processing
    452  * the user payload.
    453  *
    454  * However, even if a request has started, it may have been preempted and
    455  * so no longer active, or it may have already completed.
    456  *
    457  * See also i915_request_is_active().
    458  *
    459  * Returns true if the request has begun executing the user payload, or
    460  * has completed:
    461  */
    462 static inline bool i915_request_started(const struct i915_request *rq)
    463 {
    464 	if (i915_request_signaled(rq))
    465 		return true;
    466 
    467 	/* Remember: started but may have since been preempted! */
    468 	return __i915_request_has_started(rq);
    469 }
    470 
    471 /**
    472  * i915_request_is_running - check if the request may actually be executing
    473  * @rq: the request
    474  *
    475  * Returns true if the request is currently submitted to hardware, has passed
    476  * its start point (i.e. the context is setup and not busywaiting). Note that
    477  * it may no longer be running by the time the function returns!
    478  */
    479 static inline bool i915_request_is_running(const struct i915_request *rq)
    480 {
    481 	if (!i915_request_is_active(rq))
    482 		return false;
    483 
    484 	return __i915_request_has_started(rq);
    485 }
    486 
    487 /**
    488  * i915_request_is_running - check if the request is ready for execution
    489  * @rq: the request
    490  *
    491  * Upon construction, the request is instructed to wait upon various
    492  * signals before it is ready to be executed by the HW. That is, we do
    493  * not want to start execution and read data before it is written. In practice,
    494  * this is controlled with a mixture of interrupts and semaphores. Once
    495  * the submit fence is completed, the backend scheduler will place the
    496  * request into its queue and from there submit it for execution. So we
    497  * can detect when a request is eligible for execution (and is under control
    498  * of the scheduler) by querying where it is in any of the scheduler's lists.
    499  *
    500  * Returns true if the request is ready for execution (it may be inflight),
    501  * false otherwise.
    502  */
    503 static inline bool i915_request_is_ready(const struct i915_request *rq)
    504 {
    505 	return !list_empty(&rq->sched.link);
    506 }
    507 
    508 static inline bool i915_request_completed(const struct i915_request *rq)
    509 {
    510 	if (i915_request_signaled(rq))
    511 		return true;
    512 
    513 	return i915_seqno_passed(hwsp_seqno(rq), rq->fence.seqno);
    514 }
    515 
    516 static inline void i915_request_mark_complete(struct i915_request *rq)
    517 {
    518 	rq->hwsp_seqno = (u32 *)&rq->fence.seqno; /* decouple from HWSP */
    519 }
    520 
    521 static inline bool i915_request_has_waitboost(const struct i915_request *rq)
    522 {
    523 	return test_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags);
    524 }
    525 
    526 static inline bool i915_request_has_nopreempt(const struct i915_request *rq)
    527 {
    528 	/* Preemption should only be disabled very rarely */
    529 	return unlikely(test_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags));
    530 }
    531 
    532 static inline bool i915_request_has_sentinel(const struct i915_request *rq)
    533 {
    534 	return unlikely(test_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags));
    535 }
    536 
    537 static inline bool i915_request_on_hold(const struct i915_request *rq)
    538 {
    539 	return unlikely(test_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags));
    540 }
    541 
    542 static inline void i915_request_set_hold(struct i915_request *rq)
    543 {
    544 	set_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
    545 }
    546 
    547 static inline void i915_request_clear_hold(struct i915_request *rq)
    548 {
    549 	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
    550 }
    551 
    552 static inline struct intel_timeline *
    553 i915_request_timeline(struct i915_request *rq)
    554 {
    555 	/* Valid only while the request is being constructed (or retired). */
    556 	return rcu_dereference_protected(rq->timeline,
    557 					 lockdep_is_held(&rcu_access_pointer(rq->timeline)->mutex));
    558 }
    559 
    560 static inline struct i915_gem_context *
    561 i915_request_gem_context(struct i915_request *rq)
    562 {
    563 	/* Valid only while the request is being constructed (or retired). */
    564 	return rcu_dereference_protected(rq->context->gem_context, true);
    565 }
    566 
    567 static inline struct intel_timeline *
    568 i915_request_active_timeline(struct i915_request *rq)
    569 {
    570 	/*
    571 	 * When in use during submission, we are protected by a guarantee that
    572 	 * the context/timeline is pinned and must remain pinned until after
    573 	 * this submission.
    574 	 */
    575 	return rcu_dereference_protected(rq->timeline,
    576 					 lockdep_is_held(&rq->engine->active.lock));
    577 }
    578 
    579 #endif /* I915_REQUEST_H */
    580