Home | History | Annotate | Line # | Download | only in display
      1 /*	$NetBSD: intel_dp.c,v 1.7 2021/12/19 12:41:54 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright  2008 Intel Corporation
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the "Software"),
      8  * to deal in the Software without restriction, including without limitation
      9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     10  * and/or sell copies of the Software, and to permit persons to whom the
     11  * Software is furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice (including the next
     14  * paragraph) shall be included in all copies or substantial portions of the
     15  * Software.
     16  *
     17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     22  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     23  * IN THE SOFTWARE.
     24  *
     25  * Authors:
     26  *    Keith Packard <keithp (at) keithp.com>
     27  *
     28  */
     29 
     30 #include <sys/cdefs.h>
     31 __KERNEL_RCSID(0, "$NetBSD: intel_dp.c,v 1.7 2021/12/19 12:41:54 riastradh Exp $");
     32 
     33 #include <linux/export.h>
     34 #include <linux/i2c.h>
     35 #include <linux/notifier.h>
     36 #include <linux/reboot.h>
     37 #include <linux/slab.h>
     38 #include <linux/types.h>
     39 
     40 #include <asm/byteorder.h>
     41 
     42 #include <drm/drm_atomic_helper.h>
     43 #include <drm/drm_crtc.h>
     44 #include <drm/drm_dp_helper.h>
     45 #include <drm/drm_edid.h>
     46 #include <drm/drm_hdcp.h>
     47 #include <drm/drm_probe_helper.h>
     48 #include <drm/i915_drm.h>
     49 
     50 #include "i915_debugfs.h"
     51 #include "i915_drv.h"
     52 #include "i915_trace.h"
     53 #include "intel_atomic.h"
     54 #include "intel_audio.h"
     55 #include "intel_connector.h"
     56 #include "intel_ddi.h"
     57 #include "intel_display_types.h"
     58 #include "intel_dp.h"
     59 #include "intel_dp_link_training.h"
     60 #include "intel_dp_mst.h"
     61 #include "intel_dpio_phy.h"
     62 #include "intel_fifo_underrun.h"
     63 #include "intel_hdcp.h"
     64 #include "intel_hdmi.h"
     65 #include "intel_hotplug.h"
     66 #include "intel_lspcon.h"
     67 #include "intel_lvds.h"
     68 #include "intel_panel.h"
     69 #include "intel_psr.h"
     70 #include "intel_sideband.h"
     71 #include "intel_tc.h"
     72 #include "intel_vdsc.h"
     73 
     74 #define DP_DPRX_ESI_LEN 14
     75 
     76 /* DP DSC throughput values used for slice count calculations KPixels/s */
     77 #define DP_DSC_PEAK_PIXEL_RATE			2720000
     78 #define DP_DSC_MAX_ENC_THROUGHPUT_0		340000
     79 #define DP_DSC_MAX_ENC_THROUGHPUT_1		400000
     80 
     81 /* DP DSC FEC Overhead factor = 1/(0.972261) */
     82 #define DP_DSC_FEC_OVERHEAD_FACTOR		972261
     83 
     84 /* Compliance test status bits  */
     85 #define INTEL_DP_RESOLUTION_SHIFT_MASK	0
     86 #define INTEL_DP_RESOLUTION_PREFERRED	(1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
     87 #define INTEL_DP_RESOLUTION_STANDARD	(2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
     88 #define INTEL_DP_RESOLUTION_FAILSAFE	(3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
     89 
     90 struct dp_link_dpll {
     91 	int clock;
     92 	struct dpll dpll;
     93 };
     94 
     95 static const struct dp_link_dpll g4x_dpll[] = {
     96 	{ 162000,
     97 		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
     98 	{ 270000,
     99 		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
    100 };
    101 
    102 static const struct dp_link_dpll pch_dpll[] = {
    103 	{ 162000,
    104 		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
    105 	{ 270000,
    106 		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
    107 };
    108 
    109 static const struct dp_link_dpll vlv_dpll[] = {
    110 	{ 162000,
    111 		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
    112 	{ 270000,
    113 		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
    114 };
    115 
    116 /*
    117  * CHV supports eDP 1.4 that have  more link rates.
    118  * Below only provides the fixed rate but exclude variable rate.
    119  */
    120 static const struct dp_link_dpll chv_dpll[] = {
    121 	/*
    122 	 * CHV requires to program fractional division for m2.
    123 	 * m2 is stored in fixed point format using formula below
    124 	 * (m2_int << 22) | m2_fraction
    125 	 */
    126 	{ 162000,	/* m2_int = 32, m2_fraction = 1677722 */
    127 		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
    128 	{ 270000,	/* m2_int = 27, m2_fraction = 0 */
    129 		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
    130 };
    131 
    132 /* Constants for DP DSC configurations */
    133 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};
    134 
    135 /* With Single pipe configuration, HW is capable of supporting maximum
    136  * of 4 slices per line.
    137  */
    138 static const u8 valid_dsc_slicecount[] = {1, 2, 4};
    139 
    140 /**
    141  * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
    142  * @intel_dp: DP struct
    143  *
    144  * If a CPU or PCH DP output is attached to an eDP panel, this function
    145  * will return true, and false otherwise.
    146  */
    147 bool intel_dp_is_edp(struct intel_dp *intel_dp)
    148 {
    149 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
    150 
    151 	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
    152 }
    153 
    154 static struct intel_dp *intel_attached_dp(struct intel_connector *connector)
    155 {
    156 	return enc_to_intel_dp(intel_attached_encoder(connector));
    157 }
    158 
    159 static void intel_dp_link_down(struct intel_encoder *encoder,
    160 			       const struct intel_crtc_state *old_crtc_state);
    161 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
    162 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
    163 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
    164 					   const struct intel_crtc_state *crtc_state);
    165 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
    166 				      enum pipe pipe);
    167 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
    168 
    169 /* update sink rates from dpcd */
    170 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
    171 {
    172 	static const int dp_rates[] = {
    173 		162000, 270000, 540000, 810000
    174 	};
    175 	int i, max_rate;
    176 
    177 	max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
    178 
    179 	for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
    180 		if (dp_rates[i] > max_rate)
    181 			break;
    182 		intel_dp->sink_rates[i] = dp_rates[i];
    183 	}
    184 
    185 	intel_dp->num_sink_rates = i;
    186 }
    187 
    188 /* Get length of rates array potentially limited by max_rate. */
    189 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
    190 {
    191 	int i;
    192 
    193 	/* Limit results by potentially reduced max rate */
    194 	for (i = 0; i < len; i++) {
    195 		if (rates[len - i - 1] <= max_rate)
    196 			return len - i;
    197 	}
    198 
    199 	return 0;
    200 }
    201 
    202 /* Get length of common rates array potentially limited by max_rate. */
    203 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
    204 					  int max_rate)
    205 {
    206 	return intel_dp_rate_limit_len(intel_dp->common_rates,
    207 				       intel_dp->num_common_rates, max_rate);
    208 }
    209 
    210 /* Theoretical max between source and sink */
    211 static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
    212 {
    213 	return intel_dp->common_rates[intel_dp->num_common_rates - 1];
    214 }
    215 
    216 /* Theoretical max between source and sink */
    217 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
    218 {
    219 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
    220 	int source_max = intel_dig_port->max_lanes;
    221 	int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
    222 	int fia_max = intel_tc_port_fia_max_lane_count(intel_dig_port);
    223 
    224 	return min3(source_max, sink_max, fia_max);
    225 }
    226 
    227 int intel_dp_max_lane_count(struct intel_dp *intel_dp)
    228 {
    229 	return intel_dp->max_link_lane_count;
    230 }
    231 
    232 int
    233 intel_dp_link_required(int pixel_clock, int bpp)
    234 {
    235 	/* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
    236 	return DIV_ROUND_UP(pixel_clock * bpp, 8);
    237 }
    238 
    239 int
    240 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
    241 {
    242 	/* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
    243 	 * link rate that is generally expressed in Gbps. Since, 8 bits of data
    244 	 * is transmitted every LS_Clk per lane, there is no need to account for
    245 	 * the channel encoding that is done in the PHY layer here.
    246 	 */
    247 
    248 	return max_link_clock * max_lanes;
    249 }
    250 
    251 static int
    252 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
    253 {
    254 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
    255 	struct intel_encoder *encoder = &intel_dig_port->base;
    256 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
    257 	int max_dotclk = dev_priv->max_dotclk_freq;
    258 	int ds_max_dotclk;
    259 
    260 	int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
    261 
    262 	if (type != DP_DS_PORT_TYPE_VGA)
    263 		return max_dotclk;
    264 
    265 	ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
    266 						    intel_dp->downstream_ports);
    267 
    268 	if (ds_max_dotclk != 0)
    269 		max_dotclk = min(max_dotclk, ds_max_dotclk);
    270 
    271 	return max_dotclk;
    272 }
    273 
    274 static int cnl_max_source_rate(struct intel_dp *intel_dp)
    275 {
    276 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
    277 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
    278 	enum port port = dig_port->base.port;
    279 
    280 	u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
    281 
    282 	/* Low voltage SKUs are limited to max of 5.4G */
    283 	if (voltage == VOLTAGE_INFO_0_85V)
    284 		return 540000;
    285 
    286 	/* For this SKU 8.1G is supported in all ports */
    287 	if (IS_CNL_WITH_PORT_F(dev_priv))
    288 		return 810000;
    289 
    290 	/* For other SKUs, max rate on ports A and D is 5.4G */
    291 	if (port == PORT_A || port == PORT_D)
    292 		return 540000;
    293 
    294 	return 810000;
    295 }
    296 
    297 static int icl_max_source_rate(struct intel_dp *intel_dp)
    298 {
    299 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
    300 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
    301 	enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
    302 
    303 	if (intel_phy_is_combo(dev_priv, phy) &&
    304 	    !IS_ELKHARTLAKE(dev_priv) &&
    305 	    !intel_dp_is_edp(intel_dp))
    306 		return 540000;
    307 
    308 	return 810000;
    309 }
    310 
    311 static void
    312 intel_dp_set_source_rates(struct intel_dp *intel_dp)
    313 {
    314 	/* The values must be in increasing order */
    315 	static const int cnl_rates[] = {
    316 		162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
    317 	};
    318 	static const int bxt_rates[] = {
    319 		162000, 216000, 243000, 270000, 324000, 432000, 540000
    320 	};
    321 	static const int skl_rates[] = {
    322 		162000, 216000, 270000, 324000, 432000, 540000
    323 	};
    324 	static const int hsw_rates[] = {
    325 		162000, 270000, 540000
    326 	};
    327 	static const int g4x_rates[] = {
    328 		162000, 270000
    329 	};
    330 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
    331 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
    332 	const struct ddi_vbt_port_info *info =
    333 		&dev_priv->vbt.ddi_port_info[dig_port->base.port];
    334 	const int *source_rates;
    335 	int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate;
    336 
    337 	/* This should only be done once */
    338 	WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates);
    339 
    340 	if (INTEL_GEN(dev_priv) >= 10) {
    341 		source_rates = cnl_rates;
    342 		size = ARRAY_SIZE(cnl_rates);
    343 		if (IS_GEN(dev_priv, 10))
    344 			max_rate = cnl_max_source_rate(intel_dp);
    345 		else
    346 			max_rate = icl_max_source_rate(intel_dp);
    347 	} else if (IS_GEN9_LP(dev_priv)) {
    348 		source_rates = bxt_rates;
    349 		size = ARRAY_SIZE(bxt_rates);
    350 	} else if (IS_GEN9_BC(dev_priv)) {
    351 		source_rates = skl_rates;
    352 		size = ARRAY_SIZE(skl_rates);
    353 	} else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
    354 		   IS_BROADWELL(dev_priv)) {
    355 		source_rates = hsw_rates;
    356 		size = ARRAY_SIZE(hsw_rates);
    357 	} else {
    358 		source_rates = g4x_rates;
    359 		size = ARRAY_SIZE(g4x_rates);
    360 	}
    361 
    362 	if (max_rate && vbt_max_rate)
    363 		max_rate = min(max_rate, vbt_max_rate);
    364 	else if (vbt_max_rate)
    365 		max_rate = vbt_max_rate;
    366 
    367 	if (max_rate)
    368 		size = intel_dp_rate_limit_len(source_rates, size, max_rate);
    369 
    370 	intel_dp->source_rates = source_rates;
    371 	intel_dp->num_source_rates = size;
    372 }
    373 
    374 static int intersect_rates(const int *source_rates, int source_len,
    375 			   const int *sink_rates, int sink_len,
    376 			   int *common_rates)
    377 {
    378 	int i = 0, j = 0, k = 0;
    379 
    380 	while (i < source_len && j < sink_len) {
    381 		if (source_rates[i] == sink_rates[j]) {
    382 			if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
    383 				return k;
    384 			common_rates[k] = source_rates[i];
    385 			++k;
    386 			++i;
    387 			++j;
    388 		} else if (source_rates[i] < sink_rates[j]) {
    389 			++i;
    390 		} else {
    391 			++j;
    392 		}
    393 	}
    394 	return k;
    395 }
    396 
    397 /* return index of rate in rates array, or -1 if not found */
    398 static int intel_dp_rate_index(const int *rates, int len, int rate)
    399 {
    400 	int i;
    401 
    402 	for (i = 0; i < len; i++)
    403 		if (rate == rates[i])
    404 			return i;
    405 
    406 	return -1;
    407 }
    408 
    409 static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
    410 {
    411 	WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
    412 
    413 	intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
    414 						     intel_dp->num_source_rates,
    415 						     intel_dp->sink_rates,
    416 						     intel_dp->num_sink_rates,
    417 						     intel_dp->common_rates);
    418 
    419 	/* Paranoia, there should always be something in common. */
    420 	if (WARN_ON(intel_dp->num_common_rates == 0)) {
    421 		intel_dp->common_rates[0] = 162000;
    422 		intel_dp->num_common_rates = 1;
    423 	}
    424 }
    425 
    426 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
    427 				       u8 lane_count)
    428 {
    429 	/*
    430 	 * FIXME: we need to synchronize the current link parameters with
    431 	 * hardware readout. Currently fast link training doesn't work on
    432 	 * boot-up.
    433 	 */
    434 	if (link_rate == 0 ||
    435 	    link_rate > intel_dp->max_link_rate)
    436 		return false;
    437 
    438 	if (lane_count == 0 ||
    439 	    lane_count > intel_dp_max_lane_count(intel_dp))
    440 		return false;
    441 
    442 	return true;
    443 }
    444 
    445 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
    446 						     int link_rate,
    447 						     u8 lane_count)
    448 {
    449 	const struct drm_display_mode *fixed_mode =
    450 		intel_dp->attached_connector->panel.fixed_mode;
    451 	int mode_rate, max_rate;
    452 
    453 	mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
    454 	max_rate = intel_dp_max_data_rate(link_rate, lane_count);
    455 	if (mode_rate > max_rate)
    456 		return false;
    457 
    458 	return true;
    459 }
    460 
    461 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
    462 					    int link_rate, u8 lane_count)
    463 {
    464 	int index;
    465 
    466 	index = intel_dp_rate_index(intel_dp->common_rates,
    467 				    intel_dp->num_common_rates,
    468 				    link_rate);
    469 	if (index > 0) {
    470 		if (intel_dp_is_edp(intel_dp) &&
    471 		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
    472 							      intel_dp->common_rates[index - 1],
    473 							      lane_count)) {
    474 			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
    475 			return 0;
    476 		}
    477 		intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
    478 		intel_dp->max_link_lane_count = lane_count;
    479 	} else if (lane_count > 1) {
    480 		if (intel_dp_is_edp(intel_dp) &&
    481 		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
    482 							      intel_dp_max_common_rate(intel_dp),
    483 							      lane_count >> 1)) {
    484 			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
    485 			return 0;
    486 		}
    487 		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
    488 		intel_dp->max_link_lane_count = lane_count >> 1;
    489 	} else {
    490 		DRM_ERROR("Link Training Unsuccessful\n");
    491 		return -1;
    492 	}
    493 
    494 	return 0;
    495 }
    496 
    497 u32 intel_dp_mode_to_fec_clock(u32 mode_clock)
    498 {
    499 	return div_u64(mul_u32_u32(mode_clock, 1000000U),
    500 		       DP_DSC_FEC_OVERHEAD_FACTOR);
    501 }
    502 
    503 static int
    504 small_joiner_ram_size_bits(struct drm_i915_private *i915)
    505 {
    506 	if (INTEL_GEN(i915) >= 11)
    507 		return 7680 * 8;
    508 	else
    509 		return 6144 * 8;
    510 }
    511 
    512 static u16 intel_dp_dsc_get_output_bpp(struct drm_i915_private *i915,
    513 				       u32 link_clock, u32 lane_count,
    514 				       u32 mode_clock, u32 mode_hdisplay)
    515 {
    516 	u32 bits_per_pixel, max_bpp_small_joiner_ram;
    517 	int i;
    518 
    519 	/*
    520 	 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
    521 	 * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP)
    522 	 * for SST -> TimeSlotsPerMTP is 1,
    523 	 * for MST -> TimeSlotsPerMTP has to be calculated
    524 	 */
    525 	bits_per_pixel = (link_clock * lane_count * 8) /
    526 			 intel_dp_mode_to_fec_clock(mode_clock);
    527 	DRM_DEBUG_KMS("Max link bpp: %u\n", bits_per_pixel);
    528 
    529 	/* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
    530 	max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) /
    531 		mode_hdisplay;
    532 	DRM_DEBUG_KMS("Max small joiner bpp: %u\n", max_bpp_small_joiner_ram);
    533 
    534 	/*
    535 	 * Greatest allowed DSC BPP = MIN (output BPP from available Link BW
    536 	 * check, output bpp from small joiner RAM check)
    537 	 */
    538 	bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);
    539 
    540 	/* Error out if the max bpp is less than smallest allowed valid bpp */
    541 	if (bits_per_pixel < valid_dsc_bpp[0]) {
    542 		DRM_DEBUG_KMS("Unsupported BPP %u, min %u\n",
    543 			      bits_per_pixel, valid_dsc_bpp[0]);
    544 		return 0;
    545 	}
    546 
    547 	/* Find the nearest match in the array of known BPPs from VESA */
    548 	for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
    549 		if (bits_per_pixel < valid_dsc_bpp[i + 1])
    550 			break;
    551 	}
    552 	bits_per_pixel = valid_dsc_bpp[i];
    553 
    554 	/*
    555 	 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
    556 	 * fractional part is 0
    557 	 */
    558 	return bits_per_pixel << 4;
    559 }
    560 
    561 static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
    562 				       int mode_clock, int mode_hdisplay)
    563 {
    564 	u8 min_slice_count, i;
    565 	int max_slice_width;
    566 
    567 	if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
    568 		min_slice_count = DIV_ROUND_UP(mode_clock,
    569 					       DP_DSC_MAX_ENC_THROUGHPUT_0);
    570 	else
    571 		min_slice_count = DIV_ROUND_UP(mode_clock,
    572 					       DP_DSC_MAX_ENC_THROUGHPUT_1);
    573 
    574 	max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
    575 	if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
    576 		DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n",
    577 			      max_slice_width);
    578 		return 0;
    579 	}
    580 	/* Also take into account max slice width */
    581 	min_slice_count = min_t(u8, min_slice_count,
    582 				DIV_ROUND_UP(mode_hdisplay,
    583 					     max_slice_width));
    584 
    585 	/* Find the closest match to the valid slice count values */
    586 	for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
    587 		if (valid_dsc_slicecount[i] >
    588 		    drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
    589 						    false))
    590 			break;
    591 		if (min_slice_count  <= valid_dsc_slicecount[i])
    592 			return valid_dsc_slicecount[i];
    593 	}
    594 
    595 	DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count);
    596 	return 0;
    597 }
    598 
    599 static bool intel_dp_hdisplay_bad(struct drm_i915_private *dev_priv,
    600 				  int hdisplay)
    601 {
    602 	/*
    603 	 * Older platforms don't like hdisplay==4096 with DP.
    604 	 *
    605 	 * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline
    606 	 * and frame counter increment), but we don't get vblank interrupts,
    607 	 * and the pipe underruns immediately. The link also doesn't seem
    608 	 * to get trained properly.
    609 	 *
    610 	 * On CHV the vblank interrupts don't seem to disappear but
    611 	 * otherwise the symptoms are similar.
    612 	 *
    613 	 * TODO: confirm the behaviour on HSW+
    614 	 */
    615 	return hdisplay == 4096 && !HAS_DDI(dev_priv);
    616 }
    617 
    618 static enum drm_mode_status
    619 intel_dp_mode_valid(struct drm_connector *connector,
    620 		    struct drm_display_mode *mode)
    621 {
    622 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
    623 	struct intel_connector *intel_connector = to_intel_connector(connector);
    624 	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
    625 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
    626 	int target_clock = mode->clock;
    627 	int max_rate, mode_rate, max_lanes, max_link_clock;
    628 	int max_dotclk;
    629 	u16 dsc_max_output_bpp = 0;
    630 	u8 dsc_slice_count = 0;
    631 
    632 	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
    633 		return MODE_NO_DBLESCAN;
    634 
    635 	max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
    636 
    637 	if (intel_dp_is_edp(intel_dp) && fixed_mode) {
    638 		if (mode->hdisplay > fixed_mode->hdisplay)
    639 			return MODE_PANEL;
    640 
    641 		if (mode->vdisplay > fixed_mode->vdisplay)
    642 			return MODE_PANEL;
    643 
    644 		target_clock = fixed_mode->clock;
    645 	}
    646 
    647 	max_link_clock = intel_dp_max_link_rate(intel_dp);
    648 	max_lanes = intel_dp_max_lane_count(intel_dp);
    649 
    650 	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
    651 	mode_rate = intel_dp_link_required(target_clock, 18);
    652 
    653 	if (intel_dp_hdisplay_bad(dev_priv, mode->hdisplay))
    654 		return MODE_H_ILLEGAL;
    655 
    656 	/*
    657 	 * Output bpp is stored in 6.4 format so right shift by 4 to get the
    658 	 * integer value since we support only integer values of bpp.
    659 	 */
    660 	if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
    661 	    drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
    662 		if (intel_dp_is_edp(intel_dp)) {
    663 			dsc_max_output_bpp =
    664 				drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
    665 			dsc_slice_count =
    666 				drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
    667 								true);
    668 		} else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
    669 			dsc_max_output_bpp =
    670 				intel_dp_dsc_get_output_bpp(dev_priv,
    671 							    max_link_clock,
    672 							    max_lanes,
    673 							    target_clock,
    674 							    mode->hdisplay) >> 4;
    675 			dsc_slice_count =
    676 				intel_dp_dsc_get_slice_count(intel_dp,
    677 							     target_clock,
    678 							     mode->hdisplay);
    679 		}
    680 	}
    681 
    682 	if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
    683 	    target_clock > max_dotclk)
    684 		return MODE_CLOCK_HIGH;
    685 
    686 	if (mode->clock < 10000)
    687 		return MODE_CLOCK_LOW;
    688 
    689 	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
    690 		return MODE_H_ILLEGAL;
    691 
    692 	return intel_mode_valid_max_plane_size(dev_priv, mode);
    693 }
    694 
    695 u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
    696 {
    697 	int i;
    698 	u32 v = 0;
    699 
    700 	if (src_bytes > 4)
    701 		src_bytes = 4;
    702 	for (i = 0; i < src_bytes; i++)
    703 		v |= ((u32)src[i]) << ((3 - i) * 8);
    704 	return v;
    705 }
    706 
    707 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
    708 {
    709 	int i;
    710 	if (dst_bytes > 4)
    711 		dst_bytes = 4;
    712 	for (i = 0; i < dst_bytes; i++)
    713 		dst[i] = src >> ((3-i) * 8);
    714 }
    715 
    716 static void
    717 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
    718 static void
    719 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
    720 					      bool force_disable_vdd);
    721 static void
    722 intel_dp_pps_init(struct intel_dp *intel_dp);
    723 
    724 static intel_wakeref_t
    725 pps_lock(struct intel_dp *intel_dp)
    726 {
    727 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
    728 	intel_wakeref_t wakeref;
    729 
    730 	/*
    731 	 * See intel_power_sequencer_reset() why we need
    732 	 * a power domain reference here.
    733 	 */
    734 	wakeref = intel_display_power_get(dev_priv,
    735 					  intel_aux_power_domain(dp_to_dig_port(intel_dp)));
    736 
    737 	mutex_lock(&dev_priv->pps_mutex);
    738 
    739 	return wakeref;
    740 }
    741 
    742 static intel_wakeref_t
    743 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
    744 {
    745 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
    746 
    747 	mutex_unlock(&dev_priv->pps_mutex);
    748 	intel_display_power_put(dev_priv,
    749 				intel_aux_power_domain(dp_to_dig_port(intel_dp)),
    750 				wakeref);
    751 	return 0;
    752 }
    753 
    754 #define with_pps_lock(dp, wf) \
    755 	for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))
    756 
    757 static void
    758 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
    759 {
    760 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
    761 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
    762 	enum pipe pipe = intel_dp->pps_pipe;
    763 	bool pll_enabled, release_cl_override = false;
    764 	enum dpio_phy phy = DPIO_PHY(pipe);
    765 	enum dpio_channel ch = vlv_pipe_to_channel(pipe);
    766 	u32 DP;
    767 
    768 	if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
    769 		 "skipping pipe %c power sequencer kick due to [ENCODER:%d:%s] being active\n",
    770 		 pipe_name(pipe), intel_dig_port->base.base.base.id,
    771 		 intel_dig_port->base.base.name))
    772 		return;
    773 
    774 	DRM_DEBUG_KMS("kicking pipe %c power sequencer for [ENCODER:%d:%s]\n",
    775 		      pipe_name(pipe), intel_dig_port->base.base.base.id,
    776 		      intel_dig_port->base.base.name);
    777 
    778 	/* Preserve the BIOS-computed detected bit. This is
    779 	 * supposed to be read-only.
    780 	 */
    781 	DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
    782 	DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
    783 	DP |= DP_PORT_WIDTH(1);
    784 	DP |= DP_LINK_TRAIN_PAT_1;
    785 
    786 	if (IS_CHERRYVIEW(dev_priv))
    787 		DP |= DP_PIPE_SEL_CHV(pipe);
    788 	else
    789 		DP |= DP_PIPE_SEL(pipe);
    790 
    791 	pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
    792 
    793 	/*
    794 	 * The DPLL for the pipe must be enabled for this to work.
    795 	 * So enable temporarily it if it's not already enabled.
    796 	 */
    797 	if (!pll_enabled) {
    798 		release_cl_override = IS_CHERRYVIEW(dev_priv) &&
    799 			!chv_phy_powergate_ch(dev_priv, phy, ch, true);
    800 
    801 		if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
    802 				     &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
    803 			DRM_ERROR("Failed to force on pll for pipe %c!\n",
    804 				  pipe_name(pipe));
    805 			return;
    806 		}
    807 	}
    808 
    809 	/*
    810 	 * Similar magic as in intel_dp_enable_port().
    811 	 * We _must_ do this port enable + disable trick
    812 	 * to make this power sequencer lock onto the port.
    813 	 * Otherwise even VDD force bit won't work.
    814 	 */
    815 	I915_WRITE(intel_dp->output_reg, DP);
    816 	POSTING_READ(intel_dp->output_reg);
    817 
    818 	I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
    819 	POSTING_READ(intel_dp->output_reg);
    820 
    821 	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
    822 	POSTING_READ(intel_dp->output_reg);
    823 
    824 	if (!pll_enabled) {
    825 		vlv_force_pll_off(dev_priv, pipe);
    826 
    827 		if (release_cl_override)
    828 			chv_phy_powergate_ch(dev_priv, phy, ch, false);
    829 	}
    830 }
    831 
    832 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
    833 {
    834 	struct intel_encoder *encoder;
    835 	unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
    836 
    837 	/*
    838 	 * We don't have power sequencer currently.
    839 	 * Pick one that's not used by other ports.
    840 	 */
    841 	for_each_intel_dp(&dev_priv->drm, encoder) {
    842 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
    843 
    844 		if (encoder->type == INTEL_OUTPUT_EDP) {
    845 			WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
    846 				intel_dp->active_pipe != intel_dp->pps_pipe);
    847 
    848 			if (intel_dp->pps_pipe != INVALID_PIPE)
    849 				pipes &= ~(1 << intel_dp->pps_pipe);
    850 		} else {
    851 			WARN_ON(intel_dp->pps_pipe != INVALID_PIPE);
    852 
    853 			if (intel_dp->active_pipe != INVALID_PIPE)
    854 				pipes &= ~(1 << intel_dp->active_pipe);
    855 		}
    856 	}
    857 
    858 	if (pipes == 0)
    859 		return INVALID_PIPE;
    860 
    861 	return ffs(pipes) - 1;
    862 }
    863 
    864 static enum pipe
    865 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
    866 {
    867 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
    868 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
    869 	enum pipe pipe;
    870 
    871 	lockdep_assert_held(&dev_priv->pps_mutex);
    872 
    873 	/* We should never land here with regular DP ports */
    874 	WARN_ON(!intel_dp_is_edp(intel_dp));
    875 
    876 	WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
    877 		intel_dp->active_pipe != intel_dp->pps_pipe);
    878 
    879 	if (intel_dp->pps_pipe != INVALID_PIPE)
    880 		return intel_dp->pps_pipe;
    881 
    882 	pipe = vlv_find_free_pps(dev_priv);
    883 
    884 	/*
    885 	 * Didn't find one. This should not happen since there
    886 	 * are two power sequencers and up to two eDP ports.
    887 	 */
    888 	if (WARN_ON(pipe == INVALID_PIPE))
    889 		pipe = PIPE_A;
    890 
    891 	vlv_steal_power_sequencer(dev_priv, pipe);
    892 	intel_dp->pps_pipe = pipe;
    893 
    894 	DRM_DEBUG_KMS("picked pipe %c power sequencer for [ENCODER:%d:%s]\n",
    895 		      pipe_name(intel_dp->pps_pipe),
    896 		      intel_dig_port->base.base.base.id,
    897 		      intel_dig_port->base.base.name);
    898 
    899 	/* init power sequencer on this pipe and port */
    900 	intel_dp_init_panel_power_sequencer(intel_dp);
    901 	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
    902 
    903 	/*
    904 	 * Even vdd force doesn't work until we've made
    905 	 * the power sequencer lock in on the port.
    906 	 */
    907 	vlv_power_sequencer_kick(intel_dp);
    908 
    909 	return intel_dp->pps_pipe;
    910 }
    911 
    912 static int
    913 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
    914 {
    915 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
    916 	int backlight_controller = dev_priv->vbt.backlight.controller;
    917 
    918 	lockdep_assert_held(&dev_priv->pps_mutex);
    919 
    920 	/* We should never land here with regular DP ports */
    921 	WARN_ON(!intel_dp_is_edp(intel_dp));
    922 
    923 	if (!intel_dp->pps_reset)
    924 		return backlight_controller;
    925 
    926 	intel_dp->pps_reset = false;
    927 
    928 	/*
    929 	 * Only the HW needs to be reprogrammed, the SW state is fixed and
    930 	 * has been setup during connector init.
    931 	 */
    932 	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
    933 
    934 	return backlight_controller;
    935 }
    936 
    937 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
    938 			       enum pipe pipe);
    939 
    940 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
    941 			       enum pipe pipe)
    942 {
    943 	return I915_READ(PP_STATUS(pipe)) & PP_ON;
    944 }
    945 
    946 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
    947 				enum pipe pipe)
    948 {
    949 	return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
    950 }
    951 
    952 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
    953 			 enum pipe pipe)
    954 {
    955 	return true;
    956 }
    957 
    958 static enum pipe
    959 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
    960 		     enum port port,
    961 		     vlv_pipe_check pipe_check)
    962 {
    963 	enum pipe pipe;
    964 
    965 	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
    966 		u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
    967 			PANEL_PORT_SELECT_MASK;
    968 
    969 		if (port_sel != PANEL_PORT_SELECT_VLV(port))
    970 			continue;
    971 
    972 		if (!pipe_check(dev_priv, pipe))
    973 			continue;
    974 
    975 		return pipe;
    976 	}
    977 
    978 	return INVALID_PIPE;
    979 }
    980 
    981 static void
    982 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
    983 {
    984 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
    985 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
    986 	enum port port = intel_dig_port->base.port;
    987 
    988 	lockdep_assert_held(&dev_priv->pps_mutex);
    989 
    990 	/* try to find a pipe with this port selected */
    991 	/* first pick one where the panel is on */
    992 	intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
    993 						  vlv_pipe_has_pp_on);
    994 	/* didn't find one? pick one where vdd is on */
    995 	if (intel_dp->pps_pipe == INVALID_PIPE)
    996 		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
    997 							  vlv_pipe_has_vdd_on);
    998 	/* didn't find one? pick one with just the correct port */
    999 	if (intel_dp->pps_pipe == INVALID_PIPE)
   1000 		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
   1001 							  vlv_pipe_any);
   1002 
   1003 	/* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
   1004 	if (intel_dp->pps_pipe == INVALID_PIPE) {
   1005 		DRM_DEBUG_KMS("no initial power sequencer for [ENCODER:%d:%s]\n",
   1006 			      intel_dig_port->base.base.base.id,
   1007 			      intel_dig_port->base.base.name);
   1008 		return;
   1009 	}
   1010 
   1011 	DRM_DEBUG_KMS("initial power sequencer for [ENCODER:%d:%s]: pipe %c\n",
   1012 		      intel_dig_port->base.base.base.id,
   1013 		      intel_dig_port->base.base.name,
   1014 		      pipe_name(intel_dp->pps_pipe));
   1015 
   1016 	intel_dp_init_panel_power_sequencer(intel_dp);
   1017 	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
   1018 }
   1019 
   1020 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
   1021 {
   1022 	struct intel_encoder *encoder;
   1023 
   1024 	if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
   1025 		    !IS_GEN9_LP(dev_priv)))
   1026 		return;
   1027 
   1028 	/*
   1029 	 * We can't grab pps_mutex here due to deadlock with power_domain
   1030 	 * mutex when power_domain functions are called while holding pps_mutex.
   1031 	 * That also means that in order to use pps_pipe the code needs to
   1032 	 * hold both a power domain reference and pps_mutex, and the power domain
   1033 	 * reference get/put must be done while _not_ holding pps_mutex.
   1034 	 * pps_{lock,unlock}() do these steps in the correct order, so one
   1035 	 * should use them always.
   1036 	 */
   1037 
   1038 	for_each_intel_dp(&dev_priv->drm, encoder) {
   1039 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
   1040 
   1041 		WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
   1042 
   1043 		if (encoder->type != INTEL_OUTPUT_EDP)
   1044 			continue;
   1045 
   1046 		if (IS_GEN9_LP(dev_priv))
   1047 			intel_dp->pps_reset = true;
   1048 		else
   1049 			intel_dp->pps_pipe = INVALID_PIPE;
   1050 	}
   1051 }
   1052 
   1053 struct pps_registers {
   1054 	i915_reg_t pp_ctrl;
   1055 	i915_reg_t pp_stat;
   1056 	i915_reg_t pp_on;
   1057 	i915_reg_t pp_off;
   1058 	i915_reg_t pp_div;
   1059 };
   1060 
   1061 static void intel_pps_get_registers(struct intel_dp *intel_dp,
   1062 				    struct pps_registers *regs)
   1063 {
   1064 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
   1065 	int pps_idx = 0;
   1066 
   1067 	memset(regs, 0, sizeof(*regs));
   1068 
   1069 	if (IS_GEN9_LP(dev_priv))
   1070 		pps_idx = bxt_power_sequencer_idx(intel_dp);
   1071 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
   1072 		pps_idx = vlv_power_sequencer_pipe(intel_dp);
   1073 
   1074 	regs->pp_ctrl = PP_CONTROL(pps_idx);
   1075 	regs->pp_stat = PP_STATUS(pps_idx);
   1076 	regs->pp_on = PP_ON_DELAYS(pps_idx);
   1077 	regs->pp_off = PP_OFF_DELAYS(pps_idx);
   1078 
   1079 	/* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
   1080 	if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
   1081 		regs->pp_div = INVALID_MMIO_REG;
   1082 	else
   1083 		regs->pp_div = PP_DIVISOR(pps_idx);
   1084 }
   1085 
   1086 static i915_reg_t
   1087 _pp_ctrl_reg(struct intel_dp *intel_dp)
   1088 {
   1089 	struct pps_registers regs;
   1090 
   1091 	intel_pps_get_registers(intel_dp, &regs);
   1092 
   1093 	return regs.pp_ctrl;
   1094 }
   1095 
   1096 static i915_reg_t
   1097 _pp_stat_reg(struct intel_dp *intel_dp)
   1098 {
   1099 	struct pps_registers regs;
   1100 
   1101 	intel_pps_get_registers(intel_dp, &regs);
   1102 
   1103 	return regs.pp_stat;
   1104 }
   1105 
   1106 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
   1107    This function only applicable when panel PM state is not to be tracked */
   1108 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
   1109 			      void *unused)
   1110 {
   1111 	struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
   1112 						 edp_notifier);
   1113 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
   1114 	intel_wakeref_t wakeref;
   1115 
   1116 	if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
   1117 		return 0;
   1118 
   1119 	with_pps_lock(intel_dp, wakeref) {
   1120 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
   1121 			enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
   1122 			i915_reg_t pp_ctrl_reg, pp_div_reg;
   1123 			u32 pp_div;
   1124 
   1125 			pp_ctrl_reg = PP_CONTROL(pipe);
   1126 			pp_div_reg  = PP_DIVISOR(pipe);
   1127 			pp_div = I915_READ(pp_div_reg);
   1128 			pp_div &= PP_REFERENCE_DIVIDER_MASK;
   1129 
   1130 			/* 0x1F write to PP_DIV_REG sets max cycle delay */
   1131 			I915_WRITE(pp_div_reg, pp_div | 0x1F);
   1132 			I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS);
   1133 			msleep(intel_dp->panel_power_cycle_delay);
   1134 		}
   1135 	}
   1136 
   1137 	return 0;
   1138 }
   1139 
   1140 static bool edp_have_panel_power(struct intel_dp *intel_dp)
   1141 {
   1142 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
   1143 
   1144 	lockdep_assert_held(&dev_priv->pps_mutex);
   1145 
   1146 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
   1147 	    intel_dp->pps_pipe == INVALID_PIPE)
   1148 		return false;
   1149 
   1150 	return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
   1151 }
   1152 
   1153 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
   1154 {
   1155 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
   1156 
   1157 	lockdep_assert_held(&dev_priv->pps_mutex);
   1158 
   1159 	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
   1160 	    intel_dp->pps_pipe == INVALID_PIPE)
   1161 		return false;
   1162 
   1163 	return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
   1164 }
   1165 
   1166 static void
   1167 intel_dp_check_edp(struct intel_dp *intel_dp)
   1168 {
   1169 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
   1170 
   1171 	if (!intel_dp_is_edp(intel_dp))
   1172 		return;
   1173 
   1174 	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
   1175 		WARN(1, "eDP powered off while attempting aux channel communication.\n");
   1176 		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
   1177 			      I915_READ(_pp_stat_reg(intel_dp)),
   1178 			      I915_READ(_pp_ctrl_reg(intel_dp)));
   1179 	}
   1180 }
   1181 
   1182 static u32
   1183 intel_dp_aux_wait_done(struct intel_dp *intel_dp)
   1184 {
   1185 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
   1186 	i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
   1187 	const unsigned int timeout_ms = 10;
   1188 	u32 status;
   1189 	bool done;
   1190 
   1191 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
   1192 #ifdef __NetBSD__
   1193 	if (!cold) {
   1194 		int ret;
   1195 		spin_lock(&i915->gmbus_wait_lock);
   1196 		DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(ret,
   1197 		    &i915->gmbus_wait_queue, &i915->gmbus_wait_lock,
   1198 		    msecs_to_jiffies_timeout(timeout_ms),
   1199 		    C);
   1200 		/*
   1201 		 * ret<0 on error (-ERESTARTSYS, interrupt); ret=0 on
   1202 		 * timeout; ret>0 on success.  We care about success
   1203 		 * only.
   1204 		 */
   1205 		done = (ret > 0);
   1206 		spin_unlock(&i915->gmbus_wait_lock);
   1207 	} else {
   1208 		done = wait_for_atomic(C, timeout_ms) == 0;
   1209 	}
   1210 #else
   1211 	done = wait_event_timeout(i915->gmbus_wait_queue, C,
   1212 				  msecs_to_jiffies_timeout(timeout_ms));
   1213 
   1214 #endif
   1215 
   1216 	/* just trace the final value */
   1217 	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
   1218 
   1219 	if (!done)
   1220 		DRM_ERROR("%s did not complete or timeout within %ums (status 0x%08x)\n",
   1221 			  intel_dp->aux.name, timeout_ms, status);
   1222 #undef C
   1223 
   1224 	return status;
   1225 }
   1226 
   1227 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
   1228 {
   1229 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
   1230 
   1231 	if (index)
   1232 		return 0;
   1233 
   1234 	/*
   1235 	 * The clock divider is based off the hrawclk, and would like to run at
   1236 	 * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
   1237 	 */
   1238 	return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
   1239 }
   1240 
   1241 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
   1242 {
   1243 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
   1244 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
   1245 
   1246 	if (index)
   1247 		return 0;
   1248 
   1249 	/*
   1250 	 * The clock divider is based off the cdclk or PCH rawclk, and would
   1251 	 * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
   1252 	 * divide by 2000 and use that
   1253 	 */
   1254 	if (dig_port->aux_ch == AUX_CH_A)
   1255 		return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000);
   1256 	else
   1257 		return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
   1258 }
   1259 
   1260 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
   1261 {
   1262 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
   1263 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
   1264 
   1265 	if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
   1266 		/* Workaround for non-ULT HSW */
   1267 		switch (index) {
   1268 		case 0: return 63;
   1269 		case 1: return 72;
   1270 		default: return 0;
   1271 		}
   1272 	}
   1273 
   1274 	return ilk_get_aux_clock_divider(intel_dp, index);
   1275 }
   1276 
   1277 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
   1278 {
   1279 	/*
   1280 	 * SKL doesn't need us to program the AUX clock divider (Hardware will
   1281 	 * derive the clock from CDCLK automatically). We still implement the
   1282 	 * get_aux_clock_divider vfunc to plug-in into the existing code.
   1283 	 */
   1284 	return index ? 0 : 1;
   1285 }
   1286 
   1287 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
   1288 				int send_bytes,
   1289 				u32 aux_clock_divider)
   1290 {
   1291 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
   1292 	struct drm_i915_private *dev_priv =
   1293 			to_i915(intel_dig_port->base.base.dev);
   1294 	u32 precharge, timeout;
   1295 
   1296 	if (IS_GEN(dev_priv, 6))
   1297 		precharge = 3;
   1298 	else
   1299 		precharge = 5;
   1300 
   1301 	if (IS_BROADWELL(dev_priv))
   1302 		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
   1303 	else
   1304 		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
   1305 
   1306 	return DP_AUX_CH_CTL_SEND_BUSY |
   1307 	       DP_AUX_CH_CTL_DONE |
   1308 	       DP_AUX_CH_CTL_INTERRUPT |
   1309 	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
   1310 	       timeout |
   1311 	       DP_AUX_CH_CTL_RECEIVE_ERROR |
   1312 	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
   1313 	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
   1314 	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
   1315 }
   1316 
   1317 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
   1318 				int send_bytes,
   1319 				u32 unused)
   1320 {
   1321 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
   1322 	struct drm_i915_private *i915 =
   1323 			to_i915(intel_dig_port->base.base.dev);
   1324 	enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
   1325 	u32 ret;
   1326 
   1327 	ret = DP_AUX_CH_CTL_SEND_BUSY |
   1328 	      DP_AUX_CH_CTL_DONE |
   1329 	      DP_AUX_CH_CTL_INTERRUPT |
   1330 	      DP_AUX_CH_CTL_TIME_OUT_ERROR |
   1331 	      DP_AUX_CH_CTL_TIME_OUT_MAX |
   1332 	      DP_AUX_CH_CTL_RECEIVE_ERROR |
   1333 	      (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
   1334 	      DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
   1335 	      DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
   1336 
   1337 	if (intel_phy_is_tc(i915, phy) &&
   1338 	    intel_dig_port->tc_mode == TC_PORT_TBT_ALT)
   1339 		ret |= DP_AUX_CH_CTL_TBT_IO;
   1340 
   1341 	return ret;
   1342 }
   1343 
   1344 static int
   1345 intel_dp_aux_xfer(struct intel_dp *intel_dp,
   1346 		  const u8 *send, int send_bytes,
   1347 		  u8 *recv, int recv_size,
   1348 		  u32 aux_send_ctl_flags)
   1349 {
   1350 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
   1351 	struct drm_i915_private *i915 =
   1352 			to_i915(intel_dig_port->base.base.dev);
   1353 	struct intel_uncore *uncore = &i915->uncore;
   1354 	enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
   1355 	bool is_tc_port = intel_phy_is_tc(i915, phy);
   1356 	i915_reg_t ch_ctl, ch_data[5];
   1357 	u32 aux_clock_divider;
   1358 	enum intel_display_power_domain aux_domain =
   1359 		intel_aux_power_domain(intel_dig_port);
   1360 	intel_wakeref_t aux_wakeref;
   1361 	intel_wakeref_t pps_wakeref;
   1362 	int i, ret, recv_bytes;
   1363 	int try, clock = 0;
   1364 	u32 status;
   1365 	bool vdd;
   1366 
   1367 	ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
   1368 	for (i = 0; i < ARRAY_SIZE(ch_data); i++)
   1369 		ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);
   1370 
   1371 	if (is_tc_port)
   1372 		intel_tc_port_lock(intel_dig_port);
   1373 
   1374 	aux_wakeref = intel_display_power_get(i915, aux_domain);
   1375 	pps_wakeref = pps_lock(intel_dp);
   1376 
   1377 	/*
   1378 	 * We will be called with VDD already enabled for dpcd/edid/oui reads.
   1379 	 * In such cases we want to leave VDD enabled and it's up to upper layers
   1380 	 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
   1381 	 * ourselves.
   1382 	 */
   1383 	vdd = edp_panel_vdd_on(intel_dp);
   1384 
   1385 	/* dp aux is extremely sensitive to irq latency, hence request the
   1386 	 * lowest possible wakeup latency and so prevent the cpu from going into
   1387 	 * deep sleep states.
   1388 	 */
   1389 	pm_qos_update_request(&i915->pm_qos, 0);
   1390 
   1391 	intel_dp_check_edp(intel_dp);
   1392 
   1393 	/* Try to wait for any previous AUX channel activity */
   1394 	for (try = 0; try < 3; try++) {
   1395 		status = intel_uncore_read_notrace(uncore, ch_ctl);
   1396 		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
   1397 			break;
   1398 		msleep(1);
   1399 	}
   1400 	/* just trace the final value */
   1401 	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
   1402 
   1403 	if (try == 3) {
   1404 		const u32 status = intel_uncore_read(uncore, ch_ctl);
   1405 
   1406 		if (status != intel_dp->aux_busy_last_status) {
   1407 			WARN(1, "dp_aux_ch not started status 0x%08x\n",
   1408 			     status);
   1409 			intel_dp->aux_busy_last_status = status;
   1410 		}
   1411 
   1412 		ret = -EBUSY;
   1413 		goto out;
   1414 	}
   1415 
   1416 	/* Only 5 data registers! */
   1417 	if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
   1418 		ret = -E2BIG;
   1419 		goto out;
   1420 	}
   1421 
   1422 	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
   1423 		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
   1424 							  send_bytes,
   1425 							  aux_clock_divider);
   1426 
   1427 		send_ctl |= aux_send_ctl_flags;
   1428 
   1429 		/* Must try at least 3 times according to DP spec */
   1430 		for (try = 0; try < 5; try++) {
   1431 			/* Load the send data into the aux channel data registers */
   1432 			for (i = 0; i < send_bytes; i += 4)
   1433 				intel_uncore_write(uncore,
   1434 						   ch_data[i >> 2],
   1435 						   intel_dp_pack_aux(send + i,
   1436 								     send_bytes - i));
   1437 
   1438 			/* Send the command and wait for it to complete */
   1439 			intel_uncore_write(uncore, ch_ctl, send_ctl);
   1440 
   1441 			status = intel_dp_aux_wait_done(intel_dp);
   1442 
   1443 			/* Clear done status and any errors */
   1444 			intel_uncore_write(uncore,
   1445 					   ch_ctl,
   1446 					   status |
   1447 					   DP_AUX_CH_CTL_DONE |
   1448 					   DP_AUX_CH_CTL_TIME_OUT_ERROR |
   1449 					   DP_AUX_CH_CTL_RECEIVE_ERROR);
   1450 
   1451 			/* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
   1452 			 *   400us delay required for errors and timeouts
   1453 			 *   Timeout errors from the HW already meet this
   1454 			 *   requirement so skip to next iteration
   1455 			 */
   1456 			if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
   1457 				continue;
   1458 
   1459 			if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
   1460 				usleep_range(400, 500);
   1461 				continue;
   1462 			}
   1463 			if (status & DP_AUX_CH_CTL_DONE)
   1464 				goto done;
   1465 		}
   1466 	}
   1467 
   1468 	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
   1469 		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
   1470 		ret = -EBUSY;
   1471 		goto out;
   1472 	}
   1473 
   1474 done:
   1475 	/* Check for timeout or receive error.
   1476 	 * Timeouts occur when the sink is not connected
   1477 	 */
   1478 	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
   1479 		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
   1480 		ret = -EIO;
   1481 		goto out;
   1482 	}
   1483 
   1484 	/* Timeouts occur when the device isn't connected, so they're
   1485 	 * "normal" -- don't fill the kernel log with these */
   1486 	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
   1487 		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
   1488 		ret = -ETIMEDOUT;
   1489 		goto out;
   1490 	}
   1491 
   1492 	/* Unload any bytes sent back from the other side */
   1493 	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
   1494 		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
   1495 
   1496 	/*
   1497 	 * By BSpec: "Message sizes of 0 or >20 are not allowed."
   1498 	 * We have no idea of what happened so we return -EBUSY so
   1499 	 * drm layer takes care for the necessary retries.
   1500 	 */
   1501 	if (recv_bytes == 0 || recv_bytes > 20) {
   1502 		DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
   1503 			      recv_bytes);
   1504 		ret = -EBUSY;
   1505 		goto out;
   1506 	}
   1507 
   1508 	if (recv_bytes > recv_size)
   1509 		recv_bytes = recv_size;
   1510 
   1511 	for (i = 0; i < recv_bytes; i += 4)
   1512 		intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]),
   1513 				    recv + i, recv_bytes - i);
   1514 
   1515 	ret = recv_bytes;
   1516 out:
   1517 	pm_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE);
   1518 
   1519 	if (vdd)
   1520 		edp_panel_vdd_off(intel_dp, false);
   1521 
   1522 	pps_unlock(intel_dp, pps_wakeref);
   1523 	intel_display_power_put_async(i915, aux_domain, aux_wakeref);
   1524 
   1525 	if (is_tc_port)
   1526 		intel_tc_port_unlock(intel_dig_port);
   1527 
   1528 	return ret;
   1529 }
   1530 
   1531 #define BARE_ADDRESS_SIZE	3
   1532 #define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
   1533 
   1534 static void
   1535 intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
   1536 		    const struct drm_dp_aux_msg *msg)
   1537 {
   1538 	txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
   1539 	txbuf[1] = (msg->address >> 8) & 0xff;
   1540 	txbuf[2] = msg->address & 0xff;
   1541 	txbuf[3] = msg->size - 1;
   1542 }
   1543 
   1544 static ssize_t
   1545 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
   1546 {
   1547 	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
   1548 	u8 txbuf[20], rxbuf[20];
   1549 	size_t txsize, rxsize;
   1550 	int ret;
   1551 
   1552 	intel_dp_aux_header(txbuf, msg);
   1553 
   1554 	switch (msg->request & ~DP_AUX_I2C_MOT) {
   1555 	case DP_AUX_NATIVE_WRITE:
   1556 	case DP_AUX_I2C_WRITE:
   1557 	case DP_AUX_I2C_WRITE_STATUS_UPDATE:
   1558 		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
   1559 		rxsize = 2; /* 0 or 1 data bytes */
   1560 
   1561 		if (WARN_ON(txsize > 20))
   1562 			return -E2BIG;
   1563 
   1564 		WARN_ON(!msg->buffer != !msg->size);
   1565 
   1566 		if (msg->buffer)
   1567 			memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
   1568 
   1569 		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
   1570 					rxbuf, rxsize, 0);
   1571 		if (ret > 0) {
   1572 			msg->reply = rxbuf[0] >> 4;
   1573 
   1574 			if (ret > 1) {
   1575 				/* Number of bytes written in a short write. */
   1576 				ret = clamp_t(int, rxbuf[1], 0, msg->size);
   1577 			} else {
   1578 				/* Return payload size. */
   1579 				ret = msg->size;
   1580 			}
   1581 		}
   1582 		break;
   1583 
   1584 	case DP_AUX_NATIVE_READ:
   1585 	case DP_AUX_I2C_READ:
   1586 		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
   1587 		rxsize = msg->size + 1;
   1588 
   1589 		if (WARN_ON(rxsize > 20))
   1590 			return -E2BIG;
   1591 
   1592 		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
   1593 					rxbuf, rxsize, 0);
   1594 		if (ret > 0) {
   1595 			msg->reply = rxbuf[0] >> 4;
   1596 			/*
   1597 			 * Assume happy day, and copy the data. The caller is
   1598 			 * expected to check msg->reply before touching it.
   1599 			 *
   1600 			 * Return payload size.
   1601 			 */
   1602 			ret--;
   1603 			memcpy(msg->buffer, rxbuf + 1, ret);
   1604 		}
   1605 		break;
   1606 
   1607 	default:
   1608 		ret = -EINVAL;
   1609 		break;
   1610 	}
   1611 
   1612 	return ret;
   1613 }
   1614 
   1615 
   1616 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
   1617 {
   1618 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
   1619 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
   1620 	enum aux_ch aux_ch = dig_port->aux_ch;
   1621 
   1622 	switch (aux_ch) {
   1623 	case AUX_CH_B:
   1624 	case AUX_CH_C:
   1625 	case AUX_CH_D:
   1626 		return DP_AUX_CH_CTL(aux_ch);
   1627 	default:
   1628 		MISSING_CASE(aux_ch);
   1629 		return DP_AUX_CH_CTL(AUX_CH_B);
   1630 	}
   1631 }
   1632 
   1633 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
   1634 {
   1635 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
   1636 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
   1637 	enum aux_ch aux_ch = dig_port->aux_ch;
   1638 
   1639 	switch (aux_ch) {
   1640 	case AUX_CH_B:
   1641 	case AUX_CH_C:
   1642 	case AUX_CH_D:
   1643 		return DP_AUX_CH_DATA(aux_ch, index);
   1644 	default:
   1645 		MISSING_CASE(aux_ch);
   1646 		return DP_AUX_CH_DATA(AUX_CH_B, index);
   1647 	}
   1648 }
   1649 
   1650 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
   1651 {
   1652 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
   1653 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
   1654 	enum aux_ch aux_ch = dig_port->aux_ch;
   1655 
   1656 	switch (aux_ch) {
   1657 	case AUX_CH_A:
   1658 		return DP_AUX_CH_CTL(aux_ch);
   1659 	case AUX_CH_B:
   1660 	case AUX_CH_C:
   1661 	case AUX_CH_D:
   1662 		return PCH_DP_AUX_CH_CTL(aux_ch);
   1663 	default:
   1664 		MISSING_CASE(aux_ch);
   1665 		return DP_AUX_CH_CTL(AUX_CH_A);
   1666 	}
   1667 }
   1668 
   1669 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
   1670 {
   1671 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
   1672 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
   1673 	enum aux_ch aux_ch = dig_port->aux_ch;
   1674 
   1675 	switch (aux_ch) {
   1676 	case AUX_CH_A:
   1677 		return DP_AUX_CH_DATA(aux_ch, index);
   1678 	case AUX_CH_B:
   1679 	case AUX_CH_C:
   1680 	case AUX_CH_D:
   1681 		return PCH_DP_AUX_CH_DATA(aux_ch, index);
   1682 	default:
   1683 		MISSING_CASE(aux_ch);
   1684 		return DP_AUX_CH_DATA(AUX_CH_A, index);
   1685 	}
   1686 }
   1687 
   1688 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
   1689 {
   1690 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
   1691 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
   1692 	enum aux_ch aux_ch = dig_port->aux_ch;
   1693 
   1694 	switch (aux_ch) {
   1695 	case AUX_CH_A:
   1696 	case AUX_CH_B:
   1697 	case AUX_CH_C:
   1698 	case AUX_CH_D:
   1699 	case AUX_CH_E:
   1700 	case AUX_CH_F:
   1701 	case AUX_CH_G:
   1702 		return DP_AUX_CH_CTL(aux_ch);
   1703 	default:
   1704 		MISSING_CASE(aux_ch);
   1705 		return DP_AUX_CH_CTL(AUX_CH_A);
   1706 	}
   1707 }
   1708 
   1709 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
   1710 {
   1711 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
   1712 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
   1713 	enum aux_ch aux_ch = dig_port->aux_ch;
   1714 
   1715 	switch (aux_ch) {
   1716 	case AUX_CH_A:
   1717 	case AUX_CH_B:
   1718 	case AUX_CH_C:
   1719 	case AUX_CH_D:
   1720 	case AUX_CH_E:
   1721 	case AUX_CH_F:
   1722 	case AUX_CH_G:
   1723 		return DP_AUX_CH_DATA(aux_ch, index);
   1724 	default:
   1725 		MISSING_CASE(aux_ch);
   1726 		return DP_AUX_CH_DATA(AUX_CH_A, index);
   1727 	}
   1728 }
   1729 
   1730 static void
   1731 intel_dp_aux_fini(struct intel_dp *intel_dp)
   1732 {
   1733 	drm_dp_aux_fini(&intel_dp->aux);
   1734 	kfree(__UNCONST(intel_dp->aux.name));
   1735 }
   1736 
   1737 static void
   1738 intel_dp_aux_init(struct intel_dp *intel_dp)
   1739 {
   1740 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
   1741 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
   1742 	struct intel_encoder *encoder = &dig_port->base;
   1743 
   1744 	if (INTEL_GEN(dev_priv) >= 9) {
   1745 		intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
   1746 		intel_dp->aux_ch_data_reg = skl_aux_data_reg;
   1747 	} else if (HAS_PCH_SPLIT(dev_priv)) {
   1748 		intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
   1749 		intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
   1750 	} else {
   1751 		intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
   1752 		intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
   1753 	}
   1754 
   1755 	if (INTEL_GEN(dev_priv) >= 9)
   1756 		intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
   1757 	else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
   1758 		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
   1759 	else if (HAS_PCH_SPLIT(dev_priv))
   1760 		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
   1761 	else
   1762 		intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
   1763 
   1764 	if (INTEL_GEN(dev_priv) >= 9)
   1765 		intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
   1766 	else
   1767 		intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
   1768 
   1769 	drm_dp_aux_init(&intel_dp->aux);
   1770 
   1771 	/* Failure to allocate our preferred name is not critical */
   1772 	intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c",
   1773 				       port_name(encoder->port));
   1774 	intel_dp->aux.transfer = intel_dp_aux_transfer;
   1775 }
   1776 
   1777 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
   1778 {
   1779 	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
   1780 
   1781 	return max_rate >= 540000;
   1782 }
   1783 
   1784 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
   1785 {
   1786 	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
   1787 
   1788 	return max_rate >= 810000;
   1789 }
   1790 
   1791 static void
   1792 intel_dp_set_clock(struct intel_encoder *encoder,
   1793 		   struct intel_crtc_state *pipe_config)
   1794 {
   1795 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
   1796 	const struct dp_link_dpll *divisor = NULL;
   1797 	int i, count = 0;
   1798 
   1799 	if (IS_G4X(dev_priv)) {
   1800 		divisor = g4x_dpll;
   1801 		count = ARRAY_SIZE(g4x_dpll);
   1802 	} else if (HAS_PCH_SPLIT(dev_priv)) {
   1803 		divisor = pch_dpll;
   1804 		count = ARRAY_SIZE(pch_dpll);
   1805 	} else if (IS_CHERRYVIEW(dev_priv)) {
   1806 		divisor = chv_dpll;
   1807 		count = ARRAY_SIZE(chv_dpll);
   1808 	} else if (IS_VALLEYVIEW(dev_priv)) {
   1809 		divisor = vlv_dpll;
   1810 		count = ARRAY_SIZE(vlv_dpll);
   1811 	}
   1812 
   1813 	if (divisor && count) {
   1814 		for (i = 0; i < count; i++) {
   1815 			if (pipe_config->port_clock == divisor[i].clock) {
   1816 				pipe_config->dpll = divisor[i].dpll;
   1817 				pipe_config->clock_set = true;
   1818 				break;
   1819 			}
   1820 		}
   1821 	}
   1822 }
   1823 
   1824 static void snprintf_int_array(char *str, size_t len,
   1825 			       const int *array, int nelem)
   1826 {
   1827 	int i;
   1828 
   1829 	str[0] = '\0';
   1830 
   1831 	for (i = 0; i < nelem; i++) {
   1832 		int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
   1833 		if (r >= len)
   1834 			return;
   1835 		str += r;
   1836 		len -= r;
   1837 	}
   1838 }
   1839 
   1840 static void intel_dp_print_rates(struct intel_dp *intel_dp)
   1841 {
   1842 	char str[128]; /* FIXME: too big for stack? */
   1843 
   1844 	if (!drm_debug_enabled(DRM_UT_KMS))
   1845 		return;
   1846 
   1847 	snprintf_int_array(str, sizeof(str),
   1848 			   intel_dp->source_rates, intel_dp->num_source_rates);
   1849 	DRM_DEBUG_KMS("source rates: %s\n", str);
   1850 
   1851 	snprintf_int_array(str, sizeof(str),
   1852 			   intel_dp->sink_rates, intel_dp->num_sink_rates);
   1853 	DRM_DEBUG_KMS("sink rates: %s\n", str);
   1854 
   1855 	snprintf_int_array(str, sizeof(str),
   1856 			   intel_dp->common_rates, intel_dp->num_common_rates);
   1857 	DRM_DEBUG_KMS("common rates: %s\n", str);
   1858 }
   1859 
   1860 int
   1861 intel_dp_max_link_rate(struct intel_dp *intel_dp)
   1862 {
   1863 	int len;
   1864 
   1865 	len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
   1866 	if (WARN_ON(len <= 0))
   1867 		return 162000;
   1868 
   1869 	return intel_dp->common_rates[len - 1];
   1870 }
   1871 
   1872 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
   1873 {
   1874 	int i = intel_dp_rate_index(intel_dp->sink_rates,
   1875 				    intel_dp->num_sink_rates, rate);
   1876 
   1877 	if (WARN_ON(i < 0))
   1878 		i = 0;
   1879 
   1880 	return i;
   1881 }
   1882 
   1883 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
   1884 			   u8 *link_bw, u8 *rate_select)
   1885 {
   1886 	/* eDP 1.4 rate select method. */
   1887 	if (intel_dp->use_rate_select) {
   1888 		*link_bw = 0;
   1889 		*rate_select =
   1890 			intel_dp_rate_select(intel_dp, port_clock);
   1891 	} else {
   1892 		*link_bw = drm_dp_link_rate_to_bw_code(port_clock);
   1893 		*rate_select = 0;
   1894 	}
   1895 }
   1896 
   1897 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
   1898 					 const struct intel_crtc_state *pipe_config)
   1899 {
   1900 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
   1901 
   1902 	/* On TGL, FEC is supported on all Pipes */
   1903 	if (INTEL_GEN(dev_priv) >= 12)
   1904 		return true;
   1905 
   1906 	if (IS_GEN(dev_priv, 11) && pipe_config->cpu_transcoder != TRANSCODER_A)
   1907 		return true;
   1908 
   1909 	return false;
   1910 }
   1911 
   1912 static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
   1913 				  const struct intel_crtc_state *pipe_config)
   1914 {
   1915 	return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
   1916 		drm_dp_sink_supports_fec(intel_dp->fec_capable);
   1917 }
   1918 
   1919 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
   1920 				  const struct intel_crtc_state *crtc_state)
   1921 {
   1922 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
   1923 
   1924 	if (!intel_dp_is_edp(intel_dp) && !crtc_state->fec_enable)
   1925 		return false;
   1926 
   1927 	return intel_dsc_source_support(encoder, crtc_state) &&
   1928 		drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
   1929 }
   1930 
   1931 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
   1932 				struct intel_crtc_state *pipe_config)
   1933 {
   1934 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
   1935 	struct intel_connector *intel_connector = intel_dp->attached_connector;
   1936 	int bpp, bpc;
   1937 
   1938 	bpp = pipe_config->pipe_bpp;
   1939 	bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
   1940 
   1941 	if (bpc > 0)
   1942 		bpp = min(bpp, 3*bpc);
   1943 
   1944 	if (intel_dp_is_edp(intel_dp)) {
   1945 		/* Get bpp from vbt only for panels that dont have bpp in edid */
   1946 		if (intel_connector->base.display_info.bpc == 0 &&
   1947 		    dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
   1948 			DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
   1949 				      dev_priv->vbt.edp.bpp);
   1950 			bpp = dev_priv->vbt.edp.bpp;
   1951 		}
   1952 	}
   1953 
   1954 	return bpp;
   1955 }
   1956 
   1957 /* Adjust link config limits based on compliance test requests. */
   1958 void
   1959 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
   1960 				  struct intel_crtc_state *pipe_config,
   1961 				  struct link_config_limits *limits)
   1962 {
   1963 	/* For DP Compliance we override the computed bpp for the pipe */
   1964 	if (intel_dp->compliance.test_data.bpc != 0) {
   1965 		int bpp = 3 * intel_dp->compliance.test_data.bpc;
   1966 
   1967 		limits->min_bpp = limits->max_bpp = bpp;
   1968 		pipe_config->dither_force_disable = bpp == 6 * 3;
   1969 
   1970 		DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp);
   1971 	}
   1972 
   1973 	/* Use values requested by Compliance Test Request */
   1974 	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
   1975 		int index;
   1976 
   1977 		/* Validate the compliance test data since max values
   1978 		 * might have changed due to link train fallback.
   1979 		 */
   1980 		if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
   1981 					       intel_dp->compliance.test_lane_count)) {
   1982 			index = intel_dp_rate_index(intel_dp->common_rates,
   1983 						    intel_dp->num_common_rates,
   1984 						    intel_dp->compliance.test_link_rate);
   1985 			if (index >= 0)
   1986 				limits->min_clock = limits->max_clock = index;
   1987 			limits->min_lane_count = limits->max_lane_count =
   1988 				intel_dp->compliance.test_lane_count;
   1989 		}
   1990 	}
   1991 }
   1992 
   1993 static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp)
   1994 {
   1995 	/*
   1996 	 * bpp value was assumed to RGB format. And YCbCr 4:2:0 output
   1997 	 * format of the number of bytes per pixel will be half the number
   1998 	 * of bytes of RGB pixel.
   1999 	 */
   2000 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
   2001 		bpp /= 2;
   2002 
   2003 	return bpp;
   2004 }
   2005 
   2006 /* Optimize link config in order: max bpp, min clock, min lanes */
   2007 static int
   2008 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
   2009 				  struct intel_crtc_state *pipe_config,
   2010 				  const struct link_config_limits *limits)
   2011 {
   2012 	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
   2013 	int bpp, clock, lane_count;
   2014 	int mode_rate, link_clock, link_avail;
   2015 
   2016 	for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
   2017 		int output_bpp = intel_dp_output_bpp(pipe_config, bpp);
   2018 
   2019 		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
   2020 						   output_bpp);
   2021 
   2022 		for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
   2023 			for (lane_count = limits->min_lane_count;
   2024 			     lane_count <= limits->max_lane_count;
   2025 			     lane_count <<= 1) {
   2026 				link_clock = intel_dp->common_rates[clock];
   2027 				link_avail = intel_dp_max_data_rate(link_clock,
   2028 								    lane_count);
   2029 
   2030 				if (mode_rate <= link_avail) {
   2031 					pipe_config->lane_count = lane_count;
   2032 					pipe_config->pipe_bpp = bpp;
   2033 					pipe_config->port_clock = link_clock;
   2034 
   2035 					return 0;
   2036 				}
   2037 			}
   2038 		}
   2039 	}
   2040 
   2041 	return -EINVAL;
   2042 }
   2043 
   2044 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
   2045 {
   2046 	int i, num_bpc;
   2047 	u8 dsc_bpc[3] = {0};
   2048 
   2049 	num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
   2050 						       dsc_bpc);
   2051 	for (i = 0; i < num_bpc; i++) {
   2052 		if (dsc_max_bpc >= dsc_bpc[i])
   2053 			return dsc_bpc[i] * 3;
   2054 	}
   2055 
   2056 	return 0;
   2057 }
   2058 
   2059 #define DSC_SUPPORTED_VERSION_MIN		1
   2060 
   2061 static int intel_dp_dsc_compute_params(struct intel_encoder *encoder,
   2062 				       struct intel_crtc_state *crtc_state)
   2063 {
   2064 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
   2065 	struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
   2066 	u8 line_buf_depth;
   2067 	int ret;
   2068 
   2069 	ret = intel_dsc_compute_params(encoder, crtc_state);
   2070 	if (ret)
   2071 		return ret;
   2072 
   2073 	/*
   2074 	 * Slice Height of 8 works for all currently available panels. So start
   2075 	 * with that if pic_height is an integral multiple of 8. Eventually add
   2076 	 * logic to try multiple slice heights.
   2077 	 */
   2078 	if (vdsc_cfg->pic_height % 8 == 0)
   2079 		vdsc_cfg->slice_height = 8;
   2080 	else if (vdsc_cfg->pic_height % 4 == 0)
   2081 		vdsc_cfg->slice_height = 4;
   2082 	else
   2083 		vdsc_cfg->slice_height = 2;
   2084 
   2085 	vdsc_cfg->dsc_version_major =
   2086 		(intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
   2087 		 DP_DSC_MAJOR_MASK) >> DP_DSC_MAJOR_SHIFT;
   2088 	vdsc_cfg->dsc_version_minor =
   2089 		min(DSC_SUPPORTED_VERSION_MIN,
   2090 		    (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
   2091 		     DP_DSC_MINOR_MASK) >> DP_DSC_MINOR_SHIFT);
   2092 
   2093 	vdsc_cfg->convert_rgb = intel_dp->dsc_dpcd[DP_DSC_DEC_COLOR_FORMAT_CAP - DP_DSC_SUPPORT] &
   2094 		DP_DSC_RGB;
   2095 
   2096 	line_buf_depth = drm_dp_dsc_sink_line_buf_depth(intel_dp->dsc_dpcd);
   2097 	if (!line_buf_depth) {
   2098 		DRM_DEBUG_KMS("DSC Sink Line Buffer Depth invalid\n");
   2099 		return -EINVAL;
   2100 	}
   2101 
   2102 	if (vdsc_cfg->dsc_version_minor == 2)
   2103 		vdsc_cfg->line_buf_depth = (line_buf_depth == DSC_1_2_MAX_LINEBUF_DEPTH_BITS) ?
   2104 			DSC_1_2_MAX_LINEBUF_DEPTH_VAL : line_buf_depth;
   2105 	else
   2106 		vdsc_cfg->line_buf_depth = (line_buf_depth > DSC_1_1_MAX_LINEBUF_DEPTH_BITS) ?
   2107 			DSC_1_1_MAX_LINEBUF_DEPTH_BITS : line_buf_depth;
   2108 
   2109 	vdsc_cfg->block_pred_enable =
   2110 		intel_dp->dsc_dpcd[DP_DSC_BLK_PREDICTION_SUPPORT - DP_DSC_SUPPORT] &
   2111 		DP_DSC_BLK_PREDICTION_IS_SUPPORTED;
   2112 
   2113 	return drm_dsc_compute_rc_parameters(vdsc_cfg);
   2114 }
   2115 
   2116 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
   2117 				       struct intel_crtc_state *pipe_config,
   2118 				       struct drm_connector_state *conn_state,
   2119 				       struct link_config_limits *limits)
   2120 {
   2121 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
   2122 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
   2123 	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
   2124 	u8 dsc_max_bpc;
   2125 	int pipe_bpp;
   2126 	int ret;
   2127 
   2128 	pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
   2129 		intel_dp_supports_fec(intel_dp, pipe_config);
   2130 
   2131 	if (!intel_dp_supports_dsc(intel_dp, pipe_config))
   2132 		return -EINVAL;
   2133 
   2134 	/* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */
   2135 	if (INTEL_GEN(dev_priv) >= 12)
   2136 		dsc_max_bpc = min_t(u8, 12, conn_state->max_requested_bpc);
   2137 	else
   2138 		dsc_max_bpc = min_t(u8, 10,
   2139 				    conn_state->max_requested_bpc);
   2140 
   2141 	pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
   2142 
   2143 	/* Min Input BPC for ICL+ is 8 */
   2144 	if (pipe_bpp < 8 * 3) {
   2145 		DRM_DEBUG_KMS("No DSC support for less than 8bpc\n");
   2146 		return -EINVAL;
   2147 	}
   2148 
   2149 	/*
   2150 	 * For now enable DSC for max bpp, max link rate, max lane count.
   2151 	 * Optimize this later for the minimum possible link rate/lane count
   2152 	 * with DSC enabled for the requested mode.
   2153 	 */
   2154 	pipe_config->pipe_bpp = pipe_bpp;
   2155 	pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
   2156 	pipe_config->lane_count = limits->max_lane_count;
   2157 
   2158 	if (intel_dp_is_edp(intel_dp)) {
   2159 		pipe_config->dsc.compressed_bpp =
   2160 			min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
   2161 			      pipe_config->pipe_bpp);
   2162 		pipe_config->dsc.slice_count =
   2163 			drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
   2164 							true);
   2165 	} else {
   2166 		u16 dsc_max_output_bpp;
   2167 		u8 dsc_dp_slice_count;
   2168 
   2169 		dsc_max_output_bpp =
   2170 			intel_dp_dsc_get_output_bpp(dev_priv,
   2171 						    pipe_config->port_clock,
   2172 						    pipe_config->lane_count,
   2173 						    adjusted_mode->crtc_clock,
   2174 						    adjusted_mode->crtc_hdisplay);
   2175 		dsc_dp_slice_count =
   2176 			intel_dp_dsc_get_slice_count(intel_dp,
   2177 						     adjusted_mode->crtc_clock,
   2178 						     adjusted_mode->crtc_hdisplay);
   2179 		if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
   2180 			DRM_DEBUG_KMS("Compressed BPP/Slice Count not supported\n");
   2181 			return -EINVAL;
   2182 		}
   2183 		pipe_config->dsc.compressed_bpp = min_t(u16,
   2184 							       dsc_max_output_bpp >> 4,
   2185 							       pipe_config->pipe_bpp);
   2186 		pipe_config->dsc.slice_count = dsc_dp_slice_count;
   2187 	}
   2188 	/*
   2189 	 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
   2190 	 * is greater than the maximum Cdclock and if slice count is even
   2191 	 * then we need to use 2 VDSC instances.
   2192 	 */
   2193 	if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
   2194 		if (pipe_config->dsc.slice_count > 1) {
   2195 			pipe_config->dsc.dsc_split = true;
   2196 		} else {
   2197 			DRM_DEBUG_KMS("Cannot split stream to use 2 VDSC instances\n");
   2198 			return -EINVAL;
   2199 		}
   2200 	}
   2201 
   2202 	ret = intel_dp_dsc_compute_params(&dig_port->base, pipe_config);
   2203 	if (ret < 0) {
   2204 		DRM_DEBUG_KMS("Cannot compute valid DSC parameters for Input Bpp = %d "
   2205 			      "Compressed BPP = %d\n",
   2206 			      pipe_config->pipe_bpp,
   2207 			      pipe_config->dsc.compressed_bpp);
   2208 		return ret;
   2209 	}
   2210 
   2211 	pipe_config->dsc.compression_enable = true;
   2212 	DRM_DEBUG_KMS("DP DSC computed with Input Bpp = %d "
   2213 		      "Compressed Bpp = %d Slice Count = %d\n",
   2214 		      pipe_config->pipe_bpp,
   2215 		      pipe_config->dsc.compressed_bpp,
   2216 		      pipe_config->dsc.slice_count);
   2217 
   2218 	return 0;
   2219 }
   2220 
   2221 int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state)
   2222 {
   2223 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
   2224 		return 6 * 3;
   2225 	else
   2226 		return 8 * 3;
   2227 }
   2228 
   2229 static int
   2230 intel_dp_compute_link_config(struct intel_encoder *encoder,
   2231 			     struct intel_crtc_state *pipe_config,
   2232 			     struct drm_connector_state *conn_state)
   2233 {
   2234 	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
   2235 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
   2236 	struct link_config_limits limits;
   2237 	int common_len;
   2238 	int ret;
   2239 
   2240 	common_len = intel_dp_common_len_rate_limit(intel_dp,
   2241 						    intel_dp->max_link_rate);
   2242 
   2243 	/* No common link rates between source and sink */
   2244 	WARN_ON(common_len <= 0);
   2245 
   2246 	limits.min_clock = 0;
   2247 	limits.max_clock = common_len - 1;
   2248 
   2249 	limits.min_lane_count = 1;
   2250 	limits.max_lane_count = intel_dp_max_lane_count(intel_dp);
   2251 
   2252 	limits.min_bpp = intel_dp_min_bpp(pipe_config);
   2253 	limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
   2254 
   2255 	if (intel_dp_is_edp(intel_dp)) {
   2256 		/*
   2257 		 * Use the maximum clock and number of lanes the eDP panel
   2258 		 * advertizes being capable of. The panels are generally
   2259 		 * designed to support only a single clock and lane
   2260 		 * configuration, and typically these values correspond to the
   2261 		 * native resolution of the panel.
   2262 		 */
   2263 		limits.min_lane_count = limits.max_lane_count;
   2264 		limits.min_clock = limits.max_clock;
   2265 	}
   2266 
   2267 	intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);
   2268 
   2269 	DRM_DEBUG_KMS("DP link computation with max lane count %i "
   2270 		      "max rate %d max bpp %d pixel clock %iKHz\n",
   2271 		      limits.max_lane_count,
   2272 		      intel_dp->common_rates[limits.max_clock],
   2273 		      limits.max_bpp, adjusted_mode->crtc_clock);
   2274 
   2275 	/*
   2276 	 * Optimize for slow and wide. This is the place to add alternative
   2277 	 * optimization policy.
   2278 	 */
   2279 	ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits);
   2280 
   2281 	/* enable compression if the mode doesn't fit available BW */
   2282 	DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp->force_dsc_en);
   2283 	if (ret || intel_dp->force_dsc_en) {
   2284 		ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
   2285 						  conn_state, &limits);
   2286 		if (ret < 0)
   2287 			return ret;
   2288 	}
   2289 
   2290 	if (pipe_config->dsc.compression_enable) {
   2291 		DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
   2292 			      pipe_config->lane_count, pipe_config->port_clock,
   2293 			      pipe_config->pipe_bpp,
   2294 			      pipe_config->dsc.compressed_bpp);
   2295 
   2296 		DRM_DEBUG_KMS("DP link rate required %i available %i\n",
   2297 			      intel_dp_link_required(adjusted_mode->crtc_clock,
   2298 						     pipe_config->dsc.compressed_bpp),
   2299 			      intel_dp_max_data_rate(pipe_config->port_clock,
   2300 						     pipe_config->lane_count));
   2301 	} else {
   2302 		DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n",
   2303 			      pipe_config->lane_count, pipe_config->port_clock,
   2304 			      pipe_config->pipe_bpp);
   2305 
   2306 		DRM_DEBUG_KMS("DP link rate required %i available %i\n",
   2307 			      intel_dp_link_required(adjusted_mode->crtc_clock,
   2308 						     pipe_config->pipe_bpp),
   2309 			      intel_dp_max_data_rate(pipe_config->port_clock,
   2310 						     pipe_config->lane_count));
   2311 	}
   2312 	return 0;
   2313 }
   2314 
   2315 static int
   2316 intel_dp_ycbcr420_config(struct intel_dp *intel_dp,
   2317 			 struct drm_connector *connector,
   2318 			 struct intel_crtc_state *crtc_state)
   2319 {
   2320 	const struct drm_display_info *info = &connector->display_info;
   2321 	const struct drm_display_mode *adjusted_mode =
   2322 		&crtc_state->hw.adjusted_mode;
   2323 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
   2324 	int ret;
   2325 
   2326 	if (!drm_mode_is_420_only(info, adjusted_mode) ||
   2327 	    !intel_dp_get_colorimetry_status(intel_dp) ||
   2328 	    !connector->ycbcr_420_allowed)
   2329 		return 0;
   2330 
   2331 	crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
   2332 
   2333 	/* YCBCR 420 output conversion needs a scaler */
   2334 	ret = skl_update_scaler_crtc(crtc_state);
   2335 	if (ret) {
   2336 		DRM_DEBUG_KMS("Scaler allocation for output failed\n");
   2337 		return ret;
   2338 	}
   2339 
   2340 	intel_pch_panel_fitting(crtc, crtc_state, DRM_MODE_SCALE_FULLSCREEN);
   2341 
   2342 	return 0;
   2343 }
   2344 
   2345 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
   2346 				  const struct drm_connector_state *conn_state)
   2347 {
   2348 	const struct intel_digital_connector_state *intel_conn_state =
   2349 		const_container_of(conn_state, struct intel_digital_connector_state, base);
   2350 	const struct drm_display_mode *adjusted_mode =
   2351 		&crtc_state->hw.adjusted_mode;
   2352 
   2353 	/*
   2354 	 * Our YCbCr output is always limited range.
   2355 	 * crtc_state->limited_color_range only applies to RGB,
   2356 	 * and it must never be set for YCbCr or we risk setting
   2357 	 * some conflicting bits in PIPECONF which will mess up
   2358 	 * the colors on the monitor.
   2359 	 */
   2360 	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
   2361 		return false;
   2362 
   2363 	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
   2364 		/*
   2365 		 * See:
   2366 		 * CEA-861-E - 5.1 Default Encoding Parameters
   2367 		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
   2368 		 */
   2369 		return crtc_state->pipe_bpp != 18 &&
   2370 			drm_default_rgb_quant_range(adjusted_mode) ==
   2371 			HDMI_QUANTIZATION_RANGE_LIMITED;
   2372 	} else {
   2373 		return intel_conn_state->broadcast_rgb ==
   2374 			INTEL_BROADCAST_RGB_LIMITED;
   2375 	}
   2376 }
   2377 
   2378 static bool intel_dp_port_has_audio(struct drm_i915_private *dev_priv,
   2379 				    enum port port)
   2380 {
   2381 	if (IS_G4X(dev_priv))
   2382 		return false;
   2383 	if (INTEL_GEN(dev_priv) < 12 && port == PORT_A)
   2384 		return false;
   2385 
   2386 	return true;
   2387 }
   2388 
   2389 int
   2390 intel_dp_compute_config(struct intel_encoder *encoder,
   2391 			struct intel_crtc_state *pipe_config,
   2392 			struct drm_connector_state *conn_state)
   2393 {
   2394 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
   2395 	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
   2396 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
   2397 	struct intel_lspcon *lspcon = enc_to_intel_lspcon(encoder);
   2398 	enum port port = encoder->port;
   2399 	struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->uapi.crtc);
   2400 	struct intel_connector *intel_connector = intel_dp->attached_connector;
   2401 	struct intel_digital_connector_state *intel_conn_state =
   2402 		to_intel_digital_connector_state(conn_state);
   2403 	bool constant_n = drm_dp_has_quirk(&intel_dp->desc,
   2404 					   DP_DPCD_QUIRK_CONSTANT_N);
   2405 	int ret = 0, output_bpp;
   2406 
   2407 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
   2408 		pipe_config->has_pch_encoder = true;
   2409 
   2410 	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
   2411 
   2412 	if (lspcon->active)
   2413 		lspcon_ycbcr420_config(&intel_connector->base, pipe_config);
   2414 	else
   2415 		ret = intel_dp_ycbcr420_config(intel_dp, &intel_connector->base,
   2416 					       pipe_config);
   2417 
   2418 	if (ret)
   2419 		return ret;
   2420 
   2421 	pipe_config->has_drrs = false;
   2422 	if (!intel_dp_port_has_audio(dev_priv, port))
   2423 		pipe_config->has_audio = false;
   2424 	else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
   2425 		pipe_config->has_audio = intel_dp->has_audio;
   2426 	else
   2427 		pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;
   2428 
   2429 	if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
   2430 		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
   2431 				       adjusted_mode);
   2432 
   2433 		if (INTEL_GEN(dev_priv) >= 9) {
   2434 			ret = skl_update_scaler_crtc(pipe_config);
   2435 			if (ret)
   2436 				return ret;
   2437 		}
   2438 
   2439 		if (HAS_GMCH(dev_priv))
   2440 			intel_gmch_panel_fitting(intel_crtc, pipe_config,
   2441 						 conn_state->scaling_mode);
   2442 		else
   2443 			intel_pch_panel_fitting(intel_crtc, pipe_config,
   2444 						conn_state->scaling_mode);
   2445 	}
   2446 
   2447 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
   2448 		return -EINVAL;
   2449 
   2450 	if (HAS_GMCH(dev_priv) &&
   2451 	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
   2452 		return -EINVAL;
   2453 
   2454 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
   2455 		return -EINVAL;
   2456 
   2457 	if (intel_dp_hdisplay_bad(dev_priv, adjusted_mode->crtc_hdisplay))
   2458 		return -EINVAL;
   2459 
   2460 	ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
   2461 	if (ret < 0)
   2462 		return ret;
   2463 
   2464 	pipe_config->limited_color_range =
   2465 		intel_dp_limited_color_range(pipe_config, conn_state);
   2466 
   2467 	if (pipe_config->dsc.compression_enable)
   2468 		output_bpp = pipe_config->dsc.compressed_bpp;
   2469 	else
   2470 		output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp);
   2471 
   2472 	intel_link_compute_m_n(output_bpp,
   2473 			       pipe_config->lane_count,
   2474 			       adjusted_mode->crtc_clock,
   2475 			       pipe_config->port_clock,
   2476 			       &pipe_config->dp_m_n,
   2477 			       constant_n, pipe_config->fec_enable);
   2478 
   2479 	if (intel_connector->panel.downclock_mode != NULL &&
   2480 		dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
   2481 			pipe_config->has_drrs = true;
   2482 			intel_link_compute_m_n(output_bpp,
   2483 					       pipe_config->lane_count,
   2484 					       intel_connector->panel.downclock_mode->clock,
   2485 					       pipe_config->port_clock,
   2486 					       &pipe_config->dp_m2_n2,
   2487 					       constant_n, pipe_config->fec_enable);
   2488 	}
   2489 
   2490 	if (!HAS_DDI(dev_priv))
   2491 		intel_dp_set_clock(encoder, pipe_config);
   2492 
   2493 	intel_psr_compute_config(intel_dp, pipe_config);
   2494 
   2495 	return 0;
   2496 }
   2497 
   2498 void intel_dp_set_link_params(struct intel_dp *intel_dp,
   2499 			      int link_rate, u8 lane_count,
   2500 			      bool link_mst)
   2501 {
   2502 	intel_dp->link_trained = false;
   2503 	intel_dp->link_rate = link_rate;
   2504 	intel_dp->lane_count = lane_count;
   2505 	intel_dp->link_mst = link_mst;
   2506 }
   2507 
   2508 static void intel_dp_prepare(struct intel_encoder *encoder,
   2509 			     const struct intel_crtc_state *pipe_config)
   2510 {
   2511 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
   2512 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
   2513 	enum port port = encoder->port;
   2514 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
   2515 	const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
   2516 
   2517 	intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
   2518 				 pipe_config->lane_count,
   2519 				 intel_crtc_has_type(pipe_config,
   2520 						     INTEL_OUTPUT_DP_MST));
   2521 
   2522 	intel_dp->regs.dp_tp_ctl = DP_TP_CTL(port);
   2523 	intel_dp->regs.dp_tp_status = DP_TP_STATUS(port);
   2524 
   2525 	/*
   2526 	 * There are four kinds of DP registers:
   2527 	 *
   2528 	 * 	IBX PCH
   2529 	 * 	SNB CPU
   2530 	 *	IVB CPU
   2531 	 * 	CPT PCH
   2532 	 *
   2533 	 * IBX PCH and CPU are the same for almost everything,
   2534 	 * except that the CPU DP PLL is configured in this
   2535 	 * register
   2536 	 *
   2537 	 * CPT PCH is quite different, having many bits moved
   2538 	 * to the TRANS_DP_CTL register instead. That
   2539 	 * configuration happens (oddly) in ilk_pch_enable
   2540 	 */
   2541 
   2542 	/* Preserve the BIOS-computed detected bit. This is
   2543 	 * supposed to be read-only.
   2544 	 */
   2545 	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
   2546 
   2547 	/* Handle DP bits in common between all three register formats */
   2548 	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
   2549 	intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
   2550 
   2551 	/* Split out the IBX/CPU vs CPT settings */
   2552 
   2553 	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
   2554 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
   2555 			intel_dp->DP |= DP_SYNC_HS_HIGH;
   2556 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
   2557 			intel_dp->DP |= DP_SYNC_VS_HIGH;
   2558 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
   2559 
   2560 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
   2561 			intel_dp->DP |= DP_ENHANCED_FRAMING;
   2562 
   2563 		intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
   2564 	} else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
   2565 		u32 trans_dp;
   2566 
   2567 		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
   2568 
   2569 		trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
   2570 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
   2571 			trans_dp |= TRANS_DP_ENH_FRAMING;
   2572 		else
   2573 			trans_dp &= ~TRANS_DP_ENH_FRAMING;
   2574 		I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
   2575 	} else {
   2576 		if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
   2577 			intel_dp->DP |= DP_COLOR_RANGE_16_235;
   2578 
   2579 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
   2580 			intel_dp->DP |= DP_SYNC_HS_HIGH;
   2581 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
   2582 			intel_dp->DP |= DP_SYNC_VS_HIGH;
   2583 		intel_dp->DP |= DP_LINK_TRAIN_OFF;
   2584 
   2585 		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
   2586 			intel_dp->DP |= DP_ENHANCED_FRAMING;
   2587 
   2588 		if (IS_CHERRYVIEW(dev_priv))
   2589 			intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
   2590 		else
   2591 			intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
   2592 	}
   2593 }
   2594 
   2595 #define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
   2596 #define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
   2597 
   2598 #define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
   2599 #define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
   2600 
   2601 #define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
   2602 #define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
   2603 
   2604 static void intel_pps_verify_state(struct intel_dp *intel_dp);
   2605 
   2606 static void wait_panel_status(struct intel_dp *intel_dp,
   2607 				       u32 mask,
   2608 				       u32 value)
   2609 {
   2610 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
   2611 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
   2612 
   2613 	lockdep_assert_held(&dev_priv->pps_mutex);
   2614 
   2615 	intel_pps_verify_state(intel_dp);
   2616 
   2617 	pp_stat_reg = _pp_stat_reg(intel_dp);
   2618 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
   2619 
   2620 	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
   2621 			mask, value,
   2622 			I915_READ(pp_stat_reg),
   2623 			I915_READ(pp_ctrl_reg));
   2624 
   2625 	if (intel_de_wait_for_register(dev_priv, pp_stat_reg,
   2626 				       mask, value, 5000))
   2627 		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
   2628 				I915_READ(pp_stat_reg),
   2629 				I915_READ(pp_ctrl_reg));
   2630 
   2631 	DRM_DEBUG_KMS("Wait complete\n");
   2632 }
   2633 
   2634 static void wait_panel_on(struct intel_dp *intel_dp)
   2635 {
   2636 	DRM_DEBUG_KMS("Wait for panel power on\n");
   2637 	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
   2638 }
   2639 
   2640 static void wait_panel_off(struct intel_dp *intel_dp)
   2641 {
   2642 	DRM_DEBUG_KMS("Wait for panel power off time\n");
   2643 	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
   2644 }
   2645 
   2646 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
   2647 {
   2648 	ktime_t panel_power_on_time;
   2649 	s64 panel_power_off_duration;
   2650 
   2651 	DRM_DEBUG_KMS("Wait for panel power cycle\n");
   2652 
   2653 	/* take the difference of currrent time and panel power off time
   2654 	 * and then make panel wait for t11_t12 if needed. */
   2655 	panel_power_on_time = ktime_get_boottime();
   2656 	panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
   2657 
   2658 	/* When we disable the VDD override bit last we have to do the manual
   2659 	 * wait. */
   2660 	if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
   2661 		wait_remaining_ms_from_jiffies(jiffies,
   2662 				       intel_dp->panel_power_cycle_delay - panel_power_off_duration);
   2663 
   2664 	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
   2665 }
   2666 
   2667 static void wait_backlight_on(struct intel_dp *intel_dp)
   2668 {
   2669 	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
   2670 				       intel_dp->backlight_on_delay);
   2671 }
   2672 
   2673 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
   2674 {
   2675 	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
   2676 				       intel_dp->backlight_off_delay);
   2677 }
   2678 
   2679 /* Read the current pp_control value, unlocking the register if it
   2680  * is locked
   2681  */
   2682 
   2683 static  u32 ilk_get_pp_control(struct intel_dp *intel_dp)
   2684 {
   2685 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
   2686 	u32 control;
   2687 
   2688 	lockdep_assert_held(&dev_priv->pps_mutex);
   2689 
   2690 	control = I915_READ(_pp_ctrl_reg(intel_dp));
   2691 	if (WARN_ON(!HAS_DDI(dev_priv) &&
   2692 		    (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
   2693 		control &= ~PANEL_UNLOCK_MASK;
   2694 		control |= PANEL_UNLOCK_REGS;
   2695 	}
   2696 	return control;
   2697 }
   2698 
   2699 /*
   2700  * Must be paired with edp_panel_vdd_off().
   2701  * Must hold pps_mutex around the whole on/off sequence.
   2702  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
   2703  */
   2704 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
   2705 {
   2706 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
   2707 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
   2708 	u32 pp;
   2709 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
   2710 	bool need_to_disable = !intel_dp->want_panel_vdd;
   2711 
   2712 	lockdep_assert_held(&dev_priv->pps_mutex);
   2713 
   2714 	if (!intel_dp_is_edp(intel_dp))
   2715 		return false;
   2716 
   2717 	cancel_delayed_work(&intel_dp->panel_vdd_work);
   2718 	intel_dp->want_panel_vdd = true;
   2719 
   2720 	if (edp_have_panel_vdd(intel_dp))
   2721 		return need_to_disable;
   2722 
   2723 	intel_display_power_get(dev_priv,
   2724 				intel_aux_power_domain(intel_dig_port));
   2725 
   2726 	DRM_DEBUG_KMS("Turning [ENCODER:%d:%s] VDD on\n",
   2727 		      intel_dig_port->base.base.base.id,
   2728 		      intel_dig_port->base.base.name);
   2729 
   2730 	if (!edp_have_panel_power(intel_dp))
   2731 		wait_panel_power_cycle(intel_dp);
   2732 
   2733 	pp = ilk_get_pp_control(intel_dp);
   2734 	pp |= EDP_FORCE_VDD;
   2735 
   2736 	pp_stat_reg = _pp_stat_reg(intel_dp);
   2737 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
   2738 
   2739 	I915_WRITE(pp_ctrl_reg, pp);
   2740 	POSTING_READ(pp_ctrl_reg);
   2741 	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
   2742 			I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
   2743 	/*
   2744 	 * If the panel wasn't on, delay before accessing aux channel
   2745 	 */
   2746 	if (!edp_have_panel_power(intel_dp)) {
   2747 		DRM_DEBUG_KMS("[ENCODER:%d:%s] panel power wasn't enabled\n",
   2748 			      intel_dig_port->base.base.base.id,
   2749 			      intel_dig_port->base.base.name);
   2750 		msleep(intel_dp->panel_power_up_delay);
   2751 	}
   2752 
   2753 	return need_to_disable;
   2754 }
   2755 
   2756 /*
   2757  * Must be paired with intel_edp_panel_vdd_off() or
   2758  * intel_edp_panel_off().
   2759  * Nested calls to these functions are not allowed since
   2760  * we drop the lock. Caller must use some higher level
   2761  * locking to prevent nested calls from other threads.
   2762  */
   2763 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
   2764 {
   2765 	intel_wakeref_t wakeref;
   2766 	bool vdd;
   2767 
   2768 	if (!intel_dp_is_edp(intel_dp))
   2769 		return;
   2770 
   2771 	vdd = false;
   2772 	with_pps_lock(intel_dp, wakeref)
   2773 		vdd = edp_panel_vdd_on(intel_dp);
   2774 	I915_STATE_WARN(!vdd, "[ENCODER:%d:%s] VDD already requested on\n",
   2775 			dp_to_dig_port(intel_dp)->base.base.base.id,
   2776 			dp_to_dig_port(intel_dp)->base.base.name);
   2777 }
   2778 
   2779 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
   2780 {
   2781 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
   2782 	struct intel_digital_port *intel_dig_port =
   2783 		dp_to_dig_port(intel_dp);
   2784 	u32 pp;
   2785 	i915_reg_t pp_stat_reg, pp_ctrl_reg;
   2786 
   2787 	lockdep_assert_held(&dev_priv->pps_mutex);
   2788 
   2789 	WARN_ON(intel_dp->want_panel_vdd);
   2790 
   2791 	if (!edp_have_panel_vdd(intel_dp))
   2792 		return;
   2793 
   2794 	DRM_DEBUG_KMS("Turning [ENCODER:%d:%s] VDD off\n",
   2795 		      intel_dig_port->base.base.base.id,
   2796 		      intel_dig_port->base.base.name);
   2797 
   2798 	pp = ilk_get_pp_control(intel_dp);
   2799 	pp &= ~EDP_FORCE_VDD;
   2800 
   2801 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
   2802 	pp_stat_reg = _pp_stat_reg(intel_dp);
   2803 
   2804 	I915_WRITE(pp_ctrl_reg, pp);
   2805 	POSTING_READ(pp_ctrl_reg);
   2806 
   2807 	/* Make sure sequencer is idle before allowing subsequent activity */
   2808 	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
   2809 	I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
   2810 
   2811 	if ((pp & PANEL_POWER_ON) == 0)
   2812 		intel_dp->panel_power_off_time = ktime_get_boottime();
   2813 
   2814 	intel_display_power_put_unchecked(dev_priv,
   2815 					  intel_aux_power_domain(intel_dig_port));
   2816 }
   2817 
   2818 static void edp_panel_vdd_work(struct work_struct *__work)
   2819 {
   2820 	struct intel_dp *intel_dp =
   2821 		container_of(to_delayed_work(__work),
   2822 			     struct intel_dp, panel_vdd_work);
   2823 	intel_wakeref_t wakeref;
   2824 
   2825 	with_pps_lock(intel_dp, wakeref) {
   2826 		if (!intel_dp->want_panel_vdd)
   2827 			edp_panel_vdd_off_sync(intel_dp);
   2828 	}
   2829 }
   2830 
   2831 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
   2832 {
   2833 	unsigned long delay;
   2834 
   2835 	/*
   2836 	 * Queue the timer to fire a long time from now (relative to the power
   2837 	 * down delay) to keep the panel power up across a sequence of
   2838 	 * operations.
   2839 	 */
   2840 	delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
   2841 	schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
   2842 }
   2843 
   2844 /*
   2845  * Must be paired with edp_panel_vdd_on().
   2846  * Must hold pps_mutex around the whole on/off sequence.
   2847  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
   2848  */
   2849 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
   2850 {
   2851 	struct drm_i915_private *dev_priv __lockdep_used = dp_to_i915(intel_dp);
   2852 
   2853 	lockdep_assert_held(&dev_priv->pps_mutex);
   2854 
   2855 	if (!intel_dp_is_edp(intel_dp))
   2856 		return;
   2857 
   2858 	I915_STATE_WARN(!intel_dp->want_panel_vdd, "[ENCODER:%d:%s] VDD not forced on",
   2859 			dp_to_dig_port(intel_dp)->base.base.base.id,
   2860 			dp_to_dig_port(intel_dp)->base.base.name);
   2861 
   2862 	intel_dp->want_panel_vdd = false;
   2863 
   2864 	if (sync)
   2865 		edp_panel_vdd_off_sync(intel_dp);
   2866 	else
   2867 		edp_panel_vdd_schedule_off(intel_dp);
   2868 }
   2869 
   2870 static void edp_panel_on(struct intel_dp *intel_dp)
   2871 {
   2872 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
   2873 	u32 pp;
   2874 	i915_reg_t pp_ctrl_reg;
   2875 
   2876 	lockdep_assert_held(&dev_priv->pps_mutex);
   2877 
   2878 	if (!intel_dp_is_edp(intel_dp))
   2879 		return;
   2880 
   2881 	DRM_DEBUG_KMS("Turn [ENCODER:%d:%s] panel power on\n",
   2882 		      dp_to_dig_port(intel_dp)->base.base.base.id,
   2883 		      dp_to_dig_port(intel_dp)->base.base.name);
   2884 
   2885 	if (WARN(edp_have_panel_power(intel_dp),
   2886 		 "[ENCODER:%d:%s] panel power already on\n",
   2887 		 dp_to_dig_port(intel_dp)->base.base.base.id,
   2888 		 dp_to_dig_port(intel_dp)->base.base.name))
   2889 		return;
   2890 
   2891 	wait_panel_power_cycle(intel_dp);
   2892 
   2893 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
   2894 	pp = ilk_get_pp_control(intel_dp);
   2895 	if (IS_GEN(dev_priv, 5)) {
   2896 		/* ILK workaround: disable reset around power sequence */
   2897 		pp &= ~PANEL_POWER_RESET;
   2898 		I915_WRITE(pp_ctrl_reg, pp);
   2899 		POSTING_READ(pp_ctrl_reg);
   2900 	}
   2901 
   2902 	pp |= PANEL_POWER_ON;
   2903 	if (!IS_GEN(dev_priv, 5))
   2904 		pp |= PANEL_POWER_RESET;
   2905 
   2906 	I915_WRITE(pp_ctrl_reg, pp);
   2907 	POSTING_READ(pp_ctrl_reg);
   2908 
   2909 	wait_panel_on(intel_dp);
   2910 	intel_dp->last_power_on = jiffies;
   2911 
   2912 	if (IS_GEN(dev_priv, 5)) {
   2913 		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
   2914 		I915_WRITE(pp_ctrl_reg, pp);
   2915 		POSTING_READ(pp_ctrl_reg);
   2916 	}
   2917 }
   2918 
   2919 void intel_edp_panel_on(struct intel_dp *intel_dp)
   2920 {
   2921 	intel_wakeref_t wakeref;
   2922 
   2923 	if (!intel_dp_is_edp(intel_dp))
   2924 		return;
   2925 
   2926 	with_pps_lock(intel_dp, wakeref)
   2927 		edp_panel_on(intel_dp);
   2928 }
   2929 
   2930 
   2931 static void edp_panel_off(struct intel_dp *intel_dp)
   2932 {
   2933 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
   2934 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
   2935 	u32 pp;
   2936 	i915_reg_t pp_ctrl_reg;
   2937 
   2938 	lockdep_assert_held(&dev_priv->pps_mutex);
   2939 
   2940 	if (!intel_dp_is_edp(intel_dp))
   2941 		return;
   2942 
   2943 	DRM_DEBUG_KMS("Turn [ENCODER:%d:%s] panel power off\n",
   2944 		      dig_port->base.base.base.id, dig_port->base.base.name);
   2945 
   2946 	WARN(!intel_dp->want_panel_vdd, "Need [ENCODER:%d:%s] VDD to turn off panel\n",
   2947 	     dig_port->base.base.base.id, dig_port->base.base.name);
   2948 
   2949 	pp = ilk_get_pp_control(intel_dp);
   2950 	/* We need to switch off panel power _and_ force vdd, for otherwise some
   2951 	 * panels get very unhappy and cease to work. */
   2952 	pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
   2953 		EDP_BLC_ENABLE);
   2954 
   2955 	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
   2956 
   2957 	intel_dp->want_panel_vdd = false;
   2958 
   2959 	I915_WRITE(pp_ctrl_reg, pp);
   2960 	POSTING_READ(pp_ctrl_reg);
   2961 
   2962 	wait_panel_off(intel_dp);
   2963 	intel_dp->panel_power_off_time = ktime_get_boottime();
   2964 
   2965 	/* We got a reference when we enabled the VDD. */
   2966 	intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
   2967 }
   2968 
   2969 void intel_edp_panel_off(struct intel_dp *intel_dp)
   2970 {
   2971 	intel_wakeref_t wakeref;
   2972 
   2973 	if (!intel_dp_is_edp(intel_dp))
   2974 		return;
   2975 
   2976 	with_pps_lock(intel_dp, wakeref)
   2977 		edp_panel_off(intel_dp);
   2978 }
   2979 
   2980 /* Enable backlight in the panel power control. */
   2981 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
   2982 {
   2983 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
   2984 	intel_wakeref_t wakeref;
   2985 
   2986 	/*
   2987 	 * If we enable the backlight right away following a panel power
   2988 	 * on, we may see slight flicker as the panel syncs with the eDP
   2989 	 * link.  So delay a bit to make sure the image is solid before
   2990 	 * allowing it to appear.
   2991 	 */
   2992 	wait_backlight_on(intel_dp);
   2993 
   2994 	with_pps_lock(intel_dp, wakeref) {
   2995 		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
   2996 		u32 pp;
   2997 
   2998 		pp = ilk_get_pp_control(intel_dp);
   2999 		pp |= EDP_BLC_ENABLE;
   3000 
   3001 		I915_WRITE(pp_ctrl_reg, pp);
   3002 		POSTING_READ(pp_ctrl_reg);
   3003 	}
   3004 }
   3005 
   3006 /* Enable backlight PWM and backlight PP control. */
   3007 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
   3008 			    const struct drm_connector_state *conn_state)
   3009 {
   3010 	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(conn_state->best_encoder));
   3011 
   3012 	if (!intel_dp_is_edp(intel_dp))
   3013 		return;
   3014 
   3015 	DRM_DEBUG_KMS("\n");
   3016 
   3017 	intel_panel_enable_backlight(crtc_state, conn_state);
   3018 	_intel_edp_backlight_on(intel_dp);
   3019 }
   3020 
   3021 /* Disable backlight in the panel power control. */
   3022 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
   3023 {
   3024 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
   3025 	intel_wakeref_t wakeref;
   3026 
   3027 	if (!intel_dp_is_edp(intel_dp))
   3028 		return;
   3029 
   3030 	with_pps_lock(intel_dp, wakeref) {
   3031 		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
   3032 		u32 pp;
   3033 
   3034 		pp = ilk_get_pp_control(intel_dp);
   3035 		pp &= ~EDP_BLC_ENABLE;
   3036 
   3037 		I915_WRITE(pp_ctrl_reg, pp);
   3038 		POSTING_READ(pp_ctrl_reg);
   3039 	}
   3040 
   3041 	intel_dp->last_backlight_off = jiffies;
   3042 	edp_wait_backlight_off(intel_dp);
   3043 }
   3044 
   3045 /* Disable backlight PP control and backlight PWM. */
   3046 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
   3047 {
   3048 	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(old_conn_state->best_encoder));
   3049 
   3050 	if (!intel_dp_is_edp(intel_dp))
   3051 		return;
   3052 
   3053 	DRM_DEBUG_KMS("\n");
   3054 
   3055 	_intel_edp_backlight_off(intel_dp);
   3056 	intel_panel_disable_backlight(old_conn_state);
   3057 }
   3058 
   3059 /*
   3060  * Hook for controlling the panel power control backlight through the bl_power
   3061  * sysfs attribute. Take care to handle multiple calls.
   3062  */
   3063 static void intel_edp_backlight_power(struct intel_connector *connector,
   3064 				      bool enable)
   3065 {
   3066 	struct intel_dp *intel_dp = intel_attached_dp(connector);
   3067 	intel_wakeref_t wakeref;
   3068 	bool is_enabled;
   3069 
   3070 	is_enabled = false;
   3071 	with_pps_lock(intel_dp, wakeref)
   3072 		is_enabled = ilk_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
   3073 	if (is_enabled == enable)
   3074 		return;
   3075 
   3076 	DRM_DEBUG_KMS("panel power control backlight %s\n",
   3077 		      enable ? "enable" : "disable");
   3078 
   3079 	if (enable)
   3080 		_intel_edp_backlight_on(intel_dp);
   3081 	else
   3082 		_intel_edp_backlight_off(intel_dp);
   3083 }
   3084 
   3085 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
   3086 {
   3087 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
   3088 	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
   3089 	bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
   3090 
   3091 	I915_STATE_WARN(cur_state != state,
   3092 			"[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n",
   3093 			dig_port->base.base.base.id, dig_port->base.base.name,
   3094 			onoff(state), onoff(cur_state));
   3095 }
   3096 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
   3097 
   3098 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
   3099 {
   3100 	bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
   3101 
   3102 	I915_STATE_WARN(cur_state != state,
   3103 			"eDP PLL state assertion failure (expected %s, current %s)\n",
   3104 			onoff(state), onoff(cur_state));
   3105 }
   3106 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
   3107 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
   3108 
   3109 static void ilk_edp_pll_on(struct intel_dp *intel_dp,
   3110 			   const struct intel_crtc_state *pipe_config)
   3111 {
   3112 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
   3113 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
   3114 
   3115 	assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
   3116 	assert_dp_port_disabled(intel_dp);
   3117 	assert_edp_pll_disabled(dev_priv);
   3118 
   3119 	DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
   3120 		      pipe_config->port_clock);
   3121 
   3122 	intel_dp->DP &= ~DP_PLL_FREQ_MASK;
   3123 
   3124 	if (pipe_config->port_clock == 162000)
   3125 		intel_dp->DP |= DP_PLL_FREQ_162MHZ;
   3126 	else
   3127 		intel_dp->DP |= DP_PLL_FREQ_270MHZ;
   3128 
   3129 	I915_WRITE(DP_A, intel_dp->DP);
   3130 	POSTING_READ(DP_A);
   3131 	udelay(500);
   3132 
   3133 	/*
   3134 	 * [DevILK] Work around required when enabling DP PLL
   3135 	 * while a pipe is enabled going to FDI:
   3136 	 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
   3137 	 * 2. Program DP PLL enable
   3138 	 */
   3139 	if (IS_GEN(dev_priv, 5))
   3140 		intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
   3141 
   3142 	intel_dp->DP |= DP_PLL_ENABLE;
   3143 
   3144 	I915_WRITE(DP_A, intel_dp->DP);
   3145 	POSTING_READ(DP_A);
   3146 	udelay(200);
   3147 }
   3148 
   3149 static void ilk_edp_pll_off(struct intel_dp *intel_dp,
   3150 			    const struct intel_crtc_state *old_crtc_state)
   3151 {
   3152 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
   3153 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
   3154 
   3155 	assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder);
   3156 	assert_dp_port_disabled(intel_dp);
   3157 	assert_edp_pll_enabled(dev_priv);
   3158 
   3159 	DRM_DEBUG_KMS("disabling eDP PLL\n");
   3160 
   3161 	intel_dp->DP &= ~DP_PLL_ENABLE;
   3162 
   3163 	I915_WRITE(DP_A, intel_dp->DP);
   3164 	POSTING_READ(DP_A);
   3165 	udelay(200);
   3166 }
   3167 
   3168 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
   3169 {
   3170 	/*
   3171 	 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
   3172 	 * be capable of signalling downstream hpd with a long pulse.
   3173 	 * Whether or not that means D3 is safe to use is not clear,
   3174 	 * but let's assume so until proven otherwise.
   3175 	 *
   3176 	 * FIXME should really check all downstream ports...
   3177 	 */
   3178 	return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
   3179 		intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
   3180 		intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
   3181 }
   3182 
   3183 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
   3184 					   const struct intel_crtc_state *crtc_state,
   3185 					   bool enable)
   3186 {
   3187 	int ret;
   3188 
   3189 	if (!crtc_state->dsc.compression_enable)
   3190 		return;
   3191 
   3192 	ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
   3193 				 enable ? DP_DECOMPRESSION_EN : 0);
   3194 	if (ret < 0)
   3195 		DRM_DEBUG_KMS("Failed to %s sink decompression state\n",
   3196 			      enable ? "enable" : "disable");
   3197 }
   3198 
   3199 /* If the sink supports it, try to set the power state appropriately */
   3200 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
   3201 {
   3202 	int ret, i;
   3203 
   3204 	/* Should have a valid DPCD by this point */
   3205 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
   3206 		return;
   3207 
   3208 	if (mode != DRM_MODE_DPMS_ON) {
   3209 		if (downstream_hpd_needs_d0(intel_dp))
   3210 			return;
   3211 
   3212 		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
   3213 					 DP_SET_POWER_D3);
   3214 	} else {
   3215 		struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
   3216 
   3217 		/*
   3218 		 * When turning on, we need to retry for 1ms to give the sink
   3219 		 * time to wake up.
   3220 		 */
   3221 		for (i = 0; i < 3; i++) {
   3222 			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
   3223 						 DP_SET_POWER_D0);
   3224 			if (ret == 1)
   3225 				break;
   3226 			msleep(1);
   3227 		}
   3228 
   3229 		if (ret == 1 && lspcon->active)
   3230 			lspcon_wait_pcon_mode(lspcon);
   3231 	}
   3232 
   3233 	if (ret != 1)
   3234 		DRM_DEBUG_KMS("failed to %s sink power state\n",
   3235 			      mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
   3236 }
   3237 
   3238 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
   3239 				 enum port port, enum pipe *pipe)
   3240 {
   3241 	enum pipe p;
   3242 
   3243 	for_each_pipe(dev_priv, p) {
   3244 		u32 val = I915_READ(TRANS_DP_CTL(p));
   3245 
   3246 		if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
   3247 			*pipe = p;
   3248 			return true;
   3249 		}
   3250 	}
   3251 
   3252 	DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port));
   3253 
   3254 	/* must initialize pipe to something for the asserts */
   3255 	*pipe = PIPE_A;
   3256 
   3257 	return false;
   3258 }
   3259 
   3260 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
   3261 			   i915_reg_t dp_reg, enum port port,
   3262 			   enum pipe *pipe)
   3263 {
   3264 	bool ret;
   3265 	u32 val;
   3266 
   3267 	val = I915_READ(dp_reg);
   3268 
   3269 	ret = val & DP_PORT_EN;
   3270 
   3271 	/* asserts want to know the pipe even if the port is disabled */
   3272 	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
   3273 		*pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
   3274 	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
   3275 		ret &= cpt_dp_port_selected(dev_priv, port, pipe);
   3276 	else if (IS_CHERRYVIEW(dev_priv))
   3277 		*pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
   3278 	else
   3279 		*pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;
   3280 
   3281 	return ret;
   3282 }
   3283 
   3284 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
   3285 				  enum pipe *pipe)
   3286 {
   3287 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
   3288 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
   3289 	intel_wakeref_t wakeref;
   3290 	bool ret;
   3291 
   3292 	wakeref = intel_display_power_get_if_enabled(dev_priv,
   3293 						     encoder->power_domain);
   3294 	if (!wakeref)
   3295 		return false;
   3296 
   3297 	ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
   3298 				    encoder->port, pipe);
   3299 
   3300 	intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
   3301 
   3302 	return ret;
   3303 }
   3304 
   3305 static void intel_dp_get_config(struct intel_encoder *encoder,
   3306 				struct intel_crtc_state *pipe_config)
   3307 {
   3308 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
   3309 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
   3310 	u32 tmp, flags = 0;
   3311 	enum port port = encoder->port;
   3312 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
   3313 
   3314 	if (encoder->type == INTEL_OUTPUT_EDP)
   3315 		pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
   3316 	else
   3317 		pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
   3318 
   3319 	tmp = I915_READ(intel_dp->output_reg);
   3320 
   3321 	pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
   3322 
   3323 	if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
   3324 		u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
   3325 
   3326 		if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
   3327 			flags |= DRM_MODE_FLAG_PHSYNC;
   3328 		else
   3329 			flags |= DRM_MODE_FLAG_NHSYNC;
   3330 
   3331 		if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
   3332 			flags |= DRM_MODE_FLAG_PVSYNC;
   3333 		else
   3334 			flags |= DRM_MODE_FLAG_NVSYNC;
   3335 	} else {
   3336 		if (tmp & DP_SYNC_HS_HIGH)
   3337 			flags |= DRM_MODE_FLAG_PHSYNC;
   3338 		else
   3339 			flags |= DRM_MODE_FLAG_NHSYNC;
   3340 
   3341 		if (tmp & DP_SYNC_VS_HIGH)
   3342 			flags |= DRM_MODE_FLAG_PVSYNC;
   3343 		else
   3344 			flags |= DRM_MODE_FLAG_NVSYNC;
   3345 	}
   3346 
   3347 	pipe_config->hw.adjusted_mode.flags |= flags;
   3348 
   3349 	if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
   3350 		pipe_config->limited_color_range = true;
   3351 
   3352 	pipe_config->lane_count =
   3353 		((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
   3354 
   3355 	intel_dp_get_m_n(crtc, pipe_config);
   3356 
   3357 	if (port == PORT_A) {
   3358 		if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
   3359 			pipe_config->port_clock = 162000;
   3360 		else
   3361 			pipe_config->port_clock = 270000;
   3362 	}
   3363 
   3364 	pipe_config->hw.adjusted_mode.crtc_clock =
   3365 		intel_dotclock_calculate(pipe_config->port_clock,
   3366 					 &pipe_config->dp_m_n);
   3367 
   3368 	if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
   3369 	    pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
   3370 		/*
   3371 		 * This is a big fat ugly hack.
   3372 		 *
   3373 		 * Some machines in UEFI boot mode provide us a VBT that has 18
   3374 		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
   3375 		 * unknown we fail to light up. Yet the same BIOS boots up with
   3376 		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
   3377 		 * max, not what it tells us to use.
   3378 		 *
   3379 		 * Note: This will still be broken if the eDP panel is not lit
   3380 		 * up by the BIOS, and thus we can't get the mode at module
   3381 		 * load.
   3382 		 */
   3383 		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
   3384 			      pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
   3385 		dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
   3386 	}
   3387 }
   3388 
   3389 static void intel_disable_dp(struct intel_encoder *encoder,
   3390 			     const struct intel_crtc_state *old_crtc_state,
   3391 			     const struct drm_connector_state *old_conn_state)
   3392 {
   3393 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
   3394 
   3395 	intel_dp->link_trained = false;
   3396 
   3397 	if (old_crtc_state->has_audio)
   3398 		intel_audio_codec_disable(encoder,
   3399 					  old_crtc_state, old_conn_state);
   3400 
   3401 	/* Make sure the panel is off before trying to change the mode. But also
   3402 	 * ensure that we have vdd while we switch off the panel. */
   3403 	intel_edp_panel_vdd_on(intel_dp);
   3404 	intel_edp_backlight_off(old_conn_state);
   3405 	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
   3406 	intel_edp_panel_off(intel_dp);
   3407 }
   3408 
   3409 static void g4x_disable_dp(struct intel_encoder *encoder,
   3410 			   const struct intel_crtc_state *old_crtc_state,
   3411 			   const struct drm_connector_state *old_conn_state)
   3412 {
   3413 	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
   3414 }
   3415 
   3416 static void vlv_disable_dp(struct intel_encoder *encoder,
   3417 			   const struct intel_crtc_state *old_crtc_state,
   3418 			   const struct drm_connector_state *old_conn_state)
   3419 {
   3420 	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
   3421 }
   3422 
   3423 static void g4x_post_disable_dp(struct intel_encoder *encoder,
   3424 				const struct intel_crtc_state *old_crtc_state,
   3425 				const struct drm_connector_state *old_conn_state)
   3426 {
   3427 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
   3428 	enum port port = encoder->port;
   3429 
   3430 	/*
   3431 	 * Bspec does not list a specific disable sequence for g4x DP.
   3432 	 * Follow the ilk+ sequence (disable pipe before the port) for
   3433 	 * g4x DP as it does not suffer from underruns like the normal
   3434 	 * g4x modeset sequence (disable pipe after the port).
   3435 	 */
   3436 	intel_dp_link_down(encoder, old_crtc_state);
   3437 
   3438 	/* Only ilk+ has port A */
   3439 	if (port == PORT_A)
   3440 		ilk_edp_pll_off(intel_dp, old_crtc_state);
   3441 }
   3442 
   3443 static void vlv_post_disable_dp(struct intel_encoder *encoder,
   3444 				const struct intel_crtc_state *old_crtc_state,
   3445 				const struct drm_connector_state *old_conn_state)
   3446 {
   3447 	intel_dp_link_down(encoder, old_crtc_state);
   3448 }
   3449 
   3450 static void chv_post_disable_dp(struct intel_encoder *encoder,
   3451 				const struct intel_crtc_state *old_crtc_state,
   3452 				const struct drm_connector_state *old_conn_state)
   3453 {
   3454 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
   3455 
   3456 	intel_dp_link_down(encoder, old_crtc_state);
   3457 
   3458 	vlv_dpio_get(dev_priv);
   3459 
   3460 	/* Assert data lane reset */
   3461 	chv_data_lane_soft_reset(encoder, old_crtc_state, true);
   3462 
   3463 	vlv_dpio_put(dev_priv);
   3464 }
   3465 
   3466 static void
   3467 _intel_dp_set_link_train(struct intel_dp *intel_dp,
   3468 			 u32 *DP,
   3469 			 u8 dp_train_pat)
   3470 {
   3471 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
   3472 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
   3473 	enum port port = intel_dig_port->base.port;
   3474 	u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
   3475 
   3476 	if (dp_train_pat & train_pat_mask)
   3477 		DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
   3478 			      dp_train_pat & train_pat_mask);
   3479 
   3480 	if (HAS_DDI(dev_priv)) {
   3481 		u32 temp = I915_READ(intel_dp->regs.dp_tp_ctl);
   3482 
   3483 		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
   3484 			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
   3485 		else
   3486 			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
   3487 
   3488 		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
   3489 		switch (dp_train_pat & train_pat_mask) {
   3490 		case DP_TRAINING_PATTERN_DISABLE:
   3491 			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
   3492 
   3493 			break;
   3494 		case DP_TRAINING_PATTERN_1:
   3495 			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
   3496 			break;
   3497 		case DP_TRAINING_PATTERN_2:
   3498 			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
   3499 			break;
   3500 		case DP_TRAINING_PATTERN_3:
   3501 			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
   3502 			break;
   3503 		case DP_TRAINING_PATTERN_4:
   3504 			temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
   3505 			break;
   3506 		}
   3507 		I915_WRITE(intel_dp->regs.dp_tp_ctl, temp);
   3508 
   3509 	} else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
   3510 		   (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
   3511 		*DP &= ~DP_LINK_TRAIN_MASK_CPT;
   3512 
   3513 		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
   3514 		case DP_TRAINING_PATTERN_DISABLE:
   3515 			*DP |= DP_LINK_TRAIN_OFF_CPT;
   3516 			break;
   3517 		case DP_TRAINING_PATTERN_1:
   3518 			*DP |= DP_LINK_TRAIN_PAT_1_CPT;
   3519 			break;
   3520 		case DP_TRAINING_PATTERN_2:
   3521 			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
   3522 			break;
   3523 		case DP_TRAINING_PATTERN_3:
   3524 			DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
   3525 			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
   3526 			break;
   3527 		}
   3528 
   3529 	} else {
   3530 		*DP &= ~DP_LINK_TRAIN_MASK;
   3531 
   3532 		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
   3533 		case DP_TRAINING_PATTERN_DISABLE:
   3534 			*DP |= DP_LINK_TRAIN_OFF;
   3535 			break;
   3536 		case DP_TRAINING_PATTERN_1:
   3537 			*DP |= DP_LINK_TRAIN_PAT_1;
   3538 			break;
   3539 		case DP_TRAINING_PATTERN_2:
   3540 			*DP |= DP_LINK_TRAIN_PAT_2;
   3541 			break;
   3542 		case DP_TRAINING_PATTERN_3:
   3543 			DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
   3544 			*DP |= DP_LINK_TRAIN_PAT_2;
   3545 			break;
   3546 		}
   3547 	}
   3548 }
   3549 
   3550 static void intel_dp_enable_port(struct intel_dp *intel_dp,
   3551 				 const struct intel_crtc_state *old_crtc_state)
   3552 {
   3553 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
   3554 
   3555 	/* enable with pattern 1 (as per spec) */
   3556 
   3557 	intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
   3558 
   3559 	/*
   3560 	 * Magic for VLV/CHV. We _must_ first set up the register
   3561 	 * without actually enabling the port, and then do another
   3562 	 * write to enable the port. Otherwise link training will
   3563 	 * fail when the power sequencer is freshly used for this port.
   3564 	 */
   3565 	intel_dp->DP |= DP_PORT_EN;
   3566 	if (old_crtc_state->has_audio)
   3567 		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
   3568 
   3569 	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
   3570 	POSTING_READ(intel_dp->output_reg);
   3571 }
   3572 
   3573 static void intel_enable_dp(struct intel_encoder *encoder,
   3574 			    const struct intel_crtc_state *pipe_config,
   3575 			    const struct drm_connector_state *conn_state)
   3576 {
   3577 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
   3578 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
   3579 	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
   3580 	u32 dp_reg = I915_READ(intel_dp->output_reg);
   3581 	enum pipe pipe = crtc->pipe;
   3582 	intel_wakeref_t wakeref;
   3583 
   3584 	if (WARN_ON(dp_reg & DP_PORT_EN))
   3585 		return;
   3586 
   3587 	with_pps_lock(intel_dp, wakeref) {
   3588 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
   3589 			vlv_init_panel_power_sequencer(encoder, pipe_config);
   3590 
   3591 		intel_dp_enable_port(intel_dp, pipe_config);
   3592 
   3593 		edp_panel_vdd_on(intel_dp);
   3594 		edp_panel_on(intel_dp);
   3595 		edp_panel_vdd_off(intel_dp, true);
   3596 	}
   3597 
   3598 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
   3599 		unsigned int lane_mask = 0x0;
   3600 
   3601 		if (IS_CHERRYVIEW(dev_priv))
   3602 			lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
   3603 
   3604 		vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
   3605 				    lane_mask);
   3606 	}
   3607 
   3608 	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
   3609 	intel_dp_start_link_train(intel_dp);
   3610 	intel_dp_stop_link_train(intel_dp);
   3611 
   3612 	if (pipe_config->has_audio) {
   3613 		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
   3614 				 pipe_name(pipe));
   3615 		intel_audio_codec_enable(encoder, pipe_config, conn_state);
   3616 	}
   3617 }
   3618 
   3619 static void g4x_enable_dp(struct intel_encoder *encoder,
   3620 			  const struct intel_crtc_state *pipe_config,
   3621 			  const struct drm_connector_state *conn_state)
   3622 {
   3623 	intel_enable_dp(encoder, pipe_config, conn_state);
   3624 	intel_edp_backlight_on(pipe_config, conn_state);
   3625 }
   3626 
   3627 static void vlv_enable_dp(struct intel_encoder *encoder,
   3628 			  const struct intel_crtc_state *pipe_config,
   3629 			  const struct drm_connector_state *conn_state)
   3630 {
   3631 	intel_edp_backlight_on(pipe_config, conn_state);
   3632 }
   3633 
   3634 static void g4x_pre_enable_dp(struct intel_encoder *encoder,
   3635 			      const struct intel_crtc_state *pipe_config,
   3636 			      const struct drm_connector_state *conn_state)
   3637 {
   3638 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
   3639 	enum port port = encoder->port;
   3640 
   3641 	intel_dp_prepare(encoder, pipe_config);
   3642 
   3643 	/* Only ilk+ has port A */
   3644 	if (port == PORT_A)
   3645 		ilk_edp_pll_on(intel_dp, pipe_config);
   3646 }
   3647 
   3648 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
   3649 {
   3650 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
   3651 	struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
   3652 	enum pipe pipe = intel_dp->pps_pipe;
   3653 	i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
   3654 
   3655 	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
   3656 
   3657 	if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
   3658 		return;
   3659 
   3660 	edp_panel_vdd_off_sync(intel_dp);
   3661 
   3662 	/*
   3663 	 * VLV seems to get confused when multiple power sequencers
   3664 	 * have the same port selected (even if only one has power/vdd
   3665 	 * enabled). The failure manifests as vlv_wait_port_ready() failing
   3666 	 * CHV on the other hand doesn't seem to mind having the same port
   3667 	 * selected in multiple power sequencers, but let's clear the
   3668 	 * port select always when logically disconnecting a power sequencer
   3669 	 * from a port.
   3670 	 */
   3671 	DRM_DEBUG_KMS("detaching pipe %c power sequencer from [ENCODER:%d:%s]\n",
   3672 		      pipe_name(pipe), intel_dig_port->base.base.base.id,
   3673 		      intel_dig_port->base.base.name);
   3674 	I915_WRITE(pp_on_reg, 0);
   3675 	POSTING_READ(pp_on_reg);
   3676 
   3677 	intel_dp->pps_pipe = INVALID_PIPE;
   3678 }
   3679 
   3680 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
   3681 				      enum pipe pipe)
   3682 {
   3683 	struct intel_encoder *encoder;
   3684 
   3685 	lockdep_assert_held(&dev_priv->pps_mutex);
   3686 
   3687 	for_each_intel_dp(&dev_priv->drm, encoder) {
   3688 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
   3689 
   3690 		WARN(intel_dp->active_pipe == pipe,
   3691 		     "stealing pipe %c power sequencer from active [ENCODER:%d:%s]\n",
   3692 		     pipe_name(pipe), encoder->base.base.id,
   3693 		     encoder->base.name);
   3694 
   3695 		if (intel_dp->pps_pipe != pipe)
   3696 			continue;
   3697 
   3698 		DRM_DEBUG_KMS("stealing pipe %c power sequencer from [ENCODER:%d:%s]\n",
   3699 			      pipe_name(pipe), encoder->base.base.id,
   3700 			      encoder->base.name);
   3701 
   3702 		/* make sure vdd is off before we steal it */
   3703 		vlv_detach_power_sequencer(intel_dp);
   3704 	}
   3705 }
   3706 
   3707 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
   3708 					   const struct intel_crtc_state *crtc_state)
   3709 {
   3710 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
   3711 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
   3712 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
   3713 
   3714 	lockdep_assert_held(&dev_priv->pps_mutex);
   3715 
   3716 	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
   3717 
   3718 	if (intel_dp->pps_pipe != INVALID_PIPE &&
   3719 	    intel_dp->pps_pipe != crtc->pipe) {
   3720 		/*
   3721 		 * If another power sequencer was being used on this
   3722 		 * port previously make sure to turn off vdd there while
   3723 		 * we still have control of it.
   3724 		 */
   3725 		vlv_detach_power_sequencer(intel_dp);
   3726 	}
   3727 
   3728 	/*
   3729 	 * We may be stealing the power
   3730 	 * sequencer from another port.
   3731 	 */
   3732 	vlv_steal_power_sequencer(dev_priv, crtc->pipe);
   3733 
   3734 	intel_dp->active_pipe = crtc->pipe;
   3735 
   3736 	if (!intel_dp_is_edp(intel_dp))
   3737 		return;
   3738 
   3739 	/* now it's all ours */
   3740 	intel_dp->pps_pipe = crtc->pipe;
   3741 
   3742 	DRM_DEBUG_KMS("initializing pipe %c power sequencer for [ENCODER:%d:%s]\n",
   3743 		      pipe_name(intel_dp->pps_pipe), encoder->base.base.id,
   3744 		      encoder->base.name);
   3745 
   3746 	/* init power sequencer on this pipe and port */
   3747 	intel_dp_init_panel_power_sequencer(intel_dp);
   3748 	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
   3749 }
   3750 
   3751 static void vlv_pre_enable_dp(struct intel_encoder *encoder,
   3752 			      const struct intel_crtc_state *pipe_config,
   3753 			      const struct drm_connector_state *conn_state)
   3754 {
   3755 	vlv_phy_pre_encoder_enable(encoder, pipe_config);
   3756 
   3757 	intel_enable_dp(encoder, pipe_config, conn_state);
   3758 }
   3759 
   3760 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
   3761 				  const struct intel_crtc_state *pipe_config,
   3762 				  const struct drm_connector_state *conn_state)
   3763 {
   3764 	intel_dp_prepare(encoder, pipe_config);
   3765 
   3766 	vlv_phy_pre_pll_enable(encoder, pipe_config);
   3767 }
   3768 
   3769 static void chv_pre_enable_dp(struct intel_encoder *encoder,
   3770 			      const struct intel_crtc_state *pipe_config,
   3771 			      const struct drm_connector_state *conn_state)
   3772 {
   3773 	chv_phy_pre_encoder_enable(encoder, pipe_config);
   3774 
   3775 	intel_enable_dp(encoder, pipe_config, conn_state);
   3776 
   3777 	/* Second common lane will stay alive on its own now */
   3778 	chv_phy_release_cl2_override(encoder);
   3779 }
   3780 
   3781 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
   3782 				  const struct intel_crtc_state *pipe_config,
   3783 				  const struct drm_connector_state *conn_state)
   3784 {
   3785 	intel_dp_prepare(encoder, pipe_config);
   3786 
   3787 	chv_phy_pre_pll_enable(encoder, pipe_config);
   3788 }
   3789 
   3790 static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
   3791 				    const struct intel_crtc_state *old_crtc_state,
   3792 				    const struct drm_connector_state *old_conn_state)
   3793 {
   3794 	chv_phy_post_pll_disable(encoder, old_crtc_state);
   3795 }
   3796 
   3797 /*
   3798  * Fetch AUX CH registers 0x202 - 0x207 which contain
   3799  * link status information
   3800  */
   3801 bool
   3802 intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE])
   3803 {
   3804 	return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
   3805 				DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
   3806 }
   3807 
   3808 /* These are source-specific values. */
   3809 u8
   3810 intel_dp_voltage_max(struct intel_dp *intel_dp)
   3811 {
   3812 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
   3813 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
   3814 	enum port port = encoder->port;
   3815 
   3816 	if (HAS_DDI(dev_priv))
   3817 		return intel_ddi_dp_voltage_max(encoder);
   3818 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
   3819 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
   3820 	else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
   3821 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
   3822 	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
   3823 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
   3824 	else
   3825 		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
   3826 }
   3827 
   3828 u8
   3829 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing)
   3830 {
   3831 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
   3832 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
   3833 	enum port port = encoder->port;
   3834 
   3835 	if (HAS_DDI(dev_priv)) {
   3836 		return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
   3837 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
   3838 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
   3839 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
   3840 			return DP_TRAIN_PRE_EMPH_LEVEL_3;
   3841 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
   3842 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
   3843 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
   3844 			return DP_TRAIN_PRE_EMPH_LEVEL_1;
   3845 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
   3846 		default:
   3847 			return DP_TRAIN_PRE_EMPH_LEVEL_0;
   3848 		}
   3849 	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
   3850 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
   3851 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
   3852 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
   3853 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
   3854 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
   3855 			return DP_TRAIN_PRE_EMPH_LEVEL_1;
   3856 		default:
   3857 			return DP_TRAIN_PRE_EMPH_LEVEL_0;
   3858 		}
   3859 	} else {
   3860 		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
   3861 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
   3862 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
   3863 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
   3864 			return DP_TRAIN_PRE_EMPH_LEVEL_2;
   3865 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
   3866 			return DP_TRAIN_PRE_EMPH_LEVEL_1;
   3867 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
   3868 		default:
   3869 			return DP_TRAIN_PRE_EMPH_LEVEL_0;
   3870 		}
   3871 	}
   3872 }
   3873 
   3874 static u32 vlv_signal_levels(struct intel_dp *intel_dp)
   3875 {
   3876 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
   3877 	unsigned long demph_reg_value, preemph_reg_value,
   3878 		uniqtranscale_reg_value;
   3879 	u8 train_set = intel_dp->train_set[0];
   3880 
   3881 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
   3882 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
   3883 		preemph_reg_value = 0x0004000;
   3884 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
   3885 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
   3886 			demph_reg_value = 0x2B405555;
   3887 			uniqtranscale_reg_value = 0x552AB83A;
   3888 			break;
   3889 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
   3890 			demph_reg_value = 0x2B404040;
   3891 			uniqtranscale_reg_value = 0x5548B83A;
   3892 			break;
   3893 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
   3894 			demph_reg_value = 0x2B245555;
   3895 			uniqtranscale_reg_value = 0x5560B83A;
   3896 			break;
   3897 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
   3898 			demph_reg_value = 0x2B405555;
   3899 			uniqtranscale_reg_value = 0x5598DA3A;
   3900 			break;
   3901 		default:
   3902 			return 0;
   3903 		}
   3904 		break;
   3905 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
   3906 		preemph_reg_value = 0x0002000;
   3907 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
   3908 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
   3909 			demph_reg_value = 0x2B404040;
   3910 			uniqtranscale_reg_value = 0x5552B83A;
   3911 			break;
   3912 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
   3913 			demph_reg_value = 0x2B404848;
   3914 			uniqtranscale_reg_value = 0x5580B83A;
   3915 			break;
   3916 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
   3917 			demph_reg_value = 0x2B404040;
   3918 			uniqtranscale_reg_value = 0x55ADDA3A;
   3919 			break;
   3920 		default:
   3921 			return 0;
   3922 		}
   3923 		break;
   3924 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
   3925 		preemph_reg_value = 0x0000000;
   3926 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
   3927 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
   3928 			demph_reg_value = 0x2B305555;
   3929 			uniqtranscale_reg_value = 0x5570B83A;
   3930 			break;
   3931 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
   3932 			demph_reg_value = 0x2B2B4040;
   3933 			uniqtranscale_reg_value = 0x55ADDA3A;
   3934 			break;
   3935 		default:
   3936 			return 0;
   3937 		}
   3938 		break;
   3939 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
   3940 		preemph_reg_value = 0x0006000;
   3941 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
   3942 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
   3943 			demph_reg_value = 0x1B405555;
   3944 			uniqtranscale_reg_value = 0x55ADDA3A;
   3945 			break;
   3946 		default:
   3947 			return 0;
   3948 		}
   3949 		break;
   3950 	default:
   3951 		return 0;
   3952 	}
   3953 
   3954 	vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
   3955 				 uniqtranscale_reg_value, 0);
   3956 
   3957 	return 0;
   3958 }
   3959 
   3960 static u32 chv_signal_levels(struct intel_dp *intel_dp)
   3961 {
   3962 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
   3963 	u32 deemph_reg_value, margin_reg_value;
   3964 	bool uniq_trans_scale = false;
   3965 	u8 train_set = intel_dp->train_set[0];
   3966 
   3967 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
   3968 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
   3969 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
   3970 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
   3971 			deemph_reg_value = 128;
   3972 			margin_reg_value = 52;
   3973 			break;
   3974 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
   3975 			deemph_reg_value = 128;
   3976 			margin_reg_value = 77;
   3977 			break;
   3978 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
   3979 			deemph_reg_value = 128;
   3980 			margin_reg_value = 102;
   3981 			break;
   3982 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
   3983 			deemph_reg_value = 128;
   3984 			margin_reg_value = 154;
   3985 			uniq_trans_scale = true;
   3986 			break;
   3987 		default:
   3988 			return 0;
   3989 		}
   3990 		break;
   3991 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
   3992 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
   3993 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
   3994 			deemph_reg_value = 85;
   3995 			margin_reg_value = 78;
   3996 			break;
   3997 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
   3998 			deemph_reg_value = 85;
   3999 			margin_reg_value = 116;
   4000 			break;
   4001 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
   4002 			deemph_reg_value = 85;
   4003 			margin_reg_value = 154;
   4004 			break;
   4005 		default:
   4006 			return 0;
   4007 		}
   4008 		break;
   4009 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
   4010 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
   4011 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
   4012 			deemph_reg_value = 64;
   4013 			margin_reg_value = 104;
   4014 			break;
   4015 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
   4016 			deemph_reg_value = 64;
   4017 			margin_reg_value = 154;
   4018 			break;
   4019 		default:
   4020 			return 0;
   4021 		}
   4022 		break;
   4023 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
   4024 		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
   4025 		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
   4026 			deemph_reg_value = 43;
   4027 			margin_reg_value = 154;
   4028 			break;
   4029 		default:
   4030 			return 0;
   4031 		}
   4032 		break;
   4033 	default:
   4034 		return 0;
   4035 	}
   4036 
   4037 	chv_set_phy_signal_level(encoder, deemph_reg_value,
   4038 				 margin_reg_value, uniq_trans_scale);
   4039 
   4040 	return 0;
   4041 }
   4042 
   4043 static u32
   4044 g4x_signal_levels(u8 train_set)
   4045 {
   4046 	u32 signal_levels = 0;
   4047 
   4048 	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
   4049 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
   4050 	default:
   4051 		signal_levels |= DP_VOLTAGE_0_4;
   4052 		break;
   4053 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
   4054 		signal_levels |= DP_VOLTAGE_0_6;
   4055 		break;
   4056 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
   4057 		signal_levels |= DP_VOLTAGE_0_8;
   4058 		break;
   4059 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
   4060 		signal_levels |= DP_VOLTAGE_1_2;
   4061 		break;
   4062 	}
   4063 	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
   4064 	case DP_TRAIN_PRE_EMPH_LEVEL_0:
   4065 	default:
   4066 		signal_levels |= DP_PRE_EMPHASIS_0;
   4067 		break;
   4068 	case DP_TRAIN_PRE_EMPH_LEVEL_1:
   4069 		signal_levels |= DP_PRE_EMPHASIS_3_5;
   4070 		break;
   4071 	case DP_TRAIN_PRE_EMPH_LEVEL_2:
   4072 		signal_levels |= DP_PRE_EMPHASIS_6;
   4073 		break;
   4074 	case DP_TRAIN_PRE_EMPH_LEVEL_3:
   4075 		signal_levels |= DP_PRE_EMPHASIS_9_5;
   4076 		break;
   4077 	}
   4078 	return signal_levels;
   4079 }
   4080 
   4081 /* SNB CPU eDP voltage swing and pre-emphasis control */
   4082 static u32
   4083 snb_cpu_edp_signal_levels(u8 train_set)
   4084 {
   4085 	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
   4086 					 DP_TRAIN_PRE_EMPHASIS_MASK);
   4087 	switch (signal_levels) {
   4088 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
   4089 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
   4090 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
   4091 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
   4092 		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
   4093 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
   4094 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
   4095 		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
   4096 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
   4097 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
   4098 		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
   4099 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
   4100 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
   4101 		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
   4102 	default:
   4103 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
   4104 			      "0x%x\n", signal_levels);
   4105 		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
   4106 	}
   4107 }
   4108 
   4109 /* IVB CPU eDP voltage swing and pre-emphasis control */
   4110 static u32
   4111 ivb_cpu_edp_signal_levels(u8 train_set)
   4112 {
   4113 	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
   4114 					 DP_TRAIN_PRE_EMPHASIS_MASK);
   4115 	switch (signal_levels) {
   4116 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
   4117 		return EDP_LINK_TRAIN_400MV_0DB_IVB;
   4118 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
   4119 		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
   4120 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
   4121 		return EDP_LINK_TRAIN_400MV_6DB_IVB;
   4122 
   4123 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
   4124 		return EDP_LINK_TRAIN_600MV_0DB_IVB;
   4125 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
   4126 		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
   4127 
   4128 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
   4129 		return EDP_LINK_TRAIN_800MV_0DB_IVB;
   4130 	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
   4131 		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
   4132 
   4133 	default:
   4134 		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
   4135 			      "0x%x\n", signal_levels);
   4136 		return EDP_LINK_TRAIN_500MV_0DB_IVB;
   4137 	}
   4138 }
   4139 
   4140 void
   4141 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
   4142 {
   4143 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
   4144 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
   4145 	enum port port = intel_dig_port->base.port;
   4146 	u32 signal_levels, mask = 0;
   4147 	u8 train_set = intel_dp->train_set[0];
   4148 
   4149 	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
   4150 		signal_levels = bxt_signal_levels(intel_dp);
   4151 	} else if (HAS_DDI(dev_priv)) {
   4152 		signal_levels = ddi_signal_levels(intel_dp);
   4153 		mask = DDI_BUF_EMP_MASK;
   4154 	} else if (IS_CHERRYVIEW(dev_priv)) {
   4155 		signal_levels = chv_signal_levels(intel_dp);
   4156 	} else if (IS_VALLEYVIEW(dev_priv)) {
   4157 		signal_levels = vlv_signal_levels(intel_dp);
   4158 	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
   4159 		signal_levels = ivb_cpu_edp_signal_levels(train_set);
   4160 		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
   4161 	} else if (IS_GEN(dev_priv, 6) && port == PORT_A) {
   4162 		signal_levels = snb_cpu_edp_signal_levels(train_set);
   4163 		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
   4164 	} else {
   4165 		signal_levels = g4x_signal_levels(train_set);
   4166 		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
   4167 	}
   4168 
   4169 	if (mask)
   4170 		DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
   4171 
   4172 	DRM_DEBUG_KMS("Using vswing level %d\n",
   4173 		train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
   4174 	DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
   4175 		(train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
   4176 			DP_TRAIN_PRE_EMPHASIS_SHIFT);
   4177 
   4178 	intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
   4179 
   4180 	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
   4181 	POSTING_READ(intel_dp->output_reg);
   4182 }
   4183 
   4184 void
   4185 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
   4186 				       u8 dp_train_pat)
   4187 {
   4188 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
   4189 	struct drm_i915_private *dev_priv =
   4190 		to_i915(intel_dig_port->base.base.dev);
   4191 
   4192 	_intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
   4193 
   4194 	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
   4195 	POSTING_READ(intel_dp->output_reg);
   4196 }
   4197 
   4198 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
   4199 {
   4200 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
   4201 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
   4202 	enum port port = intel_dig_port->base.port;
   4203 	u32 val;
   4204 
   4205 	if (!HAS_DDI(dev_priv))
   4206 		return;
   4207 
   4208 	val = I915_READ(intel_dp->regs.dp_tp_ctl);
   4209 	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
   4210 	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
   4211 	I915_WRITE(intel_dp->regs.dp_tp_ctl, val);
   4212 
   4213 	/*
   4214 	 * Until TGL on PORT_A we can have only eDP in SST mode. There the only
   4215 	 * reason we need to set idle transmission mode is to work around a HW
   4216 	 * issue where we enable the pipe while not in idle link-training mode.
   4217 	 * In this case there is requirement to wait for a minimum number of
   4218 	 * idle patterns to be sent.
   4219 	 */
   4220 	if (port == PORT_A && INTEL_GEN(dev_priv) < 12)
   4221 		return;
   4222 
   4223 	if (intel_de_wait_for_set(dev_priv, intel_dp->regs.dp_tp_status,
   4224 				  DP_TP_STATUS_IDLE_DONE, 1))
   4225 		DRM_ERROR("Timed out waiting for DP idle patterns\n");
   4226 }
   4227 
   4228 static void
   4229 intel_dp_link_down(struct intel_encoder *encoder,
   4230 		   const struct intel_crtc_state *old_crtc_state)
   4231 {
   4232 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
   4233 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
   4234 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
   4235 	enum port port = encoder->port;
   4236 	u32 DP = intel_dp->DP;
   4237 
   4238 	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
   4239 		return;
   4240 
   4241 	DRM_DEBUG_KMS("\n");
   4242 
   4243 	if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
   4244 	    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
   4245 		DP &= ~DP_LINK_TRAIN_MASK_CPT;
   4246 		DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
   4247 	} else {
   4248 		DP &= ~DP_LINK_TRAIN_MASK;
   4249 		DP |= DP_LINK_TRAIN_PAT_IDLE;
   4250 	}
   4251 	I915_WRITE(intel_dp->output_reg, DP);
   4252 	POSTING_READ(intel_dp->output_reg);
   4253 
   4254 	DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
   4255 	I915_WRITE(intel_dp->output_reg, DP);
   4256 	POSTING_READ(intel_dp->output_reg);
   4257 
   4258 	/*
   4259 	 * HW workaround for IBX, we need to move the port
   4260 	 * to transcoder A after disabling it to allow the
   4261 	 * matching HDMI port to be enabled on transcoder A.
   4262 	 */
   4263 	if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
   4264 		/*
   4265 		 * We get CPU/PCH FIFO underruns on the other pipe when
   4266 		 * doing the workaround. Sweep them under the rug.
   4267 		 */
   4268 		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
   4269 		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
   4270 
   4271 		/* always enable with pattern 1 (as per spec) */
   4272 		DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
   4273 		DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
   4274 			DP_LINK_TRAIN_PAT_1;
   4275 		I915_WRITE(intel_dp->output_reg, DP);
   4276 		POSTING_READ(intel_dp->output_reg);
   4277 
   4278 		DP &= ~DP_PORT_EN;
   4279 		I915_WRITE(intel_dp->output_reg, DP);
   4280 		POSTING_READ(intel_dp->output_reg);
   4281 
   4282 		intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
   4283 		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
   4284 		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
   4285 	}
   4286 
   4287 	msleep(intel_dp->panel_power_down_delay);
   4288 
   4289 	intel_dp->DP = DP;
   4290 
   4291 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
   4292 		intel_wakeref_t wakeref;
   4293 
   4294 		with_pps_lock(intel_dp, wakeref)
   4295 			intel_dp->active_pipe = INVALID_PIPE;
   4296 	}
   4297 }
   4298 
   4299 static void
   4300 intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp)
   4301 {
   4302 	u8 dpcd_ext[6];
   4303 
   4304 	/*
   4305 	 * Prior to DP1.3 the bit represented by
   4306 	 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
   4307 	 * if it is set DP_DPCD_REV at 0000h could be at a value less than
   4308 	 * the true capability of the panel. The only way to check is to
   4309 	 * then compare 0000h and 2200h.
   4310 	 */
   4311 	if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
   4312 	      DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
   4313 		return;
   4314 
   4315 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV,
   4316 			     &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) {
   4317 		DRM_ERROR("DPCD failed read at extended capabilities\n");
   4318 		return;
   4319 	}
   4320 
   4321 	if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
   4322 		DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n");
   4323 		return;
   4324 	}
   4325 
   4326 	if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)))
   4327 		return;
   4328 
   4329 	DRM_DEBUG_KMS("Base DPCD: %*ph\n",
   4330 		      (int)sizeof(intel_dp->dpcd), intel_dp->dpcd);
   4331 
   4332 	memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext));
   4333 }
   4334 
   4335 bool
   4336 intel_dp_read_dpcd(struct intel_dp *intel_dp)
   4337 {
   4338 	if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
   4339 			     sizeof(intel_dp->dpcd)) < 0)
   4340 		return false; /* aux transfer failed */
   4341 
   4342 	intel_dp_extended_receiver_capabilities(intel_dp);
   4343 
   4344 	DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
   4345 
   4346 	return intel_dp->dpcd[DP_DPCD_REV] != 0;
   4347 }
   4348 
   4349 bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
   4350 {
   4351 	u8 dprx = 0;
   4352 
   4353 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
   4354 			      &dprx) != 1)
   4355 		return false;
   4356 	return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
   4357 }
   4358 
   4359 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
   4360 {
   4361 	/*
   4362 	 * Clear the cached register set to avoid using stale values
   4363 	 * for the sinks that do not support DSC.
   4364 	 */
   4365 	memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
   4366 
   4367 	/* Clear fec_capable to avoid using stale values */
   4368 	intel_dp->fec_capable = 0;
   4369 
   4370 	/* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
   4371 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
   4372 	    intel_dp->edp_dpcd[0] >= DP_EDP_14) {
   4373 		if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
   4374 				     intel_dp->dsc_dpcd,
   4375 				     sizeof(intel_dp->dsc_dpcd)) < 0)
   4376 			DRM_ERROR("Failed to read DPCD register 0x%x\n",
   4377 				  DP_DSC_SUPPORT);
   4378 
   4379 		DRM_DEBUG_KMS("DSC DPCD: %*ph\n",
   4380 			      (int)sizeof(intel_dp->dsc_dpcd),
   4381 			      intel_dp->dsc_dpcd);
   4382 
   4383 		/* FEC is supported only on DP 1.4 */
   4384 		if (!intel_dp_is_edp(intel_dp) &&
   4385 		    drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
   4386 				      &intel_dp->fec_capable) < 0)
   4387 			DRM_ERROR("Failed to read FEC DPCD register\n");
   4388 
   4389 		DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp->fec_capable);
   4390 	}
   4391 }
   4392 
   4393 static bool
   4394 intel_edp_init_dpcd(struct intel_dp *intel_dp)
   4395 {
   4396 	struct drm_i915_private *dev_priv =
   4397 		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
   4398 
   4399 	/* this function is meant to be called only once */
   4400 	WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
   4401 
   4402 	if (!intel_dp_read_dpcd(intel_dp))
   4403 		return false;
   4404 
   4405 	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
   4406 			 drm_dp_is_branch(intel_dp->dpcd));
   4407 
   4408 	/*
   4409 	 * Read the eDP display control registers.
   4410 	 *
   4411 	 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
   4412 	 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
   4413 	 * set, but require eDP 1.4+ detection (e.g. for supported link rates
   4414 	 * method). The display control registers should read zero if they're
   4415 	 * not supported anyway.
   4416 	 */
   4417 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
   4418 			     intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
   4419 			     sizeof(intel_dp->edp_dpcd))
   4420 		DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
   4421 			      intel_dp->edp_dpcd);
   4422 
   4423 	/*
   4424 	 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
   4425 	 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
   4426 	 */
   4427 	intel_psr_init_dpcd(intel_dp);
   4428 
   4429 	/* Read the eDP 1.4+ supported link rates. */
   4430 	if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
   4431 		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
   4432 		int i;
   4433 
   4434 		drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
   4435 				sink_rates, sizeof(sink_rates));
   4436 
   4437 		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
   4438 			int val = le16_to_cpu(sink_rates[i]);
   4439 
   4440 			if (val == 0)
   4441 				break;
   4442 
   4443 			/* Value read multiplied by 200kHz gives the per-lane
   4444 			 * link rate in kHz. The source rates are, however,
   4445 			 * stored in terms of LS_Clk kHz. The full conversion
   4446 			 * back to symbols is
   4447 			 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
   4448 			 */
   4449 			intel_dp->sink_rates[i] = (val * 200) / 10;
   4450 		}
   4451 		intel_dp->num_sink_rates = i;
   4452 	}
   4453 
   4454 	/*
   4455 	 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
   4456 	 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
   4457 	 */
   4458 	if (intel_dp->num_sink_rates)
   4459 		intel_dp->use_rate_select = true;
   4460 	else
   4461 		intel_dp_set_sink_rates(intel_dp);
   4462 
   4463 	intel_dp_set_common_rates(intel_dp);
   4464 
   4465 	/* Read the eDP DSC DPCD registers */
   4466 	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
   4467 		intel_dp_get_dsc_sink_cap(intel_dp);
   4468 
   4469 	return true;
   4470 }
   4471 
   4472 
   4473 static bool
   4474 intel_dp_get_dpcd(struct intel_dp *intel_dp)
   4475 {
   4476 	if (!intel_dp_read_dpcd(intel_dp))
   4477 		return false;
   4478 
   4479 	/*
   4480 	 * Don't clobber cached eDP rates. Also skip re-reading
   4481 	 * the OUI/ID since we know it won't change.
   4482 	 */
   4483 	if (!intel_dp_is_edp(intel_dp)) {
   4484 		drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
   4485 				 drm_dp_is_branch(intel_dp->dpcd));
   4486 
   4487 		intel_dp_set_sink_rates(intel_dp);
   4488 		intel_dp_set_common_rates(intel_dp);
   4489 	}
   4490 
   4491 	/*
   4492 	 * Some eDP panels do not set a valid value for sink count, that is why
   4493 	 * it don't care about read it here and in intel_edp_init_dpcd().
   4494 	 */
   4495 	if (!intel_dp_is_edp(intel_dp) &&
   4496 	    !drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_SINK_COUNT)) {
   4497 		u8 count;
   4498 		ssize_t r;
   4499 
   4500 		r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count);
   4501 		if (r < 1)
   4502 			return false;
   4503 
   4504 		/*
   4505 		 * Sink count can change between short pulse hpd hence
   4506 		 * a member variable in intel_dp will track any changes
   4507 		 * between short pulse interrupts.
   4508 		 */
   4509 		intel_dp->sink_count = DP_GET_SINK_COUNT(count);
   4510 
   4511 		/*
   4512 		 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
   4513 		 * a dongle is present but no display. Unless we require to know
   4514 		 * if a dongle is present or not, we don't need to update
   4515 		 * downstream port information. So, an early return here saves
   4516 		 * time from performing other operations which are not required.
   4517 		 */
   4518 		if (!intel_dp->sink_count)
   4519 			return false;
   4520 	}
   4521 
   4522 	if (!drm_dp_is_branch(intel_dp->dpcd))
   4523 		return true; /* native DP sink */
   4524 
   4525 	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
   4526 		return true; /* no per-port downstream info */
   4527 
   4528 	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
   4529 			     intel_dp->downstream_ports,
   4530 			     DP_MAX_DOWNSTREAM_PORTS) < 0)
   4531 		return false; /* downstream port status fetch failed */
   4532 
   4533 	return true;
   4534 }
   4535 
   4536 static bool
   4537 intel_dp_sink_can_mst(struct intel_dp *intel_dp)
   4538 {
   4539 	u8 mstm_cap;
   4540 
   4541 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
   4542 		return false;
   4543 
   4544 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
   4545 		return false;
   4546 
   4547 	return mstm_cap & DP_MST_CAP;
   4548 }
   4549 
   4550 static bool
   4551 intel_dp_can_mst(struct intel_dp *intel_dp)
   4552 {
   4553 	return i915_modparams.enable_dp_mst &&
   4554 		intel_dp->can_mst &&
   4555 		intel_dp_sink_can_mst(intel_dp);
   4556 }
   4557 
   4558 static void
   4559 intel_dp_configure_mst(struct intel_dp *intel_dp)
   4560 {
   4561 	struct intel_encoder *encoder =
   4562 		&dp_to_dig_port(intel_dp)->base;
   4563 	bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);
   4564 
   4565 	DRM_DEBUG_KMS("[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s\n",
   4566 		      encoder->base.base.id, encoder->base.name,
   4567 		      yesno(intel_dp->can_mst), yesno(sink_can_mst),
   4568 		      yesno(i915_modparams.enable_dp_mst));
   4569 
   4570 	if (!intel_dp->can_mst)
   4571 		return;
   4572 
   4573 	intel_dp->is_mst = sink_can_mst &&
   4574 		i915_modparams.enable_dp_mst;
   4575 
   4576 	drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
   4577 					intel_dp->is_mst);
   4578 }
   4579 
   4580 static bool
   4581 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
   4582 {
   4583 	return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
   4584 				sink_irq_vector, DP_DPRX_ESI_LEN) ==
   4585 		DP_DPRX_ESI_LEN;
   4586 }
   4587 
   4588 bool
   4589 intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state,
   4590 		       const struct drm_connector_state *conn_state)
   4591 {
   4592 	/*
   4593 	 * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication
   4594 	 * of Color Encoding Format and Content Color Gamut], in order to
   4595 	 * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP.
   4596 	 */
   4597 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
   4598 		return true;
   4599 
   4600 	switch (conn_state->colorspace) {
   4601 	case DRM_MODE_COLORIMETRY_SYCC_601:
   4602 	case DRM_MODE_COLORIMETRY_OPYCC_601:
   4603 	case DRM_MODE_COLORIMETRY_BT2020_YCC:
   4604 	case DRM_MODE_COLORIMETRY_BT2020_RGB:
   4605 	case DRM_MODE_COLORIMETRY_BT2020_CYCC:
   4606 		return true;
   4607 	default:
   4608 		break;
   4609 	}
   4610 
   4611 	return false;
   4612 }
   4613 
   4614 static void
   4615 intel_dp_setup_vsc_sdp(struct intel_dp *intel_dp,
   4616 		       const struct intel_crtc_state *crtc_state,
   4617 		       const struct drm_connector_state *conn_state)
   4618 {
   4619 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
   4620 	struct dp_sdp vsc_sdp = {};
   4621 
   4622 	/* Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 */
   4623 	vsc_sdp.sdp_header.HB0 = 0;
   4624 	vsc_sdp.sdp_header.HB1 = 0x7;
   4625 
   4626 	/*
   4627 	 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
   4628 	 * Colorimetry Format indication.
   4629 	 */
   4630 	vsc_sdp.sdp_header.HB2 = 0x5;
   4631 
   4632 	/*
   4633 	 * VSC SDP supporting 3D stereo, + PSR2, + Pixel Encoding/
   4634 	 * Colorimetry Format indication (HB2 = 05h).
   4635 	 */
   4636 	vsc_sdp.sdp_header.HB3 = 0x13;
   4637 
   4638 	/* DP 1.4a spec, Table 2-120 */
   4639 	switch (crtc_state->output_format) {
   4640 	case INTEL_OUTPUT_FORMAT_YCBCR444:
   4641 		vsc_sdp.db[16] = 0x1 << 4; /* YCbCr 444 : DB16[7:4] = 1h */
   4642 		break;
   4643 	case INTEL_OUTPUT_FORMAT_YCBCR420:
   4644 		vsc_sdp.db[16] = 0x3 << 4; /* YCbCr 420 : DB16[7:4] = 3h */
   4645 		break;
   4646 	case INTEL_OUTPUT_FORMAT_RGB:
   4647 	default:
   4648 		/* RGB: DB16[7:4] = 0h */
   4649 		break;
   4650 	}
   4651 
   4652 	switch (conn_state->colorspace) {
   4653 	case DRM_MODE_COLORIMETRY_BT709_YCC:
   4654 		vsc_sdp.db[16] |= 0x1;
   4655 		break;
   4656 	case DRM_MODE_COLORIMETRY_XVYCC_601:
   4657 		vsc_sdp.db[16] |= 0x2;
   4658 		break;
   4659 	case DRM_MODE_COLORIMETRY_XVYCC_709:
   4660 		vsc_sdp.db[16] |= 0x3;
   4661 		break;
   4662 	case DRM_MODE_COLORIMETRY_SYCC_601:
   4663 		vsc_sdp.db[16] |= 0x4;
   4664 		break;
   4665 	case DRM_MODE_COLORIMETRY_OPYCC_601:
   4666 		vsc_sdp.db[16] |= 0x5;
   4667 		break;
   4668 	case DRM_MODE_COLORIMETRY_BT2020_CYCC:
   4669 	case DRM_MODE_COLORIMETRY_BT2020_RGB:
   4670 		vsc_sdp.db[16] |= 0x6;
   4671 		break;
   4672 	case DRM_MODE_COLORIMETRY_BT2020_YCC:
   4673 		vsc_sdp.db[16] |= 0x7;
   4674 		break;
   4675 	case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65:
   4676 	case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER:
   4677 		vsc_sdp.db[16] |= 0x4; /* DCI-P3 (SMPTE RP 431-2) */
   4678 		break;
   4679 	default:
   4680 		/* sRGB (IEC 61966-2-1) / ITU-R BT.601: DB16[0:3] = 0h */
   4681 
   4682 		/* RGB->YCBCR color conversion uses the BT.709 color space. */
   4683 		if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
   4684 			vsc_sdp.db[16] |= 0x1; /* 0x1, ITU-R BT.709 */
   4685 		break;
   4686 	}
   4687 
   4688 	/*
   4689 	 * For pixel encoding formats YCbCr444, YCbCr422, YCbCr420, and Y Only,
   4690 	 * the following Component Bit Depth values are defined:
   4691 	 * 001b = 8bpc.
   4692 	 * 010b = 10bpc.
   4693 	 * 011b = 12bpc.
   4694 	 * 100b = 16bpc.
   4695 	 */
   4696 	switch (crtc_state->pipe_bpp) {
   4697 	case 24: /* 8bpc */
   4698 		vsc_sdp.db[17] = 0x1;
   4699 		break;
   4700 	case 30: /* 10bpc */
   4701 		vsc_sdp.db[17] = 0x2;
   4702 		break;
   4703 	case 36: /* 12bpc */
   4704 		vsc_sdp.db[17] = 0x3;
   4705 		break;
   4706 	case 48: /* 16bpc */
   4707 		vsc_sdp.db[17] = 0x4;
   4708 		break;
   4709 	default:
   4710 		MISSING_CASE(crtc_state->pipe_bpp);
   4711 		break;
   4712 	}
   4713 
   4714 	/*
   4715 	 * Dynamic Range (Bit 7)
   4716 	 * 0 = VESA range, 1 = CTA range.
   4717 	 * all YCbCr are always limited range
   4718 	 */
   4719 	vsc_sdp.db[17] |= 0x80;
   4720 
   4721 	/*
   4722 	 * Content Type (Bits 2:0)
   4723 	 * 000b = Not defined.
   4724 	 * 001b = Graphics.
   4725 	 * 010b = Photo.
   4726 	 * 011b = Video.
   4727 	 * 100b = Game
   4728 	 * All other values are RESERVED.
   4729 	 * Note: See CTA-861-G for the definition and expected
   4730 	 * processing by a stream sink for the above contect types.
   4731 	 */
   4732 	vsc_sdp.db[18] = 0;
   4733 
   4734 	intel_dig_port->write_infoframe(&intel_dig_port->base,
   4735 			crtc_state, DP_SDP_VSC, &vsc_sdp, sizeof(vsc_sdp));
   4736 }
   4737 
   4738 static void
   4739 intel_dp_setup_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp,
   4740 					  const struct intel_crtc_state *crtc_state,
   4741 					  const struct drm_connector_state *conn_state)
   4742 {
   4743 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
   4744 	struct dp_sdp infoframe_sdp = {};
   4745 	struct hdmi_drm_infoframe drm_infoframe = {};
   4746 	const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE;
   4747 	unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE];
   4748 	ssize_t len;
   4749 	int ret;
   4750 
   4751 	ret = drm_hdmi_infoframe_set_hdr_metadata(&drm_infoframe, conn_state);
   4752 	if (ret) {
   4753 		DRM_DEBUG_KMS("couldn't set HDR metadata in infoframe\n");
   4754 		return;
   4755 	}
   4756 
   4757 	len = hdmi_drm_infoframe_pack_only(&drm_infoframe, buf, sizeof(buf));
   4758 	if (len < 0) {
   4759 		DRM_DEBUG_KMS("buffer size is smaller than hdr metadata infoframe\n");
   4760 		return;
   4761 	}
   4762 
   4763 	if (len != infoframe_size) {
   4764 		DRM_DEBUG_KMS("wrong static hdr metadata size\n");
   4765 		return;
   4766 	}
   4767 
   4768 	/*
   4769 	 * Set up the infoframe sdp packet for HDR static metadata.
   4770 	 * Prepare VSC Header for SU as per DP 1.4a spec,
   4771 	 * Table 2-100 and Table 2-101
   4772 	 */
   4773 
   4774 	/* Packet ID, 00h for non-Audio INFOFRAME */
   4775 	infoframe_sdp.sdp_header.HB0 = 0;
   4776 	/*
   4777 	 * Packet Type 80h + Non-audio INFOFRAME Type value
   4778 	 * HDMI_INFOFRAME_TYPE_DRM: 0x87,
   4779 	 */
   4780 	infoframe_sdp.sdp_header.HB1 = drm_infoframe.header.type;
   4781 	/*
   4782 	 * Least Significant Eight Bits of (Data Byte Count  1)
   4783 	 * infoframe_size - 1,
   4784 	 */
   4785 	infoframe_sdp.sdp_header.HB2 = 0x1D;
   4786 	/* INFOFRAME SDP Version Number */
   4787 	infoframe_sdp.sdp_header.HB3 = (0x13 << 2);
   4788 	/* CTA Header Byte 2 (INFOFRAME Version Number) */
   4789 	infoframe_sdp.db[0] = drm_infoframe.header.version;
   4790 	/* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
   4791 	infoframe_sdp.db[1] = drm_infoframe.header.length;
   4792 	/*
   4793 	 * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after
   4794 	 * HDMI_INFOFRAME_HEADER_SIZE
   4795 	 */
   4796 	BUILD_BUG_ON(sizeof(infoframe_sdp.db) < HDMI_DRM_INFOFRAME_SIZE + 2);
   4797 	memcpy(&infoframe_sdp.db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE],
   4798 	       HDMI_DRM_INFOFRAME_SIZE);
   4799 
   4800 	/*
   4801 	 * Size of DP infoframe sdp packet for HDR static metadata is consist of
   4802 	 * - DP SDP Header(struct dp_sdp_header): 4 bytes
   4803 	 * - Two Data Blocks: 2 bytes
   4804 	 *    CTA Header Byte2 (INFOFRAME Version Number)
   4805 	 *    CTA Header Byte3 (Length of INFOFRAME)
   4806 	 * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes
   4807 	 *
   4808 	 * Prior to GEN11's GMP register size is identical to DP HDR static metadata
   4809 	 * infoframe size. But GEN11+ has larger than that size, write_infoframe
   4810 	 * will pad rest of the size.
   4811 	 */
   4812 	intel_dig_port->write_infoframe(&intel_dig_port->base, crtc_state,
   4813 					HDMI_PACKET_TYPE_GAMUT_METADATA,
   4814 					&infoframe_sdp,
   4815 					sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE);
   4816 }
   4817 
   4818 void intel_dp_vsc_enable(struct intel_dp *intel_dp,
   4819 			 const struct intel_crtc_state *crtc_state,
   4820 			 const struct drm_connector_state *conn_state)
   4821 {
   4822 	if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state))
   4823 		return;
   4824 
   4825 	intel_dp_setup_vsc_sdp(intel_dp, crtc_state, conn_state);
   4826 }
   4827 
   4828 void intel_dp_hdr_metadata_enable(struct intel_dp *intel_dp,
   4829 				  const struct intel_crtc_state *crtc_state,
   4830 				  const struct drm_connector_state *conn_state)
   4831 {
   4832 	if (!conn_state->hdr_output_metadata)
   4833 		return;
   4834 
   4835 	intel_dp_setup_hdr_metadata_infoframe_sdp(intel_dp,
   4836 						  crtc_state,
   4837 						  conn_state);
   4838 }
   4839 
   4840 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
   4841 {
   4842 	int status = 0;
   4843 	int test_link_rate;
   4844 	u8 test_lane_count, test_link_bw;
   4845 	/* (DP CTS 1.2)
   4846 	 * 4.3.1.11
   4847 	 */
   4848 	/* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
   4849 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
   4850 				   &test_lane_count);
   4851 
   4852 	if (status <= 0) {
   4853 		DRM_DEBUG_KMS("Lane count read failed\n");
   4854 		return DP_TEST_NAK;
   4855 	}
   4856 	test_lane_count &= DP_MAX_LANE_COUNT_MASK;
   4857 
   4858 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
   4859 				   &test_link_bw);
   4860 	if (status <= 0) {
   4861 		DRM_DEBUG_KMS("Link Rate read failed\n");
   4862 		return DP_TEST_NAK;
   4863 	}
   4864 	test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
   4865 
   4866 	/* Validate the requested link rate and lane count */
   4867 	if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
   4868 					test_lane_count))
   4869 		return DP_TEST_NAK;
   4870 
   4871 	intel_dp->compliance.test_lane_count = test_lane_count;
   4872 	intel_dp->compliance.test_link_rate = test_link_rate;
   4873 
   4874 	return DP_TEST_ACK;
   4875 }
   4876 
   4877 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
   4878 {
   4879 	u8 test_pattern;
   4880 	u8 test_misc;
   4881 	__be16 h_width, v_height;
   4882 	int status = 0;
   4883 
   4884 	/* Read the TEST_PATTERN (DP CTS 3.1.5) */
   4885 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
   4886 				   &test_pattern);
   4887 	if (status <= 0) {
   4888 		DRM_DEBUG_KMS("Test pattern read failed\n");
   4889 		return DP_TEST_NAK;
   4890 	}
   4891 	if (test_pattern != DP_COLOR_RAMP)
   4892 		return DP_TEST_NAK;
   4893 
   4894 	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
   4895 				  &h_width, 2);
   4896 	if (status <= 0) {
   4897 		DRM_DEBUG_KMS("H Width read failed\n");
   4898 		return DP_TEST_NAK;
   4899 	}
   4900 
   4901 	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
   4902 				  &v_height, 2);
   4903 	if (status <= 0) {
   4904 		DRM_DEBUG_KMS("V Height read failed\n");
   4905 		return DP_TEST_NAK;
   4906 	}
   4907 
   4908 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
   4909 				   &test_misc);
   4910 	if (status <= 0) {
   4911 		DRM_DEBUG_KMS("TEST MISC read failed\n");
   4912 		return DP_TEST_NAK;
   4913 	}
   4914 	if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
   4915 		return DP_TEST_NAK;
   4916 	if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
   4917 		return DP_TEST_NAK;
   4918 	switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
   4919 	case DP_TEST_BIT_DEPTH_6:
   4920 		intel_dp->compliance.test_data.bpc = 6;
   4921 		break;
   4922 	case DP_TEST_BIT_DEPTH_8:
   4923 		intel_dp->compliance.test_data.bpc = 8;
   4924 		break;
   4925 	default:
   4926 		return DP_TEST_NAK;
   4927 	}
   4928 
   4929 	intel_dp->compliance.test_data.video_pattern = test_pattern;
   4930 	intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
   4931 	intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
   4932 	/* Set test active flag here so userspace doesn't interrupt things */
   4933 	intel_dp->compliance.test_active = true;
   4934 
   4935 	return DP_TEST_ACK;
   4936 }
   4937 
   4938 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
   4939 {
   4940 	u8 test_result = DP_TEST_ACK;
   4941 	struct intel_connector *intel_connector = intel_dp->attached_connector;
   4942 	struct drm_connector *connector = &intel_connector->base;
   4943 
   4944 	if (intel_connector->detect_edid == NULL ||
   4945 	    connector->edid_corrupt ||
   4946 	    intel_dp->aux.i2c_defer_count > 6) {
   4947 		/* Check EDID read for NACKs, DEFERs and corruption
   4948 		 * (DP CTS 1.2 Core r1.1)
   4949 		 *    4.2.2.4 : Failed EDID read, I2C_NAK
   4950 		 *    4.2.2.5 : Failed EDID read, I2C_DEFER
   4951 		 *    4.2.2.6 : EDID corruption detected
   4952 		 * Use failsafe mode for all cases
   4953 		 */
   4954 		if (intel_dp->aux.i2c_nack_count > 0 ||
   4955 			intel_dp->aux.i2c_defer_count > 0)
   4956 			DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
   4957 				      intel_dp->aux.i2c_nack_count,
   4958 				      intel_dp->aux.i2c_defer_count);
   4959 		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
   4960 	} else {
   4961 		struct edid *block = intel_connector->detect_edid;
   4962 
   4963 		/* We have to write the checksum
   4964 		 * of the last block read
   4965 		 */
   4966 		block += intel_connector->detect_edid->extensions;
   4967 
   4968 		if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
   4969 				       block->checksum) <= 0)
   4970 			DRM_DEBUG_KMS("Failed to write EDID checksum\n");
   4971 
   4972 		test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
   4973 		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
   4974 	}
   4975 
   4976 	/* Set test active flag here so userspace doesn't interrupt things */
   4977 	intel_dp->compliance.test_active = true;
   4978 
   4979 	return test_result;
   4980 }
   4981 
   4982 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
   4983 {
   4984 	u8 test_result = DP_TEST_NAK;
   4985 	return test_result;
   4986 }
   4987 
   4988 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
   4989 {
   4990 	u8 response = DP_TEST_NAK;
   4991 	u8 request = 0;
   4992 	int status;
   4993 
   4994 	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
   4995 	if (status <= 0) {
   4996 		DRM_DEBUG_KMS("Could not read test request from sink\n");
   4997 		goto update_status;
   4998 	}
   4999 
   5000 	switch (request) {
   5001 	case DP_TEST_LINK_TRAINING:
   5002 		DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
   5003 		response = intel_dp_autotest_link_training(intel_dp);
   5004 		break;
   5005 	case DP_TEST_LINK_VIDEO_PATTERN:
   5006 		DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
   5007 		response = intel_dp_autotest_video_pattern(intel_dp);
   5008 		break;
   5009 	case DP_TEST_LINK_EDID_READ:
   5010 		DRM_DEBUG_KMS("EDID test requested\n");
   5011 		response = intel_dp_autotest_edid(intel_dp);
   5012 		break;
   5013 	case DP_TEST_LINK_PHY_TEST_PATTERN:
   5014 		DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
   5015 		response = intel_dp_autotest_phy_pattern(intel_dp);
   5016 		break;
   5017 	default:
   5018 		DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
   5019 		break;
   5020 	}
   5021 
   5022 	if (response & DP_TEST_ACK)
   5023 		intel_dp->compliance.test_type = request;
   5024 
   5025 update_status:
   5026 	status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
   5027 	if (status <= 0)
   5028 		DRM_DEBUG_KMS("Could not write test response to sink\n");
   5029 }
   5030 
   5031 static int
   5032 intel_dp_check_mst_status(struct intel_dp *intel_dp)
   5033 {
   5034 	bool bret;
   5035 
   5036 	if (intel_dp->is_mst) {
   5037 		u8 esi[DP_DPRX_ESI_LEN] = { 0 };
   5038 		int ret = 0;
   5039 		int retry;
   5040 		bool handled;
   5041 
   5042 		WARN_ON_ONCE(intel_dp->active_mst_links < 0);
   5043 		bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
   5044 go_again:
   5045 		if (bret == true) {
   5046 
   5047 			/* check link status - esi[10] = 0x200c */
   5048 			if (intel_dp->active_mst_links > 0 &&
   5049 			    !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
   5050 				DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
   5051 				intel_dp_start_link_train(intel_dp);
   5052 				intel_dp_stop_link_train(intel_dp);
   5053 			}
   5054 
   5055 			DRM_DEBUG_KMS("got esi %3ph\n", esi);
   5056 			ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
   5057 
   5058 			if (handled) {
   5059 				for (retry = 0; retry < 3; retry++) {
   5060 					int wret;
   5061 					wret = drm_dp_dpcd_write(&intel_dp->aux,
   5062 								 DP_SINK_COUNT_ESI+1,
   5063 								 &esi[1], 3);
   5064 					if (wret == 3) {
   5065 						break;
   5066 					}
   5067 				}
   5068 
   5069 				bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
   5070 				if (bret == true) {
   5071 					DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
   5072 					goto go_again;
   5073 				}
   5074 			} else
   5075 				ret = 0;
   5076 
   5077 			return ret;
   5078 		} else {
   5079 			DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
   5080 			intel_dp->is_mst = false;
   5081 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
   5082 							intel_dp->is_mst);
   5083 		}
   5084 	}
   5085 	return -EINVAL;
   5086 }
   5087 
   5088 static bool
   5089 intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
   5090 {
   5091 	u8 link_status[DP_LINK_STATUS_SIZE];
   5092 
   5093 	if (!intel_dp->link_trained)
   5094 		return false;
   5095 
   5096 	/*
   5097 	 * While PSR source HW is enabled, it will control main-link sending
   5098 	 * frames, enabling and disabling it so trying to do a retrain will fail
   5099 	 * as the link would or not be on or it could mix training patterns
   5100 	 * and frame data at the same time causing retrain to fail.
   5101 	 * Also when exiting PSR, HW will retrain the link anyways fixing
   5102 	 * any link status error.
   5103 	 */
   5104 	if (intel_psr_enabled(intel_dp))
   5105 		return false;
   5106 
   5107 	if (!intel_dp_get_link_status(intel_dp, link_status))
   5108 		return false;
   5109 
   5110 	/*
   5111 	 * Validate the cached values of intel_dp->link_rate and
   5112 	 * intel_dp->lane_count before attempting to retrain.
   5113 	 */
   5114 	if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
   5115 					intel_dp->lane_count))
   5116 		return false;
   5117 
   5118 	/* Retrain if Channel EQ or CR not ok */
   5119 	return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
   5120 }
   5121 
   5122 int intel_dp_retrain_link(struct intel_encoder *encoder,
   5123 			  struct drm_modeset_acquire_ctx *ctx)
   5124 {
   5125 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
   5126 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
   5127 	struct intel_connector *connector = intel_dp->attached_connector;
   5128 	struct drm_connector_state *conn_state;
   5129 	struct intel_crtc_state *crtc_state;
   5130 	struct intel_crtc *crtc;
   5131 	int ret;
   5132 
   5133 	/* FIXME handle the MST connectors as well */
   5134 
   5135 	if (!connector || connector->base.status != connector_status_connected)
   5136 		return 0;
   5137 
   5138 	ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
   5139 			       ctx);
   5140 	if (ret)
   5141 		return ret;
   5142 
   5143 	conn_state = connector->base.state;
   5144 
   5145 	crtc = to_intel_crtc(conn_state->crtc);
   5146 	if (!crtc)
   5147 		return 0;
   5148 
   5149 	ret = drm_modeset_lock(&crtc->base.mutex, ctx);
   5150 	if (ret)
   5151 		return ret;
   5152 
   5153 	crtc_state = to_intel_crtc_state(crtc->base.state);
   5154 
   5155 	WARN_ON(!intel_crtc_has_dp_encoder(crtc_state));
   5156 
   5157 	if (!crtc_state->hw.active)
   5158 		return 0;
   5159 
   5160 	if (conn_state->commit &&
   5161 	    !try_wait_for_completion(&conn_state->commit->hw_done))
   5162 		return 0;
   5163 
   5164 	if (!intel_dp_needs_link_retrain(intel_dp))
   5165 		return 0;
   5166 
   5167 	/* Suppress underruns caused by re-training */
   5168 	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
   5169 	if (crtc_state->has_pch_encoder)
   5170 		intel_set_pch_fifo_underrun_reporting(dev_priv,
   5171 						      intel_crtc_pch_transcoder(crtc), false);
   5172 
   5173 	intel_dp_start_link_train(intel_dp);
   5174 	intel_dp_stop_link_train(intel_dp);
   5175 
   5176 	/* Keep underrun reporting disabled until things are stable */
   5177 	intel_wait_for_vblank(dev_priv, crtc->pipe);
   5178 
   5179 	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
   5180 	if (crtc_state->has_pch_encoder)
   5181 		intel_set_pch_fifo_underrun_reporting(dev_priv,
   5182 						      intel_crtc_pch_transcoder(crtc), true);
   5183 
   5184 	return 0;
   5185 }
   5186 
   5187 /*
   5188  * If display is now connected check links status,
   5189  * there has been known issues of link loss triggering
   5190  * long pulse.
   5191  *
   5192  * Some sinks (eg. ASUS PB287Q) seem to perform some
   5193  * weird HPD ping pong during modesets. So we can apparently
   5194  * end up with HPD going low during a modeset, and then
   5195  * going back up soon after. And once that happens we must
   5196  * retrain the link to get a picture. That's in case no
   5197  * userspace component reacted to intermittent HPD dip.
   5198  */
   5199 static enum intel_hotplug_state
   5200 intel_dp_hotplug(struct intel_encoder *encoder,
   5201 		 struct intel_connector *connector,
   5202 		 bool irq_received)
   5203 {
   5204 	struct drm_modeset_acquire_ctx ctx;
   5205 	enum intel_hotplug_state state;
   5206 	int ret;
   5207 
   5208 	state = intel_encoder_hotplug(encoder, connector, irq_received);
   5209 
   5210 	drm_modeset_acquire_init(&ctx, 0);
   5211 
   5212 	for (;;) {
   5213 		ret = intel_dp_retrain_link(encoder, &ctx);
   5214 
   5215 		if (ret == -EDEADLK) {
   5216 			drm_modeset_backoff(&ctx);
   5217 			continue;
   5218 		}
   5219 
   5220 		break;
   5221 	}
   5222 
   5223 	drm_modeset_drop_locks(&ctx);
   5224 	drm_modeset_acquire_fini(&ctx);
   5225 	WARN(ret, "Acquiring modeset locks failed with %i\n", ret);
   5226 
   5227 	/*
   5228 	 * Keeping it consistent with intel_ddi_hotplug() and
   5229 	 * intel_hdmi_hotplug().
   5230 	 */
   5231 	if (state == INTEL_HOTPLUG_UNCHANGED && irq_received)
   5232 		state = INTEL_HOTPLUG_RETRY;
   5233 
   5234 	return state;
   5235 }
   5236 
   5237 static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
   5238 {
   5239 	u8 val;
   5240 
   5241 	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
   5242 		return;
   5243 
   5244 	if (drm_dp_dpcd_readb(&intel_dp->aux,
   5245 			      DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
   5246 		return;
   5247 
   5248 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);
   5249 
   5250 	if (val & DP_AUTOMATED_TEST_REQUEST)
   5251 		intel_dp_handle_test_request(intel_dp);
   5252 
   5253 	if (val & DP_CP_IRQ)
   5254 		intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
   5255 
   5256 	if (val & DP_SINK_SPECIFIC_IRQ)
   5257 		DRM_DEBUG_DRIVER("Sink specific irq unhandled\n");
   5258 }
   5259 
   5260 /*
   5261  * According to DP spec
   5262  * 5.1.2:
   5263  *  1. Read DPCD
   5264  *  2. Configure link according to Receiver Capabilities
   5265  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
   5266  *  4. Check link status on receipt of hot-plug interrupt
   5267  *
   5268  * intel_dp_short_pulse -  handles short pulse interrupts
   5269  * when full detection is not required.
   5270  * Returns %true if short pulse is handled and full detection
   5271  * is NOT required and %false otherwise.
   5272  */
   5273 static bool
   5274 intel_dp_short_pulse(struct intel_dp *intel_dp)
   5275 {
   5276 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
   5277 	u8 old_sink_count = intel_dp->sink_count;
   5278 	bool ret;
   5279 
   5280 	/*
   5281 	 * Clearing compliance test variables to allow capturing
   5282 	 * of values for next automated test request.
   5283 	 */
   5284 	memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
   5285 
   5286 	/*
   5287 	 * Now read the DPCD to see if it's actually running
   5288 	 * If the current value of sink count doesn't match with
   5289 	 * the value that was stored earlier or dpcd read failed
   5290 	 * we need to do full detection
   5291 	 */
   5292 	ret = intel_dp_get_dpcd(intel_dp);
   5293 
   5294 	if ((old_sink_count != intel_dp->sink_count) || !ret) {
   5295 		/* No need to proceed if we are going to do full detect */
   5296 		return false;
   5297 	}
   5298 
   5299 	intel_dp_check_service_irq(intel_dp);
   5300 
   5301 	/* Handle CEC interrupts, if any */
   5302 	drm_dp_cec_irq(&intel_dp->aux);
   5303 
   5304 	/* defer to the hotplug work for link retraining if needed */
   5305 	if (intel_dp_needs_link_retrain(intel_dp))
   5306 		return false;
   5307 
   5308 	intel_psr_short_pulse(intel_dp);
   5309 
   5310 	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
   5311 		DRM_DEBUG_KMS("Link Training Compliance Test requested\n");
   5312 		/* Send a Hotplug Uevent to userspace to start modeset */
   5313 		drm_kms_helper_hotplug_event(&dev_priv->drm);
   5314 	}
   5315 
   5316 	return true;
   5317 }
   5318 
   5319 /* XXX this is probably wrong for multiple downstream ports */
   5320 static enum drm_connector_status
   5321 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
   5322 {
   5323 	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
   5324 	u8 *dpcd = intel_dp->dpcd;
   5325 	u8 type;
   5326 
   5327 	if (WARN_ON(intel_dp_is_edp(intel_dp)))
   5328 		return connector_status_connected;
   5329 
   5330 	if (lspcon->active)
   5331 		lspcon_resume(lspcon);
   5332 
   5333 	if (!intel_dp_get_dpcd(intel_dp))
   5334 		return connector_status_disconnected;
   5335 
   5336 	/* if there's no downstream port, we're done */
   5337 	if (!drm_dp_is_branch(dpcd))
   5338 		return connector_status_connected;
   5339 
   5340 	/* If we're HPD-aware, SINK_COUNT changes dynamically */
   5341 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
   5342 	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
   5343 
   5344 		return intel_dp->sink_count ?
   5345 		connector_status_connected : connector_status_disconnected;
   5346 	}
   5347 
   5348 	if (intel_dp_can_mst(intel_dp))
   5349 		return connector_status_connected;
   5350 
   5351 	/* If no HPD, poke DDC gently */
   5352 	if (drm_probe_ddc(&intel_dp->aux.ddc))
   5353 		return connector_status_connected;
   5354 
   5355 	/* Well we tried, say unknown for unreliable port types */
   5356 	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
   5357 		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
   5358 		if (type == DP_DS_PORT_TYPE_VGA ||
   5359 		    type == DP_DS_PORT_TYPE_NON_EDID)
   5360 			return connector_status_unknown;
   5361 	} else {
   5362 		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
   5363 			DP_DWN_STRM_PORT_TYPE_MASK;
   5364 		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
   5365 		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
   5366 			return connector_status_unknown;
   5367 	}
   5368 
   5369 	/* Anything else is out of spec, warn and ignore */
   5370 	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
   5371 	return connector_status_disconnected;
   5372 }
   5373 
   5374 static enum drm_connector_status
   5375 edp_detect(struct intel_dp *intel_dp)
   5376 {
   5377 	return connector_status_connected;
   5378 }
   5379 
   5380 static bool ibx_digital_port_connected(struct intel_encoder *encoder)
   5381 {
   5382 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
   5383 	u32 bit;
   5384 
   5385 	switch (encoder->hpd_pin) {
   5386 	case HPD_PORT_B:
   5387 		bit = SDE_PORTB_HOTPLUG;
   5388 		break;
   5389 	case HPD_PORT_C:
   5390 		bit = SDE_PORTC_HOTPLUG;
   5391 		break;
   5392 	case HPD_PORT_D:
   5393 		bit = SDE_PORTD_HOTPLUG;
   5394 		break;
   5395 	default:
   5396 		MISSING_CASE(encoder->hpd_pin);
   5397 		return false;
   5398 	}
   5399 
   5400 	return I915_READ(SDEISR) & bit;
   5401 }
   5402 
   5403 static bool cpt_digital_port_connected(struct intel_encoder *encoder)
   5404 {
   5405 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
   5406 	u32 bit;
   5407 
   5408 	switch (encoder->hpd_pin) {
   5409 	case HPD_PORT_B:
   5410 		bit = SDE_PORTB_HOTPLUG_CPT;
   5411 		break;
   5412 	case HPD_PORT_C:
   5413 		bit = SDE_PORTC_HOTPLUG_CPT;
   5414 		break;
   5415 	case HPD_PORT_D:
   5416 		bit = SDE_PORTD_HOTPLUG_CPT;
   5417 		break;
   5418 	default:
   5419 		MISSING_CASE(encoder->hpd_pin);
   5420 		return false;
   5421 	}
   5422 
   5423 	return I915_READ(SDEISR) & bit;
   5424 }
   5425 
   5426 static bool spt_digital_port_connected(struct intel_encoder *encoder)
   5427 {
   5428 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
   5429 	u32 bit;
   5430 
   5431 	switch (encoder->hpd_pin) {
   5432 	case HPD_PORT_A:
   5433 		bit = SDE_PORTA_HOTPLUG_SPT;
   5434 		break;
   5435 	case HPD_PORT_E:
   5436 		bit = SDE_PORTE_HOTPLUG_SPT;
   5437 		break;
   5438 	default:
   5439 		return cpt_digital_port_connected(encoder);
   5440 	}
   5441 
   5442 	return I915_READ(SDEISR) & bit;
   5443 }
   5444 
   5445 static bool g4x_digital_port_connected(struct intel_encoder *encoder)
   5446 {
   5447 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
   5448 	u32 bit;
   5449 
   5450 	switch (encoder->hpd_pin) {
   5451 	case HPD_PORT_B:
   5452 		bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
   5453 		break;
   5454 	case HPD_PORT_C:
   5455 		bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
   5456 		break;
   5457 	case HPD_PORT_D:
   5458 		bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
   5459 		break;
   5460 	default:
   5461 		MISSING_CASE(encoder->hpd_pin);
   5462 		return false;
   5463 	}
   5464 
   5465 	return I915_READ(PORT_HOTPLUG_STAT) & bit;
   5466 }
   5467 
   5468 static bool gm45_digital_port_connected(struct intel_encoder *encoder)
   5469 {
   5470 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
   5471 	u32 bit;
   5472 
   5473 	switch (encoder->hpd_pin) {
   5474 	case HPD_PORT_B:
   5475 		bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
   5476 		break;
   5477 	case HPD_PORT_C:
   5478 		bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
   5479 		break;
   5480 	case HPD_PORT_D:
   5481 		bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
   5482 		break;
   5483 	default:
   5484 		MISSING_CASE(encoder->hpd_pin);
   5485 		return false;
   5486 	}
   5487 
   5488 	return I915_READ(PORT_HOTPLUG_STAT) & bit;
   5489 }
   5490 
   5491 static bool ilk_digital_port_connected(struct intel_encoder *encoder)
   5492 {
   5493 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
   5494 
   5495 	if (encoder->hpd_pin == HPD_PORT_A)
   5496 		return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
   5497 	else
   5498 		return ibx_digital_port_connected(encoder);
   5499 }
   5500 
   5501 static bool snb_digital_port_connected(struct intel_encoder *encoder)
   5502 {
   5503 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
   5504 
   5505 	if (encoder->hpd_pin == HPD_PORT_A)
   5506 		return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
   5507 	else
   5508 		return cpt_digital_port_connected(encoder);
   5509 }
   5510 
   5511 static bool ivb_digital_port_connected(struct intel_encoder *encoder)
   5512 {
   5513 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
   5514 
   5515 	if (encoder->hpd_pin == HPD_PORT_A)
   5516 		return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB;
   5517 	else
   5518 		return cpt_digital_port_connected(encoder);
   5519 }
   5520 
   5521 static bool bdw_digital_port_connected(struct intel_encoder *encoder)
   5522 {
   5523 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
   5524 
   5525 	if (encoder->hpd_pin == HPD_PORT_A)
   5526 		return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
   5527 	else
   5528 		return cpt_digital_port_connected(encoder);
   5529 }
   5530 
   5531 static bool bxt_digital_port_connected(struct intel_encoder *encoder)
   5532 {
   5533 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
   5534 	u32 bit;
   5535 
   5536 	switch (encoder->hpd_pin) {
   5537 	case HPD_PORT_A:
   5538 		bit = BXT_DE_PORT_HP_DDIA;
   5539 		break;
   5540 	case HPD_PORT_B:
   5541 		bit = BXT_DE_PORT_HP_DDIB;
   5542 		break;
   5543 	case HPD_PORT_C:
   5544 		bit = BXT_DE_PORT_HP_DDIC;
   5545 		break;
   5546 	default:
   5547 		MISSING_CASE(encoder->hpd_pin);
   5548 		return false;
   5549 	}
   5550 
   5551 	return I915_READ(GEN8_DE_PORT_ISR) & bit;
   5552 }
   5553 
   5554 static bool intel_combo_phy_connected(struct drm_i915_private *dev_priv,
   5555 				      enum phy phy)
   5556 {
   5557 	if (HAS_PCH_MCC(dev_priv) && phy == PHY_C)
   5558 		return I915_READ(SDEISR) & SDE_TC_HOTPLUG_ICP(PORT_TC1);
   5559 
   5560 	return I915_READ(SDEISR) & SDE_DDI_HOTPLUG_ICP(phy);
   5561 }
   5562 
   5563 static bool icp_digital_port_connected(struct intel_encoder *encoder)
   5564 {
   5565 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
   5566 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
   5567 	enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
   5568 
   5569 	if (intel_phy_is_combo(dev_priv, phy))
   5570 		return intel_combo_phy_connected(dev_priv, phy);
   5571 	else if (intel_phy_is_tc(dev_priv, phy))
   5572 		return intel_tc_port_connected(dig_port);
   5573 	else
   5574 		MISSING_CASE(encoder->hpd_pin);
   5575 
   5576 	return false;
   5577 }
   5578 
   5579 /*
   5580  * intel_digital_port_connected - is the specified port connected?
   5581  * @encoder: intel_encoder
   5582  *
   5583  * In cases where there's a connector physically connected but it can't be used
   5584  * by our hardware we also return false, since the rest of the driver should
   5585  * pretty much treat the port as disconnected. This is relevant for type-C
   5586  * (starting on ICL) where there's ownership involved.
   5587  *
   5588  * Return %true if port is connected, %false otherwise.
   5589  */
   5590 static bool __intel_digital_port_connected(struct intel_encoder *encoder)
   5591 {
   5592 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
   5593 
   5594 	if (HAS_GMCH(dev_priv)) {
   5595 		if (IS_GM45(dev_priv))
   5596 			return gm45_digital_port_connected(encoder);
   5597 		else
   5598 			return g4x_digital_port_connected(encoder);
   5599 	}
   5600 
   5601 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
   5602 		return icp_digital_port_connected(encoder);
   5603 	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
   5604 		return spt_digital_port_connected(encoder);
   5605 	else if (IS_GEN9_LP(dev_priv))
   5606 		return bxt_digital_port_connected(encoder);
   5607 	else if (IS_GEN(dev_priv, 8))
   5608 		return bdw_digital_port_connected(encoder);
   5609 	else if (IS_GEN(dev_priv, 7))
   5610 		return ivb_digital_port_connected(encoder);
   5611 	else if (IS_GEN(dev_priv, 6))
   5612 		return snb_digital_port_connected(encoder);
   5613 	else if (IS_GEN(dev_priv, 5))
   5614 		return ilk_digital_port_connected(encoder);
   5615 
   5616 	MISSING_CASE(INTEL_GEN(dev_priv));
   5617 	return false;
   5618 }
   5619 
   5620 bool intel_digital_port_connected(struct intel_encoder *encoder)
   5621 {
   5622 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
   5623 	bool is_connected = false;
   5624 	intel_wakeref_t wakeref;
   5625 
   5626 	with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
   5627 		is_connected = __intel_digital_port_connected(encoder);
   5628 
   5629 	return is_connected;
   5630 }
   5631 
   5632 static struct edid *
   5633 intel_dp_get_edid(struct intel_dp *intel_dp)
   5634 {
   5635 	struct intel_connector *intel_connector = intel_dp->attached_connector;
   5636 
   5637 	/* use cached edid if we have one */
   5638 	if (intel_connector->edid) {
   5639 		/* invalid edid */
   5640 		if (IS_ERR(intel_connector->edid))
   5641 			return NULL;
   5642 
   5643 		return drm_edid_duplicate(intel_connector->edid);
   5644 	} else
   5645 		return drm_get_edid(&intel_connector->base,
   5646 				    &intel_dp->aux.ddc);
   5647 }
   5648 
   5649 static void
   5650 intel_dp_set_edid(struct intel_dp *intel_dp)
   5651 {
   5652 	struct intel_connector *intel_connector = intel_dp->attached_connector;
   5653 	struct edid *edid;
   5654 
   5655 	intel_dp_unset_edid(intel_dp);
   5656 	edid = intel_dp_get_edid(intel_dp);
   5657 	intel_connector->detect_edid = edid;
   5658 
   5659 	intel_dp->has_audio = drm_detect_monitor_audio(edid);
   5660 	drm_dp_cec_set_edid(&intel_dp->aux, edid);
   5661 }
   5662 
   5663 static void
   5664 intel_dp_unset_edid(struct intel_dp *intel_dp)
   5665 {
   5666 	struct intel_connector *intel_connector = intel_dp->attached_connector;
   5667 
   5668 	drm_dp_cec_unset_edid(&intel_dp->aux);
   5669 	kfree(intel_connector->detect_edid);
   5670 	intel_connector->detect_edid = NULL;
   5671 
   5672 	intel_dp->has_audio = false;
   5673 }
   5674 
   5675 static int
   5676 intel_dp_detect(struct drm_connector *connector,
   5677 		struct drm_modeset_acquire_ctx *ctx,
   5678 		bool force)
   5679 {
   5680 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
   5681 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
   5682 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
   5683 	struct intel_encoder *encoder = &dig_port->base;
   5684 	enum drm_connector_status status;
   5685 
   5686 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
   5687 		      connector->base.id, connector->name);
   5688 	WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
   5689 
   5690 	/* Can't disconnect eDP */
   5691 	if (intel_dp_is_edp(intel_dp))
   5692 		status = edp_detect(intel_dp);
   5693 	else if (intel_digital_port_connected(encoder))
   5694 		status = intel_dp_detect_dpcd(intel_dp);
   5695 	else
   5696 		status = connector_status_disconnected;
   5697 
   5698 	if (status == connector_status_disconnected) {
   5699 		memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
   5700 		memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
   5701 
   5702 		if (intel_dp->is_mst) {
   5703 			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
   5704 				      intel_dp->is_mst,
   5705 				      intel_dp->mst_mgr.mst_state);
   5706 			intel_dp->is_mst = false;
   5707 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
   5708 							intel_dp->is_mst);
   5709 		}
   5710 
   5711 		goto out;
   5712 	}
   5713 
   5714 	if (intel_dp->reset_link_params) {
   5715 		/* Initial max link lane count */
   5716 		intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
   5717 
   5718 		/* Initial max link rate */
   5719 		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
   5720 
   5721 		intel_dp->reset_link_params = false;
   5722 	}
   5723 
   5724 	intel_dp_print_rates(intel_dp);
   5725 
   5726 	/* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
   5727 	if (INTEL_GEN(dev_priv) >= 11)
   5728 		intel_dp_get_dsc_sink_cap(intel_dp);
   5729 
   5730 	intel_dp_configure_mst(intel_dp);
   5731 
   5732 	if (intel_dp->is_mst) {
   5733 		/*
   5734 		 * If we are in MST mode then this connector
   5735 		 * won't appear connected or have anything
   5736 		 * with EDID on it
   5737 		 */
   5738 		status = connector_status_disconnected;
   5739 		goto out;
   5740 	}
   5741 
   5742 	/*
   5743 	 * Some external monitors do not signal loss of link synchronization
   5744 	 * with an IRQ_HPD, so force a link status check.
   5745 	 */
   5746 	if (!intel_dp_is_edp(intel_dp)) {
   5747 		int ret;
   5748 
   5749 		ret = intel_dp_retrain_link(encoder, ctx);
   5750 		if (ret)
   5751 			return ret;
   5752 	}
   5753 
   5754 	/*
   5755 	 * Clearing NACK and defer counts to get their exact values
   5756 	 * while reading EDID which are required by Compliance tests
   5757 	 * 4.2.2.4 and 4.2.2.5
   5758 	 */
   5759 	intel_dp->aux.i2c_nack_count = 0;
   5760 	intel_dp->aux.i2c_defer_count = 0;
   5761 
   5762 	intel_dp_set_edid(intel_dp);
   5763 	if (intel_dp_is_edp(intel_dp) ||
   5764 	    to_intel_connector(connector)->detect_edid)
   5765 		status = connector_status_connected;
   5766 
   5767 	intel_dp_check_service_irq(intel_dp);
   5768 
   5769 out:
   5770 	if (status != connector_status_connected && !intel_dp->is_mst)
   5771 		intel_dp_unset_edid(intel_dp);
   5772 
   5773 	/*
   5774 	 * Make sure the refs for power wells enabled during detect are
   5775 	 * dropped to avoid a new detect cycle triggered by HPD polling.
   5776 	 */
   5777 	intel_display_power_flush_work(dev_priv);
   5778 
   5779 	return status;
   5780 }
   5781 
   5782 static void
   5783 intel_dp_force(struct drm_connector *connector)
   5784 {
   5785 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
   5786 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
   5787 	struct intel_encoder *intel_encoder = &dig_port->base;
   5788 	struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
   5789 	enum intel_display_power_domain aux_domain =
   5790 		intel_aux_power_domain(dig_port);
   5791 	intel_wakeref_t wakeref;
   5792 
   5793 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
   5794 		      connector->base.id, connector->name);
   5795 	intel_dp_unset_edid(intel_dp);
   5796 
   5797 	if (connector->status != connector_status_connected)
   5798 		return;
   5799 
   5800 	wakeref = intel_display_power_get(dev_priv, aux_domain);
   5801 
   5802 	intel_dp_set_edid(intel_dp);
   5803 
   5804 	intel_display_power_put(dev_priv, aux_domain, wakeref);
   5805 }
   5806 
   5807 static int intel_dp_get_modes(struct drm_connector *connector)
   5808 {
   5809 	struct intel_connector *intel_connector = to_intel_connector(connector);
   5810 	struct edid *edid;
   5811 
   5812 	edid = intel_connector->detect_edid;
   5813 	if (edid) {
   5814 		int ret = intel_connector_update_modes(connector, edid);
   5815 		if (ret)
   5816 			return ret;
   5817 	}
   5818 
   5819 	/* if eDP has no EDID, fall back to fixed mode */
   5820 	if (intel_dp_is_edp(intel_attached_dp(to_intel_connector(connector))) &&
   5821 	    intel_connector->panel.fixed_mode) {
   5822 		struct drm_display_mode *mode;
   5823 
   5824 		mode = drm_mode_duplicate(connector->dev,
   5825 					  intel_connector->panel.fixed_mode);
   5826 		if (mode) {
   5827 			drm_mode_probed_add(connector, mode);
   5828 			return 1;
   5829 		}
   5830 	}
   5831 
   5832 	return 0;
   5833 }
   5834 
   5835 static int
   5836 intel_dp_connector_register(struct drm_connector *connector)
   5837 {
   5838 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
   5839 	int ret;
   5840 
   5841 	ret = intel_connector_register(connector);
   5842 	if (ret)
   5843 		return ret;
   5844 
   5845 	i915_debugfs_connector_add(connector);
   5846 
   5847 #ifdef __NetBSD__
   5848 	DRM_DEBUG_KMS("registering %s bus for %s\n",
   5849 		      intel_dp->aux.name, connector->name);
   5850 #else
   5851 	DRM_DEBUG_KMS("registering %s bus for %s\n",
   5852 		      intel_dp->aux.name, connector->kdev->kobj.name);
   5853 #endif
   5854 
   5855 	intel_dp->aux.dev = connector->kdev;
   5856 	ret = drm_dp_aux_register(&intel_dp->aux);
   5857 	if (!ret)
   5858 		drm_dp_cec_register_connector(&intel_dp->aux, connector);
   5859 	return ret;
   5860 }
   5861 
   5862 static void
   5863 intel_dp_connector_unregister(struct drm_connector *connector)
   5864 {
   5865 	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
   5866 
   5867 	drm_dp_cec_unregister_connector(&intel_dp->aux);
   5868 	drm_dp_aux_unregister(&intel_dp->aux);
   5869 	intel_connector_unregister(connector);
   5870 }
   5871 
   5872 void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
   5873 {
   5874 	struct intel_digital_port *intel_dig_port = enc_to_dig_port(to_intel_encoder(encoder));
   5875 	struct intel_dp *intel_dp = &intel_dig_port->dp;
   5876 
   5877 	intel_dp_mst_encoder_cleanup(intel_dig_port);
   5878 	if (intel_dp_is_edp(intel_dp)) {
   5879 		intel_wakeref_t wakeref;
   5880 
   5881 		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
   5882 		/*
   5883 		 * vdd might still be enabled do to the delayed vdd off.
   5884 		 * Make sure vdd is actually turned off here.
   5885 		 */
   5886 		with_pps_lock(intel_dp, wakeref)
   5887 			edp_panel_vdd_off_sync(intel_dp);
   5888 
   5889 		if (intel_dp->edp_notifier.notifier_call) {
   5890 			unregister_reboot_notifier(&intel_dp->edp_notifier);
   5891 			intel_dp->edp_notifier.notifier_call = NULL;
   5892 		}
   5893 	}
   5894 
   5895 	intel_dp_aux_fini(intel_dp);
   5896 }
   5897 
   5898 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
   5899 {
   5900 	intel_dp_encoder_flush_work(encoder);
   5901 
   5902 	drm_encoder_cleanup(encoder);
   5903 	kfree(enc_to_dig_port(to_intel_encoder(encoder)));
   5904 }
   5905 
   5906 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
   5907 {
   5908 	struct intel_dp *intel_dp = enc_to_intel_dp(intel_encoder);
   5909 	intel_wakeref_t wakeref;
   5910 
   5911 	if (!intel_dp_is_edp(intel_dp))
   5912 		return;
   5913 
   5914 	/*
   5915 	 * vdd might still be enabled do to the delayed vdd off.
   5916 	 * Make sure vdd is actually turned off here.
   5917 	 */
   5918 	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
   5919 	with_pps_lock(intel_dp, wakeref)
   5920 		edp_panel_vdd_off_sync(intel_dp);
   5921 }
   5922 
   5923 static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout)
   5924 {
   5925 	long ret;
   5926 
   5927 #define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count))
   5928 	unsigned long irqflags;
   5929 	spin_lock_irqsave(&hdcp->cp_irq_lock, irqflags);
   5930 	DRM_SPIN_TIMED_WAIT_UNTIL(ret, &hdcp->cp_irq_queue,
   5931 	    &hdcp->cp_irq_lock,
   5932 	    msecs_to_jiffies(timeout),
   5933 	    C);
   5934 	if (!ret)
   5935 		DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n");
   5936 	spin_unlock_irqrestore(&hdcp->cp_irq_lock, irqflags);
   5937 }
   5938 
   5939 static
   5940 int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
   5941 				u8 *an)
   5942 {
   5943 	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(&intel_dig_port->base.base));
   5944 	static const struct drm_dp_aux_msg msg = {
   5945 		.request = DP_AUX_NATIVE_WRITE,
   5946 		.address = DP_AUX_HDCP_AKSV,
   5947 		.size = DRM_HDCP_KSV_LEN,
   5948 	};
   5949 	u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
   5950 	ssize_t dpcd_ret;
   5951 	int ret;
   5952 
   5953 	/* Output An first, that's easy */
   5954 	dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
   5955 				     an, DRM_HDCP_AN_LEN);
   5956 	if (dpcd_ret != DRM_HDCP_AN_LEN) {
   5957 		DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n",
   5958 			      dpcd_ret);
   5959 		return dpcd_ret >= 0 ? -EIO : dpcd_ret;
   5960 	}
   5961 
   5962 	/*
   5963 	 * Since Aksv is Oh-So-Secret, we can't access it in software. So in
   5964 	 * order to get it on the wire, we need to create the AUX header as if
   5965 	 * we were writing the data, and then tickle the hardware to output the
   5966 	 * data once the header is sent out.
   5967 	 */
   5968 	intel_dp_aux_header(txbuf, &msg);
   5969 
   5970 	ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
   5971 				rxbuf, sizeof(rxbuf),
   5972 				DP_AUX_CH_CTL_AUX_AKSV_SELECT);
   5973 	if (ret < 0) {
   5974 		DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret);
   5975 		return ret;
   5976 	} else if (ret == 0) {
   5977 		DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n");
   5978 		return -EIO;
   5979 	}
   5980 
   5981 	reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
   5982 	if (reply != DP_AUX_NATIVE_REPLY_ACK) {
   5983 		DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
   5984 			      reply);
   5985 		return -EIO;
   5986 	}
   5987 	return 0;
   5988 }
   5989 
   5990 static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
   5991 				   u8 *bksv)
   5992 {
   5993 	ssize_t ret;
   5994 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
   5995 			       DRM_HDCP_KSV_LEN);
   5996 	if (ret != DRM_HDCP_KSV_LEN) {
   5997 		DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret);
   5998 		return ret >= 0 ? -EIO : ret;
   5999 	}
   6000 	return 0;
   6001 }
   6002 
   6003 static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
   6004 				      u8 *bstatus)
   6005 {
   6006 	ssize_t ret;
   6007 	/*
   6008 	 * For some reason the HDMI and DP HDCP specs call this register
   6009 	 * definition by different names. In the HDMI spec, it's called BSTATUS,
   6010 	 * but in DP it's called BINFO.
   6011 	 */
   6012 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
   6013 			       bstatus, DRM_HDCP_BSTATUS_LEN);
   6014 	if (ret != DRM_HDCP_BSTATUS_LEN) {
   6015 		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
   6016 		return ret >= 0 ? -EIO : ret;
   6017 	}
   6018 	return 0;
   6019 }
   6020 
   6021 static
   6022 int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
   6023 			     u8 *bcaps)
   6024 {
   6025 	ssize_t ret;
   6026 
   6027 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
   6028 			       bcaps, 1);
   6029 	if (ret != 1) {
   6030 		DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret);
   6031 		return ret >= 0 ? -EIO : ret;
   6032 	}
   6033 
   6034 	return 0;
   6035 }
   6036 
   6037 static
   6038 int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
   6039 				   bool *repeater_present)
   6040 {
   6041 	ssize_t ret;
   6042 	u8 bcaps;
   6043 
   6044 	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
   6045 	if (ret)
   6046 		return ret;
   6047 
   6048 	*repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
   6049 	return 0;
   6050 }
   6051 
   6052 static
   6053 int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
   6054 				u8 *ri_prime)
   6055 {
   6056 	ssize_t ret;
   6057 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
   6058 			       ri_prime, DRM_HDCP_RI_LEN);
   6059 	if (ret != DRM_HDCP_RI_LEN) {
   6060 		DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret);
   6061 		return ret >= 0 ? -EIO : ret;
   6062 	}
   6063 	return 0;
   6064 }
   6065 
   6066 static
   6067 int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
   6068 				 bool *ksv_ready)
   6069 {
   6070 	ssize_t ret;
   6071 	u8 bstatus;
   6072 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
   6073 			       &bstatus, 1);
   6074 	if (ret != 1) {
   6075 		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
   6076 		return ret >= 0 ? -EIO : ret;
   6077 	}
   6078 	*ksv_ready = bstatus & DP_BSTATUS_READY;
   6079 	return 0;
   6080 }
   6081 
   6082 static
   6083 int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
   6084 				int num_downstream, u8 *ksv_fifo)
   6085 {
   6086 	ssize_t ret;
   6087 	int i;
   6088 
   6089 	/* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
   6090 	for (i = 0; i < num_downstream; i += 3) {
   6091 		size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
   6092 		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
   6093 				       DP_AUX_HDCP_KSV_FIFO,
   6094 				       ksv_fifo + i * DRM_HDCP_KSV_LEN,
   6095 				       len);
   6096 		if (ret != len) {
   6097 			DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n",
   6098 				      i, ret);
   6099 			return ret >= 0 ? -EIO : ret;
   6100 		}
   6101 	}
   6102 	return 0;
   6103 }
   6104 
   6105 static
   6106 int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
   6107 				    int i, u32 *part)
   6108 {
   6109 	ssize_t ret;
   6110 
   6111 	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
   6112 		return -EINVAL;
   6113 
   6114 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
   6115 			       DP_AUX_HDCP_V_PRIME(i), part,
   6116 			       DRM_HDCP_V_PRIME_PART_LEN);
   6117 	if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
   6118 		DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
   6119 		return ret >= 0 ? -EIO : ret;
   6120 	}
   6121 	return 0;
   6122 }
   6123 
   6124 static
   6125 int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
   6126 				    bool enable)
   6127 {
   6128 	/* Not used for single stream DisplayPort setups */
   6129 	return 0;
   6130 }
   6131 
   6132 static
   6133 bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
   6134 {
   6135 	ssize_t ret;
   6136 	u8 bstatus;
   6137 
   6138 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
   6139 			       &bstatus, 1);
   6140 	if (ret != 1) {
   6141 		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
   6142 		return false;
   6143 	}
   6144 
   6145 	return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
   6146 }
   6147 
   6148 static
   6149 int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
   6150 			  bool *hdcp_capable)
   6151 {
   6152 	ssize_t ret;
   6153 	u8 bcaps;
   6154 
   6155 	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
   6156 	if (ret)
   6157 		return ret;
   6158 
   6159 	*hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
   6160 	return 0;
   6161 }
   6162 
   6163 struct hdcp2_dp_errata_stream_type {
   6164 	u8	msg_id;
   6165 	u8	stream_type;
   6166 } __packed;
   6167 
   6168 struct hdcp2_dp_msg_data {
   6169 	u8 msg_id;
   6170 	u32 offset;
   6171 	bool msg_detectable;
   6172 	u32 timeout;
   6173 	u32 timeout2; /* Added for non_paired situation */
   6174 };
   6175 
   6176 static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data[] = {
   6177 	{ HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0 },
   6178 	{ HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET,
   6179 	  false, HDCP_2_2_CERT_TIMEOUT_MS, 0 },
   6180 	{ HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET,
   6181 	  false, 0, 0 },
   6182 	{ HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET,
   6183 	  false, 0, 0 },
   6184 	{ HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET,
   6185 	  true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS,
   6186 	  HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS },
   6187 	{ HDCP_2_2_AKE_SEND_PAIRING_INFO,
   6188 	  DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true,
   6189 	  HDCP_2_2_PAIRING_TIMEOUT_MS, 0 },
   6190 	{ HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0 },
   6191 	{ HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET,
   6192 	  false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0 },
   6193 	{ HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false,
   6194 	  0, 0 },
   6195 	{ HDCP_2_2_REP_SEND_RECVID_LIST,
   6196 	  DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true,
   6197 	  HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0 },
   6198 	{ HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false,
   6199 	  0, 0 },
   6200 	{ HDCP_2_2_REP_STREAM_MANAGE,
   6201 	  DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false,
   6202 	  0, 0 },
   6203 	{ HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET,
   6204 	  false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0 },
   6205 /* local define to shovel this through the write_2_2 interface */
   6206 #define HDCP_2_2_ERRATA_DP_STREAM_TYPE	50
   6207 	{ HDCP_2_2_ERRATA_DP_STREAM_TYPE,
   6208 	  DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false,
   6209 	  0, 0 },
   6210 };
   6211 
   6212 static inline
   6213 int intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port,
   6214 				  u8 *rx_status)
   6215 {
   6216 	ssize_t ret;
   6217 
   6218 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
   6219 			       DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status,
   6220 			       HDCP_2_2_DP_RXSTATUS_LEN);
   6221 	if (ret != HDCP_2_2_DP_RXSTATUS_LEN) {
   6222 		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
   6223 		return ret >= 0 ? -EIO : ret;
   6224 	}
   6225 
   6226 	return 0;
   6227 }
   6228 
   6229 static
   6230 int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port,
   6231 				  u8 msg_id, bool *msg_ready)
   6232 {
   6233 	u8 rx_status;
   6234 	int ret;
   6235 
   6236 	*msg_ready = false;
   6237 	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
   6238 	if (ret < 0)
   6239 		return ret;
   6240 
   6241 	switch (msg_id) {
   6242 	case HDCP_2_2_AKE_SEND_HPRIME:
   6243 		if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status))
   6244 			*msg_ready = true;
   6245 		break;
   6246 	case HDCP_2_2_AKE_SEND_PAIRING_INFO:
   6247 		if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status))
   6248 			*msg_ready = true;
   6249 		break;
   6250 	case HDCP_2_2_REP_SEND_RECVID_LIST:
   6251 		if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
   6252 			*msg_ready = true;
   6253 		break;
   6254 	default:
   6255 		DRM_ERROR("Unidentified msg_id: %d\n", msg_id);
   6256 		return -EINVAL;
   6257 	}
   6258 
   6259 	return 0;
   6260 }
   6261 
   6262 static ssize_t
   6263 intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port,
   6264 			    const struct hdcp2_dp_msg_data *hdcp2_msg_data)
   6265 {
   6266 	struct intel_dp *dp = &intel_dig_port->dp;
   6267 	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
   6268 	u8 msg_id = hdcp2_msg_data->msg_id;
   6269 	int ret, timeout;
   6270 	bool msg_ready = false;
   6271 
   6272 	if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired)
   6273 		timeout = hdcp2_msg_data->timeout2;
   6274 	else
   6275 		timeout = hdcp2_msg_data->timeout;
   6276 
   6277 	/*
   6278 	 * There is no way to detect the CERT, LPRIME and STREAM_READY
   6279 	 * availability. So Wait for timeout and read the msg.
   6280 	 */
   6281 	if (!hdcp2_msg_data->msg_detectable) {
   6282 		mdelay(timeout);
   6283 		ret = 0;
   6284 	} else {
   6285 		/*
   6286 		 * As we want to check the msg availability at timeout, Ignoring
   6287 		 * the timeout at wait for CP_IRQ.
   6288 		 */
   6289 		intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout);
   6290 		ret = hdcp2_detect_msg_availability(intel_dig_port,
   6291 						    msg_id, &msg_ready);
   6292 		if (!msg_ready)
   6293 			ret = -ETIMEDOUT;
   6294 	}
   6295 
   6296 	if (ret)
   6297 		DRM_DEBUG_KMS("msg_id %d, ret %d, timeout(mSec): %d\n",
   6298 			      hdcp2_msg_data->msg_id, ret, timeout);
   6299 
   6300 	return ret;
   6301 }
   6302 
   6303 static const struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id)
   6304 {
   6305 	int i;
   6306 
   6307 	for (i = 0; i < ARRAY_SIZE(hdcp2_dp_msg_data); i++)
   6308 		if (hdcp2_dp_msg_data[i].msg_id == msg_id)
   6309 			return &hdcp2_dp_msg_data[i];
   6310 
   6311 	return NULL;
   6312 }
   6313 
   6314 static
   6315 int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port,
   6316 			     void *buf, size_t size)
   6317 {
   6318 	struct intel_dp *dp = &intel_dig_port->dp;
   6319 	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
   6320 	unsigned int offset;
   6321 	u8 *byte = buf;
   6322 	ssize_t ret, bytes_to_write, len;
   6323 	const struct hdcp2_dp_msg_data *hdcp2_msg_data;
   6324 
   6325 	hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte);
   6326 	if (!hdcp2_msg_data)
   6327 		return -EINVAL;
   6328 
   6329 	offset = hdcp2_msg_data->offset;
   6330 
   6331 	/* No msg_id in DP HDCP2.2 msgs */
   6332 	bytes_to_write = size - 1;
   6333 	byte++;
   6334 
   6335 	hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count);
   6336 
   6337 	while (bytes_to_write) {
   6338 		len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ?
   6339 				DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write;
   6340 
   6341 		ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux,
   6342 					offset, (void *)byte, len);
   6343 		if (ret < 0)
   6344 			return ret;
   6345 
   6346 		bytes_to_write -= ret;
   6347 		byte += ret;
   6348 		offset += ret;
   6349 	}
   6350 
   6351 	return size;
   6352 }
   6353 
   6354 static
   6355 ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port)
   6356 {
   6357 	u8 rx_info[HDCP_2_2_RXINFO_LEN];
   6358 	u32 dev_cnt;
   6359 	ssize_t ret;
   6360 
   6361 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
   6362 			       DP_HDCP_2_2_REG_RXINFO_OFFSET,
   6363 			       (void *)rx_info, HDCP_2_2_RXINFO_LEN);
   6364 	if (ret != HDCP_2_2_RXINFO_LEN)
   6365 		return ret >= 0 ? -EIO : ret;
   6366 
   6367 	dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
   6368 		   HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
   6369 
   6370 	if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT)
   6371 		dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT;
   6372 
   6373 	ret = sizeof(struct hdcp2_rep_send_receiverid_list) -
   6374 		HDCP_2_2_RECEIVER_IDS_MAX_LEN +
   6375 		(dev_cnt * HDCP_2_2_RECEIVER_ID_LEN);
   6376 
   6377 	return ret;
   6378 }
   6379 
   6380 static
   6381 int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port,
   6382 			    u8 msg_id, void *buf, size_t size)
   6383 {
   6384 	unsigned int offset;
   6385 	u8 *byte = buf;
   6386 	ssize_t ret, bytes_to_recv, len;
   6387 	const struct hdcp2_dp_msg_data *hdcp2_msg_data;
   6388 
   6389 	hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id);
   6390 	if (!hdcp2_msg_data)
   6391 		return -EINVAL;
   6392 	offset = hdcp2_msg_data->offset;
   6393 
   6394 	ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data);
   6395 	if (ret < 0)
   6396 		return ret;
   6397 
   6398 	if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) {
   6399 		ret = get_receiver_id_list_size(intel_dig_port);
   6400 		if (ret < 0)
   6401 			return ret;
   6402 
   6403 		size = ret;
   6404 	}
   6405 	bytes_to_recv = size - 1;
   6406 
   6407 	/* DP adaptation msgs has no msg_id */
   6408 	byte++;
   6409 
   6410 	while (bytes_to_recv) {
   6411 		len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ?
   6412 		      DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv;
   6413 
   6414 		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset,
   6415 				       (void *)byte, len);
   6416 		if (ret < 0) {
   6417 			DRM_DEBUG_KMS("msg_id %d, ret %zd\n", msg_id, ret);
   6418 			return ret;
   6419 		}
   6420 
   6421 		bytes_to_recv -= ret;
   6422 		byte += ret;
   6423 		offset += ret;
   6424 	}
   6425 	byte = buf;
   6426 	*byte = msg_id;
   6427 
   6428 	return size;
   6429 }
   6430 
   6431 static
   6432 int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port,
   6433 				      bool is_repeater, u8 content_type)
   6434 {
   6435 	struct hdcp2_dp_errata_stream_type stream_type_msg;
   6436 
   6437 	if (is_repeater)
   6438 		return 0;
   6439 
   6440 	/*
   6441 	 * Errata for DP: As Stream type is used for encryption, Receiver
   6442 	 * should be communicated with stream type for the decryption of the
   6443 	 * content.
   6444 	 * Repeater will be communicated with stream type as a part of it's
   6445 	 * auth later in time.
   6446 	 */
   6447 	stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE;
   6448 	stream_type_msg.stream_type = content_type;
   6449 
   6450 	return intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg,
   6451 					sizeof(stream_type_msg));
   6452 }
   6453 
   6454 static
   6455 int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port)
   6456 {
   6457 	u8 rx_status;
   6458 	int ret;
   6459 
   6460 	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
   6461 	if (ret)
   6462 		return ret;
   6463 
   6464 	if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status))
   6465 		ret = HDCP_REAUTH_REQUEST;
   6466 	else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status))
   6467 		ret = HDCP_LINK_INTEGRITY_FAILURE;
   6468 	else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
   6469 		ret = HDCP_TOPOLOGY_CHANGE;
   6470 
   6471 	return ret;
   6472 }
   6473 
   6474 static
   6475 int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port,
   6476 			   bool *capable)
   6477 {
   6478 	u8 rx_caps[3];
   6479 	int ret;
   6480 
   6481 	*capable = false;
   6482 	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
   6483 			       DP_HDCP_2_2_REG_RX_CAPS_OFFSET,
   6484 			       rx_caps, HDCP_2_2_RXCAPS_LEN);
   6485 	if (ret != HDCP_2_2_RXCAPS_LEN)
   6486 		return ret >= 0 ? -EIO : ret;
   6487 
   6488 	if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL &&
   6489 	    HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2]))
   6490 		*capable = true;
   6491 
   6492 	return 0;
   6493 }
   6494 
   6495 static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
   6496 	.write_an_aksv = intel_dp_hdcp_write_an_aksv,
   6497 	.read_bksv = intel_dp_hdcp_read_bksv,
   6498 	.read_bstatus = intel_dp_hdcp_read_bstatus,
   6499 	.repeater_present = intel_dp_hdcp_repeater_present,
   6500 	.read_ri_prime = intel_dp_hdcp_read_ri_prime,
   6501 	.read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
   6502 	.read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
   6503 	.read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
   6504 	.toggle_signalling = intel_dp_hdcp_toggle_signalling,
   6505 	.check_link = intel_dp_hdcp_check_link,
   6506 	.hdcp_capable = intel_dp_hdcp_capable,
   6507 	.write_2_2_msg = intel_dp_hdcp2_write_msg,
   6508 	.read_2_2_msg = intel_dp_hdcp2_read_msg,
   6509 	.config_stream_type = intel_dp_hdcp2_config_stream_type,
   6510 	.check_2_2_link = intel_dp_hdcp2_check_link,
   6511 	.hdcp_2_2_capable = intel_dp_hdcp2_capable,
   6512 	.protocol = HDCP_PROTOCOL_DP,
   6513 };
   6514 
   6515 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
   6516 {
   6517 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
   6518 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
   6519 
   6520 	lockdep_assert_held(&dev_priv->pps_mutex);
   6521 
   6522 	if (!edp_have_panel_vdd(intel_dp))
   6523 		return;
   6524 
   6525 	/*
   6526 	 * The VDD bit needs a power domain reference, so if the bit is
   6527 	 * already enabled when we boot or resume, grab this reference and
   6528 	 * schedule a vdd off, so we don't hold on to the reference
   6529 	 * indefinitely.
   6530 	 */
   6531 	DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
   6532 	intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
   6533 
   6534 	edp_panel_vdd_schedule_off(intel_dp);
   6535 }
   6536 
   6537 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
   6538 {
   6539 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
   6540 	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
   6541 	enum pipe pipe;
   6542 
   6543 	if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
   6544 				  encoder->port, &pipe))
   6545 		return pipe;
   6546 
   6547 	return INVALID_PIPE;
   6548 }
   6549 
   6550 void intel_dp_encoder_reset(struct drm_encoder *encoder)
   6551 {
   6552 	struct drm_i915_private *dev_priv = to_i915(encoder->dev);
   6553 	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(encoder));
   6554 	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
   6555 	intel_wakeref_t wakeref;
   6556 
   6557 	if (!HAS_DDI(dev_priv))
   6558 		intel_dp->DP = I915_READ(intel_dp->output_reg);
   6559 
   6560 	if (lspcon->active)
   6561 		lspcon_resume(lspcon);
   6562 
   6563 	intel_dp->reset_link_params = true;
   6564 
   6565 	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
   6566 	    !intel_dp_is_edp(intel_dp))
   6567 		return;
   6568 
   6569 	with_pps_lock(intel_dp, wakeref) {
   6570 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
   6571 			intel_dp->active_pipe = vlv_active_pipe(intel_dp);
   6572 
   6573 		if (intel_dp_is_edp(intel_dp)) {
   6574 			/*
   6575 			 * Reinit the power sequencer, in case BIOS did
   6576 			 * something nasty with it.
   6577 			 */
   6578 			intel_dp_pps_init(intel_dp);
   6579 			intel_edp_panel_vdd_sanitize(intel_dp);
   6580 		}
   6581 	}
   6582 }
   6583 
   6584 static const struct drm_connector_funcs intel_dp_connector_funcs = {
   6585 	.force = intel_dp_force,
   6586 	.fill_modes = drm_helper_probe_single_connector_modes,
   6587 	.atomic_get_property = intel_digital_connector_atomic_get_property,
   6588 	.atomic_set_property = intel_digital_connector_atomic_set_property,
   6589 	.late_register = intel_dp_connector_register,
   6590 	.early_unregister = intel_dp_connector_unregister,
   6591 	.destroy = intel_connector_destroy,
   6592 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
   6593 	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
   6594 };
   6595 
   6596 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
   6597 	.detect_ctx = intel_dp_detect,
   6598 	.get_modes = intel_dp_get_modes,
   6599 	.mode_valid = intel_dp_mode_valid,
   6600 	.atomic_check = intel_digital_connector_atomic_check,
   6601 };
   6602 
   6603 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
   6604 	.reset = intel_dp_encoder_reset,
   6605 	.destroy = intel_dp_encoder_destroy,
   6606 };
   6607 
   6608 enum irqreturn
   6609 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
   6610 {
   6611 	struct intel_dp *intel_dp = &intel_dig_port->dp;
   6612 
   6613 	if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
   6614 		/*
   6615 		 * vdd off can generate a long pulse on eDP which
   6616 		 * would require vdd on to handle it, and thus we
   6617 		 * would end up in an endless cycle of
   6618 		 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
   6619 		 */
   6620 		DRM_DEBUG_KMS("ignoring long hpd on eDP [ENCODER:%d:%s]\n",
   6621 			      intel_dig_port->base.base.base.id,
   6622 			      intel_dig_port->base.base.name);
   6623 		return IRQ_HANDLED;
   6624 	}
   6625 
   6626 	DRM_DEBUG_KMS("got hpd irq on [ENCODER:%d:%s] - %s\n",
   6627 		      intel_dig_port->base.base.base.id,
   6628 		      intel_dig_port->base.base.name,
   6629 		      long_hpd ? "long" : "short");
   6630 
   6631 	if (long_hpd) {
   6632 		intel_dp->reset_link_params = true;
   6633 		return IRQ_NONE;
   6634 	}
   6635 
   6636 	if (intel_dp->is_mst) {
   6637 		if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
   6638 			/*
   6639 			 * If we were in MST mode, and device is not
   6640 			 * there, get out of MST mode
   6641 			 */
   6642 			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
   6643 				      intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
   6644 			intel_dp->is_mst = false;
   6645 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
   6646 							intel_dp->is_mst);
   6647 
   6648 			return IRQ_NONE;
   6649 		}
   6650 	}
   6651 
   6652 	if (!intel_dp->is_mst) {
   6653 		bool handled;
   6654 
   6655 		handled = intel_dp_short_pulse(intel_dp);
   6656 
   6657 		if (!handled)
   6658 			return IRQ_NONE;
   6659 	}
   6660 
   6661 	return IRQ_HANDLED;
   6662 }
   6663 
   6664 /* check the VBT to see whether the eDP is on another port */
   6665 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
   6666 {
   6667 	/*
   6668 	 * eDP not supported on g4x. so bail out early just
   6669 	 * for a bit extra safety in case the VBT is bonkers.
   6670 	 */
   6671 	if (INTEL_GEN(dev_priv) < 5)
   6672 		return false;
   6673 
   6674 	if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
   6675 		return true;
   6676 
   6677 	return intel_bios_is_port_edp(dev_priv, port);
   6678 }
   6679 
   6680 static void
   6681 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
   6682 {
   6683 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
   6684 	enum port port = dp_to_dig_port(intel_dp)->base.port;
   6685 
   6686 	if (!IS_G4X(dev_priv) && port != PORT_A)
   6687 		intel_attach_force_audio_property(connector);
   6688 
   6689 	intel_attach_broadcast_rgb_property(connector);
   6690 	if (HAS_GMCH(dev_priv))
   6691 		drm_connector_attach_max_bpc_property(connector, 6, 10);
   6692 	else if (INTEL_GEN(dev_priv) >= 5)
   6693 		drm_connector_attach_max_bpc_property(connector, 6, 12);
   6694 
   6695 	intel_attach_colorspace_property(connector);
   6696 
   6697 	if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 11)
   6698 		drm_object_attach_property(&connector->base,
   6699 					   connector->dev->mode_config.hdr_output_metadata_property,
   6700 					   0);
   6701 
   6702 	if (intel_dp_is_edp(intel_dp)) {
   6703 		u32 allowed_scalers;
   6704 
   6705 		allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
   6706 		if (!HAS_GMCH(dev_priv))
   6707 			allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);
   6708 
   6709 		drm_connector_attach_scaling_mode_property(connector, allowed_scalers);
   6710 
   6711 		connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
   6712 
   6713 	}
   6714 }
   6715 
   6716 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
   6717 {
   6718 	intel_dp->panel_power_off_time = ktime_get_boottime();
   6719 	intel_dp->last_power_on = jiffies;
   6720 	intel_dp->last_backlight_off = jiffies;
   6721 }
   6722 
   6723 static void
   6724 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
   6725 {
   6726 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
   6727 	u32 pp_on, pp_off, pp_ctl;
   6728 	struct pps_registers regs;
   6729 
   6730 	intel_pps_get_registers(intel_dp, &regs);
   6731 
   6732 	pp_ctl = ilk_get_pp_control(intel_dp);
   6733 
   6734 	/* Ensure PPS is unlocked */
   6735 	if (!HAS_DDI(dev_priv))
   6736 		I915_WRITE(regs.pp_ctrl, pp_ctl);
   6737 
   6738 	pp_on = I915_READ(regs.pp_on);
   6739 	pp_off = I915_READ(regs.pp_off);
   6740 
   6741 	/* Pull timing values out of registers */
   6742 	seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
   6743 	seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
   6744 	seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
   6745 	seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);
   6746 
   6747 	if (i915_mmio_reg_valid(regs.pp_div)) {
   6748 		u32 pp_div;
   6749 
   6750 		pp_div = I915_READ(regs.pp_div);
   6751 
   6752 		seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
   6753 	} else {
   6754 		seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
   6755 	}
   6756 }
   6757 
   6758 static void
   6759 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
   6760 {
   6761 	DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
   6762 		      state_name,
   6763 		      seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
   6764 }
   6765 
   6766 static void
   6767 intel_pps_verify_state(struct intel_dp *intel_dp)
   6768 {
   6769 	struct edp_power_seq hw;
   6770 	struct edp_power_seq *sw = &intel_dp->pps_delays;
   6771 
   6772 	intel_pps_readout_hw_state(intel_dp, &hw);
   6773 
   6774 	if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
   6775 	    hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
   6776 		DRM_ERROR("PPS state mismatch\n");
   6777 		intel_pps_dump_state("sw", sw);
   6778 		intel_pps_dump_state("hw", &hw);
   6779 	}
   6780 }
   6781 
   6782 static void
   6783 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
   6784 {
   6785 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
   6786 	struct edp_power_seq cur, vbt, spec,
   6787 		*final = &intel_dp->pps_delays;
   6788 
   6789 	lockdep_assert_held(&dev_priv->pps_mutex);
   6790 
   6791 	/* already initialized? */
   6792 	if (final->t11_t12 != 0)
   6793 		return;
   6794 
   6795 	intel_pps_readout_hw_state(intel_dp, &cur);
   6796 
   6797 	intel_pps_dump_state("cur", &cur);
   6798 
   6799 	vbt = dev_priv->vbt.edp.pps;
   6800 	/* On Toshiba Satellite P50-C-18C system the VBT T12 delay
   6801 	 * of 500ms appears to be too short. Ocassionally the panel
   6802 	 * just fails to power back on. Increasing the delay to 800ms
   6803 	 * seems sufficient to avoid this problem.
   6804 	 */
   6805 	if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
   6806 		vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
   6807 		DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n",
   6808 			      vbt.t11_t12);
   6809 	}
   6810 	/* T11_T12 delay is special and actually in units of 100ms, but zero
   6811 	 * based in the hw (so we need to add 100 ms). But the sw vbt
   6812 	 * table multiplies it with 1000 to make it in units of 100usec,
   6813 	 * too. */
   6814 	vbt.t11_t12 += 100 * 10;
   6815 
   6816 	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
   6817 	 * our hw here, which are all in 100usec. */
   6818 	spec.t1_t3 = 210 * 10;
   6819 	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
   6820 	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
   6821 	spec.t10 = 500 * 10;
   6822 	/* This one is special and actually in units of 100ms, but zero
   6823 	 * based in the hw (so we need to add 100 ms). But the sw vbt
   6824 	 * table multiplies it with 1000 to make it in units of 100usec,
   6825 	 * too. */
   6826 	spec.t11_t12 = (510 + 100) * 10;
   6827 
   6828 	intel_pps_dump_state("vbt", &vbt);
   6829 
   6830 	/* Use the max of the register settings and vbt. If both are
   6831 	 * unset, fall back to the spec limits. */
   6832 #define assign_final(field)	final->field = (max(cur.field, vbt.field) == 0 ? \
   6833 				       spec.field : \
   6834 				       max(cur.field, vbt.field))
   6835 	assign_final(t1_t3);
   6836 	assign_final(t8);
   6837 	assign_final(t9);
   6838 	assign_final(t10);
   6839 	assign_final(t11_t12);
   6840 #undef assign_final
   6841 
   6842 #define get_delay(field)	(DIV_ROUND_UP(final->field, 10))
   6843 	intel_dp->panel_power_up_delay = get_delay(t1_t3);
   6844 	intel_dp->backlight_on_delay = get_delay(t8);
   6845 	intel_dp->backlight_off_delay = get_delay(t9);
   6846 	intel_dp->panel_power_down_delay = get_delay(t10);
   6847 	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
   6848 #undef get_delay
   6849 
   6850 	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
   6851 		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
   6852 		      intel_dp->panel_power_cycle_delay);
   6853 
   6854 	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
   6855 		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
   6856 
   6857 	/*
   6858 	 * We override the HW backlight delays to 1 because we do manual waits
   6859 	 * on them. For T8, even BSpec recommends doing it. For T9, if we
   6860 	 * don't do this, we'll end up waiting for the backlight off delay
   6861 	 * twice: once when we do the manual sleep, and once when we disable
   6862 	 * the panel and wait for the PP_STATUS bit to become zero.
   6863 	 */
   6864 	final->t8 = 1;
   6865 	final->t9 = 1;
   6866 
   6867 	/*
   6868 	 * HW has only a 100msec granularity for t11_t12 so round it up
   6869 	 * accordingly.
   6870 	 */
   6871 	final->t11_t12 = roundup(final->t11_t12, 100 * 10);
   6872 }
   6873 
   6874 static void
   6875 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
   6876 					      bool force_disable_vdd)
   6877 {
   6878 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
   6879 	u32 pp_on, pp_off, port_sel = 0;
   6880 	int div = dev_priv->rawclk_freq / 1000;
   6881 	struct pps_registers regs;
   6882 	enum port port = dp_to_dig_port(intel_dp)->base.port;
   6883 	const struct edp_power_seq *seq = &intel_dp->pps_delays;
   6884 
   6885 	lockdep_assert_held(&dev_priv->pps_mutex);
   6886 
   6887 	intel_pps_get_registers(intel_dp, &regs);
   6888 
   6889 	/*
   6890 	 * On some VLV machines the BIOS can leave the VDD
   6891 	 * enabled even on power sequencers which aren't
   6892 	 * hooked up to any port. This would mess up the
   6893 	 * power domain tracking the first time we pick
   6894 	 * one of these power sequencers for use since
   6895 	 * edp_panel_vdd_on() would notice that the VDD was
   6896 	 * already on and therefore wouldn't grab the power
   6897 	 * domain reference. Disable VDD first to avoid this.
   6898 	 * This also avoids spuriously turning the VDD on as
   6899 	 * soon as the new power sequencer gets initialized.
   6900 	 */
   6901 	if (force_disable_vdd) {
   6902 		u32 pp = ilk_get_pp_control(intel_dp);
   6903 
   6904 		WARN(pp & PANEL_POWER_ON, "Panel power already on\n");
   6905 
   6906 		if (pp & EDP_FORCE_VDD)
   6907 			DRM_DEBUG_KMS("VDD already on, disabling first\n");
   6908 
   6909 		pp &= ~EDP_FORCE_VDD;
   6910 
   6911 		I915_WRITE(regs.pp_ctrl, pp);
   6912 	}
   6913 
   6914 	pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
   6915 		REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
   6916 	pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
   6917 		REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);
   6918 
   6919 	/* Haswell doesn't have any port selection bits for the panel
   6920 	 * power sequencer any more. */
   6921 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
   6922 		port_sel = PANEL_PORT_SELECT_VLV(port);
   6923 	} else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
   6924 		switch (port) {
   6925 		case PORT_A:
   6926 			port_sel = PANEL_PORT_SELECT_DPA;
   6927 			break;
   6928 		case PORT_C:
   6929 			port_sel = PANEL_PORT_SELECT_DPC;
   6930 			break;
   6931 		case PORT_D:
   6932 			port_sel = PANEL_PORT_SELECT_DPD;
   6933 			break;
   6934 		default:
   6935 			MISSING_CASE(port);
   6936 			break;
   6937 		}
   6938 	}
   6939 
   6940 	pp_on |= port_sel;
   6941 
   6942 	I915_WRITE(regs.pp_on, pp_on);
   6943 	I915_WRITE(regs.pp_off, pp_off);
   6944 
   6945 	/*
   6946 	 * Compute the divisor for the pp clock, simply match the Bspec formula.
   6947 	 */
   6948 	if (i915_mmio_reg_valid(regs.pp_div)) {
   6949 		I915_WRITE(regs.pp_div,
   6950 			   REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) |
   6951 			   REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
   6952 	} else {
   6953 		u32 pp_ctl;
   6954 
   6955 		pp_ctl = I915_READ(regs.pp_ctrl);
   6956 		pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
   6957 		pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
   6958 		I915_WRITE(regs.pp_ctrl, pp_ctl);
   6959 	}
   6960 
   6961 	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
   6962 		      I915_READ(regs.pp_on),
   6963 		      I915_READ(regs.pp_off),
   6964 		      i915_mmio_reg_valid(regs.pp_div) ?
   6965 		      I915_READ(regs.pp_div) :
   6966 		      (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
   6967 }
   6968 
   6969 static void intel_dp_pps_init(struct intel_dp *intel_dp)
   6970 {
   6971 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
   6972 
   6973 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
   6974 		vlv_initial_power_sequencer_setup(intel_dp);
   6975 	} else {
   6976 		intel_dp_init_panel_power_sequencer(intel_dp);
   6977 		intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
   6978 	}
   6979 }
   6980 
   6981 /**
   6982  * intel_dp_set_drrs_state - program registers for RR switch to take effect
   6983  * @dev_priv: i915 device
   6984  * @crtc_state: a pointer to the active intel_crtc_state
   6985  * @refresh_rate: RR to be programmed
   6986  *
   6987  * This function gets called when refresh rate (RR) has to be changed from
   6988  * one frequency to another. Switches can be between high and low RR
   6989  * supported by the panel or to any other RR based on media playback (in
   6990  * this case, RR value needs to be passed from user space).
   6991  *
   6992  * The caller of this function needs to take a lock on dev_priv->drrs.
   6993  */
   6994 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
   6995 				    const struct intel_crtc_state *crtc_state,
   6996 				    int refresh_rate)
   6997 {
   6998 	struct intel_dp *intel_dp = dev_priv->drrs.dp;
   6999 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
   7000 	enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
   7001 
   7002 	if (refresh_rate <= 0) {
   7003 		DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
   7004 		return;
   7005 	}
   7006 
   7007 	if (intel_dp == NULL) {
   7008 		DRM_DEBUG_KMS("DRRS not supported.\n");
   7009 		return;
   7010 	}
   7011 
   7012 	if (!intel_crtc) {
   7013 		DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
   7014 		return;
   7015 	}
   7016 
   7017 	if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
   7018 		DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
   7019 		return;
   7020 	}
   7021 
   7022 	if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
   7023 			refresh_rate)
   7024 		index = DRRS_LOW_RR;
   7025 
   7026 	if (index == dev_priv->drrs.refresh_rate_type) {
   7027 		DRM_DEBUG_KMS(
   7028 			"DRRS requested for previously set RR...ignoring\n");
   7029 		return;
   7030 	}
   7031 
   7032 	if (!crtc_state->hw.active) {
   7033 		DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
   7034 		return;
   7035 	}
   7036 
   7037 	if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
   7038 		switch (index) {
   7039 		case DRRS_HIGH_RR:
   7040 			intel_dp_set_m_n(crtc_state, M1_N1);
   7041 			break;
   7042 		case DRRS_LOW_RR:
   7043 			intel_dp_set_m_n(crtc_state, M2_N2);
   7044 			break;
   7045 		case DRRS_MAX_RR:
   7046 		default:
   7047 			DRM_ERROR("Unsupported refreshrate type\n");
   7048 		}
   7049 	} else if (INTEL_GEN(dev_priv) > 6) {
   7050 		i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
   7051 		u32 val;
   7052 
   7053 		val = I915_READ(reg);
   7054 		if (index > DRRS_HIGH_RR) {
   7055 			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
   7056 				val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
   7057 			else
   7058 				val |= PIPECONF_EDP_RR_MODE_SWITCH;
   7059 		} else {
   7060 			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
   7061 				val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
   7062 			else
   7063 				val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
   7064 		}
   7065 		I915_WRITE(reg, val);
   7066 	}
   7067 
   7068 	dev_priv->drrs.refresh_rate_type = index;
   7069 
   7070 	DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
   7071 }
   7072 
   7073 /**
   7074  * intel_edp_drrs_enable - init drrs struct if supported
   7075  * @intel_dp: DP struct
   7076  * @crtc_state: A pointer to the active crtc state.
   7077  *
   7078  * Initializes frontbuffer_bits and drrs.dp
   7079  */
   7080 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
   7081 			   const struct intel_crtc_state *crtc_state)
   7082 {
   7083 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
   7084 
   7085 	if (!crtc_state->has_drrs) {
   7086 		DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
   7087 		return;
   7088 	}
   7089 
   7090 	if (dev_priv->psr.enabled) {
   7091 		DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n");
   7092 		return;
   7093 	}
   7094 
   7095 	mutex_lock(&dev_priv->drrs.mutex);
   7096 	if (dev_priv->drrs.dp) {
   7097 		DRM_DEBUG_KMS("DRRS already enabled\n");
   7098 		goto unlock;
   7099 	}
   7100 
   7101 	dev_priv->drrs.busy_frontbuffer_bits = 0;
   7102 
   7103 	dev_priv->drrs.dp = intel_dp;
   7104 
   7105 unlock:
   7106 	mutex_unlock(&dev_priv->drrs.mutex);
   7107 }
   7108 
   7109 /**
   7110  * intel_edp_drrs_disable - Disable DRRS
   7111  * @intel_dp: DP struct
   7112  * @old_crtc_state: Pointer to old crtc_state.
   7113  *
   7114  */
   7115 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
   7116 			    const struct intel_crtc_state *old_crtc_state)
   7117 {
   7118 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
   7119 
   7120 	if (!old_crtc_state->has_drrs)
   7121 		return;
   7122 
   7123 	mutex_lock(&dev_priv->drrs.mutex);
   7124 	if (!dev_priv->drrs.dp) {
   7125 		mutex_unlock(&dev_priv->drrs.mutex);
   7126 		return;
   7127 	}
   7128 
   7129 	if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
   7130 		intel_dp_set_drrs_state(dev_priv, old_crtc_state,
   7131 			intel_dp->attached_connector->panel.fixed_mode->vrefresh);
   7132 
   7133 	dev_priv->drrs.dp = NULL;
   7134 	mutex_unlock(&dev_priv->drrs.mutex);
   7135 
   7136 	cancel_delayed_work_sync(&dev_priv->drrs.work);
   7137 }
   7138 
   7139 static void intel_edp_drrs_downclock_work(struct work_struct *work)
   7140 {
   7141 	struct drm_i915_private *dev_priv =
   7142 		container_of(work, typeof(*dev_priv), drrs.work.work);
   7143 	struct intel_dp *intel_dp;
   7144 
   7145 	mutex_lock(&dev_priv->drrs.mutex);
   7146 
   7147 	intel_dp = dev_priv->drrs.dp;
   7148 
   7149 	if (!intel_dp)
   7150 		goto unlock;
   7151 
   7152 	/*
   7153 	 * The delayed work can race with an invalidate hence we need to
   7154 	 * recheck.
   7155 	 */
   7156 
   7157 	if (dev_priv->drrs.busy_frontbuffer_bits)
   7158 		goto unlock;
   7159 
   7160 	if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
   7161 		struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
   7162 
   7163 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
   7164 			intel_dp->attached_connector->panel.downclock_mode->vrefresh);
   7165 	}
   7166 
   7167 unlock:
   7168 	mutex_unlock(&dev_priv->drrs.mutex);
   7169 }
   7170 
   7171 /**
   7172  * intel_edp_drrs_invalidate - Disable Idleness DRRS
   7173  * @dev_priv: i915 device
   7174  * @frontbuffer_bits: frontbuffer plane tracking bits
   7175  *
   7176  * This function gets called everytime rendering on the given planes start.
   7177  * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
   7178  *
   7179  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
   7180  */
   7181 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
   7182 			       unsigned int frontbuffer_bits)
   7183 {
   7184 	struct drm_crtc *crtc;
   7185 	enum pipe pipe;
   7186 
   7187 	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
   7188 		return;
   7189 
   7190 	cancel_delayed_work(&dev_priv->drrs.work);
   7191 
   7192 	mutex_lock(&dev_priv->drrs.mutex);
   7193 	if (!dev_priv->drrs.dp) {
   7194 		mutex_unlock(&dev_priv->drrs.mutex);
   7195 		return;
   7196 	}
   7197 
   7198 	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
   7199 	pipe = to_intel_crtc(crtc)->pipe;
   7200 
   7201 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
   7202 	dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
   7203 
   7204 	/* invalidate means busy screen hence upclock */
   7205 	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
   7206 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
   7207 			dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
   7208 
   7209 	mutex_unlock(&dev_priv->drrs.mutex);
   7210 }
   7211 
   7212 /**
   7213  * intel_edp_drrs_flush - Restart Idleness DRRS
   7214  * @dev_priv: i915 device
   7215  * @frontbuffer_bits: frontbuffer plane tracking bits
   7216  *
   7217  * This function gets called every time rendering on the given planes has
   7218  * completed or flip on a crtc is completed. So DRRS should be upclocked
   7219  * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
   7220  * if no other planes are dirty.
   7221  *
   7222  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
   7223  */
   7224 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
   7225 			  unsigned int frontbuffer_bits)
   7226 {
   7227 	struct drm_crtc *crtc;
   7228 	enum pipe pipe;
   7229 
   7230 	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
   7231 		return;
   7232 
   7233 	cancel_delayed_work(&dev_priv->drrs.work);
   7234 
   7235 	mutex_lock(&dev_priv->drrs.mutex);
   7236 	if (!dev_priv->drrs.dp) {
   7237 		mutex_unlock(&dev_priv->drrs.mutex);
   7238 		return;
   7239 	}
   7240 
   7241 	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
   7242 	pipe = to_intel_crtc(crtc)->pipe;
   7243 
   7244 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
   7245 	dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
   7246 
   7247 	/* flush means busy screen hence upclock */
   7248 	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
   7249 		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
   7250 				dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
   7251 
   7252 	/*
   7253 	 * flush also means no more activity hence schedule downclock, if all
   7254 	 * other fbs are quiescent too
   7255 	 */
   7256 	if (!dev_priv->drrs.busy_frontbuffer_bits)
   7257 		schedule_delayed_work(&dev_priv->drrs.work,
   7258 				msecs_to_jiffies(1000));
   7259 	mutex_unlock(&dev_priv->drrs.mutex);
   7260 }
   7261 
   7262 /**
   7263  * DOC: Display Refresh Rate Switching (DRRS)
   7264  *
   7265  * Display Refresh Rate Switching (DRRS) is a power conservation feature
   7266  * which enables swtching between low and high refresh rates,
   7267  * dynamically, based on the usage scenario. This feature is applicable
   7268  * for internal panels.
   7269  *
   7270  * Indication that the panel supports DRRS is given by the panel EDID, which
   7271  * would list multiple refresh rates for one resolution.
   7272  *
   7273  * DRRS is of 2 types - static and seamless.
   7274  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
   7275  * (may appear as a blink on screen) and is used in dock-undock scenario.
   7276  * Seamless DRRS involves changing RR without any visual effect to the user
   7277  * and can be used during normal system usage. This is done by programming
   7278  * certain registers.
   7279  *
   7280  * Support for static/seamless DRRS may be indicated in the VBT based on
   7281  * inputs from the panel spec.
   7282  *
   7283  * DRRS saves power by switching to low RR based on usage scenarios.
   7284  *
   7285  * The implementation is based on frontbuffer tracking implementation.  When
   7286  * there is a disturbance on the screen triggered by user activity or a periodic
   7287  * system activity, DRRS is disabled (RR is changed to high RR).  When there is
   7288  * no movement on screen, after a timeout of 1 second, a switch to low RR is
   7289  * made.
   7290  *
   7291  * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
   7292  * and intel_edp_drrs_flush() are called.
   7293  *
   7294  * DRRS can be further extended to support other internal panels and also
   7295  * the scenario of video playback wherein RR is set based on the rate
   7296  * requested by userspace.
   7297  */
   7298 
   7299 /**
   7300  * intel_dp_drrs_init - Init basic DRRS work and mutex.
   7301  * @connector: eDP connector
   7302  * @fixed_mode: preferred mode of panel
   7303  *
   7304  * This function is  called only once at driver load to initialize basic
   7305  * DRRS stuff.
   7306  *
   7307  * Returns:
   7308  * Downclock mode if panel supports it, else return NULL.
   7309  * DRRS support is determined by the presence of downclock mode (apart
   7310  * from VBT setting).
   7311  */
   7312 static struct drm_display_mode *
   7313 intel_dp_drrs_init(struct intel_connector *connector,
   7314 		   struct drm_display_mode *fixed_mode)
   7315 {
   7316 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
   7317 	struct drm_display_mode *downclock_mode = NULL;
   7318 
   7319 	INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
   7320 
   7321 	if (INTEL_GEN(dev_priv) <= 6) {
   7322 		DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
   7323 		return NULL;
   7324 	}
   7325 
   7326 	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
   7327 		DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
   7328 		return NULL;
   7329 	}
   7330 
   7331 	downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode);
   7332 	if (!downclock_mode) {
   7333 		DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
   7334 		return NULL;
   7335 	}
   7336 
   7337 	dev_priv->drrs.type = dev_priv->vbt.drrs_type;
   7338 
   7339 	dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
   7340 	DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
   7341 	return downclock_mode;
   7342 }
   7343 
   7344 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
   7345 				     struct intel_connector *intel_connector)
   7346 {
   7347 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
   7348 	struct drm_device *dev = &dev_priv->drm;
   7349 	struct drm_connector *connector = &intel_connector->base;
   7350 	struct drm_display_mode *fixed_mode = NULL;
   7351 	struct drm_display_mode *downclock_mode = NULL;
   7352 	bool has_dpcd;
   7353 	enum pipe pipe = INVALID_PIPE;
   7354 	intel_wakeref_t wakeref;
   7355 	struct edid *edid;
   7356 
   7357 	if (!intel_dp_is_edp(intel_dp))
   7358 		return true;
   7359 
   7360 	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);
   7361 
   7362 	/*
   7363 	 * On IBX/CPT we may get here with LVDS already registered. Since the
   7364 	 * driver uses the only internal power sequencer available for both
   7365 	 * eDP and LVDS bail out early in this case to prevent interfering
   7366 	 * with an already powered-on LVDS power sequencer.
   7367 	 */
   7368 	if (intel_get_lvds_encoder(dev_priv)) {
   7369 		WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
   7370 		DRM_INFO("LVDS was detected, not registering eDP\n");
   7371 
   7372 		return false;
   7373 	}
   7374 
   7375 	with_pps_lock(intel_dp, wakeref) {
   7376 		intel_dp_init_panel_power_timestamps(intel_dp);
   7377 		intel_dp_pps_init(intel_dp);
   7378 		intel_edp_panel_vdd_sanitize(intel_dp);
   7379 	}
   7380 
   7381 	/* Cache DPCD and EDID for edp. */
   7382 	has_dpcd = intel_edp_init_dpcd(intel_dp);
   7383 
   7384 	if (!has_dpcd) {
   7385 		/* if this fails, presume the device is a ghost */
   7386 		DRM_INFO("failed to retrieve link info, disabling eDP\n");
   7387 		goto out_vdd_off;
   7388 	}
   7389 
   7390 	mutex_lock(&dev->mode_config.mutex);
   7391 	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
   7392 	if (edid) {
   7393 		if (drm_add_edid_modes(connector, edid)) {
   7394 			drm_connector_update_edid_property(connector,
   7395 								edid);
   7396 		} else {
   7397 			kfree(edid);
   7398 			edid = ERR_PTR(-EINVAL);
   7399 		}
   7400 	} else {
   7401 		edid = ERR_PTR(-ENOENT);
   7402 	}
   7403 	intel_connector->edid = edid;
   7404 
   7405 	fixed_mode = intel_panel_edid_fixed_mode(intel_connector);
   7406 	if (fixed_mode)
   7407 		downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode);
   7408 
   7409 	/* fallback to VBT if available for eDP */
   7410 	if (!fixed_mode)
   7411 		fixed_mode = intel_panel_vbt_fixed_mode(intel_connector);
   7412 	mutex_unlock(&dev->mode_config.mutex);
   7413 
   7414 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
   7415 		intel_dp->edp_notifier.notifier_call = edp_notify_handler;
   7416 		register_reboot_notifier(&intel_dp->edp_notifier);
   7417 
   7418 		/*
   7419 		 * Figure out the current pipe for the initial backlight setup.
   7420 		 * If the current pipe isn't valid, try the PPS pipe, and if that
   7421 		 * fails just assume pipe A.
   7422 		 */
   7423 		pipe = vlv_active_pipe(intel_dp);
   7424 
   7425 		if (pipe != PIPE_A && pipe != PIPE_B)
   7426 			pipe = intel_dp->pps_pipe;
   7427 
   7428 		if (pipe != PIPE_A && pipe != PIPE_B)
   7429 			pipe = PIPE_A;
   7430 
   7431 		DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
   7432 			      pipe_name(pipe));
   7433 	}
   7434 
   7435 	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
   7436 	intel_connector->panel.backlight.power = intel_edp_backlight_power;
   7437 	intel_panel_setup_backlight(connector, pipe);
   7438 
   7439 	if (fixed_mode)
   7440 		drm_connector_init_panel_orientation_property(
   7441 			connector, fixed_mode->hdisplay, fixed_mode->vdisplay);
   7442 
   7443 	return true;
   7444 
   7445 out_vdd_off:
   7446 	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
   7447 	/*
   7448 	 * vdd might still be enabled do to the delayed vdd off.
   7449 	 * Make sure vdd is actually turned off here.
   7450 	 */
   7451 	with_pps_lock(intel_dp, wakeref)
   7452 		edp_panel_vdd_off_sync(intel_dp);
   7453 
   7454 	return false;
   7455 }
   7456 
   7457 static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
   7458 {
   7459 	struct intel_connector *intel_connector;
   7460 	struct drm_connector *connector;
   7461 
   7462 	intel_connector = container_of(work, typeof(*intel_connector),
   7463 				       modeset_retry_work);
   7464 	connector = &intel_connector->base;
   7465 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
   7466 		      connector->name);
   7467 
   7468 	/* Grab the locks before changing connector property*/
   7469 	mutex_lock(&connector->dev->mode_config.mutex);
   7470 	/* Set connector link status to BAD and send a Uevent to notify
   7471 	 * userspace to do a modeset.
   7472 	 */
   7473 	drm_connector_set_link_status_property(connector,
   7474 					       DRM_MODE_LINK_STATUS_BAD);
   7475 	mutex_unlock(&connector->dev->mode_config.mutex);
   7476 	/* Send Hotplug uevent so userspace can reprobe */
   7477 	drm_kms_helper_hotplug_event(connector->dev);
   7478 }
   7479 
   7480 bool
   7481 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
   7482 			struct intel_connector *intel_connector)
   7483 {
   7484 	struct drm_connector *connector = &intel_connector->base;
   7485 	struct intel_dp *intel_dp = &intel_dig_port->dp;
   7486 	struct intel_encoder *intel_encoder = &intel_dig_port->base;
   7487 	struct drm_device *dev = intel_encoder->base.dev;
   7488 	struct drm_i915_private *dev_priv = to_i915(dev);
   7489 	enum port port = intel_encoder->port;
   7490 	enum phy phy = intel_port_to_phy(dev_priv, port);
   7491 	int type;
   7492 
   7493 	/* Initialize the work for modeset in case of link train failure */
   7494 	INIT_WORK(&intel_connector->modeset_retry_work,
   7495 		  intel_dp_modeset_retry_work_fn);
   7496 
   7497 	if (WARN(intel_dig_port->max_lanes < 1,
   7498 		 "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n",
   7499 		 intel_dig_port->max_lanes, intel_encoder->base.base.id,
   7500 		 intel_encoder->base.name))
   7501 		return false;
   7502 
   7503 	intel_dp_set_source_rates(intel_dp);
   7504 
   7505 	intel_dp->reset_link_params = true;
   7506 	intel_dp->pps_pipe = INVALID_PIPE;
   7507 	intel_dp->active_pipe = INVALID_PIPE;
   7508 
   7509 	/* Preserve the current hw state. */
   7510 	intel_dp->DP = I915_READ(intel_dp->output_reg);
   7511 	intel_dp->attached_connector = intel_connector;
   7512 
   7513 	if (intel_dp_is_port_edp(dev_priv, port)) {
   7514 		/*
   7515 		 * Currently we don't support eDP on TypeC ports, although in
   7516 		 * theory it could work on TypeC legacy ports.
   7517 		 */
   7518 		WARN_ON(intel_phy_is_tc(dev_priv, phy));
   7519 		type = DRM_MODE_CONNECTOR_eDP;
   7520 	} else {
   7521 		type = DRM_MODE_CONNECTOR_DisplayPort;
   7522 	}
   7523 
   7524 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
   7525 		intel_dp->active_pipe = vlv_active_pipe(intel_dp);
   7526 
   7527 	/*
   7528 	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
   7529 	 * for DP the encoder type can be set by the caller to
   7530 	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
   7531 	 */
   7532 	if (type == DRM_MODE_CONNECTOR_eDP)
   7533 		intel_encoder->type = INTEL_OUTPUT_EDP;
   7534 
   7535 	/* eDP only on port B and/or C on vlv/chv */
   7536 	if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
   7537 		    intel_dp_is_edp(intel_dp) &&
   7538 		    port != PORT_B && port != PORT_C))
   7539 		return false;
   7540 
   7541 	DRM_DEBUG_KMS("Adding %s connector on [ENCODER:%d:%s]\n",
   7542 		      type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
   7543 		      intel_encoder->base.base.id, intel_encoder->base.name);
   7544 
   7545 	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
   7546 	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
   7547 
   7548 	if (!HAS_GMCH(dev_priv))
   7549 		connector->interlace_allowed = true;
   7550 	connector->doublescan_allowed = 0;
   7551 
   7552 	if (INTEL_GEN(dev_priv) >= 11)
   7553 		connector->ycbcr_420_allowed = true;
   7554 
   7555 	intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
   7556 
   7557 	intel_dp_aux_init(intel_dp);
   7558 
   7559 	intel_connector_attach_encoder(intel_connector, intel_encoder);
   7560 
   7561 	if (HAS_DDI(dev_priv))
   7562 		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
   7563 	else
   7564 		intel_connector->get_hw_state = intel_connector_get_hw_state;
   7565 
   7566 	/* init MST on ports that can support it */
   7567 	intel_dp_mst_encoder_init(intel_dig_port,
   7568 				  intel_connector->base.base.id);
   7569 
   7570 	if (!intel_edp_init_connector(intel_dp, intel_connector)) {
   7571 		intel_dp_aux_fini(intel_dp);
   7572 		intel_dp_mst_encoder_cleanup(intel_dig_port);
   7573 		goto fail;
   7574 	}
   7575 
   7576 	intel_dp_add_properties(intel_dp, connector);
   7577 
   7578 	if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
   7579 		int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
   7580 		if (ret)
   7581 			DRM_DEBUG_KMS("HDCP init failed, skipping.\n");
   7582 	}
   7583 
   7584 	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
   7585 	 * 0xd.  Failure to do so will result in spurious interrupts being
   7586 	 * generated on the port when a cable is not attached.
   7587 	 */
   7588 	if (IS_G45(dev_priv)) {
   7589 		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
   7590 		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
   7591 	}
   7592 
   7593 	return true;
   7594 
   7595 fail:
   7596 	drm_connector_cleanup(connector);
   7597 
   7598 	return false;
   7599 }
   7600 
   7601 bool intel_dp_init(struct drm_i915_private *dev_priv,
   7602 		   i915_reg_t output_reg,
   7603 		   enum port port)
   7604 {
   7605 	struct intel_digital_port *intel_dig_port;
   7606 	struct intel_encoder *intel_encoder;
   7607 	struct drm_encoder *encoder;
   7608 	struct intel_connector *intel_connector;
   7609 
   7610 	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
   7611 	if (!intel_dig_port)
   7612 		return false;
   7613 
   7614 	intel_connector = intel_connector_alloc();
   7615 	if (!intel_connector)
   7616 		goto err_connector_alloc;
   7617 
   7618 	intel_encoder = &intel_dig_port->base;
   7619 	encoder = &intel_encoder->base;
   7620 
   7621 	if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
   7622 			     &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
   7623 			     "DP %c", port_name(port)))
   7624 		goto err_encoder_init;
   7625 
   7626 	intel_encoder->hotplug = intel_dp_hotplug;
   7627 	intel_encoder->compute_config = intel_dp_compute_config;
   7628 	intel_encoder->get_hw_state = intel_dp_get_hw_state;
   7629 	intel_encoder->get_config = intel_dp_get_config;
   7630 	intel_encoder->update_pipe = intel_panel_update_backlight;
   7631 	intel_encoder->suspend = intel_dp_encoder_suspend;
   7632 	if (IS_CHERRYVIEW(dev_priv)) {
   7633 		intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
   7634 		intel_encoder->pre_enable = chv_pre_enable_dp;
   7635 		intel_encoder->enable = vlv_enable_dp;
   7636 		intel_encoder->disable = vlv_disable_dp;
   7637 		intel_encoder->post_disable = chv_post_disable_dp;
   7638 		intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
   7639 	} else if (IS_VALLEYVIEW(dev_priv)) {
   7640 		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
   7641 		intel_encoder->pre_enable = vlv_pre_enable_dp;
   7642 		intel_encoder->enable = vlv_enable_dp;
   7643 		intel_encoder->disable = vlv_disable_dp;
   7644 		intel_encoder->post_disable = vlv_post_disable_dp;
   7645 	} else {
   7646 		intel_encoder->pre_enable = g4x_pre_enable_dp;
   7647 		intel_encoder->enable = g4x_enable_dp;
   7648 		intel_encoder->disable = g4x_disable_dp;
   7649 		intel_encoder->post_disable = g4x_post_disable_dp;
   7650 	}
   7651 
   7652 	intel_dig_port->dp.output_reg = output_reg;
   7653 	intel_dig_port->max_lanes = 4;
   7654 
   7655 	intel_encoder->type = INTEL_OUTPUT_DP;
   7656 	intel_encoder->power_domain = intel_port_to_power_domain(port);
   7657 	if (IS_CHERRYVIEW(dev_priv)) {
   7658 		if (port == PORT_D)
   7659 			intel_encoder->pipe_mask = BIT(PIPE_C);
   7660 		else
   7661 			intel_encoder->pipe_mask = BIT(PIPE_A) | BIT(PIPE_B);
   7662 	} else {
   7663 		intel_encoder->pipe_mask = ~0;
   7664 	}
   7665 	intel_encoder->cloneable = 0;
   7666 	intel_encoder->port = port;
   7667 
   7668 	intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
   7669 
   7670 	if (port != PORT_A)
   7671 		intel_infoframe_init(intel_dig_port);
   7672 
   7673 	intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
   7674 	if (!intel_dp_init_connector(intel_dig_port, intel_connector))
   7675 		goto err_init_connector;
   7676 
   7677 	return true;
   7678 
   7679 err_init_connector:
   7680 	drm_encoder_cleanup(encoder);
   7681 err_encoder_init:
   7682 	kfree(intel_connector);
   7683 err_connector_alloc:
   7684 	kfree(intel_dig_port);
   7685 	return false;
   7686 }
   7687 
   7688 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
   7689 {
   7690 	struct intel_encoder *encoder;
   7691 
   7692 	for_each_intel_encoder(&dev_priv->drm, encoder) {
   7693 		struct intel_dp *intel_dp;
   7694 
   7695 		if (encoder->type != INTEL_OUTPUT_DDI)
   7696 			continue;
   7697 
   7698 		intel_dp = enc_to_intel_dp(encoder);
   7699 
   7700 		if (!intel_dp->can_mst)
   7701 			continue;
   7702 
   7703 		if (intel_dp->is_mst)
   7704 			drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
   7705 	}
   7706 }
   7707 
   7708 void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
   7709 {
   7710 	struct intel_encoder *encoder;
   7711 
   7712 	for_each_intel_encoder(&dev_priv->drm, encoder) {
   7713 		struct intel_dp *intel_dp;
   7714 		int ret;
   7715 
   7716 		if (encoder->type != INTEL_OUTPUT_DDI)
   7717 			continue;
   7718 
   7719 		intel_dp = enc_to_intel_dp(encoder);
   7720 
   7721 		if (!intel_dp->can_mst)
   7722 			continue;
   7723 
   7724 		ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr,
   7725 						     true);
   7726 		if (ret) {
   7727 			intel_dp->is_mst = false;
   7728 			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
   7729 							false);
   7730 		}
   7731 	}
   7732 }
   7733