Home | History | Annotate | Line # | Download | only in net80211
      1 /*	$NetBSD: ieee80211_output.c,v 1.68 2024/07/05 04:31:53 rin Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Atsushi Onoe
      5  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. The name of the author may not be used to endorse or promote products
     17  *    derived from this software without specific prior written permission.
     18  *
     19  * Alternatively, this software may be distributed under the terms of the
     20  * GNU General Public License ("GPL") version 2 as published by the Free
     21  * Software Foundation.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 #ifdef __FreeBSD__
     37 __FBSDID("$FreeBSD: src/sys/net80211/ieee80211_output.c,v 1.34 2005/08/10 16:22:29 sam Exp $");
     38 #endif
     39 #ifdef __NetBSD__
     40 __KERNEL_RCSID(0, "$NetBSD: ieee80211_output.c,v 1.68 2024/07/05 04:31:53 rin Exp $");
     41 #endif
     42 
     43 #ifdef _KERNEL_OPT
     44 #include "opt_inet.h"
     45 #endif
     46 
     47 #include <sys/param.h>
     48 #include <sys/systm.h>
     49 #include <sys/mbuf.h>
     50 #include <sys/kernel.h>
     51 #include <sys/endian.h>
     52 #include <sys/errno.h>
     53 #include <sys/proc.h>
     54 #include <sys/sysctl.h>
     55 
     56 #include <net/if.h>
     57 #include <net/if_llc.h>
     58 #include <net/if_media.h>
     59 #include <net/if_arp.h>
     60 #include <net/if_ether.h>
     61 #include <net/if_llc.h>
     62 #include <net/if_vlanvar.h>
     63 
     64 #include <net80211/ieee80211_netbsd.h>
     65 #include <net80211/ieee80211_var.h>
     66 
     67 #include <net/bpf.h>
     68 
     69 #ifdef INET
     70 #include <netinet/in.h>
     71 #include <netinet/in_systm.h>
     72 #include <netinet/in_var.h>
     73 #include <netinet/ip.h>
     74 #include <net/if_ether.h>
     75 #endif
     76 
     77 static int ieee80211_fragment(struct ieee80211com *, struct mbuf *,
     78 	u_int hdrsize, u_int ciphdrsize, u_int mtu);
     79 
     80 #ifdef IEEE80211_DEBUG
     81 /*
     82  * Decide if an outbound management frame should be
     83  * printed when debugging is enabled.  This filters some
     84  * of the less interesting frames that come frequently
     85  * (e.g. beacons).
     86  */
     87 static __inline int
     88 doprint(struct ieee80211com *ic, int subtype)
     89 {
     90 	switch (subtype) {
     91 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
     92 		return (ic->ic_opmode == IEEE80211_M_IBSS);
     93 	}
     94 	return 1;
     95 }
     96 #endif
     97 
     98 /*
     99  * Set the direction field and address fields of an outgoing
    100  * non-QoS frame.  Note this should be called early on in
    101  * constructing a frame as it sets i_fc[1]; other bits can
    102  * then be or'd in.
    103  */
    104 static void
    105 ieee80211_send_setup(struct ieee80211com *ic,
    106 	struct ieee80211_node *ni,
    107 	struct ieee80211_frame *wh,
    108 	int type,
    109 	const u_int8_t sa[IEEE80211_ADDR_LEN],
    110 	const u_int8_t da[IEEE80211_ADDR_LEN],
    111 	const u_int8_t bssid[IEEE80211_ADDR_LEN])
    112 {
    113 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
    114 
    115 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
    116 
    117 	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
    118 		switch (ic->ic_opmode) {
    119 		case IEEE80211_M_STA:
    120 			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
    121 			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
    122 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
    123 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
    124 			break;
    125 
    126 		case IEEE80211_M_IBSS:
    127 		case IEEE80211_M_AHDEMO:
    128 			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
    129 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
    130 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
    131 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
    132 			break;
    133 
    134 		case IEEE80211_M_HOSTAP:
    135 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
    136 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
    137 			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
    138 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
    139 			break;
    140 
    141 		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
    142 			break;
    143 		}
    144 	} else {
    145 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
    146 		IEEE80211_ADDR_COPY(wh->i_addr1, da);
    147 		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
    148 		IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
    149 	}
    150 
    151 	*(u_int16_t *)&wh->i_dur[0] = 0;
    152 	/* NB: use non-QoS tid */
    153 	*(u_int16_t *)&wh->i_seq[0] =
    154 	    htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT);
    155 	ni->ni_txseqs[0]++;
    156 #undef WH4
    157 }
    158 
    159 /*
    160  * Send a management frame to the specified node.  The node pointer
    161  * must have a reference as the pointer will be passed to the driver
    162  * and potentially held for a long time.  If the frame is successfully
    163  * dispatched to the driver, then it is responsible for freeing the
    164  * reference (and potentially free'ing up any associated storage).
    165  */
    166 static int
    167 ieee80211_mgmt_output(struct ieee80211com *ic, struct ieee80211_node *ni,
    168     struct mbuf *m, int type, int timer)
    169 {
    170 	struct ifnet *ifp = ic->ic_ifp;
    171 	struct ieee80211_frame *wh;
    172 
    173 	IASSERT(ni != NULL, ("null node"));
    174 
    175 	/*
    176 	 * Yech, hack alert!  We want to pass the node down to the
    177 	 * driver's start routine.  If we don't do so then the start
    178 	 * routine must immediately look it up again and that can
    179 	 * cause a lock order reversal if, for example, this frame
    180 	 * is being sent because the station is being timedout and
    181 	 * the frame being sent is a DEAUTH message.  We could stick
    182 	 * this in an m_tag and tack that on to the mbuf.  However
    183 	 * that's rather expensive to do for every frame so instead
    184 	 * we stuff it in the rcvif field since outbound frames do
    185 	 * not (presently) use this.
    186 	 */
    187 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
    188 	if (m == NULL)
    189 		return ENOMEM;
    190 	M_SETCTX(m, ni);
    191 
    192 	wh = mtod(m, struct ieee80211_frame *);
    193 	ieee80211_send_setup(ic, ni, wh, IEEE80211_FC0_TYPE_MGT | type,
    194 	    ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid);
    195 
    196 	if ((m->m_flags & M_LINK0) != 0 && ni->ni_challenge != NULL) {
    197 		m->m_flags &= ~M_LINK0;
    198 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH,
    199 			"[%s] encrypting frame (%s)\n",
    200 			ether_sprintf(wh->i_addr1), __func__);
    201 		wh->i_fc[1] |= IEEE80211_FC1_WEP;
    202 	}
    203 
    204 #ifdef IEEE80211_DEBUG
    205 	/* avoid printing too many frames */
    206 	if ((ieee80211_msg_debug(ic) && doprint(ic, type)) ||
    207 	    ieee80211_msg_dumppkts(ic)) {
    208 		printf("[%s] send %s on channel %u\n",
    209 		    ether_sprintf(wh->i_addr1),
    210 		    ieee80211_mgt_subtype_name[
    211 			(type & IEEE80211_FC0_SUBTYPE_MASK) >>
    212 				IEEE80211_FC0_SUBTYPE_SHIFT],
    213 		    ieee80211_chan2ieee(ic, ic->ic_curchan));
    214 	}
    215 #endif
    216 
    217 	IEEE80211_NODE_STAT(ni, tx_mgmt);
    218 	IF_ENQUEUE(&ic->ic_mgtq, m);
    219 	if (timer) {
    220 		/*
    221 		 * Set the mgt frame timeout.
    222 		 */
    223 		ic->ic_mgt_timer = timer;
    224 		ifp->if_timer = 1;
    225 	}
    226 	if_start_lock(ifp);
    227 	return 0;
    228 }
    229 
    230 /*
    231  * Send a null data frame to the specified node.
    232  *
    233  * NB: the caller is assumed to have setup a node reference
    234  *     for use; this is necessary to deal with a race condition
    235  *     when probing for inactive stations.
    236  */
    237 int
    238 ieee80211_send_nulldata(struct ieee80211_node *ni)
    239 {
    240 	struct ieee80211com *ic = ni->ni_ic;
    241 	struct ifnet *ifp = ic->ic_ifp;
    242 	struct mbuf *m;
    243 	struct ieee80211_frame *wh;
    244 
    245 	MGETHDR(m, M_NOWAIT, MT_HEADER);
    246 	if (m == NULL) {
    247 		ic->ic_stats.is_tx_nobuf++;
    248 		ieee80211_unref_node(&ni);
    249 		return ENOMEM;
    250 	}
    251 	M_SETCTX(m, ni);
    252 
    253 	wh = mtod(m, struct ieee80211_frame *);
    254 
    255 	ieee80211_send_setup(ic, ni, wh,
    256 	    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
    257 	    ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid);
    258 
    259 	/* NB: power management bit is never sent by an AP */
    260 	if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
    261 	    ic->ic_opmode != IEEE80211_M_HOSTAP) {
    262 		wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
    263 	}
    264 
    265 	m->m_len = m->m_pkthdr.len = sizeof(struct ieee80211_frame);
    266 
    267 	IEEE80211_NODE_STAT(ni, tx_data);
    268 
    269 	IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
    270 	    "[%s] send null data frame on channel %u, pwr mgt %s\n",
    271 	    ether_sprintf(ni->ni_macaddr),
    272 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
    273 	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
    274 
    275 	IF_ENQUEUE(&ic->ic_mgtq, m);		/* cheat */
    276 	if_start_lock(ifp);
    277 
    278 	return 0;
    279 }
    280 
    281 /*
    282  * Assign priority to a frame based on any vlan tag assigned
    283  * to the station and/or any Diffserv setting in an IP header.
    284  * Finally, if an ACM policy is setup (in station mode) it's
    285  * applied.
    286  */
    287 int
    288 ieee80211_classify(struct ieee80211com *ic, struct mbuf *m,
    289     struct ieee80211_node *ni)
    290 {
    291 	int v_wme_ac, d_wme_ac, ac;
    292 #ifdef INET
    293 	struct ether_header *eh;
    294 #endif
    295 
    296 	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
    297 		ac = WME_AC_BE;
    298 		goto done;
    299 	}
    300 
    301 	/*
    302 	 * If node has a vlan tag then all traffic
    303 	 * to it must have a matching tag.
    304 	 */
    305 	v_wme_ac = 0;
    306 	if (ni->ni_vlan != 0) {
    307 		/* XXX used to check ec_nvlans. */
    308 		if (!vlan_has_tag(m)) {
    309 			IEEE80211_NODE_STAT(ni, tx_novlantag);
    310 			return 1;
    311 		}
    312 		if (EVL_VLANOFTAG(vlan_get_tag(m)) !=
    313 		    EVL_VLANOFTAG(ni->ni_vlan)) {
    314 			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
    315 			return 1;
    316 		}
    317 		/* map vlan priority to AC */
    318 		switch (EVL_PRIOFTAG(ni->ni_vlan)) {
    319 		case 1:
    320 		case 2:
    321 			v_wme_ac = WME_AC_BK;
    322 			break;
    323 		case 0:
    324 		case 3:
    325 			v_wme_ac = WME_AC_BE;
    326 			break;
    327 		case 4:
    328 		case 5:
    329 			v_wme_ac = WME_AC_VI;
    330 			break;
    331 		case 6:
    332 		case 7:
    333 			v_wme_ac = WME_AC_VO;
    334 			break;
    335 		}
    336 	}
    337 
    338 #ifdef INET
    339 	eh = mtod(m, struct ether_header *);
    340 	if (eh->ether_type == htons(ETHERTYPE_IP)) {
    341 		const struct ip *ip = (struct ip *)
    342 			(mtod(m, u_int8_t *) + sizeof (*eh));
    343 		/*
    344 		 * IP frame, map the TOS field.
    345 		 */
    346 		switch (ip->ip_tos) {
    347 		case 0x08:
    348 		case 0x20:
    349 			d_wme_ac = WME_AC_BK;	/* background */
    350 			break;
    351 		case 0x28:
    352 		case 0xa0:
    353 			d_wme_ac = WME_AC_VI;	/* video */
    354 			break;
    355 		case 0x30:			/* voice */
    356 		case 0xe0:
    357 		case 0x88:			/* XXX UPSD */
    358 		case 0xb8:
    359 			d_wme_ac = WME_AC_VO;
    360 			break;
    361 		default:
    362 			d_wme_ac = WME_AC_BE;
    363 			break;
    364 		}
    365 	} else {
    366 #endif /* INET */
    367 		d_wme_ac = WME_AC_BE;
    368 #ifdef INET
    369 	}
    370 #endif
    371 	/*
    372 	 * Use highest priority AC.
    373 	 */
    374 	if (v_wme_ac > d_wme_ac)
    375 		ac = v_wme_ac;
    376 	else
    377 		ac = d_wme_ac;
    378 
    379 	/*
    380 	 * Apply ACM policy.
    381 	 */
    382 	if (ic->ic_opmode == IEEE80211_M_STA) {
    383 		static const int acmap[4] = {
    384 			WME_AC_BK,	/* WME_AC_BE */
    385 			WME_AC_BK,	/* WME_AC_BK */
    386 			WME_AC_BE,	/* WME_AC_VI */
    387 			WME_AC_VI,	/* WME_AC_VO */
    388 		};
    389 		while (ac != WME_AC_BK &&
    390 		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
    391 			ac = acmap[ac];
    392 	}
    393 done:
    394 	M_WME_SETAC(m, ac);
    395 	return 0;
    396 }
    397 
    398 /*
    399  * Insure there is sufficient contiguous space to encapsulate the
    400  * 802.11 data frame.  If room isn't already there, arrange for it.
    401  * Drivers and cipher modules assume we have done the necessary work
    402  * and fail rudely if they don't find the space they need.
    403  *
    404  * Basically, we are trying to make sure that the several M_PREPENDs
    405  * called after this function do not fail.
    406  */
    407 static struct mbuf *
    408 ieee80211_mbuf_adjust(struct ieee80211com *ic, int hdrsize,
    409 	struct ieee80211_key *key, struct mbuf *m)
    410 {
    411 #define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
    412 	int needed_space = hdrsize;
    413 	int wlen = 0;
    414 
    415 	if (key != NULL) {
    416 		/* XXX belongs in crypto code? */
    417 		needed_space += key->wk_cipher->ic_header;
    418 		/* XXX frags */
    419 	}
    420 
    421 	/*
    422 	 * We know we are called just before stripping an Ethernet
    423 	 * header and prepending an LLC header.  This means we know
    424 	 * there will be
    425 	 *	sizeof(struct ether_header) - sizeof(struct llc)
    426 	 * bytes recovered to which we need additional space for the
    427 	 * 802.11 header and any crypto header.
    428 	 */
    429 	/* XXX check trailing space and copy instead? */
    430 	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
    431 		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
    432 		if (n == NULL) {
    433 			ic->ic_stats.is_tx_nobuf++;
    434 			m_freem(m);
    435 			return NULL;
    436 		}
    437 
    438 		IASSERT(needed_space <= MHLEN,
    439 		    ("not enough room, need %u got %lu\n", needed_space, (u_long)MHLEN));
    440 
    441 		/*
    442 		 * Setup new mbuf to have leading space to prepend the
    443 		 * 802.11 header and any crypto header bits that are
    444 		 * required (the latter are added when the driver calls
    445 		 * back to ieee80211_crypto_encap to do crypto encapsulation).
    446 		 */
    447 		m_move_pkthdr(n, m);
    448 		n->m_len = 0;
    449 		n->m_data += needed_space;
    450 
    451 		/*
    452 		 * Pull up Ethernet header to create the expected layout.
    453 		 * We could use m_pullup but that's overkill (i.e. we don't
    454 		 * need the actual data) and it cannot fail so do it inline
    455 		 * for speed.
    456 		 */
    457 		n->m_len += sizeof(struct ether_header);
    458 		m->m_len -= sizeof(struct ether_header);
    459 		m->m_data += sizeof(struct ether_header);
    460 
    461 		/*
    462 		 * Replace the head of the chain.
    463 		 */
    464 		n->m_next = m;
    465 		m = n;
    466 	} else {
    467 		/*
    468 		 * We will overwrite the ethernet header in the
    469 		 * 802.11 encapsulation stage.  Make sure that it
    470 		 * is writable.
    471 		 */
    472 		wlen = sizeof(struct ether_header);
    473 	}
    474 
    475 	/*
    476 	 * If we're going to s/w encrypt the mbuf chain make sure it is
    477 	 * writable.
    478 	 */
    479 	if (key != NULL && (key->wk_flags & IEEE80211_KEY_SWCRYPT) != 0) {
    480 		wlen = M_COPYALL;
    481 	}
    482 	if (wlen != 0 && m_makewritable(&m, 0, wlen, M_DONTWAIT) != 0) {
    483 		m_freem(m);
    484 		return NULL;
    485 	}
    486 
    487 	return m;
    488 #undef TO_BE_RECLAIMED
    489 }
    490 
    491 /*
    492  * Return the transmit key to use in sending a unicast frame.
    493  * If a unicast key is set we use that.  When no unicast key is set
    494  * we fall back to the default transmit key.
    495  */
    496 static __inline struct ieee80211_key *
    497 ieee80211_crypto_getucastkey(struct ieee80211com *ic, struct ieee80211_node *ni)
    498 {
    499 	if (IEEE80211_KEY_UNDEFINED(ni->ni_ucastkey)) {
    500 		if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE ||
    501 		    IEEE80211_KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey]))
    502 			return NULL;
    503 		return &ic->ic_nw_keys[ic->ic_def_txkey];
    504 	} else {
    505 		return &ni->ni_ucastkey;
    506 	}
    507 }
    508 
    509 /*
    510  * Return the transmit key to use in sending a multicast frame.
    511  * Multicast traffic always uses the group key which is installed as
    512  * the default tx key.
    513  */
    514 static __inline struct ieee80211_key *
    515 ieee80211_crypto_getmcastkey(struct ieee80211com *ic,
    516     struct ieee80211_node *ni)
    517 {
    518 	if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE ||
    519 	    IEEE80211_KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey]))
    520 		return NULL;
    521 	return &ic->ic_nw_keys[ic->ic_def_txkey];
    522 }
    523 
    524 /*
    525  * Encapsulate an outbound data frame.  The mbuf chain is updated.
    526  * If an error is encountered NULL is returned.  The caller is required
    527  * to provide a node reference and pullup the ethernet header in the
    528  * first mbuf.
    529  */
    530 struct mbuf *
    531 ieee80211_encap(struct ieee80211com *ic, struct mbuf *m,
    532 	struct ieee80211_node *ni)
    533 {
    534 	struct ether_header eh;
    535 	struct ieee80211_frame *wh;
    536 	struct ieee80211_key *key;
    537 	struct llc *llc;
    538 	int hdrsize, datalen, addqos, txfrag;
    539 
    540 	IASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
    541 	memcpy(&eh, mtod(m, void *), sizeof(struct ether_header));
    542 
    543 	/*
    544 	 * Insure space for additional headers.  First identify
    545 	 * transmit key to use in calculating any buffer adjustments
    546 	 * required.  This is also used below to do privacy
    547 	 * encapsulation work.  Then calculate the 802.11 header
    548 	 * size and any padding required by the driver.
    549 	 *
    550 	 * Note key may be NULL if we fall back to the default
    551 	 * transmit key and that is not set.  In that case the
    552 	 * buffer may not be expanded as needed by the cipher
    553 	 * routines, but they will/should discard it.
    554 	 */
    555 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
    556 		if (ic->ic_opmode == IEEE80211_M_STA ||
    557 		    !IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
    558 			key = ieee80211_crypto_getucastkey(ic, ni);
    559 		} else {
    560 			key = ieee80211_crypto_getmcastkey(ic, ni);
    561 		}
    562 		if (key == NULL && eh.ether_type != htons(ETHERTYPE_PAE)) {
    563 			IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
    564 			    "[%s] no default transmit key (%s) deftxkey %u\n",
    565 			    ether_sprintf(eh.ether_dhost), __func__,
    566 			    ic->ic_def_txkey);
    567 			ic->ic_stats.is_tx_nodefkey++;
    568 		}
    569 	} else {
    570 		key = NULL;
    571 	}
    572 
    573 	/*
    574 	 * XXX 4-address format.
    575 	 *
    576 	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
    577 	 * frames so suppress use.  This may be an issue if other
    578 	 * ap's require all data frames to be QoS-encapsulated
    579 	 * once negotiated in which case we'll need to make this
    580 	 * configurable.
    581 	 */
    582 	addqos = (ni->ni_flags & IEEE80211_NODE_QOS) &&
    583 	    eh.ether_type != htons(ETHERTYPE_PAE);
    584 	if (addqos)
    585 		hdrsize = sizeof(struct ieee80211_qosframe);
    586 	else
    587 		hdrsize = sizeof(struct ieee80211_frame);
    588 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
    589 		hdrsize = roundup(hdrsize, sizeof(u_int32_t));
    590 
    591 	m = ieee80211_mbuf_adjust(ic, hdrsize, key, m);
    592 	if (m == NULL) {
    593 		/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
    594 		goto bad;
    595 	}
    596 
    597 	/* NB: this could be optimized because of ieee80211_mbuf_adjust */
    598 	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
    599 	llc = mtod(m, struct llc *);
    600 	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
    601 	llc->llc_control = LLC_UI;
    602 	llc->llc_snap.org_code[0] = 0;
    603 	llc->llc_snap.org_code[1] = 0;
    604 	llc->llc_snap.org_code[2] = 0;
    605 	llc->llc_snap.ether_type = eh.ether_type;
    606 	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
    607 
    608 	M_PREPEND(m, hdrsize, M_DONTWAIT);
    609 	if (m == NULL) {
    610 		ic->ic_stats.is_tx_nobuf++;
    611 		goto bad;
    612 	}
    613 
    614 	wh = mtod(m, struct ieee80211_frame *);
    615 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
    616 	*(u_int16_t *)wh->i_dur = 0;
    617 
    618 	switch (ic->ic_opmode) {
    619 	case IEEE80211_M_STA:
    620 		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
    621 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
    622 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
    623 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
    624 		break;
    625 
    626 	case IEEE80211_M_IBSS:
    627 	case IEEE80211_M_AHDEMO:
    628 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
    629 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
    630 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
    631 		/*
    632 		 * NB: always use the bssid from ic_bss as the
    633 		 *     neighbor's may be stale after an ibss merge
    634 		 */
    635 		IEEE80211_ADDR_COPY(wh->i_addr3, ic->ic_bss->ni_bssid);
    636 		break;
    637 
    638 	case IEEE80211_M_HOSTAP:
    639 #ifndef IEEE80211_NO_HOSTAP
    640 		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
    641 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
    642 		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
    643 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
    644 #endif
    645 		break;
    646 
    647 	case IEEE80211_M_MONITOR:
    648 		goto bad;
    649 	}
    650 
    651 	if (m->m_flags & M_MORE_DATA)
    652 		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
    653 
    654 	if (addqos) {
    655 		struct ieee80211_qosframe *qwh =
    656 			(struct ieee80211_qosframe *)wh;
    657 		int ac, tid;
    658 
    659 		ac = M_WME_GETAC(m);
    660 		/* map from access class/queue to 11e header priorty value */
    661 		tid = WME_AC_TO_TID(ac);
    662 		qwh->i_qos[0] = tid & IEEE80211_QOS_TID;
    663 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
    664 			qwh->i_qos[0] |= 1 << IEEE80211_QOS_ACKPOLICY_S;
    665 		qwh->i_qos[1] = 0;
    666 		qwh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
    667 
    668 		*(u_int16_t *)wh->i_seq =
    669 		    htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT);
    670 		ni->ni_txseqs[tid]++;
    671 	} else {
    672 		*(u_int16_t *)wh->i_seq =
    673 		    htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT);
    674 		ni->ni_txseqs[0]++;
    675 	}
    676 
    677 	/* check if xmit fragmentation is required */
    678 	txfrag = (m->m_pkthdr.len > ic->ic_fragthreshold &&
    679 	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
    680 	    (m->m_flags & M_FF) == 0);          /* NB: don't fragment ff's */
    681 
    682 	if (key != NULL) {
    683 		/*
    684 		 * IEEE 802.1X: send EAPOL frames always in the clear.
    685 		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
    686 		 */
    687 		if (eh.ether_type != htons(ETHERTYPE_PAE) ||
    688 		    ((ic->ic_flags & IEEE80211_F_WPA) &&
    689 		     (ic->ic_opmode == IEEE80211_M_STA ?
    690 		      !IEEE80211_KEY_UNDEFINED(*key) :
    691 		      !IEEE80211_KEY_UNDEFINED(ni->ni_ucastkey)))) {
    692 			wh->i_fc[1] |= IEEE80211_FC1_WEP;
    693 			if (!ieee80211_crypto_enmic(ic, key, m, txfrag)) {
    694 				IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT,
    695 				    "[%s] enmic failed, discard frame\n",
    696 				    ether_sprintf(eh.ether_dhost));
    697 				ic->ic_stats.is_crypto_enmicfail++;
    698 				goto bad;
    699 			}
    700 		}
    701 	}
    702 
    703 	if (txfrag && !ieee80211_fragment(ic, m, hdrsize,
    704 	    key != NULL ? key->wk_cipher->ic_header : 0, ic->ic_fragthreshold))
    705 		goto bad;
    706 
    707 	IEEE80211_NODE_STAT(ni, tx_data);
    708 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
    709 
    710 	return m;
    711 
    712 bad:
    713 	m_freem(m);
    714 	return NULL;
    715 }
    716 
    717 /*
    718  * Arguments in:
    719  *
    720  * paylen:  payload length (no FCS, no WEP header)
    721  *
    722  * hdrlen:  header length
    723  *
    724  * rate:    MSDU speed, units 500kb/s
    725  *
    726  * flags:   IEEE80211_F_SHPREAMBLE (use short preamble),
    727  *          IEEE80211_F_SHSLOT (use short slot length)
    728  *
    729  * Arguments out:
    730  *
    731  * d:       802.11 Duration field for RTS,
    732  *          802.11 Duration field for data frame,
    733  *          PLCP Length for data frame,
    734  *          residual octets at end of data slot
    735  */
    736 static int
    737 ieee80211_compute_duration1(int len, int use_ack, uint32_t icflags, int rate,
    738     struct ieee80211_duration *d)
    739 {
    740 	int pre, ctsrate;
    741 	int ack, bitlen, data_dur, remainder;
    742 
    743 	/* RTS reserves medium for SIFS | CTS | SIFS | (DATA) | SIFS | ACK
    744 	 * DATA reserves medium for SIFS | ACK,
    745 	 *
    746 	 * (XXX or SIFS | ACK | SIFS | DATA | SIFS | ACK, if more fragments)
    747 	 *
    748 	 * XXXMYC: no ACK on multicast/broadcast or control packets
    749 	 */
    750 
    751 	bitlen = len * 8;
    752 
    753 	pre = IEEE80211_DUR_DS_SIFS;
    754 	if ((icflags & IEEE80211_F_SHPREAMBLE) != 0)
    755 		pre += IEEE80211_DUR_DS_SHORT_PREAMBLE + IEEE80211_DUR_DS_FAST_PLCPHDR;
    756 	else
    757 		pre += IEEE80211_DUR_DS_LONG_PREAMBLE + IEEE80211_DUR_DS_SLOW_PLCPHDR;
    758 
    759 	d->d_residue = 0;
    760 	data_dur = (bitlen * 2) / rate;
    761 	remainder = (bitlen * 2) % rate;
    762 	if (remainder != 0) {
    763 		d->d_residue = (rate - remainder) / 16;
    764 		data_dur++;
    765 	}
    766 
    767 	switch (rate) {
    768 	case 2:		/* 1 Mb/s */
    769 	case 4:		/* 2 Mb/s */
    770 		/* 1 - 2 Mb/s WLAN: send ACK/CTS at 1 Mb/s */
    771 		ctsrate = 2;
    772 		break;
    773 	case 11:	/* 5.5 Mb/s */
    774 	case 22:	/* 11  Mb/s */
    775 	case 44:	/* 22  Mb/s */
    776 		/* 5.5 - 11 Mb/s WLAN: send ACK/CTS at 2 Mb/s */
    777 		ctsrate = 4;
    778 		break;
    779 	default:
    780 		/* TBD */
    781 		return -1;
    782 	}
    783 
    784 	d->d_plcp_len = data_dur;
    785 
    786 	ack = (use_ack) ? pre + (IEEE80211_DUR_DS_SLOW_ACK * 2) / ctsrate : 0;
    787 
    788 	d->d_rts_dur =
    789 	    pre + (IEEE80211_DUR_DS_SLOW_CTS * 2) / ctsrate +
    790 	    pre + data_dur +
    791 	    ack;
    792 
    793 	d->d_data_dur = ack;
    794 
    795 	return 0;
    796 }
    797 
    798 /*
    799  * Arguments in:
    800  *
    801  * wh:      802.11 header
    802  *
    803  * paylen:  payload length (no FCS, no WEP header)
    804  *
    805  * rate:    MSDU speed, units 500kb/s
    806  *
    807  * fraglen: fragment length, set to maximum (or higher) for no
    808  *          fragmentation
    809  *
    810  * flags:   IEEE80211_F_PRIVACY (hardware adds WEP),
    811  *          IEEE80211_F_SHPREAMBLE (use short preamble),
    812  *          IEEE80211_F_SHSLOT (use short slot length)
    813  *
    814  * Arguments out:
    815  *
    816  * d0: 802.11 Duration fields (RTS/Data), PLCP Length, Service fields
    817  *     of first/only fragment
    818  *
    819  * dn: 802.11 Duration fields (RTS/Data), PLCP Length, Service fields
    820  *     of last fragment
    821  *
    822  * ieee80211_compute_duration assumes crypto-encapsulation, if any,
    823  * has already taken place.
    824  */
    825 int
    826 ieee80211_compute_duration(const struct ieee80211_frame_min *wh,
    827     const struct ieee80211_key *wk, int len,
    828     uint32_t icflags, int fraglen, int rate, struct ieee80211_duration *d0,
    829     struct ieee80211_duration *dn, int *npktp, int debug)
    830 {
    831 	int ack, rc;
    832 	int cryptolen,	/* crypto overhead: header+trailer */
    833 	    firstlen,	/* first fragment's payload + overhead length */
    834 	    hdrlen,	/* header length w/o driver padding */
    835 	    lastlen,	/* last fragment's payload length w/ overhead */
    836 	    lastlen0,	/* last fragment's payload length w/o overhead */
    837 	    npkt,	/* number of fragments */
    838 	    overlen,	/* non-802.11 header overhead per fragment */
    839 	    paylen;	/* payload length w/o overhead */
    840 
    841 	hdrlen = ieee80211_anyhdrsize((const void *)wh);
    842 
    843 	/* Account for padding required by the driver. */
    844 	if (icflags & IEEE80211_F_DATAPAD) {
    845 		paylen = len - roundup(hdrlen, sizeof(u_int32_t));
    846 		if (paylen < 0) {
    847 			panic("%s: paylen < 0", __func__);
    848 		}
    849 	} else {
    850 		paylen = len - hdrlen;
    851 	}
    852 
    853 	overlen = IEEE80211_CRC_LEN;
    854 
    855 	if (wk != NULL) {
    856 		cryptolen = wk->wk_cipher->ic_header +
    857 		            wk->wk_cipher->ic_trailer;
    858 		paylen -= cryptolen;
    859 		overlen += cryptolen;
    860 	}
    861 
    862 	npkt = paylen / fraglen;
    863 	lastlen0 = paylen % fraglen;
    864 
    865 	if (npkt == 0)			/* no fragments */
    866 		lastlen = paylen + overlen;
    867 	else if (lastlen0 != 0) {	/* a short "tail" fragment */
    868 		lastlen = lastlen0 + overlen;
    869 		npkt++;
    870 	} else				/* full-length "tail" fragment */
    871 		lastlen = fraglen + overlen;
    872 
    873 	if (npktp != NULL)
    874 		*npktp = npkt;
    875 
    876 	if (npkt > 1)
    877 		firstlen = fraglen + overlen;
    878 	else
    879 		firstlen = paylen + overlen;
    880 
    881 	if (debug) {
    882 		printf("%s: npkt %d firstlen %d lastlen0 %d lastlen %d "
    883 		    "fraglen %d overlen %d len %d rate %d icflags %08x\n",
    884 		    __func__, npkt, firstlen, lastlen0, lastlen, fraglen,
    885 		    overlen, len, rate, icflags);
    886 	}
    887 
    888 	ack = !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
    889 	    (wh->i_fc[1] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL;
    890 
    891 	rc = ieee80211_compute_duration1(firstlen + hdrlen,
    892 	    ack, icflags, rate, d0);
    893 	if (rc == -1)
    894 		return rc;
    895 
    896 	if (npkt <= 1) {
    897 		*dn = *d0;
    898 		return 0;
    899 	}
    900 	return ieee80211_compute_duration1(lastlen + hdrlen, ack, icflags, rate,
    901 	    dn);
    902 }
    903 
    904 /*
    905  * Fragment the frame according to the specified mtu.
    906  * The size of the 802.11 header (w/o padding) is provided
    907  * so we don't need to recalculate it.  We create a new
    908  * mbuf for each fragment and chain it through m_nextpkt;
    909  * we might be able to optimize this by reusing the original
    910  * packet's mbufs but that is significantly more complicated.
    911  */
    912 static int
    913 ieee80211_fragment(struct ieee80211com *ic, struct mbuf *m0,
    914 	u_int hdrsize, u_int ciphdrsize, u_int mtu)
    915 {
    916 	struct ieee80211_frame *wh, *whf;
    917 	struct mbuf *m, *prev, *next;
    918 	const u_int totalhdrsize = hdrsize + ciphdrsize;
    919 	u_int fragno, fragsize, off, remainder, payload;
    920 
    921 	IASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
    922 	IASSERT(m0->m_pkthdr.len > mtu,
    923 		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
    924 
    925 	wh = mtod(m0, struct ieee80211_frame *);
    926 	/* NB: mark the first frag; it will be propagated below */
    927 	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
    928 
    929 	fragno = 1;
    930 	off = mtu - ciphdrsize;
    931 	remainder = m0->m_pkthdr.len - off;
    932 	prev = m0;
    933 	do {
    934 		fragsize = totalhdrsize + remainder;
    935 		if (fragsize > mtu)
    936 			fragsize = mtu;
    937 		IASSERT(fragsize < MCLBYTES,
    938 			("fragment size %u too big!", fragsize));
    939 		if (fragsize > MHLEN)
    940 			m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
    941 		else
    942 			m = m_gethdr(M_DONTWAIT, MT_DATA);
    943 		if (m == NULL)
    944 			goto bad;
    945 
    946 		/* leave room to prepend any cipher header */
    947 		m_align(m, fragsize - ciphdrsize);
    948 
    949 		/*
    950 		 * Form the header in the fragment.  Note that since
    951 		 * we mark the first fragment with the MORE_FRAG bit
    952 		 * it automatically is propagated to each fragment; we
    953 		 * need only clear it on the last fragment (done below).
    954 		 */
    955 		whf = mtod(m, struct ieee80211_frame *);
    956 		memcpy(whf, wh, hdrsize);
    957 		*(u_int16_t *)&whf->i_seq[0] |= htole16(
    958 			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
    959 				IEEE80211_SEQ_FRAG_SHIFT);
    960 		fragno++;
    961 
    962 		payload = fragsize - totalhdrsize;
    963 		/* NB: destination is known to be contiguous */
    964 		m_copydata(m0, off, payload, mtod(m, u_int8_t *) + hdrsize);
    965 		m->m_len = hdrsize + payload;
    966 		m->m_pkthdr.len = hdrsize + payload;
    967 		m->m_flags |= M_FRAG;
    968 
    969 		/* chain up the fragment */
    970 		prev->m_nextpkt = m;
    971 		prev = m;
    972 
    973 		/* deduct fragment just formed */
    974 		remainder -= payload;
    975 		off += payload;
    976 	} while (remainder != 0);
    977 
    978 	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
    979 
    980 	/* strip first mbuf now that everything has been copied */
    981 	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
    982 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
    983 
    984 	ic->ic_stats.is_tx_fragframes++;
    985 	ic->ic_stats.is_tx_frags += fragno-1;
    986 
    987 	return 1;
    988 
    989 bad:
    990 	/* reclaim fragments but leave original frame for caller to free */
    991 	for (m = m0->m_nextpkt; m != NULL; m = next) {
    992 		next = m->m_nextpkt;
    993 		m->m_nextpkt = NULL;
    994 		m_freem(m);
    995 	}
    996 	m0->m_nextpkt = NULL;
    997 
    998 	return 0;
    999 }
   1000 
   1001 /*
   1002  * Add a supported rates element id to a frame.
   1003  */
   1004 u_int8_t *
   1005 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs)
   1006 {
   1007 	int nrates;
   1008 
   1009 	*frm++ = IEEE80211_ELEMID_RATES;
   1010 	nrates = rs->rs_nrates;
   1011 	if (nrates > IEEE80211_RATE_SIZE)
   1012 		nrates = IEEE80211_RATE_SIZE;
   1013 	*frm++ = nrates;
   1014 	memcpy(frm, rs->rs_rates, nrates);
   1015 	return frm + nrates;
   1016 }
   1017 
   1018 /*
   1019  * Add an extended supported rates element id to a frame.
   1020  */
   1021 u_int8_t *
   1022 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs)
   1023 {
   1024 	/*
   1025 	 * Add an extended supported rates element if operating in 11g mode.
   1026 	 */
   1027 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
   1028 		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
   1029 		*frm++ = IEEE80211_ELEMID_XRATES;
   1030 		*frm++ = nrates;
   1031 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
   1032 		frm += nrates;
   1033 	}
   1034 	return frm;
   1035 }
   1036 
   1037 /*
   1038  * Add an ssid elemet to a frame.
   1039  */
   1040 u_int8_t *
   1041 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len)
   1042 {
   1043 	*frm++ = IEEE80211_ELEMID_SSID;
   1044 	*frm++ = len;
   1045 	memcpy(frm, ssid, len);
   1046 	return frm + len;
   1047 }
   1048 
   1049 /*
   1050  * Add an erp element to a frame.
   1051  */
   1052 static u_int8_t *
   1053 ieee80211_add_erp(u_int8_t *frm, struct ieee80211com *ic)
   1054 {
   1055 	u_int8_t erp;
   1056 
   1057 	*frm++ = IEEE80211_ELEMID_ERP;
   1058 	*frm++ = 1;
   1059 	erp = 0;
   1060 	if (ic->ic_nonerpsta != 0)
   1061 		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
   1062 	if (ic->ic_flags & IEEE80211_F_USEPROT)
   1063 		erp |= IEEE80211_ERP_USE_PROTECTION;
   1064 	if (ic->ic_flags & IEEE80211_F_USEBARKER)
   1065 		erp |= IEEE80211_ERP_LONG_PREAMBLE;
   1066 	*frm++ = erp;
   1067 	return frm;
   1068 }
   1069 
   1070 static u_int8_t *
   1071 ieee80211_setup_wpa_ie(struct ieee80211com *ic, u_int8_t *ie)
   1072 {
   1073 #define	WPA_OUI_BYTES		0x00, 0x50, 0xf2
   1074 #define	ADDSHORT(frm, v) do {			\
   1075 	frm[0] = (v) & 0xff;			\
   1076 	frm[1] = (v) >> 8;			\
   1077 	frm += 2;				\
   1078 } while (0)
   1079 #define	ADDSELECTOR(frm, sel) do {		\
   1080 	memcpy(frm, sel, 4);			\
   1081 	frm += 4;				\
   1082 } while (0)
   1083 	static const u_int8_t oui[4] = { WPA_OUI_BYTES, WPA_OUI_TYPE };
   1084 	static const u_int8_t cipher_suite[][4] = {
   1085 		{ WPA_OUI_BYTES, WPA_CSE_WEP40 },	/* NB: 40-bit */
   1086 		{ WPA_OUI_BYTES, WPA_CSE_TKIP },
   1087 		{ 0x00, 0x00, 0x00, 0x00 },		/* XXX WRAP */
   1088 		{ WPA_OUI_BYTES, WPA_CSE_CCMP },
   1089 		{ 0x00, 0x00, 0x00, 0x00 },		/* XXX CKIP */
   1090 		{ WPA_OUI_BYTES, WPA_CSE_NULL },
   1091 	};
   1092 	static const u_int8_t wep104_suite[4] =
   1093 		{ WPA_OUI_BYTES, WPA_CSE_WEP104 };
   1094 	static const u_int8_t key_mgt_unspec[4] =
   1095 		{ WPA_OUI_BYTES, WPA_ASE_8021X_UNSPEC };
   1096 	static const u_int8_t key_mgt_psk[4] =
   1097 		{ WPA_OUI_BYTES, WPA_ASE_8021X_PSK };
   1098 	const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn;
   1099 	u_int8_t *frm = ie;
   1100 	u_int8_t *selcnt;
   1101 
   1102 	*frm++ = IEEE80211_ELEMID_VENDOR;
   1103 	*frm++ = 0;				/* length filled in below */
   1104 	memcpy(frm, oui, sizeof(oui));		/* WPA OUI */
   1105 	frm += sizeof(oui);
   1106 	ADDSHORT(frm, WPA_VERSION);
   1107 
   1108 	/* XXX filter out CKIP */
   1109 
   1110 	/* multicast cipher */
   1111 	if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP &&
   1112 	    rsn->rsn_mcastkeylen >= 13)
   1113 		ADDSELECTOR(frm, wep104_suite);
   1114 	else
   1115 		ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]);
   1116 
   1117 	/* unicast cipher list */
   1118 	selcnt = frm;
   1119 	ADDSHORT(frm, 0);			/* selector count */
   1120 	if (rsn->rsn_ucastcipherset & (1 << IEEE80211_CIPHER_AES_CCM)) {
   1121 		selcnt[0]++;
   1122 		ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]);
   1123 	}
   1124 	if (rsn->rsn_ucastcipherset & (1 << IEEE80211_CIPHER_TKIP)) {
   1125 		selcnt[0]++;
   1126 		ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]);
   1127 	}
   1128 
   1129 	/* authenticator selector list */
   1130 	selcnt = frm;
   1131 	ADDSHORT(frm, 0);			/* selector count */
   1132 	if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) {
   1133 		selcnt[0]++;
   1134 		ADDSELECTOR(frm, key_mgt_unspec);
   1135 	}
   1136 	if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) {
   1137 		selcnt[0]++;
   1138 		ADDSELECTOR(frm, key_mgt_psk);
   1139 	}
   1140 
   1141 	/* optional capabilities */
   1142 	if (rsn->rsn_caps != 0 && rsn->rsn_caps != RSN_CAP_PREAUTH)
   1143 		ADDSHORT(frm, rsn->rsn_caps);
   1144 
   1145 	/* calculate element length */
   1146 	ie[1] = frm - ie - 2;
   1147 	IASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa),
   1148 		("WPA IE too big, %u > %zu",
   1149 		ie[1]+2, sizeof(struct ieee80211_ie_wpa)));
   1150 	return frm;
   1151 #undef ADDSHORT
   1152 #undef ADDSELECTOR
   1153 #undef WPA_OUI_BYTES
   1154 }
   1155 
   1156 static u_int8_t *
   1157 ieee80211_setup_rsn_ie(struct ieee80211com *ic, u_int8_t *ie)
   1158 {
   1159 #define	RSN_OUI_BYTES		0x00, 0x0f, 0xac
   1160 #define	ADDSHORT(frm, v) do {			\
   1161 	frm[0] = (v) & 0xff;			\
   1162 	frm[1] = (v) >> 8;			\
   1163 	frm += 2;				\
   1164 } while (0)
   1165 #define	ADDSELECTOR(frm, sel) do {		\
   1166 	memcpy(frm, sel, 4);			\
   1167 	frm += 4;				\
   1168 } while (0)
   1169 	static const u_int8_t cipher_suite[][4] = {
   1170 		{ RSN_OUI_BYTES, RSN_CSE_WEP40 },	/* NB: 40-bit */
   1171 		{ RSN_OUI_BYTES, RSN_CSE_TKIP },
   1172 		{ RSN_OUI_BYTES, RSN_CSE_WRAP },
   1173 		{ RSN_OUI_BYTES, RSN_CSE_CCMP },
   1174 		{ 0x00, 0x00, 0x00, 0x00 },		/* XXX CKIP */
   1175 		{ RSN_OUI_BYTES, RSN_CSE_NULL },
   1176 	};
   1177 	static const u_int8_t wep104_suite[4] =
   1178 		{ RSN_OUI_BYTES, RSN_CSE_WEP104 };
   1179 	static const u_int8_t key_mgt_unspec[4] =
   1180 		{ RSN_OUI_BYTES, RSN_ASE_8021X_UNSPEC };
   1181 	static const u_int8_t key_mgt_psk[4] =
   1182 		{ RSN_OUI_BYTES, RSN_ASE_8021X_PSK };
   1183 	const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn;
   1184 	u_int8_t *frm = ie;
   1185 	u_int8_t *selcnt;
   1186 
   1187 	*frm++ = IEEE80211_ELEMID_RSN;
   1188 	*frm++ = 0;				/* length filled in below */
   1189 	ADDSHORT(frm, RSN_VERSION);
   1190 
   1191 	/* XXX filter out CKIP */
   1192 
   1193 	/* multicast cipher */
   1194 	if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP &&
   1195 	    rsn->rsn_mcastkeylen >= 13)
   1196 		ADDSELECTOR(frm, wep104_suite);
   1197 	else
   1198 		ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]);
   1199 
   1200 	/* unicast cipher list */
   1201 	selcnt = frm;
   1202 	ADDSHORT(frm, 0);			/* selector count */
   1203 	if (rsn->rsn_ucastcipherset & (1 << IEEE80211_CIPHER_AES_CCM)) {
   1204 		selcnt[0]++;
   1205 		ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]);
   1206 	}
   1207 	if (rsn->rsn_ucastcipherset & (1 << IEEE80211_CIPHER_TKIP)) {
   1208 		selcnt[0]++;
   1209 		ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]);
   1210 	}
   1211 
   1212 	/* authenticator selector list */
   1213 	selcnt = frm;
   1214 	ADDSHORT(frm, 0);			/* selector count */
   1215 	if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) {
   1216 		selcnt[0]++;
   1217 		ADDSELECTOR(frm, key_mgt_unspec);
   1218 	}
   1219 	if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) {
   1220 		selcnt[0]++;
   1221 		ADDSELECTOR(frm, key_mgt_psk);
   1222 	}
   1223 
   1224 	/* optional capabilities */
   1225 	ADDSHORT(frm, rsn->rsn_caps);
   1226 	/* XXX PMKID */
   1227 
   1228 	/* calculate element length */
   1229 	ie[1] = frm - ie - 2;
   1230 	IASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa),
   1231 		("RSN IE too big, %u > %zu",
   1232 		ie[1]+2, sizeof(struct ieee80211_ie_wpa)));
   1233 	return frm;
   1234 #undef ADDSELECTOR
   1235 #undef ADDSHORT
   1236 #undef RSN_OUI_BYTES
   1237 }
   1238 
   1239 /*
   1240  * Add a WPA/RSN element to a frame.
   1241  */
   1242 u_int8_t *
   1243 ieee80211_add_wpa(u_int8_t *frm, struct ieee80211com *ic)
   1244 {
   1245 
   1246 	IASSERT(ic->ic_flags & IEEE80211_F_WPA, ("no WPA/RSN!"));
   1247 	if (ic->ic_flags & IEEE80211_F_WPA2)
   1248 		frm = ieee80211_setup_rsn_ie(ic, frm);
   1249 	if (ic->ic_flags & IEEE80211_F_WPA1)
   1250 		frm = ieee80211_setup_wpa_ie(ic, frm);
   1251 	return frm;
   1252 }
   1253 
   1254 #define	WME_OUI_BYTES		0x00, 0x50, 0xf2
   1255 /*
   1256  * Add a WME information element to a frame.
   1257  */
   1258 u_int8_t *
   1259 ieee80211_add_wme_info(u_int8_t *frm, struct ieee80211_wme_state *wme)
   1260 {
   1261 	static const struct ieee80211_wme_info info = {
   1262 		.wme_id		= IEEE80211_ELEMID_VENDOR,
   1263 		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
   1264 		.wme_oui	= { WME_OUI_BYTES },
   1265 		.wme_type	= WME_OUI_TYPE,
   1266 		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
   1267 		.wme_version	= WME_VERSION,
   1268 		.wme_info	= 0,
   1269 	};
   1270 	memcpy(frm, &info, sizeof(info));
   1271 	return frm + sizeof(info);
   1272 }
   1273 
   1274 /*
   1275  * Add a WME parameters element to a frame.
   1276  */
   1277 static u_int8_t *
   1278 ieee80211_add_wme_param(u_int8_t *frm, struct ieee80211_wme_state *wme)
   1279 {
   1280 #define	SM(_v, _f)	(((_v) << _f##_S) & _f)
   1281 #define	ADDSHORT(frm, v) do {			\
   1282 	frm[0] = (v) & 0xff;			\
   1283 	frm[1] = (v) >> 8;			\
   1284 	frm += 2;				\
   1285 } while (0)
   1286 	/* NB: this works because a param has an info at the front */
   1287 	static const struct ieee80211_wme_info param = {
   1288 		.wme_id		= IEEE80211_ELEMID_VENDOR,
   1289 		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
   1290 		.wme_oui	= { WME_OUI_BYTES },
   1291 		.wme_type	= WME_OUI_TYPE,
   1292 		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
   1293 		.wme_version	= WME_VERSION,
   1294 	};
   1295 	int i;
   1296 
   1297 	memcpy(frm, &param, sizeof(param));
   1298 	frm += offsetof(struct ieee80211_wme_info, wme_info);
   1299 	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
   1300 	*frm++ = 0;					/* reserved field */
   1301 	for (i = 0; i < WME_NUM_AC; i++) {
   1302 		const struct wmeParams *ac =
   1303 		       &wme->wme_bssChanParams.cap_wmeParams[i];
   1304 		*frm++ = SM(i, WME_PARAM_ACI) |
   1305 		    SM(ac->wmep_acm, WME_PARAM_ACM) |
   1306 		    SM(ac->wmep_aifsn, WME_PARAM_AIFSN);
   1307 		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX) |
   1308 		    SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN);
   1309 		ADDSHORT(frm, ac->wmep_txopLimit);
   1310 	}
   1311 
   1312 	return frm;
   1313 #undef SM
   1314 #undef ADDSHORT
   1315 }
   1316 #undef WME_OUI_BYTES
   1317 
   1318 /*
   1319  * Send a probe request frame with the specified ssid
   1320  * and any optional information element data.
   1321  */
   1322 int
   1323 ieee80211_send_probereq(struct ieee80211_node *ni,
   1324 	const u_int8_t sa[IEEE80211_ADDR_LEN],
   1325 	const u_int8_t da[IEEE80211_ADDR_LEN],
   1326 	const u_int8_t bssid[IEEE80211_ADDR_LEN],
   1327 	const u_int8_t *ssid, size_t ssidlen,
   1328 	const void *optie, size_t optielen)
   1329 {
   1330 	struct ieee80211com *ic = ni->ni_ic;
   1331 	enum ieee80211_phymode mode;
   1332 	struct ieee80211_frame *wh;
   1333 	struct mbuf *m;
   1334 	u_int8_t *frm;
   1335 
   1336 	/*
   1337 	 * Hold a reference on the node so it doesn't go away until after
   1338 	 * the xmit is complete all the way in the driver.  On error we
   1339 	 * will remove our reference.
   1340 	 */
   1341 	IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE,
   1342 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
   1343 		__func__, __LINE__,
   1344 		ni, ether_sprintf(ni->ni_macaddr),
   1345 		ieee80211_node_refcnt(ni)+1);
   1346 	ieee80211_ref_node(ni);
   1347 
   1348 	/*
   1349 	 * prreq frame format
   1350 	 *	[tlv] ssid
   1351 	 *	[tlv] supported rates
   1352 	 *	[tlv] extended supported rates
   1353 	 *	[tlv] user-specified ie's
   1354 	 */
   1355 	m = ieee80211_getmgtframe(&frm,
   1356 		 2 + IEEE80211_NWID_LEN
   1357 	       + 2 + IEEE80211_RATE_SIZE
   1358 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
   1359 	       + (optie != NULL ? optielen : 0)
   1360 	);
   1361 	if (m == NULL) {
   1362 		ic->ic_stats.is_tx_nobuf++;
   1363 		ieee80211_free_node(ni);
   1364 		return ENOMEM;
   1365 	}
   1366 
   1367 	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
   1368 	mode = ieee80211_chan2mode(ic, ic->ic_curchan);
   1369 	frm = ieee80211_add_rates(frm, &ic->ic_sup_rates[mode]);
   1370 	frm = ieee80211_add_xrates(frm, &ic->ic_sup_rates[mode]);
   1371 
   1372 	if (optie != NULL) {
   1373 		memcpy(frm, optie, optielen);
   1374 		frm += optielen;
   1375 	}
   1376 	m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
   1377 
   1378 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
   1379 	if (m == NULL) {
   1380 		ic->ic_stats.is_tx_nobuf++;
   1381 		ieee80211_free_node(ni);
   1382 		return ENOMEM;
   1383 	}
   1384 	M_SETCTX(m, ni);
   1385 
   1386 	wh = mtod(m, struct ieee80211_frame *);
   1387 	ieee80211_send_setup(ic, ni, wh,
   1388 	    IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
   1389 	    sa, da, bssid);
   1390 	/* XXX power management? */
   1391 
   1392 	IEEE80211_NODE_STAT(ni, tx_probereq);
   1393 	IEEE80211_NODE_STAT(ni, tx_mgmt);
   1394 
   1395 	IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
   1396 	    "[%s] send probe req on channel %u\n",
   1397 	    ether_sprintf(wh->i_addr1),
   1398 	    ieee80211_chan2ieee(ic, ic->ic_curchan));
   1399 
   1400 	IF_ENQUEUE(&ic->ic_mgtq, m);
   1401 	if_start_lock(ic->ic_ifp);
   1402 	return 0;
   1403 }
   1404 
   1405 /*
   1406  * Send a management frame.  The node is for the destination (or ic_bss
   1407  * when in station mode).  Nodes other than ic_bss have their reference
   1408  * count bumped to reflect our use for an indeterminant time.
   1409  */
   1410 int
   1411 ieee80211_send_mgmt(struct ieee80211com *ic, struct ieee80211_node *ni,
   1412 	int type, int arg)
   1413 {
   1414 #define	senderr(_x, _v)	do { ic->ic_stats._v++; ret = _x; goto bad; } while (0)
   1415 	struct mbuf *m;
   1416 	u_int8_t *frm;
   1417 	u_int16_t capinfo;
   1418 	int ret, timer, status;
   1419 
   1420 	IASSERT(ni != NULL, ("null node"));
   1421 
   1422 	/*
   1423 	 * Hold a reference on the node so it doesn't go away until after
   1424 	 * the xmit is complete all the way in the driver.  On error we
   1425 	 * will remove our reference.
   1426 	 */
   1427 	IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE,
   1428 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
   1429 		__func__, __LINE__,
   1430 		ni, ether_sprintf(ni->ni_macaddr),
   1431 		ieee80211_node_refcnt(ni)+1);
   1432 	ieee80211_ref_node(ni);
   1433 
   1434 	timer = 0;
   1435 	switch (type) {
   1436 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP: {
   1437 		const bool has_wpa = (ic->ic_flags & IEEE80211_F_WPA) != 0;
   1438 
   1439 		/*
   1440 		 * probe response frame format
   1441 		 *	[8] time stamp
   1442 		 *	[2] beacon interval
   1443 		 *	[2] cabability information
   1444 		 *	[tlv] ssid
   1445 		 *	[tlv] supported rates
   1446 		 *	[tlv] parameter set (FH/DS)
   1447 		 *	[tlv] parameter set (IBSS)
   1448 		 *	[tlv] extended rate phy (ERP)
   1449 		 *	[tlv] extended supported rates
   1450 		 *	[tlv] WPA
   1451 		 *	[tlv] WME (optional)
   1452 		 */
   1453 		m = ieee80211_getmgtframe(&frm,
   1454 			 8 /* timestamp */
   1455 		       + sizeof(u_int16_t) /* interval */
   1456 		       + sizeof(u_int16_t) /* capinfo */
   1457 		       + 2 + IEEE80211_NWID_LEN /* ssid */
   1458 		       + 2 + IEEE80211_RATE_SIZE /* rates */
   1459 		       + 7 /* max(7,3) */
   1460 		       + 6 /* ibss (XXX could be 4?) */
   1461 		       + 3 /* erp */
   1462 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
   1463 		       /* XXX !WPA1+WPA2 fits w/o a cluster */
   1464 		       + (has_wpa ? (2 * sizeof(struct ieee80211_ie_wpa)) : 0)
   1465 		       + sizeof(struct ieee80211_wme_param)
   1466 		);
   1467 		if (m == NULL)
   1468 			senderr(ENOMEM, is_tx_nobuf);
   1469 
   1470 		/* timestamp (should be filled later) */
   1471 		memset(frm, 0, 8);
   1472 		frm += 8;
   1473 
   1474 		/* interval */
   1475 		*(u_int16_t *)frm = htole16(ic->ic_bss->ni_intval);
   1476 		frm += 2;
   1477 
   1478 		/* capinfo */
   1479 		if (ic->ic_opmode == IEEE80211_M_IBSS)
   1480 			capinfo = IEEE80211_CAPINFO_IBSS;
   1481 		else
   1482 			capinfo = IEEE80211_CAPINFO_ESS;
   1483 		if (ic->ic_flags & IEEE80211_F_PRIVACY)
   1484 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
   1485 		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   1486 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
   1487 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
   1488 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
   1489 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
   1490 		*(u_int16_t *)frm = htole16(capinfo);
   1491 		frm += 2;
   1492 
   1493 		/* ssid */
   1494 		frm = ieee80211_add_ssid(frm, ic->ic_bss->ni_essid,
   1495 		    ic->ic_bss->ni_esslen);
   1496 
   1497 		/* rates */
   1498 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
   1499 
   1500 		/* variable */
   1501 		if (ic->ic_phytype == IEEE80211_T_FH) {
   1502 			*frm++ = IEEE80211_ELEMID_FHPARMS;
   1503 			*frm++ = 5;
   1504 			*frm++ = ni->ni_fhdwell & 0x00ff;
   1505 			*frm++ = (ni->ni_fhdwell >> 8) & 0x00ff;
   1506 			*frm++ = IEEE80211_FH_CHANSET(
   1507 			    ieee80211_chan2ieee(ic, ic->ic_curchan));
   1508 			*frm++ = IEEE80211_FH_CHANPAT(
   1509 			    ieee80211_chan2ieee(ic, ic->ic_curchan));
   1510 			*frm++ = ni->ni_fhindex;
   1511 		} else {
   1512 			*frm++ = IEEE80211_ELEMID_DSPARMS;
   1513 			*frm++ = 1;
   1514 			*frm++ = ieee80211_chan2ieee(ic, ic->ic_curchan);
   1515 		}
   1516 
   1517 		/* ibss */
   1518 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
   1519 			*frm++ = IEEE80211_ELEMID_IBSSPARMS;
   1520 			*frm++ = 2;
   1521 			*frm++ = 0; *frm++ = 0;	/* TODO: ATIM window */
   1522 		}
   1523 
   1524 		/* wpa */
   1525 		if (has_wpa)
   1526 			frm = ieee80211_add_wpa(frm, ic);
   1527 
   1528 		/* erp */
   1529 		if (ic->ic_curmode == IEEE80211_MODE_11G)
   1530 			frm = ieee80211_add_erp(frm, ic);
   1531 
   1532 		/* xrates */
   1533 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
   1534 
   1535 		/* wme */
   1536 		if (ic->ic_flags & IEEE80211_F_WME)
   1537 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
   1538 
   1539 		m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
   1540 		break;
   1541 	}
   1542 
   1543 	case IEEE80211_FC0_SUBTYPE_AUTH: {
   1544 		status = arg >> 16;
   1545 		arg &= 0xffff;
   1546 		const bool has_challenge =
   1547 		    (arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
   1548 		     arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
   1549 		    ni->ni_challenge != NULL;
   1550 
   1551 		/*
   1552 		 * Deduce whether we're doing open authentication or
   1553 		 * shared key authentication.  We do the latter if
   1554 		 * we're in the middle of a shared key authentication
   1555 		 * handshake or if we're initiating an authentication
   1556 		 * request and configured to use shared key.
   1557 		 */
   1558 		const bool is_shared_key = has_challenge ||
   1559 		    (arg >= IEEE80211_AUTH_SHARED_RESPONSE) ||
   1560 		    (arg == IEEE80211_AUTH_SHARED_REQUEST &&
   1561 		     ic->ic_bss->ni_authmode == IEEE80211_AUTH_SHARED);
   1562 
   1563 		const bool need_challenge =
   1564 		    has_challenge && (status == IEEE80211_STATUS_SUCCESS);
   1565 
   1566 		const int frm_size = 3 * sizeof(u_int16_t)
   1567 			+ (need_challenge ?
   1568 				sizeof(u_int16_t)+IEEE80211_CHALLENGE_LEN : 0);
   1569 
   1570 		m = ieee80211_getmgtframe(&frm, frm_size);
   1571 		if (m == NULL)
   1572 			senderr(ENOMEM, is_tx_nobuf);
   1573 
   1574 		((u_int16_t *)frm)[0] =
   1575 		      is_shared_key ? htole16(IEEE80211_AUTH_ALG_SHARED)
   1576 		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
   1577 		((u_int16_t *)frm)[1] = htole16(arg);	/* sequence number */
   1578 		((u_int16_t *)frm)[2] = htole16(status);/* status */
   1579 
   1580 		if (need_challenge) {
   1581 			((u_int16_t *)frm)[3] =
   1582 			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
   1583 			    IEEE80211_ELEMID_CHALLENGE);
   1584 			memcpy(&((u_int16_t *)frm)[4], ni->ni_challenge,
   1585 			    IEEE80211_CHALLENGE_LEN);
   1586 
   1587 			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
   1588 				IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH,
   1589 				    "[%s] request encrypt frame (%s)\n",
   1590 				    ether_sprintf(ni->ni_macaddr), __func__);
   1591 				m->m_flags |= M_LINK0; /* WEP-encrypt, please */
   1592 			}
   1593 		}
   1594 
   1595 		m->m_pkthdr.len = m->m_len = frm_size;
   1596 
   1597 		/* XXX not right for shared key */
   1598 		if (status == IEEE80211_STATUS_SUCCESS)
   1599 			IEEE80211_NODE_STAT(ni, tx_auth);
   1600 		else
   1601 			IEEE80211_NODE_STAT(ni, tx_auth_fail);
   1602 
   1603 		if (ic->ic_opmode == IEEE80211_M_STA)
   1604 			timer = IEEE80211_TRANS_WAIT;
   1605 		break;
   1606 	}
   1607 
   1608 	case IEEE80211_FC0_SUBTYPE_DEAUTH:
   1609 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH,
   1610 			"[%s] send station deauthenticate (reason %d)\n",
   1611 			ether_sprintf(ni->ni_macaddr), arg);
   1612 		m = ieee80211_getmgtframe(&frm, sizeof(u_int16_t));
   1613 		if (m == NULL)
   1614 			senderr(ENOMEM, is_tx_nobuf);
   1615 		*(u_int16_t *)frm = htole16(arg);	/* reason */
   1616 		m->m_pkthdr.len = m->m_len = sizeof(u_int16_t);
   1617 
   1618 		IEEE80211_NODE_STAT(ni, tx_deauth);
   1619 		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
   1620 
   1621 		ieee80211_node_unauthorize(ni);		/* port closed */
   1622 		break;
   1623 
   1624 	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
   1625 	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
   1626 		/*
   1627 		 * asreq frame format
   1628 		 *	[2] capability information
   1629 		 *	[2] listen interval
   1630 		 *	[6*] current AP address (reassoc only)
   1631 		 *	[tlv] ssid
   1632 		 *	[tlv] supported rates
   1633 		 *	[tlv] extended supported rates
   1634 		 *	[tlv] WME
   1635 		 *	[tlv] user-specified ie's
   1636 		 */
   1637 		m = ieee80211_getmgtframe(&frm,
   1638 			 sizeof(u_int16_t)
   1639 		       + sizeof(u_int16_t)
   1640 		       + IEEE80211_ADDR_LEN
   1641 		       + 2 + IEEE80211_NWID_LEN
   1642 		       + 2 + IEEE80211_RATE_SIZE
   1643 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
   1644 		       + sizeof(struct ieee80211_wme_info)
   1645 		       + (ic->ic_opt_ie != NULL ? ic->ic_opt_ie_len : 0)
   1646 		);
   1647 		if (m == NULL)
   1648 			senderr(ENOMEM, is_tx_nobuf);
   1649 
   1650 		capinfo = 0;
   1651 		if (ic->ic_opmode == IEEE80211_M_IBSS)
   1652 			capinfo |= IEEE80211_CAPINFO_IBSS;
   1653 		else /* IEEE80211_M_STA */
   1654 			capinfo |= IEEE80211_CAPINFO_ESS;
   1655 		if (ic->ic_flags & IEEE80211_F_PRIVACY)
   1656 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
   1657 		/*
   1658 		 * NB: Some 11a AP's reject the request when
   1659 		 *     short premable is set.
   1660 		 */
   1661 		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   1662 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
   1663 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
   1664 		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) &&
   1665 		    (ic->ic_caps & IEEE80211_C_SHSLOT))
   1666 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
   1667 		*(u_int16_t *)frm = htole16(capinfo);
   1668 		frm += 2;
   1669 
   1670 		*(u_int16_t *)frm = htole16(ic->ic_lintval);
   1671 		frm += 2;
   1672 
   1673 		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
   1674 			IEEE80211_ADDR_COPY(frm, ic->ic_bss->ni_bssid);
   1675 			frm += IEEE80211_ADDR_LEN;
   1676 		}
   1677 
   1678 		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
   1679 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
   1680 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
   1681 		if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL)
   1682 			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
   1683 		if (ic->ic_opt_ie != NULL) {
   1684 			memcpy(frm, ic->ic_opt_ie, ic->ic_opt_ie_len);
   1685 			frm += ic->ic_opt_ie_len;
   1686 		}
   1687 		m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
   1688 
   1689 		timer = IEEE80211_TRANS_WAIT;
   1690 		break;
   1691 
   1692 	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
   1693 	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
   1694 		/*
   1695 		 * asreq frame format
   1696 		 *	[2] capability information
   1697 		 *	[2] status
   1698 		 *	[2] association ID
   1699 		 *	[tlv] supported rates
   1700 		 *	[tlv] extended supported rates
   1701 		 *	[tlv] WME (if enabled and STA enabled)
   1702 		 */
   1703 		m = ieee80211_getmgtframe(&frm,
   1704 			 sizeof(u_int16_t)
   1705 		       + sizeof(u_int16_t)
   1706 		       + sizeof(u_int16_t)
   1707 		       + 2 + IEEE80211_RATE_SIZE
   1708 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
   1709 		       + sizeof(struct ieee80211_wme_param)
   1710 		);
   1711 		if (m == NULL)
   1712 			senderr(ENOMEM, is_tx_nobuf);
   1713 
   1714 		capinfo = IEEE80211_CAPINFO_ESS;
   1715 		if (ic->ic_flags & IEEE80211_F_PRIVACY)
   1716 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
   1717 		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   1718 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
   1719 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
   1720 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
   1721 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
   1722 		*(u_int16_t *)frm = htole16(capinfo);
   1723 		frm += 2;
   1724 
   1725 		*(u_int16_t *)frm = htole16(arg);	/* status */
   1726 		frm += 2;
   1727 
   1728 		if (arg == IEEE80211_STATUS_SUCCESS) {
   1729 			*(u_int16_t *)frm = htole16(ni->ni_associd);
   1730 			IEEE80211_NODE_STAT(ni, tx_assoc);
   1731 		} else {
   1732 			*(u_int16_t *)frm = 0;
   1733 			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
   1734 		}
   1735 		frm += 2;
   1736 
   1737 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
   1738 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
   1739 		if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL)
   1740 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
   1741 		m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
   1742 		break;
   1743 
   1744 	case IEEE80211_FC0_SUBTYPE_DISASSOC:
   1745 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_ASSOC,
   1746 			"[%s] send station disassociate (reason %d)\n",
   1747 			ether_sprintf(ni->ni_macaddr), arg);
   1748 		m = ieee80211_getmgtframe(&frm, sizeof(u_int16_t));
   1749 		if (m == NULL)
   1750 			senderr(ENOMEM, is_tx_nobuf);
   1751 		*(u_int16_t *)frm = htole16(arg);	/* reason */
   1752 		m->m_pkthdr.len = m->m_len = sizeof(u_int16_t);
   1753 
   1754 		IEEE80211_NODE_STAT(ni, tx_disassoc);
   1755 		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
   1756 		break;
   1757 
   1758 	default:
   1759 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
   1760 			"[%s] invalid mgmt frame type %u\n",
   1761 			ether_sprintf(ni->ni_macaddr), type);
   1762 		senderr(EINVAL, is_tx_unknownmgt);
   1763 		/* NOTREACHED */
   1764 	}
   1765 	ret = ieee80211_mgmt_output(ic, ni, m, type, timer);
   1766 	if (ret != 0) {
   1767 bad:
   1768 		ieee80211_free_node(ni);
   1769 	}
   1770 	return ret;
   1771 #undef senderr
   1772 }
   1773 
   1774 /*
   1775  * Build a RTS (Request To Send) control frame.
   1776  */
   1777 struct mbuf *
   1778 ieee80211_get_rts(struct ieee80211com *ic, const struct ieee80211_frame *wh,
   1779     uint16_t dur)
   1780 {
   1781 	struct ieee80211_frame_rts *rts;
   1782 	struct mbuf *m;
   1783 
   1784 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1785 	if (m == NULL)
   1786 		return NULL;
   1787 
   1788 	m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
   1789 
   1790 	rts = mtod(m, struct ieee80211_frame_rts *);
   1791 	rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
   1792 	    IEEE80211_FC0_SUBTYPE_RTS;
   1793 	rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   1794 	*(uint16_t *)rts->i_dur = htole16(dur);
   1795 	IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
   1796 	IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
   1797 
   1798 	return m;
   1799 }
   1800 
   1801 /*
   1802  * Build a CTS-to-self (Clear To Send) control frame.
   1803  */
   1804 struct mbuf *
   1805 ieee80211_get_cts_to_self(struct ieee80211com *ic, uint16_t dur)
   1806 {
   1807 	struct ieee80211_frame_cts *cts;
   1808 	struct mbuf *m;
   1809 
   1810 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1811 	if (m == NULL)
   1812 		return NULL;
   1813 
   1814 	m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
   1815 
   1816 	cts = mtod(m, struct ieee80211_frame_cts *);
   1817 	cts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
   1818 	    IEEE80211_FC0_SUBTYPE_CTS;
   1819 	cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   1820 	*(uint16_t *)cts->i_dur = htole16(dur);
   1821 	IEEE80211_ADDR_COPY(cts->i_ra, ic->ic_myaddr);
   1822 
   1823 	return m;
   1824 }
   1825 
   1826 /*
   1827  * Allocate a beacon frame and fill in the appropriate bits.
   1828  */
   1829 struct mbuf *
   1830 ieee80211_beacon_alloc(struct ieee80211com *ic, struct ieee80211_node *ni,
   1831 	struct ieee80211_beacon_offsets *bo)
   1832 {
   1833 	struct ifnet *ifp = ic->ic_ifp;
   1834 	struct ieee80211_frame *wh;
   1835 	struct mbuf *m;
   1836 	int pktlen;
   1837 	u_int8_t *frm, *efrm;
   1838 	u_int16_t capinfo;
   1839 	struct ieee80211_rateset *rs;
   1840 
   1841 	rs = &ni->ni_rates;
   1842 
   1843 	/*
   1844 	 * beacon frame format
   1845 	 *	[8] time stamp
   1846 	 *	[2] beacon interval
   1847 	 *	[2] cabability information
   1848 	 *	[tlv] ssid
   1849 	 *	[tlv] supported rates
   1850 	 *	[3] parameter set (DS)
   1851 	 *	[tlv] parameter set (IBSS/TIM)
   1852 	 *	[tlv] extended rate phy (ERP)
   1853 	 *	[tlv] extended supported rates
   1854 	 *	[tlv] WME parameters
   1855 	 *	[tlv] WPA/RSN parameters
   1856 	 * XXX Vendor-specific OIDs (e.g. Atheros)
   1857 	 *
   1858 	 * NB: we allocate the max space required for the TIM bitmap
   1859 	 * (ic_tim_len).
   1860 	 */
   1861 	pktlen =   8					/* time stamp */
   1862 		 + sizeof(u_int16_t)			/* beacon interval */
   1863 		 + sizeof(u_int16_t)			/* capabilities */
   1864 		 + 2 + ni->ni_esslen			/* ssid */
   1865 		 + 2 + IEEE80211_RATE_SIZE		/* supported rates */
   1866 		 + 2 + 1				/* DS parameters */
   1867 		 + 2 + 4 + ic->ic_tim_len		/* DTIM/IBSSPARMS */
   1868 		 + 2 + 1				/* ERP */
   1869 		 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
   1870 		 + (ic->ic_caps & IEEE80211_C_WME ?	/* WME */
   1871 			sizeof(struct ieee80211_wme_param) : 0)
   1872 		 + (ic->ic_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
   1873 			2*sizeof(struct ieee80211_ie_wpa) : 0)
   1874 		 ;
   1875 	m = ieee80211_getmgtframe(&frm, pktlen);
   1876 	if (m == NULL) {
   1877 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
   1878 			"%s: cannot get buf; size %u\n", __func__, pktlen);
   1879 		ic->ic_stats.is_tx_nobuf++;
   1880 		return NULL;
   1881 	}
   1882 
   1883 	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
   1884 	frm += 8;
   1885 
   1886 	*(u_int16_t *)frm = htole16(ni->ni_intval);
   1887 	frm += 2;
   1888 
   1889 	if (ic->ic_opmode == IEEE80211_M_IBSS)
   1890 		capinfo = IEEE80211_CAPINFO_IBSS;
   1891 	else
   1892 		capinfo = IEEE80211_CAPINFO_ESS;
   1893 	if (ic->ic_flags & IEEE80211_F_PRIVACY)
   1894 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
   1895 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   1896 	    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
   1897 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
   1898 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   1899 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
   1900 	bo->bo_caps = (u_int16_t *)frm;
   1901 	*(u_int16_t *)frm = htole16(capinfo);
   1902 	frm += 2;
   1903 
   1904 	*frm++ = IEEE80211_ELEMID_SSID;
   1905 	if ((ic->ic_flags & IEEE80211_F_HIDESSID) == 0) {
   1906 		*frm++ = ni->ni_esslen;
   1907 		memcpy(frm, ni->ni_essid, ni->ni_esslen);
   1908 		frm += ni->ni_esslen;
   1909 	} else
   1910 		*frm++ = 0;
   1911 
   1912 	frm = ieee80211_add_rates(frm, rs);
   1913 
   1914 	if (ic->ic_curmode != IEEE80211_MODE_FH) {
   1915 		*frm++ = IEEE80211_ELEMID_DSPARMS;
   1916 		*frm++ = 1;
   1917 		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
   1918 	}
   1919 
   1920 	bo->bo_tim = frm;
   1921 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
   1922 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
   1923 		*frm++ = 2;
   1924 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
   1925 		bo->bo_tim_len = 0;
   1926 	} else {
   1927 		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *)frm;
   1928 
   1929 		tie->tim_ie = IEEE80211_ELEMID_TIM;
   1930 		tie->tim_len = 4;	/* length */
   1931 		tie->tim_count = 0;	/* DTIM count */
   1932 		tie->tim_period = ic->ic_dtim_period;	/* DTIM period */
   1933 		tie->tim_bitctl = 0;	/* bitmap control */
   1934 		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
   1935 		frm += sizeof(struct ieee80211_tim_ie);
   1936 		bo->bo_tim_len = 1;
   1937 	}
   1938 
   1939 	bo->bo_trailer = frm;
   1940 	if (ic->ic_flags & IEEE80211_F_WME) {
   1941 		bo->bo_wme = frm;
   1942 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
   1943 		ic->ic_flags &= ~IEEE80211_F_WMEUPDATE;
   1944 	}
   1945 
   1946 	if (ic->ic_flags & IEEE80211_F_WPA)
   1947 		frm = ieee80211_add_wpa(frm, ic);
   1948 
   1949 	if (ic->ic_curmode == IEEE80211_MODE_11G)
   1950 		frm = ieee80211_add_erp(frm, ic);
   1951 
   1952 	efrm = ieee80211_add_xrates(frm, rs);
   1953 
   1954 	bo->bo_trailer_len = efrm - bo->bo_trailer;
   1955 	m->m_pkthdr.len = m->m_len = efrm - mtod(m, u_int8_t *);
   1956 
   1957 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
   1958 	IASSERT(m != NULL, ("no space for 802.11 header?"));
   1959 
   1960 	wh = mtod(m, struct ieee80211_frame *);
   1961 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
   1962 	    IEEE80211_FC0_SUBTYPE_BEACON;
   1963 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   1964 	*(u_int16_t *)wh->i_dur = 0;
   1965 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
   1966 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
   1967 	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
   1968 	*(u_int16_t *)wh->i_seq = 0;
   1969 
   1970 	return m;
   1971 }
   1972 
   1973 /*
   1974  * Update the dynamic parts of a beacon frame based on the current state.
   1975  */
   1976 int
   1977 ieee80211_beacon_update(struct ieee80211com *ic, struct ieee80211_node *ni,
   1978     struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast)
   1979 {
   1980 	int len_changed = 0;
   1981 	u_int16_t capinfo;
   1982 
   1983 	IEEE80211_BEACON_LOCK(ic);
   1984 
   1985 	/* XXX faster to recalculate entirely or just changes? */
   1986 	if (ic->ic_opmode == IEEE80211_M_IBSS)
   1987 		capinfo = IEEE80211_CAPINFO_IBSS;
   1988 	else
   1989 		capinfo = IEEE80211_CAPINFO_ESS;
   1990 	if (ic->ic_flags & IEEE80211_F_PRIVACY)
   1991 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
   1992 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
   1993 	    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
   1994 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
   1995 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
   1996 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
   1997 	*bo->bo_caps = htole16(capinfo);
   1998 
   1999 	if (ic->ic_flags & IEEE80211_F_WME) {
   2000 		struct ieee80211_wme_state *wme = &ic->ic_wme;
   2001 
   2002 		/*
   2003 		 * Check for aggressive mode change.  When there is
   2004 		 * significant high priority traffic in the BSS
   2005 		 * throttle back BE traffic by using conservative
   2006 		 * parameters.  Otherwise BE uses aggressive params
   2007 		 * to optimize performance of legacy/non-QoS traffic.
   2008 		 */
   2009 		if (wme->wme_flags & WME_F_AGGRMODE) {
   2010 			if (wme->wme_hipri_traffic >
   2011 			    wme->wme_hipri_switch_thresh) {
   2012 				IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME,
   2013 				    "%s: traffic %u, disable aggressive mode\n",
   2014 				    __func__, wme->wme_hipri_traffic);
   2015 				wme->wme_flags &= ~WME_F_AGGRMODE;
   2016 				ieee80211_wme_updateparams_locked(ic);
   2017 				wme->wme_hipri_traffic =
   2018 					wme->wme_hipri_switch_hysteresis;
   2019 			} else
   2020 				wme->wme_hipri_traffic = 0;
   2021 		} else {
   2022 			if (wme->wme_hipri_traffic <=
   2023 			    wme->wme_hipri_switch_thresh) {
   2024 				IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME,
   2025 				    "%s: traffic %u, enable aggressive mode\n",
   2026 				    __func__, wme->wme_hipri_traffic);
   2027 				wme->wme_flags |= WME_F_AGGRMODE;
   2028 				ieee80211_wme_updateparams_locked(ic);
   2029 				wme->wme_hipri_traffic = 0;
   2030 			} else
   2031 				wme->wme_hipri_traffic =
   2032 					wme->wme_hipri_switch_hysteresis;
   2033 		}
   2034 		if (ic->ic_flags & IEEE80211_F_WMEUPDATE) {
   2035 			(void)ieee80211_add_wme_param(bo->bo_wme, wme);
   2036 			ic->ic_flags &= ~IEEE80211_F_WMEUPDATE;
   2037 		}
   2038 	}
   2039 
   2040 #ifndef IEEE80211_NO_HOSTAP
   2041 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {	/* NB: no IBSS support*/
   2042 		struct ieee80211_tim_ie *tie =
   2043 			(struct ieee80211_tim_ie *)bo->bo_tim;
   2044 		if (ic->ic_flags & IEEE80211_F_TIMUPDATE) {
   2045 			u_int timlen, timoff, i;
   2046 			/*
   2047 			 * ATIM/DTIM needs updating.  If it fits in the
   2048 			 * current space allocated then just copy in the
   2049 			 * new bits.  Otherwise we need to move any trailing
   2050 			 * data to make room.  Note that we know there is
   2051 			 * contiguous space because ieee80211_beacon_allocate
   2052 			 * insures there is space in the mbuf to write a
   2053 			 * maximal-size virtual bitmap (based on ic_max_aid).
   2054 			 */
   2055 			/*
   2056 			 * Calculate the bitmap size and offset, copy any
   2057 			 * trailer out of the way, and then copy in the
   2058 			 * new bitmap and update the information element.
   2059 			 * Note that the tim bitmap must contain at least
   2060 			 * one byte and any offset must be even.
   2061 			 */
   2062 			if (ic->ic_ps_pending != 0) {
   2063 				timoff = 128;		/* impossibly large */
   2064 				for (i = 0; i < ic->ic_tim_len; i++)
   2065 					if (ic->ic_tim_bitmap[i]) {
   2066 						timoff = i &~ 1;
   2067 						break;
   2068 					}
   2069 				IASSERT(timoff != 128, ("tim bitmap empty!"));
   2070 				for (i = ic->ic_tim_len-1; i >= timoff; i--)
   2071 					if (ic->ic_tim_bitmap[i])
   2072 						break;
   2073 				timlen = 1 + (i - timoff);
   2074 			} else {
   2075 				timoff = 0;
   2076 				timlen = 1;
   2077 			}
   2078 			if (timlen != bo->bo_tim_len) {
   2079 				/* copy up/down trailer */
   2080 				memmove(tie->tim_bitmap+timlen, bo->bo_trailer,
   2081 					bo->bo_trailer_len);
   2082 				bo->bo_trailer = tie->tim_bitmap+timlen;
   2083 				bo->bo_wme = bo->bo_trailer;
   2084 				bo->bo_tim_len = timlen;
   2085 
   2086 				/* update information element */
   2087 				tie->tim_len = 3 + timlen;
   2088 				tie->tim_bitctl = timoff;
   2089 				len_changed = 1;
   2090 			}
   2091 			memcpy(tie->tim_bitmap, ic->ic_tim_bitmap + timoff,
   2092 				bo->bo_tim_len);
   2093 
   2094 			ic->ic_flags &= ~IEEE80211_F_TIMUPDATE;
   2095 
   2096 			IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER,
   2097 				"%s: TIM updated, pending %u, off %u, len %u\n",
   2098 				__func__, ic->ic_ps_pending, timoff, timlen);
   2099 		}
   2100 		/* count down DTIM period */
   2101 		if (tie->tim_count == 0)
   2102 			tie->tim_count = tie->tim_period - 1;
   2103 		else
   2104 			tie->tim_count--;
   2105 		/* update state for buffered multicast frames on DTIM */
   2106 		if (mcast && (tie->tim_count == 1 || tie->tim_period == 1))
   2107 			tie->tim_bitctl |= 1;
   2108 		else
   2109 			tie->tim_bitctl &= ~1;
   2110 	}
   2111 #endif /* !IEEE80211_NO_HOSTAP */
   2112 
   2113 	IEEE80211_BEACON_UNLOCK(ic);
   2114 
   2115 	return len_changed;
   2116 }
   2117 
   2118 /*
   2119  * Save an outbound packet for a node in power-save sleep state.
   2120  * The new packet is placed on the node's saved queue, and the TIM
   2121  * is changed, if necessary.
   2122  */
   2123 void
   2124 ieee80211_pwrsave(struct ieee80211com *ic, struct ieee80211_node *ni,
   2125     struct mbuf *m)
   2126 {
   2127 	int qlen, age;
   2128 
   2129 	IEEE80211_NODE_SAVEQ_LOCK(ni);
   2130 	if (IF_QFULL(&ni->ni_savedq)) {
   2131 		IF_DROP(&ni->ni_savedq);
   2132 		IEEE80211_NODE_SAVEQ_UNLOCK(ni);
   2133 
   2134 		IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
   2135 		    "[%s] pwr save q overflow, drops %" PRIu64
   2136 		    " (size %d)\n",
   2137 		    ether_sprintf(ni->ni_macaddr),
   2138 		    ni->ni_savedq.ifq_drops, IEEE80211_PS_MAX_QUEUE);
   2139 #ifdef IEEE80211_DEBUG
   2140 		if (ieee80211_msg_dumppkts(ic))
   2141 			ieee80211_dump_pkt(mtod(m, void *), m->m_len, -1, -1);
   2142 #endif
   2143 
   2144 		m_freem(m);
   2145 		return;
   2146 	}
   2147 
   2148 	/*
   2149 	 * Tag the frame with its expiry time and insert
   2150 	 * it in the queue.  The aging interval is 4 times
   2151 	 * the listen interval specified by the station.
   2152 	 * Frames that sit around too long are reclaimed
   2153 	 * using this information.
   2154 	 */
   2155 	/* XXX handle overflow? */
   2156 	age = ((ni->ni_intval * ic->ic_bintval) << 2) / 1024; /* TU -> secs */
   2157 	_IEEE80211_NODE_SAVEQ_ENQUEUE(ni, m, qlen, age);
   2158 	IEEE80211_NODE_SAVEQ_UNLOCK(ni);
   2159 
   2160 	IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER,
   2161 		"[%s] save frame with age %d, %u now queued\n",
   2162 		ether_sprintf(ni->ni_macaddr), age, qlen);
   2163 
   2164 	if (qlen == 1)
   2165 		ic->ic_set_tim(ni, 1);
   2166 }
   2167