1 /* $NetBSD: intel_dp.c,v 1.7 2021/12/19 12:41:54 riastradh Exp $ */ 2 3 /* 4 * Copyright 2008 Intel Corporation 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice (including the next 14 * paragraph) shall be included in all copies or substantial portions of the 15 * Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 23 * IN THE SOFTWARE. 24 * 25 * Authors: 26 * Keith Packard <keithp (at) keithp.com> 27 * 28 */ 29 30 #include <sys/cdefs.h> 31 __KERNEL_RCSID(0, "$NetBSD: intel_dp.c,v 1.7 2021/12/19 12:41:54 riastradh Exp $"); 32 33 #include <linux/export.h> 34 #include <linux/i2c.h> 35 #include <linux/notifier.h> 36 #include <linux/reboot.h> 37 #include <linux/slab.h> 38 #include <linux/types.h> 39 40 #include <asm/byteorder.h> 41 42 #include <drm/drm_atomic_helper.h> 43 #include <drm/drm_crtc.h> 44 #include <drm/drm_dp_helper.h> 45 #include <drm/drm_edid.h> 46 #include <drm/drm_hdcp.h> 47 #include <drm/drm_probe_helper.h> 48 #include <drm/i915_drm.h> 49 50 #include "i915_debugfs.h" 51 #include "i915_drv.h" 52 #include "i915_trace.h" 53 #include "intel_atomic.h" 54 #include "intel_audio.h" 55 #include "intel_connector.h" 56 #include "intel_ddi.h" 57 #include "intel_display_types.h" 58 #include "intel_dp.h" 59 #include "intel_dp_link_training.h" 60 #include "intel_dp_mst.h" 61 #include "intel_dpio_phy.h" 62 #include "intel_fifo_underrun.h" 63 #include "intel_hdcp.h" 64 #include "intel_hdmi.h" 65 #include "intel_hotplug.h" 66 #include "intel_lspcon.h" 67 #include "intel_lvds.h" 68 #include "intel_panel.h" 69 #include "intel_psr.h" 70 #include "intel_sideband.h" 71 #include "intel_tc.h" 72 #include "intel_vdsc.h" 73 74 #define DP_DPRX_ESI_LEN 14 75 76 /* DP DSC throughput values used for slice count calculations KPixels/s */ 77 #define DP_DSC_PEAK_PIXEL_RATE 2720000 78 #define DP_DSC_MAX_ENC_THROUGHPUT_0 340000 79 #define DP_DSC_MAX_ENC_THROUGHPUT_1 400000 80 81 /* DP DSC FEC Overhead factor = 1/(0.972261) */ 82 #define DP_DSC_FEC_OVERHEAD_FACTOR 972261 83 84 /* Compliance test status bits */ 85 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0 86 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK) 87 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK) 88 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK) 89 90 struct dp_link_dpll { 91 int clock; 92 struct dpll dpll; 93 }; 94 95 static const struct dp_link_dpll g4x_dpll[] = { 96 { 162000, 97 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } }, 98 { 270000, 99 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } } 100 }; 101 102 static const struct dp_link_dpll pch_dpll[] = { 103 { 162000, 104 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } }, 105 { 270000, 106 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } } 107 }; 108 109 static const struct dp_link_dpll vlv_dpll[] = { 110 { 162000, 111 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } }, 112 { 270000, 113 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } } 114 }; 115 116 /* 117 * CHV supports eDP 1.4 that have more link rates. 118 * Below only provides the fixed rate but exclude variable rate. 119 */ 120 static const struct dp_link_dpll chv_dpll[] = { 121 /* 122 * CHV requires to program fractional division for m2. 123 * m2 is stored in fixed point format using formula below 124 * (m2_int << 22) | m2_fraction 125 */ 126 { 162000, /* m2_int = 32, m2_fraction = 1677722 */ 127 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } }, 128 { 270000, /* m2_int = 27, m2_fraction = 0 */ 129 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }, 130 }; 131 132 /* Constants for DP DSC configurations */ 133 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15}; 134 135 /* With Single pipe configuration, HW is capable of supporting maximum 136 * of 4 slices per line. 137 */ 138 static const u8 valid_dsc_slicecount[] = {1, 2, 4}; 139 140 /** 141 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH) 142 * @intel_dp: DP struct 143 * 144 * If a CPU or PCH DP output is attached to an eDP panel, this function 145 * will return true, and false otherwise. 146 */ 147 bool intel_dp_is_edp(struct intel_dp *intel_dp) 148 { 149 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 150 151 return intel_dig_port->base.type == INTEL_OUTPUT_EDP; 152 } 153 154 static struct intel_dp *intel_attached_dp(struct intel_connector *connector) 155 { 156 return enc_to_intel_dp(intel_attached_encoder(connector)); 157 } 158 159 static void intel_dp_link_down(struct intel_encoder *encoder, 160 const struct intel_crtc_state *old_crtc_state); 161 static bool edp_panel_vdd_on(struct intel_dp *intel_dp); 162 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync); 163 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder, 164 const struct intel_crtc_state *crtc_state); 165 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv, 166 enum pipe pipe); 167 static void intel_dp_unset_edid(struct intel_dp *intel_dp); 168 169 /* update sink rates from dpcd */ 170 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp) 171 { 172 static const int dp_rates[] = { 173 162000, 270000, 540000, 810000 174 }; 175 int i, max_rate; 176 177 max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]); 178 179 for (i = 0; i < ARRAY_SIZE(dp_rates); i++) { 180 if (dp_rates[i] > max_rate) 181 break; 182 intel_dp->sink_rates[i] = dp_rates[i]; 183 } 184 185 intel_dp->num_sink_rates = i; 186 } 187 188 /* Get length of rates array potentially limited by max_rate. */ 189 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate) 190 { 191 int i; 192 193 /* Limit results by potentially reduced max rate */ 194 for (i = 0; i < len; i++) { 195 if (rates[len - i - 1] <= max_rate) 196 return len - i; 197 } 198 199 return 0; 200 } 201 202 /* Get length of common rates array potentially limited by max_rate. */ 203 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp, 204 int max_rate) 205 { 206 return intel_dp_rate_limit_len(intel_dp->common_rates, 207 intel_dp->num_common_rates, max_rate); 208 } 209 210 /* Theoretical max between source and sink */ 211 static int intel_dp_max_common_rate(struct intel_dp *intel_dp) 212 { 213 return intel_dp->common_rates[intel_dp->num_common_rates - 1]; 214 } 215 216 /* Theoretical max between source and sink */ 217 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp) 218 { 219 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 220 int source_max = intel_dig_port->max_lanes; 221 int sink_max = drm_dp_max_lane_count(intel_dp->dpcd); 222 int fia_max = intel_tc_port_fia_max_lane_count(intel_dig_port); 223 224 return min3(source_max, sink_max, fia_max); 225 } 226 227 int intel_dp_max_lane_count(struct intel_dp *intel_dp) 228 { 229 return intel_dp->max_link_lane_count; 230 } 231 232 int 233 intel_dp_link_required(int pixel_clock, int bpp) 234 { 235 /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */ 236 return DIV_ROUND_UP(pixel_clock * bpp, 8); 237 } 238 239 int 240 intel_dp_max_data_rate(int max_link_clock, int max_lanes) 241 { 242 /* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the 243 * link rate that is generally expressed in Gbps. Since, 8 bits of data 244 * is transmitted every LS_Clk per lane, there is no need to account for 245 * the channel encoding that is done in the PHY layer here. 246 */ 247 248 return max_link_clock * max_lanes; 249 } 250 251 static int 252 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp) 253 { 254 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 255 struct intel_encoder *encoder = &intel_dig_port->base; 256 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 257 int max_dotclk = dev_priv->max_dotclk_freq; 258 int ds_max_dotclk; 259 260 int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK; 261 262 if (type != DP_DS_PORT_TYPE_VGA) 263 return max_dotclk; 264 265 ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd, 266 intel_dp->downstream_ports); 267 268 if (ds_max_dotclk != 0) 269 max_dotclk = min(max_dotclk, ds_max_dotclk); 270 271 return max_dotclk; 272 } 273 274 static int cnl_max_source_rate(struct intel_dp *intel_dp) 275 { 276 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 277 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 278 enum port port = dig_port->base.port; 279 280 u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK; 281 282 /* Low voltage SKUs are limited to max of 5.4G */ 283 if (voltage == VOLTAGE_INFO_0_85V) 284 return 540000; 285 286 /* For this SKU 8.1G is supported in all ports */ 287 if (IS_CNL_WITH_PORT_F(dev_priv)) 288 return 810000; 289 290 /* For other SKUs, max rate on ports A and D is 5.4G */ 291 if (port == PORT_A || port == PORT_D) 292 return 540000; 293 294 return 810000; 295 } 296 297 static int icl_max_source_rate(struct intel_dp *intel_dp) 298 { 299 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 300 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 301 enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port); 302 303 if (intel_phy_is_combo(dev_priv, phy) && 304 !IS_ELKHARTLAKE(dev_priv) && 305 !intel_dp_is_edp(intel_dp)) 306 return 540000; 307 308 return 810000; 309 } 310 311 static void 312 intel_dp_set_source_rates(struct intel_dp *intel_dp) 313 { 314 /* The values must be in increasing order */ 315 static const int cnl_rates[] = { 316 162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000 317 }; 318 static const int bxt_rates[] = { 319 162000, 216000, 243000, 270000, 324000, 432000, 540000 320 }; 321 static const int skl_rates[] = { 322 162000, 216000, 270000, 324000, 432000, 540000 323 }; 324 static const int hsw_rates[] = { 325 162000, 270000, 540000 326 }; 327 static const int g4x_rates[] = { 328 162000, 270000 329 }; 330 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 331 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 332 const struct ddi_vbt_port_info *info = 333 &dev_priv->vbt.ddi_port_info[dig_port->base.port]; 334 const int *source_rates; 335 int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate; 336 337 /* This should only be done once */ 338 WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates); 339 340 if (INTEL_GEN(dev_priv) >= 10) { 341 source_rates = cnl_rates; 342 size = ARRAY_SIZE(cnl_rates); 343 if (IS_GEN(dev_priv, 10)) 344 max_rate = cnl_max_source_rate(intel_dp); 345 else 346 max_rate = icl_max_source_rate(intel_dp); 347 } else if (IS_GEN9_LP(dev_priv)) { 348 source_rates = bxt_rates; 349 size = ARRAY_SIZE(bxt_rates); 350 } else if (IS_GEN9_BC(dev_priv)) { 351 source_rates = skl_rates; 352 size = ARRAY_SIZE(skl_rates); 353 } else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) || 354 IS_BROADWELL(dev_priv)) { 355 source_rates = hsw_rates; 356 size = ARRAY_SIZE(hsw_rates); 357 } else { 358 source_rates = g4x_rates; 359 size = ARRAY_SIZE(g4x_rates); 360 } 361 362 if (max_rate && vbt_max_rate) 363 max_rate = min(max_rate, vbt_max_rate); 364 else if (vbt_max_rate) 365 max_rate = vbt_max_rate; 366 367 if (max_rate) 368 size = intel_dp_rate_limit_len(source_rates, size, max_rate); 369 370 intel_dp->source_rates = source_rates; 371 intel_dp->num_source_rates = size; 372 } 373 374 static int intersect_rates(const int *source_rates, int source_len, 375 const int *sink_rates, int sink_len, 376 int *common_rates) 377 { 378 int i = 0, j = 0, k = 0; 379 380 while (i < source_len && j < sink_len) { 381 if (source_rates[i] == sink_rates[j]) { 382 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES)) 383 return k; 384 common_rates[k] = source_rates[i]; 385 ++k; 386 ++i; 387 ++j; 388 } else if (source_rates[i] < sink_rates[j]) { 389 ++i; 390 } else { 391 ++j; 392 } 393 } 394 return k; 395 } 396 397 /* return index of rate in rates array, or -1 if not found */ 398 static int intel_dp_rate_index(const int *rates, int len, int rate) 399 { 400 int i; 401 402 for (i = 0; i < len; i++) 403 if (rate == rates[i]) 404 return i; 405 406 return -1; 407 } 408 409 static void intel_dp_set_common_rates(struct intel_dp *intel_dp) 410 { 411 WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates); 412 413 intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates, 414 intel_dp->num_source_rates, 415 intel_dp->sink_rates, 416 intel_dp->num_sink_rates, 417 intel_dp->common_rates); 418 419 /* Paranoia, there should always be something in common. */ 420 if (WARN_ON(intel_dp->num_common_rates == 0)) { 421 intel_dp->common_rates[0] = 162000; 422 intel_dp->num_common_rates = 1; 423 } 424 } 425 426 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate, 427 u8 lane_count) 428 { 429 /* 430 * FIXME: we need to synchronize the current link parameters with 431 * hardware readout. Currently fast link training doesn't work on 432 * boot-up. 433 */ 434 if (link_rate == 0 || 435 link_rate > intel_dp->max_link_rate) 436 return false; 437 438 if (lane_count == 0 || 439 lane_count > intel_dp_max_lane_count(intel_dp)) 440 return false; 441 442 return true; 443 } 444 445 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp, 446 int link_rate, 447 u8 lane_count) 448 { 449 const struct drm_display_mode *fixed_mode = 450 intel_dp->attached_connector->panel.fixed_mode; 451 int mode_rate, max_rate; 452 453 mode_rate = intel_dp_link_required(fixed_mode->clock, 18); 454 max_rate = intel_dp_max_data_rate(link_rate, lane_count); 455 if (mode_rate > max_rate) 456 return false; 457 458 return true; 459 } 460 461 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp, 462 int link_rate, u8 lane_count) 463 { 464 int index; 465 466 index = intel_dp_rate_index(intel_dp->common_rates, 467 intel_dp->num_common_rates, 468 link_rate); 469 if (index > 0) { 470 if (intel_dp_is_edp(intel_dp) && 471 !intel_dp_can_link_train_fallback_for_edp(intel_dp, 472 intel_dp->common_rates[index - 1], 473 lane_count)) { 474 DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n"); 475 return 0; 476 } 477 intel_dp->max_link_rate = intel_dp->common_rates[index - 1]; 478 intel_dp->max_link_lane_count = lane_count; 479 } else if (lane_count > 1) { 480 if (intel_dp_is_edp(intel_dp) && 481 !intel_dp_can_link_train_fallback_for_edp(intel_dp, 482 intel_dp_max_common_rate(intel_dp), 483 lane_count >> 1)) { 484 DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n"); 485 return 0; 486 } 487 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp); 488 intel_dp->max_link_lane_count = lane_count >> 1; 489 } else { 490 DRM_ERROR("Link Training Unsuccessful\n"); 491 return -1; 492 } 493 494 return 0; 495 } 496 497 u32 intel_dp_mode_to_fec_clock(u32 mode_clock) 498 { 499 return div_u64(mul_u32_u32(mode_clock, 1000000U), 500 DP_DSC_FEC_OVERHEAD_FACTOR); 501 } 502 503 static int 504 small_joiner_ram_size_bits(struct drm_i915_private *i915) 505 { 506 if (INTEL_GEN(i915) >= 11) 507 return 7680 * 8; 508 else 509 return 6144 * 8; 510 } 511 512 static u16 intel_dp_dsc_get_output_bpp(struct drm_i915_private *i915, 513 u32 link_clock, u32 lane_count, 514 u32 mode_clock, u32 mode_hdisplay) 515 { 516 u32 bits_per_pixel, max_bpp_small_joiner_ram; 517 int i; 518 519 /* 520 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)* 521 * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP) 522 * for SST -> TimeSlotsPerMTP is 1, 523 * for MST -> TimeSlotsPerMTP has to be calculated 524 */ 525 bits_per_pixel = (link_clock * lane_count * 8) / 526 intel_dp_mode_to_fec_clock(mode_clock); 527 DRM_DEBUG_KMS("Max link bpp: %u\n", bits_per_pixel); 528 529 /* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */ 530 max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) / 531 mode_hdisplay; 532 DRM_DEBUG_KMS("Max small joiner bpp: %u\n", max_bpp_small_joiner_ram); 533 534 /* 535 * Greatest allowed DSC BPP = MIN (output BPP from available Link BW 536 * check, output bpp from small joiner RAM check) 537 */ 538 bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram); 539 540 /* Error out if the max bpp is less than smallest allowed valid bpp */ 541 if (bits_per_pixel < valid_dsc_bpp[0]) { 542 DRM_DEBUG_KMS("Unsupported BPP %u, min %u\n", 543 bits_per_pixel, valid_dsc_bpp[0]); 544 return 0; 545 } 546 547 /* Find the nearest match in the array of known BPPs from VESA */ 548 for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) { 549 if (bits_per_pixel < valid_dsc_bpp[i + 1]) 550 break; 551 } 552 bits_per_pixel = valid_dsc_bpp[i]; 553 554 /* 555 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11, 556 * fractional part is 0 557 */ 558 return bits_per_pixel << 4; 559 } 560 561 static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp, 562 int mode_clock, int mode_hdisplay) 563 { 564 u8 min_slice_count, i; 565 int max_slice_width; 566 567 if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE) 568 min_slice_count = DIV_ROUND_UP(mode_clock, 569 DP_DSC_MAX_ENC_THROUGHPUT_0); 570 else 571 min_slice_count = DIV_ROUND_UP(mode_clock, 572 DP_DSC_MAX_ENC_THROUGHPUT_1); 573 574 max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd); 575 if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) { 576 DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n", 577 max_slice_width); 578 return 0; 579 } 580 /* Also take into account max slice width */ 581 min_slice_count = min_t(u8, min_slice_count, 582 DIV_ROUND_UP(mode_hdisplay, 583 max_slice_width)); 584 585 /* Find the closest match to the valid slice count values */ 586 for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) { 587 if (valid_dsc_slicecount[i] > 588 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd, 589 false)) 590 break; 591 if (min_slice_count <= valid_dsc_slicecount[i]) 592 return valid_dsc_slicecount[i]; 593 } 594 595 DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count); 596 return 0; 597 } 598 599 static bool intel_dp_hdisplay_bad(struct drm_i915_private *dev_priv, 600 int hdisplay) 601 { 602 /* 603 * Older platforms don't like hdisplay==4096 with DP. 604 * 605 * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline 606 * and frame counter increment), but we don't get vblank interrupts, 607 * and the pipe underruns immediately. The link also doesn't seem 608 * to get trained properly. 609 * 610 * On CHV the vblank interrupts don't seem to disappear but 611 * otherwise the symptoms are similar. 612 * 613 * TODO: confirm the behaviour on HSW+ 614 */ 615 return hdisplay == 4096 && !HAS_DDI(dev_priv); 616 } 617 618 static enum drm_mode_status 619 intel_dp_mode_valid(struct drm_connector *connector, 620 struct drm_display_mode *mode) 621 { 622 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); 623 struct intel_connector *intel_connector = to_intel_connector(connector); 624 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode; 625 struct drm_i915_private *dev_priv = to_i915(connector->dev); 626 int target_clock = mode->clock; 627 int max_rate, mode_rate, max_lanes, max_link_clock; 628 int max_dotclk; 629 u16 dsc_max_output_bpp = 0; 630 u8 dsc_slice_count = 0; 631 632 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) 633 return MODE_NO_DBLESCAN; 634 635 max_dotclk = intel_dp_downstream_max_dotclock(intel_dp); 636 637 if (intel_dp_is_edp(intel_dp) && fixed_mode) { 638 if (mode->hdisplay > fixed_mode->hdisplay) 639 return MODE_PANEL; 640 641 if (mode->vdisplay > fixed_mode->vdisplay) 642 return MODE_PANEL; 643 644 target_clock = fixed_mode->clock; 645 } 646 647 max_link_clock = intel_dp_max_link_rate(intel_dp); 648 max_lanes = intel_dp_max_lane_count(intel_dp); 649 650 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes); 651 mode_rate = intel_dp_link_required(target_clock, 18); 652 653 if (intel_dp_hdisplay_bad(dev_priv, mode->hdisplay)) 654 return MODE_H_ILLEGAL; 655 656 /* 657 * Output bpp is stored in 6.4 format so right shift by 4 to get the 658 * integer value since we support only integer values of bpp. 659 */ 660 if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) && 661 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) { 662 if (intel_dp_is_edp(intel_dp)) { 663 dsc_max_output_bpp = 664 drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4; 665 dsc_slice_count = 666 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd, 667 true); 668 } else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) { 669 dsc_max_output_bpp = 670 intel_dp_dsc_get_output_bpp(dev_priv, 671 max_link_clock, 672 max_lanes, 673 target_clock, 674 mode->hdisplay) >> 4; 675 dsc_slice_count = 676 intel_dp_dsc_get_slice_count(intel_dp, 677 target_clock, 678 mode->hdisplay); 679 } 680 } 681 682 if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) || 683 target_clock > max_dotclk) 684 return MODE_CLOCK_HIGH; 685 686 if (mode->clock < 10000) 687 return MODE_CLOCK_LOW; 688 689 if (mode->flags & DRM_MODE_FLAG_DBLCLK) 690 return MODE_H_ILLEGAL; 691 692 return intel_mode_valid_max_plane_size(dev_priv, mode); 693 } 694 695 u32 intel_dp_pack_aux(const u8 *src, int src_bytes) 696 { 697 int i; 698 u32 v = 0; 699 700 if (src_bytes > 4) 701 src_bytes = 4; 702 for (i = 0; i < src_bytes; i++) 703 v |= ((u32)src[i]) << ((3 - i) * 8); 704 return v; 705 } 706 707 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes) 708 { 709 int i; 710 if (dst_bytes > 4) 711 dst_bytes = 4; 712 for (i = 0; i < dst_bytes; i++) 713 dst[i] = src >> ((3-i) * 8); 714 } 715 716 static void 717 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp); 718 static void 719 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp, 720 bool force_disable_vdd); 721 static void 722 intel_dp_pps_init(struct intel_dp *intel_dp); 723 724 static intel_wakeref_t 725 pps_lock(struct intel_dp *intel_dp) 726 { 727 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 728 intel_wakeref_t wakeref; 729 730 /* 731 * See intel_power_sequencer_reset() why we need 732 * a power domain reference here. 733 */ 734 wakeref = intel_display_power_get(dev_priv, 735 intel_aux_power_domain(dp_to_dig_port(intel_dp))); 736 737 mutex_lock(&dev_priv->pps_mutex); 738 739 return wakeref; 740 } 741 742 static intel_wakeref_t 743 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref) 744 { 745 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 746 747 mutex_unlock(&dev_priv->pps_mutex); 748 intel_display_power_put(dev_priv, 749 intel_aux_power_domain(dp_to_dig_port(intel_dp)), 750 wakeref); 751 return 0; 752 } 753 754 #define with_pps_lock(dp, wf) \ 755 for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf))) 756 757 static void 758 vlv_power_sequencer_kick(struct intel_dp *intel_dp) 759 { 760 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 761 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 762 enum pipe pipe = intel_dp->pps_pipe; 763 bool pll_enabled, release_cl_override = false; 764 enum dpio_phy phy = DPIO_PHY(pipe); 765 enum dpio_channel ch = vlv_pipe_to_channel(pipe); 766 u32 DP; 767 768 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN, 769 "skipping pipe %c power sequencer kick due to [ENCODER:%d:%s] being active\n", 770 pipe_name(pipe), intel_dig_port->base.base.base.id, 771 intel_dig_port->base.base.name)) 772 return; 773 774 DRM_DEBUG_KMS("kicking pipe %c power sequencer for [ENCODER:%d:%s]\n", 775 pipe_name(pipe), intel_dig_port->base.base.base.id, 776 intel_dig_port->base.base.name); 777 778 /* Preserve the BIOS-computed detected bit. This is 779 * supposed to be read-only. 780 */ 781 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED; 782 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0; 783 DP |= DP_PORT_WIDTH(1); 784 DP |= DP_LINK_TRAIN_PAT_1; 785 786 if (IS_CHERRYVIEW(dev_priv)) 787 DP |= DP_PIPE_SEL_CHV(pipe); 788 else 789 DP |= DP_PIPE_SEL(pipe); 790 791 pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE; 792 793 /* 794 * The DPLL for the pipe must be enabled for this to work. 795 * So enable temporarily it if it's not already enabled. 796 */ 797 if (!pll_enabled) { 798 release_cl_override = IS_CHERRYVIEW(dev_priv) && 799 !chv_phy_powergate_ch(dev_priv, phy, ch, true); 800 801 if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ? 802 &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) { 803 DRM_ERROR("Failed to force on pll for pipe %c!\n", 804 pipe_name(pipe)); 805 return; 806 } 807 } 808 809 /* 810 * Similar magic as in intel_dp_enable_port(). 811 * We _must_ do this port enable + disable trick 812 * to make this power sequencer lock onto the port. 813 * Otherwise even VDD force bit won't work. 814 */ 815 I915_WRITE(intel_dp->output_reg, DP); 816 POSTING_READ(intel_dp->output_reg); 817 818 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN); 819 POSTING_READ(intel_dp->output_reg); 820 821 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN); 822 POSTING_READ(intel_dp->output_reg); 823 824 if (!pll_enabled) { 825 vlv_force_pll_off(dev_priv, pipe); 826 827 if (release_cl_override) 828 chv_phy_powergate_ch(dev_priv, phy, ch, false); 829 } 830 } 831 832 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv) 833 { 834 struct intel_encoder *encoder; 835 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B); 836 837 /* 838 * We don't have power sequencer currently. 839 * Pick one that's not used by other ports. 840 */ 841 for_each_intel_dp(&dev_priv->drm, encoder) { 842 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 843 844 if (encoder->type == INTEL_OUTPUT_EDP) { 845 WARN_ON(intel_dp->active_pipe != INVALID_PIPE && 846 intel_dp->active_pipe != intel_dp->pps_pipe); 847 848 if (intel_dp->pps_pipe != INVALID_PIPE) 849 pipes &= ~(1 << intel_dp->pps_pipe); 850 } else { 851 WARN_ON(intel_dp->pps_pipe != INVALID_PIPE); 852 853 if (intel_dp->active_pipe != INVALID_PIPE) 854 pipes &= ~(1 << intel_dp->active_pipe); 855 } 856 } 857 858 if (pipes == 0) 859 return INVALID_PIPE; 860 861 return ffs(pipes) - 1; 862 } 863 864 static enum pipe 865 vlv_power_sequencer_pipe(struct intel_dp *intel_dp) 866 { 867 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 868 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 869 enum pipe pipe; 870 871 lockdep_assert_held(&dev_priv->pps_mutex); 872 873 /* We should never land here with regular DP ports */ 874 WARN_ON(!intel_dp_is_edp(intel_dp)); 875 876 WARN_ON(intel_dp->active_pipe != INVALID_PIPE && 877 intel_dp->active_pipe != intel_dp->pps_pipe); 878 879 if (intel_dp->pps_pipe != INVALID_PIPE) 880 return intel_dp->pps_pipe; 881 882 pipe = vlv_find_free_pps(dev_priv); 883 884 /* 885 * Didn't find one. This should not happen since there 886 * are two power sequencers and up to two eDP ports. 887 */ 888 if (WARN_ON(pipe == INVALID_PIPE)) 889 pipe = PIPE_A; 890 891 vlv_steal_power_sequencer(dev_priv, pipe); 892 intel_dp->pps_pipe = pipe; 893 894 DRM_DEBUG_KMS("picked pipe %c power sequencer for [ENCODER:%d:%s]\n", 895 pipe_name(intel_dp->pps_pipe), 896 intel_dig_port->base.base.base.id, 897 intel_dig_port->base.base.name); 898 899 /* init power sequencer on this pipe and port */ 900 intel_dp_init_panel_power_sequencer(intel_dp); 901 intel_dp_init_panel_power_sequencer_registers(intel_dp, true); 902 903 /* 904 * Even vdd force doesn't work until we've made 905 * the power sequencer lock in on the port. 906 */ 907 vlv_power_sequencer_kick(intel_dp); 908 909 return intel_dp->pps_pipe; 910 } 911 912 static int 913 bxt_power_sequencer_idx(struct intel_dp *intel_dp) 914 { 915 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 916 int backlight_controller = dev_priv->vbt.backlight.controller; 917 918 lockdep_assert_held(&dev_priv->pps_mutex); 919 920 /* We should never land here with regular DP ports */ 921 WARN_ON(!intel_dp_is_edp(intel_dp)); 922 923 if (!intel_dp->pps_reset) 924 return backlight_controller; 925 926 intel_dp->pps_reset = false; 927 928 /* 929 * Only the HW needs to be reprogrammed, the SW state is fixed and 930 * has been setup during connector init. 931 */ 932 intel_dp_init_panel_power_sequencer_registers(intel_dp, false); 933 934 return backlight_controller; 935 } 936 937 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv, 938 enum pipe pipe); 939 940 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv, 941 enum pipe pipe) 942 { 943 return I915_READ(PP_STATUS(pipe)) & PP_ON; 944 } 945 946 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv, 947 enum pipe pipe) 948 { 949 return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD; 950 } 951 952 static bool vlv_pipe_any(struct drm_i915_private *dev_priv, 953 enum pipe pipe) 954 { 955 return true; 956 } 957 958 static enum pipe 959 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv, 960 enum port port, 961 vlv_pipe_check pipe_check) 962 { 963 enum pipe pipe; 964 965 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) { 966 u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) & 967 PANEL_PORT_SELECT_MASK; 968 969 if (port_sel != PANEL_PORT_SELECT_VLV(port)) 970 continue; 971 972 if (!pipe_check(dev_priv, pipe)) 973 continue; 974 975 return pipe; 976 } 977 978 return INVALID_PIPE; 979 } 980 981 static void 982 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp) 983 { 984 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 985 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 986 enum port port = intel_dig_port->base.port; 987 988 lockdep_assert_held(&dev_priv->pps_mutex); 989 990 /* try to find a pipe with this port selected */ 991 /* first pick one where the panel is on */ 992 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, 993 vlv_pipe_has_pp_on); 994 /* didn't find one? pick one where vdd is on */ 995 if (intel_dp->pps_pipe == INVALID_PIPE) 996 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, 997 vlv_pipe_has_vdd_on); 998 /* didn't find one? pick one with just the correct port */ 999 if (intel_dp->pps_pipe == INVALID_PIPE) 1000 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, 1001 vlv_pipe_any); 1002 1003 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */ 1004 if (intel_dp->pps_pipe == INVALID_PIPE) { 1005 DRM_DEBUG_KMS("no initial power sequencer for [ENCODER:%d:%s]\n", 1006 intel_dig_port->base.base.base.id, 1007 intel_dig_port->base.base.name); 1008 return; 1009 } 1010 1011 DRM_DEBUG_KMS("initial power sequencer for [ENCODER:%d:%s]: pipe %c\n", 1012 intel_dig_port->base.base.base.id, 1013 intel_dig_port->base.base.name, 1014 pipe_name(intel_dp->pps_pipe)); 1015 1016 intel_dp_init_panel_power_sequencer(intel_dp); 1017 intel_dp_init_panel_power_sequencer_registers(intel_dp, false); 1018 } 1019 1020 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv) 1021 { 1022 struct intel_encoder *encoder; 1023 1024 if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) && 1025 !IS_GEN9_LP(dev_priv))) 1026 return; 1027 1028 /* 1029 * We can't grab pps_mutex here due to deadlock with power_domain 1030 * mutex when power_domain functions are called while holding pps_mutex. 1031 * That also means that in order to use pps_pipe the code needs to 1032 * hold both a power domain reference and pps_mutex, and the power domain 1033 * reference get/put must be done while _not_ holding pps_mutex. 1034 * pps_{lock,unlock}() do these steps in the correct order, so one 1035 * should use them always. 1036 */ 1037 1038 for_each_intel_dp(&dev_priv->drm, encoder) { 1039 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 1040 1041 WARN_ON(intel_dp->active_pipe != INVALID_PIPE); 1042 1043 if (encoder->type != INTEL_OUTPUT_EDP) 1044 continue; 1045 1046 if (IS_GEN9_LP(dev_priv)) 1047 intel_dp->pps_reset = true; 1048 else 1049 intel_dp->pps_pipe = INVALID_PIPE; 1050 } 1051 } 1052 1053 struct pps_registers { 1054 i915_reg_t pp_ctrl; 1055 i915_reg_t pp_stat; 1056 i915_reg_t pp_on; 1057 i915_reg_t pp_off; 1058 i915_reg_t pp_div; 1059 }; 1060 1061 static void intel_pps_get_registers(struct intel_dp *intel_dp, 1062 struct pps_registers *regs) 1063 { 1064 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1065 int pps_idx = 0; 1066 1067 memset(regs, 0, sizeof(*regs)); 1068 1069 if (IS_GEN9_LP(dev_priv)) 1070 pps_idx = bxt_power_sequencer_idx(intel_dp); 1071 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 1072 pps_idx = vlv_power_sequencer_pipe(intel_dp); 1073 1074 regs->pp_ctrl = PP_CONTROL(pps_idx); 1075 regs->pp_stat = PP_STATUS(pps_idx); 1076 regs->pp_on = PP_ON_DELAYS(pps_idx); 1077 regs->pp_off = PP_OFF_DELAYS(pps_idx); 1078 1079 /* Cycle delay moved from PP_DIVISOR to PP_CONTROL */ 1080 if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP) 1081 regs->pp_div = INVALID_MMIO_REG; 1082 else 1083 regs->pp_div = PP_DIVISOR(pps_idx); 1084 } 1085 1086 static i915_reg_t 1087 _pp_ctrl_reg(struct intel_dp *intel_dp) 1088 { 1089 struct pps_registers regs; 1090 1091 intel_pps_get_registers(intel_dp, ®s); 1092 1093 return regs.pp_ctrl; 1094 } 1095 1096 static i915_reg_t 1097 _pp_stat_reg(struct intel_dp *intel_dp) 1098 { 1099 struct pps_registers regs; 1100 1101 intel_pps_get_registers(intel_dp, ®s); 1102 1103 return regs.pp_stat; 1104 } 1105 1106 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing 1107 This function only applicable when panel PM state is not to be tracked */ 1108 static int edp_notify_handler(struct notifier_block *this, unsigned long code, 1109 void *unused) 1110 { 1111 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp), 1112 edp_notifier); 1113 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1114 intel_wakeref_t wakeref; 1115 1116 if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART) 1117 return 0; 1118 1119 with_pps_lock(intel_dp, wakeref) { 1120 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 1121 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp); 1122 i915_reg_t pp_ctrl_reg, pp_div_reg; 1123 u32 pp_div; 1124 1125 pp_ctrl_reg = PP_CONTROL(pipe); 1126 pp_div_reg = PP_DIVISOR(pipe); 1127 pp_div = I915_READ(pp_div_reg); 1128 pp_div &= PP_REFERENCE_DIVIDER_MASK; 1129 1130 /* 0x1F write to PP_DIV_REG sets max cycle delay */ 1131 I915_WRITE(pp_div_reg, pp_div | 0x1F); 1132 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS); 1133 msleep(intel_dp->panel_power_cycle_delay); 1134 } 1135 } 1136 1137 return 0; 1138 } 1139 1140 static bool edp_have_panel_power(struct intel_dp *intel_dp) 1141 { 1142 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1143 1144 lockdep_assert_held(&dev_priv->pps_mutex); 1145 1146 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 1147 intel_dp->pps_pipe == INVALID_PIPE) 1148 return false; 1149 1150 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0; 1151 } 1152 1153 static bool edp_have_panel_vdd(struct intel_dp *intel_dp) 1154 { 1155 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1156 1157 lockdep_assert_held(&dev_priv->pps_mutex); 1158 1159 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 1160 intel_dp->pps_pipe == INVALID_PIPE) 1161 return false; 1162 1163 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD; 1164 } 1165 1166 static void 1167 intel_dp_check_edp(struct intel_dp *intel_dp) 1168 { 1169 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1170 1171 if (!intel_dp_is_edp(intel_dp)) 1172 return; 1173 1174 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) { 1175 WARN(1, "eDP powered off while attempting aux channel communication.\n"); 1176 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n", 1177 I915_READ(_pp_stat_reg(intel_dp)), 1178 I915_READ(_pp_ctrl_reg(intel_dp))); 1179 } 1180 } 1181 1182 static u32 1183 intel_dp_aux_wait_done(struct intel_dp *intel_dp) 1184 { 1185 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 1186 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp); 1187 const unsigned int timeout_ms = 10; 1188 u32 status; 1189 bool done; 1190 1191 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0) 1192 #ifdef __NetBSD__ 1193 if (!cold) { 1194 int ret; 1195 spin_lock(&i915->gmbus_wait_lock); 1196 DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(ret, 1197 &i915->gmbus_wait_queue, &i915->gmbus_wait_lock, 1198 msecs_to_jiffies_timeout(timeout_ms), 1199 C); 1200 /* 1201 * ret<0 on error (-ERESTARTSYS, interrupt); ret=0 on 1202 * timeout; ret>0 on success. We care about success 1203 * only. 1204 */ 1205 done = (ret > 0); 1206 spin_unlock(&i915->gmbus_wait_lock); 1207 } else { 1208 done = wait_for_atomic(C, timeout_ms) == 0; 1209 } 1210 #else 1211 done = wait_event_timeout(i915->gmbus_wait_queue, C, 1212 msecs_to_jiffies_timeout(timeout_ms)); 1213 1214 #endif 1215 1216 /* just trace the final value */ 1217 trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true); 1218 1219 if (!done) 1220 DRM_ERROR("%s did not complete or timeout within %ums (status 0x%08x)\n", 1221 intel_dp->aux.name, timeout_ms, status); 1222 #undef C 1223 1224 return status; 1225 } 1226 1227 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1228 { 1229 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1230 1231 if (index) 1232 return 0; 1233 1234 /* 1235 * The clock divider is based off the hrawclk, and would like to run at 1236 * 2MHz. So, take the hrawclk value and divide by 2000 and use that 1237 */ 1238 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000); 1239 } 1240 1241 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1242 { 1243 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1244 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1245 1246 if (index) 1247 return 0; 1248 1249 /* 1250 * The clock divider is based off the cdclk or PCH rawclk, and would 1251 * like to run at 2MHz. So, take the cdclk or PCH rawclk value and 1252 * divide by 2000 and use that 1253 */ 1254 if (dig_port->aux_ch == AUX_CH_A) 1255 return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000); 1256 else 1257 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000); 1258 } 1259 1260 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1261 { 1262 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1263 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1264 1265 if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) { 1266 /* Workaround for non-ULT HSW */ 1267 switch (index) { 1268 case 0: return 63; 1269 case 1: return 72; 1270 default: return 0; 1271 } 1272 } 1273 1274 return ilk_get_aux_clock_divider(intel_dp, index); 1275 } 1276 1277 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index) 1278 { 1279 /* 1280 * SKL doesn't need us to program the AUX clock divider (Hardware will 1281 * derive the clock from CDCLK automatically). We still implement the 1282 * get_aux_clock_divider vfunc to plug-in into the existing code. 1283 */ 1284 return index ? 0 : 1; 1285 } 1286 1287 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp, 1288 int send_bytes, 1289 u32 aux_clock_divider) 1290 { 1291 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 1292 struct drm_i915_private *dev_priv = 1293 to_i915(intel_dig_port->base.base.dev); 1294 u32 precharge, timeout; 1295 1296 if (IS_GEN(dev_priv, 6)) 1297 precharge = 3; 1298 else 1299 precharge = 5; 1300 1301 if (IS_BROADWELL(dev_priv)) 1302 timeout = DP_AUX_CH_CTL_TIME_OUT_600us; 1303 else 1304 timeout = DP_AUX_CH_CTL_TIME_OUT_400us; 1305 1306 return DP_AUX_CH_CTL_SEND_BUSY | 1307 DP_AUX_CH_CTL_DONE | 1308 DP_AUX_CH_CTL_INTERRUPT | 1309 DP_AUX_CH_CTL_TIME_OUT_ERROR | 1310 timeout | 1311 DP_AUX_CH_CTL_RECEIVE_ERROR | 1312 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | 1313 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) | 1314 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT); 1315 } 1316 1317 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp, 1318 int send_bytes, 1319 u32 unused) 1320 { 1321 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 1322 struct drm_i915_private *i915 = 1323 to_i915(intel_dig_port->base.base.dev); 1324 enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port); 1325 u32 ret; 1326 1327 ret = DP_AUX_CH_CTL_SEND_BUSY | 1328 DP_AUX_CH_CTL_DONE | 1329 DP_AUX_CH_CTL_INTERRUPT | 1330 DP_AUX_CH_CTL_TIME_OUT_ERROR | 1331 DP_AUX_CH_CTL_TIME_OUT_MAX | 1332 DP_AUX_CH_CTL_RECEIVE_ERROR | 1333 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | 1334 DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) | 1335 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32); 1336 1337 if (intel_phy_is_tc(i915, phy) && 1338 intel_dig_port->tc_mode == TC_PORT_TBT_ALT) 1339 ret |= DP_AUX_CH_CTL_TBT_IO; 1340 1341 return ret; 1342 } 1343 1344 static int 1345 intel_dp_aux_xfer(struct intel_dp *intel_dp, 1346 const u8 *send, int send_bytes, 1347 u8 *recv, int recv_size, 1348 u32 aux_send_ctl_flags) 1349 { 1350 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 1351 struct drm_i915_private *i915 = 1352 to_i915(intel_dig_port->base.base.dev); 1353 struct intel_uncore *uncore = &i915->uncore; 1354 enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port); 1355 bool is_tc_port = intel_phy_is_tc(i915, phy); 1356 i915_reg_t ch_ctl, ch_data[5]; 1357 u32 aux_clock_divider; 1358 enum intel_display_power_domain aux_domain = 1359 intel_aux_power_domain(intel_dig_port); 1360 intel_wakeref_t aux_wakeref; 1361 intel_wakeref_t pps_wakeref; 1362 int i, ret, recv_bytes; 1363 int try, clock = 0; 1364 u32 status; 1365 bool vdd; 1366 1367 ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp); 1368 for (i = 0; i < ARRAY_SIZE(ch_data); i++) 1369 ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i); 1370 1371 if (is_tc_port) 1372 intel_tc_port_lock(intel_dig_port); 1373 1374 aux_wakeref = intel_display_power_get(i915, aux_domain); 1375 pps_wakeref = pps_lock(intel_dp); 1376 1377 /* 1378 * We will be called with VDD already enabled for dpcd/edid/oui reads. 1379 * In such cases we want to leave VDD enabled and it's up to upper layers 1380 * to turn it off. But for eg. i2c-dev access we need to turn it on/off 1381 * ourselves. 1382 */ 1383 vdd = edp_panel_vdd_on(intel_dp); 1384 1385 /* dp aux is extremely sensitive to irq latency, hence request the 1386 * lowest possible wakeup latency and so prevent the cpu from going into 1387 * deep sleep states. 1388 */ 1389 pm_qos_update_request(&i915->pm_qos, 0); 1390 1391 intel_dp_check_edp(intel_dp); 1392 1393 /* Try to wait for any previous AUX channel activity */ 1394 for (try = 0; try < 3; try++) { 1395 status = intel_uncore_read_notrace(uncore, ch_ctl); 1396 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0) 1397 break; 1398 msleep(1); 1399 } 1400 /* just trace the final value */ 1401 trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true); 1402 1403 if (try == 3) { 1404 const u32 status = intel_uncore_read(uncore, ch_ctl); 1405 1406 if (status != intel_dp->aux_busy_last_status) { 1407 WARN(1, "dp_aux_ch not started status 0x%08x\n", 1408 status); 1409 intel_dp->aux_busy_last_status = status; 1410 } 1411 1412 ret = -EBUSY; 1413 goto out; 1414 } 1415 1416 /* Only 5 data registers! */ 1417 if (WARN_ON(send_bytes > 20 || recv_size > 20)) { 1418 ret = -E2BIG; 1419 goto out; 1420 } 1421 1422 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) { 1423 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp, 1424 send_bytes, 1425 aux_clock_divider); 1426 1427 send_ctl |= aux_send_ctl_flags; 1428 1429 /* Must try at least 3 times according to DP spec */ 1430 for (try = 0; try < 5; try++) { 1431 /* Load the send data into the aux channel data registers */ 1432 for (i = 0; i < send_bytes; i += 4) 1433 intel_uncore_write(uncore, 1434 ch_data[i >> 2], 1435 intel_dp_pack_aux(send + i, 1436 send_bytes - i)); 1437 1438 /* Send the command and wait for it to complete */ 1439 intel_uncore_write(uncore, ch_ctl, send_ctl); 1440 1441 status = intel_dp_aux_wait_done(intel_dp); 1442 1443 /* Clear done status and any errors */ 1444 intel_uncore_write(uncore, 1445 ch_ctl, 1446 status | 1447 DP_AUX_CH_CTL_DONE | 1448 DP_AUX_CH_CTL_TIME_OUT_ERROR | 1449 DP_AUX_CH_CTL_RECEIVE_ERROR); 1450 1451 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2 1452 * 400us delay required for errors and timeouts 1453 * Timeout errors from the HW already meet this 1454 * requirement so skip to next iteration 1455 */ 1456 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) 1457 continue; 1458 1459 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { 1460 usleep_range(400, 500); 1461 continue; 1462 } 1463 if (status & DP_AUX_CH_CTL_DONE) 1464 goto done; 1465 } 1466 } 1467 1468 if ((status & DP_AUX_CH_CTL_DONE) == 0) { 1469 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status); 1470 ret = -EBUSY; 1471 goto out; 1472 } 1473 1474 done: 1475 /* Check for timeout or receive error. 1476 * Timeouts occur when the sink is not connected 1477 */ 1478 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { 1479 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status); 1480 ret = -EIO; 1481 goto out; 1482 } 1483 1484 /* Timeouts occur when the device isn't connected, so they're 1485 * "normal" -- don't fill the kernel log with these */ 1486 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) { 1487 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status); 1488 ret = -ETIMEDOUT; 1489 goto out; 1490 } 1491 1492 /* Unload any bytes sent back from the other side */ 1493 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >> 1494 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT); 1495 1496 /* 1497 * By BSpec: "Message sizes of 0 or >20 are not allowed." 1498 * We have no idea of what happened so we return -EBUSY so 1499 * drm layer takes care for the necessary retries. 1500 */ 1501 if (recv_bytes == 0 || recv_bytes > 20) { 1502 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n", 1503 recv_bytes); 1504 ret = -EBUSY; 1505 goto out; 1506 } 1507 1508 if (recv_bytes > recv_size) 1509 recv_bytes = recv_size; 1510 1511 for (i = 0; i < recv_bytes; i += 4) 1512 intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]), 1513 recv + i, recv_bytes - i); 1514 1515 ret = recv_bytes; 1516 out: 1517 pm_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE); 1518 1519 if (vdd) 1520 edp_panel_vdd_off(intel_dp, false); 1521 1522 pps_unlock(intel_dp, pps_wakeref); 1523 intel_display_power_put_async(i915, aux_domain, aux_wakeref); 1524 1525 if (is_tc_port) 1526 intel_tc_port_unlock(intel_dig_port); 1527 1528 return ret; 1529 } 1530 1531 #define BARE_ADDRESS_SIZE 3 1532 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1) 1533 1534 static void 1535 intel_dp_aux_header(u8 txbuf[HEADER_SIZE], 1536 const struct drm_dp_aux_msg *msg) 1537 { 1538 txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf); 1539 txbuf[1] = (msg->address >> 8) & 0xff; 1540 txbuf[2] = msg->address & 0xff; 1541 txbuf[3] = msg->size - 1; 1542 } 1543 1544 static ssize_t 1545 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg) 1546 { 1547 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux); 1548 u8 txbuf[20], rxbuf[20]; 1549 size_t txsize, rxsize; 1550 int ret; 1551 1552 intel_dp_aux_header(txbuf, msg); 1553 1554 switch (msg->request & ~DP_AUX_I2C_MOT) { 1555 case DP_AUX_NATIVE_WRITE: 1556 case DP_AUX_I2C_WRITE: 1557 case DP_AUX_I2C_WRITE_STATUS_UPDATE: 1558 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE; 1559 rxsize = 2; /* 0 or 1 data bytes */ 1560 1561 if (WARN_ON(txsize > 20)) 1562 return -E2BIG; 1563 1564 WARN_ON(!msg->buffer != !msg->size); 1565 1566 if (msg->buffer) 1567 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size); 1568 1569 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize, 1570 rxbuf, rxsize, 0); 1571 if (ret > 0) { 1572 msg->reply = rxbuf[0] >> 4; 1573 1574 if (ret > 1) { 1575 /* Number of bytes written in a short write. */ 1576 ret = clamp_t(int, rxbuf[1], 0, msg->size); 1577 } else { 1578 /* Return payload size. */ 1579 ret = msg->size; 1580 } 1581 } 1582 break; 1583 1584 case DP_AUX_NATIVE_READ: 1585 case DP_AUX_I2C_READ: 1586 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE; 1587 rxsize = msg->size + 1; 1588 1589 if (WARN_ON(rxsize > 20)) 1590 return -E2BIG; 1591 1592 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize, 1593 rxbuf, rxsize, 0); 1594 if (ret > 0) { 1595 msg->reply = rxbuf[0] >> 4; 1596 /* 1597 * Assume happy day, and copy the data. The caller is 1598 * expected to check msg->reply before touching it. 1599 * 1600 * Return payload size. 1601 */ 1602 ret--; 1603 memcpy(msg->buffer, rxbuf + 1, ret); 1604 } 1605 break; 1606 1607 default: 1608 ret = -EINVAL; 1609 break; 1610 } 1611 1612 return ret; 1613 } 1614 1615 1616 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp) 1617 { 1618 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1619 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1620 enum aux_ch aux_ch = dig_port->aux_ch; 1621 1622 switch (aux_ch) { 1623 case AUX_CH_B: 1624 case AUX_CH_C: 1625 case AUX_CH_D: 1626 return DP_AUX_CH_CTL(aux_ch); 1627 default: 1628 MISSING_CASE(aux_ch); 1629 return DP_AUX_CH_CTL(AUX_CH_B); 1630 } 1631 } 1632 1633 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index) 1634 { 1635 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1636 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1637 enum aux_ch aux_ch = dig_port->aux_ch; 1638 1639 switch (aux_ch) { 1640 case AUX_CH_B: 1641 case AUX_CH_C: 1642 case AUX_CH_D: 1643 return DP_AUX_CH_DATA(aux_ch, index); 1644 default: 1645 MISSING_CASE(aux_ch); 1646 return DP_AUX_CH_DATA(AUX_CH_B, index); 1647 } 1648 } 1649 1650 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp) 1651 { 1652 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1653 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1654 enum aux_ch aux_ch = dig_port->aux_ch; 1655 1656 switch (aux_ch) { 1657 case AUX_CH_A: 1658 return DP_AUX_CH_CTL(aux_ch); 1659 case AUX_CH_B: 1660 case AUX_CH_C: 1661 case AUX_CH_D: 1662 return PCH_DP_AUX_CH_CTL(aux_ch); 1663 default: 1664 MISSING_CASE(aux_ch); 1665 return DP_AUX_CH_CTL(AUX_CH_A); 1666 } 1667 } 1668 1669 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index) 1670 { 1671 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1672 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1673 enum aux_ch aux_ch = dig_port->aux_ch; 1674 1675 switch (aux_ch) { 1676 case AUX_CH_A: 1677 return DP_AUX_CH_DATA(aux_ch, index); 1678 case AUX_CH_B: 1679 case AUX_CH_C: 1680 case AUX_CH_D: 1681 return PCH_DP_AUX_CH_DATA(aux_ch, index); 1682 default: 1683 MISSING_CASE(aux_ch); 1684 return DP_AUX_CH_DATA(AUX_CH_A, index); 1685 } 1686 } 1687 1688 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp) 1689 { 1690 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1691 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1692 enum aux_ch aux_ch = dig_port->aux_ch; 1693 1694 switch (aux_ch) { 1695 case AUX_CH_A: 1696 case AUX_CH_B: 1697 case AUX_CH_C: 1698 case AUX_CH_D: 1699 case AUX_CH_E: 1700 case AUX_CH_F: 1701 case AUX_CH_G: 1702 return DP_AUX_CH_CTL(aux_ch); 1703 default: 1704 MISSING_CASE(aux_ch); 1705 return DP_AUX_CH_CTL(AUX_CH_A); 1706 } 1707 } 1708 1709 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index) 1710 { 1711 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1712 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1713 enum aux_ch aux_ch = dig_port->aux_ch; 1714 1715 switch (aux_ch) { 1716 case AUX_CH_A: 1717 case AUX_CH_B: 1718 case AUX_CH_C: 1719 case AUX_CH_D: 1720 case AUX_CH_E: 1721 case AUX_CH_F: 1722 case AUX_CH_G: 1723 return DP_AUX_CH_DATA(aux_ch, index); 1724 default: 1725 MISSING_CASE(aux_ch); 1726 return DP_AUX_CH_DATA(AUX_CH_A, index); 1727 } 1728 } 1729 1730 static void 1731 intel_dp_aux_fini(struct intel_dp *intel_dp) 1732 { 1733 drm_dp_aux_fini(&intel_dp->aux); 1734 kfree(__UNCONST(intel_dp->aux.name)); 1735 } 1736 1737 static void 1738 intel_dp_aux_init(struct intel_dp *intel_dp) 1739 { 1740 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1741 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1742 struct intel_encoder *encoder = &dig_port->base; 1743 1744 if (INTEL_GEN(dev_priv) >= 9) { 1745 intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg; 1746 intel_dp->aux_ch_data_reg = skl_aux_data_reg; 1747 } else if (HAS_PCH_SPLIT(dev_priv)) { 1748 intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg; 1749 intel_dp->aux_ch_data_reg = ilk_aux_data_reg; 1750 } else { 1751 intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg; 1752 intel_dp->aux_ch_data_reg = g4x_aux_data_reg; 1753 } 1754 1755 if (INTEL_GEN(dev_priv) >= 9) 1756 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider; 1757 else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) 1758 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider; 1759 else if (HAS_PCH_SPLIT(dev_priv)) 1760 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider; 1761 else 1762 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider; 1763 1764 if (INTEL_GEN(dev_priv) >= 9) 1765 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl; 1766 else 1767 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl; 1768 1769 drm_dp_aux_init(&intel_dp->aux); 1770 1771 /* Failure to allocate our preferred name is not critical */ 1772 intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c", 1773 port_name(encoder->port)); 1774 intel_dp->aux.transfer = intel_dp_aux_transfer; 1775 } 1776 1777 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp) 1778 { 1779 int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1]; 1780 1781 return max_rate >= 540000; 1782 } 1783 1784 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp) 1785 { 1786 int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1]; 1787 1788 return max_rate >= 810000; 1789 } 1790 1791 static void 1792 intel_dp_set_clock(struct intel_encoder *encoder, 1793 struct intel_crtc_state *pipe_config) 1794 { 1795 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1796 const struct dp_link_dpll *divisor = NULL; 1797 int i, count = 0; 1798 1799 if (IS_G4X(dev_priv)) { 1800 divisor = g4x_dpll; 1801 count = ARRAY_SIZE(g4x_dpll); 1802 } else if (HAS_PCH_SPLIT(dev_priv)) { 1803 divisor = pch_dpll; 1804 count = ARRAY_SIZE(pch_dpll); 1805 } else if (IS_CHERRYVIEW(dev_priv)) { 1806 divisor = chv_dpll; 1807 count = ARRAY_SIZE(chv_dpll); 1808 } else if (IS_VALLEYVIEW(dev_priv)) { 1809 divisor = vlv_dpll; 1810 count = ARRAY_SIZE(vlv_dpll); 1811 } 1812 1813 if (divisor && count) { 1814 for (i = 0; i < count; i++) { 1815 if (pipe_config->port_clock == divisor[i].clock) { 1816 pipe_config->dpll = divisor[i].dpll; 1817 pipe_config->clock_set = true; 1818 break; 1819 } 1820 } 1821 } 1822 } 1823 1824 static void snprintf_int_array(char *str, size_t len, 1825 const int *array, int nelem) 1826 { 1827 int i; 1828 1829 str[0] = '\0'; 1830 1831 for (i = 0; i < nelem; i++) { 1832 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]); 1833 if (r >= len) 1834 return; 1835 str += r; 1836 len -= r; 1837 } 1838 } 1839 1840 static void intel_dp_print_rates(struct intel_dp *intel_dp) 1841 { 1842 char str[128]; /* FIXME: too big for stack? */ 1843 1844 if (!drm_debug_enabled(DRM_UT_KMS)) 1845 return; 1846 1847 snprintf_int_array(str, sizeof(str), 1848 intel_dp->source_rates, intel_dp->num_source_rates); 1849 DRM_DEBUG_KMS("source rates: %s\n", str); 1850 1851 snprintf_int_array(str, sizeof(str), 1852 intel_dp->sink_rates, intel_dp->num_sink_rates); 1853 DRM_DEBUG_KMS("sink rates: %s\n", str); 1854 1855 snprintf_int_array(str, sizeof(str), 1856 intel_dp->common_rates, intel_dp->num_common_rates); 1857 DRM_DEBUG_KMS("common rates: %s\n", str); 1858 } 1859 1860 int 1861 intel_dp_max_link_rate(struct intel_dp *intel_dp) 1862 { 1863 int len; 1864 1865 len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate); 1866 if (WARN_ON(len <= 0)) 1867 return 162000; 1868 1869 return intel_dp->common_rates[len - 1]; 1870 } 1871 1872 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate) 1873 { 1874 int i = intel_dp_rate_index(intel_dp->sink_rates, 1875 intel_dp->num_sink_rates, rate); 1876 1877 if (WARN_ON(i < 0)) 1878 i = 0; 1879 1880 return i; 1881 } 1882 1883 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock, 1884 u8 *link_bw, u8 *rate_select) 1885 { 1886 /* eDP 1.4 rate select method. */ 1887 if (intel_dp->use_rate_select) { 1888 *link_bw = 0; 1889 *rate_select = 1890 intel_dp_rate_select(intel_dp, port_clock); 1891 } else { 1892 *link_bw = drm_dp_link_rate_to_bw_code(port_clock); 1893 *rate_select = 0; 1894 } 1895 } 1896 1897 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp, 1898 const struct intel_crtc_state *pipe_config) 1899 { 1900 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1901 1902 /* On TGL, FEC is supported on all Pipes */ 1903 if (INTEL_GEN(dev_priv) >= 12) 1904 return true; 1905 1906 if (IS_GEN(dev_priv, 11) && pipe_config->cpu_transcoder != TRANSCODER_A) 1907 return true; 1908 1909 return false; 1910 } 1911 1912 static bool intel_dp_supports_fec(struct intel_dp *intel_dp, 1913 const struct intel_crtc_state *pipe_config) 1914 { 1915 return intel_dp_source_supports_fec(intel_dp, pipe_config) && 1916 drm_dp_sink_supports_fec(intel_dp->fec_capable); 1917 } 1918 1919 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp, 1920 const struct intel_crtc_state *crtc_state) 1921 { 1922 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 1923 1924 if (!intel_dp_is_edp(intel_dp) && !crtc_state->fec_enable) 1925 return false; 1926 1927 return intel_dsc_source_support(encoder, crtc_state) && 1928 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd); 1929 } 1930 1931 static int intel_dp_compute_bpp(struct intel_dp *intel_dp, 1932 struct intel_crtc_state *pipe_config) 1933 { 1934 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1935 struct intel_connector *intel_connector = intel_dp->attached_connector; 1936 int bpp, bpc; 1937 1938 bpp = pipe_config->pipe_bpp; 1939 bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports); 1940 1941 if (bpc > 0) 1942 bpp = min(bpp, 3*bpc); 1943 1944 if (intel_dp_is_edp(intel_dp)) { 1945 /* Get bpp from vbt only for panels that dont have bpp in edid */ 1946 if (intel_connector->base.display_info.bpc == 0 && 1947 dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) { 1948 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n", 1949 dev_priv->vbt.edp.bpp); 1950 bpp = dev_priv->vbt.edp.bpp; 1951 } 1952 } 1953 1954 return bpp; 1955 } 1956 1957 /* Adjust link config limits based on compliance test requests. */ 1958 void 1959 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp, 1960 struct intel_crtc_state *pipe_config, 1961 struct link_config_limits *limits) 1962 { 1963 /* For DP Compliance we override the computed bpp for the pipe */ 1964 if (intel_dp->compliance.test_data.bpc != 0) { 1965 int bpp = 3 * intel_dp->compliance.test_data.bpc; 1966 1967 limits->min_bpp = limits->max_bpp = bpp; 1968 pipe_config->dither_force_disable = bpp == 6 * 3; 1969 1970 DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp); 1971 } 1972 1973 /* Use values requested by Compliance Test Request */ 1974 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) { 1975 int index; 1976 1977 /* Validate the compliance test data since max values 1978 * might have changed due to link train fallback. 1979 */ 1980 if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate, 1981 intel_dp->compliance.test_lane_count)) { 1982 index = intel_dp_rate_index(intel_dp->common_rates, 1983 intel_dp->num_common_rates, 1984 intel_dp->compliance.test_link_rate); 1985 if (index >= 0) 1986 limits->min_clock = limits->max_clock = index; 1987 limits->min_lane_count = limits->max_lane_count = 1988 intel_dp->compliance.test_lane_count; 1989 } 1990 } 1991 } 1992 1993 static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp) 1994 { 1995 /* 1996 * bpp value was assumed to RGB format. And YCbCr 4:2:0 output 1997 * format of the number of bytes per pixel will be half the number 1998 * of bytes of RGB pixel. 1999 */ 2000 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 2001 bpp /= 2; 2002 2003 return bpp; 2004 } 2005 2006 /* Optimize link config in order: max bpp, min clock, min lanes */ 2007 static int 2008 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp, 2009 struct intel_crtc_state *pipe_config, 2010 const struct link_config_limits *limits) 2011 { 2012 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 2013 int bpp, clock, lane_count; 2014 int mode_rate, link_clock, link_avail; 2015 2016 for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) { 2017 int output_bpp = intel_dp_output_bpp(pipe_config, bpp); 2018 2019 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock, 2020 output_bpp); 2021 2022 for (clock = limits->min_clock; clock <= limits->max_clock; clock++) { 2023 for (lane_count = limits->min_lane_count; 2024 lane_count <= limits->max_lane_count; 2025 lane_count <<= 1) { 2026 link_clock = intel_dp->common_rates[clock]; 2027 link_avail = intel_dp_max_data_rate(link_clock, 2028 lane_count); 2029 2030 if (mode_rate <= link_avail) { 2031 pipe_config->lane_count = lane_count; 2032 pipe_config->pipe_bpp = bpp; 2033 pipe_config->port_clock = link_clock; 2034 2035 return 0; 2036 } 2037 } 2038 } 2039 } 2040 2041 return -EINVAL; 2042 } 2043 2044 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc) 2045 { 2046 int i, num_bpc; 2047 u8 dsc_bpc[3] = {0}; 2048 2049 num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd, 2050 dsc_bpc); 2051 for (i = 0; i < num_bpc; i++) { 2052 if (dsc_max_bpc >= dsc_bpc[i]) 2053 return dsc_bpc[i] * 3; 2054 } 2055 2056 return 0; 2057 } 2058 2059 #define DSC_SUPPORTED_VERSION_MIN 1 2060 2061 static int intel_dp_dsc_compute_params(struct intel_encoder *encoder, 2062 struct intel_crtc_state *crtc_state) 2063 { 2064 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2065 struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config; 2066 u8 line_buf_depth; 2067 int ret; 2068 2069 ret = intel_dsc_compute_params(encoder, crtc_state); 2070 if (ret) 2071 return ret; 2072 2073 /* 2074 * Slice Height of 8 works for all currently available panels. So start 2075 * with that if pic_height is an integral multiple of 8. Eventually add 2076 * logic to try multiple slice heights. 2077 */ 2078 if (vdsc_cfg->pic_height % 8 == 0) 2079 vdsc_cfg->slice_height = 8; 2080 else if (vdsc_cfg->pic_height % 4 == 0) 2081 vdsc_cfg->slice_height = 4; 2082 else 2083 vdsc_cfg->slice_height = 2; 2084 2085 vdsc_cfg->dsc_version_major = 2086 (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] & 2087 DP_DSC_MAJOR_MASK) >> DP_DSC_MAJOR_SHIFT; 2088 vdsc_cfg->dsc_version_minor = 2089 min(DSC_SUPPORTED_VERSION_MIN, 2090 (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] & 2091 DP_DSC_MINOR_MASK) >> DP_DSC_MINOR_SHIFT); 2092 2093 vdsc_cfg->convert_rgb = intel_dp->dsc_dpcd[DP_DSC_DEC_COLOR_FORMAT_CAP - DP_DSC_SUPPORT] & 2094 DP_DSC_RGB; 2095 2096 line_buf_depth = drm_dp_dsc_sink_line_buf_depth(intel_dp->dsc_dpcd); 2097 if (!line_buf_depth) { 2098 DRM_DEBUG_KMS("DSC Sink Line Buffer Depth invalid\n"); 2099 return -EINVAL; 2100 } 2101 2102 if (vdsc_cfg->dsc_version_minor == 2) 2103 vdsc_cfg->line_buf_depth = (line_buf_depth == DSC_1_2_MAX_LINEBUF_DEPTH_BITS) ? 2104 DSC_1_2_MAX_LINEBUF_DEPTH_VAL : line_buf_depth; 2105 else 2106 vdsc_cfg->line_buf_depth = (line_buf_depth > DSC_1_1_MAX_LINEBUF_DEPTH_BITS) ? 2107 DSC_1_1_MAX_LINEBUF_DEPTH_BITS : line_buf_depth; 2108 2109 vdsc_cfg->block_pred_enable = 2110 intel_dp->dsc_dpcd[DP_DSC_BLK_PREDICTION_SUPPORT - DP_DSC_SUPPORT] & 2111 DP_DSC_BLK_PREDICTION_IS_SUPPORTED; 2112 2113 return drm_dsc_compute_rc_parameters(vdsc_cfg); 2114 } 2115 2116 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp, 2117 struct intel_crtc_state *pipe_config, 2118 struct drm_connector_state *conn_state, 2119 struct link_config_limits *limits) 2120 { 2121 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 2122 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 2123 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 2124 u8 dsc_max_bpc; 2125 int pipe_bpp; 2126 int ret; 2127 2128 pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) && 2129 intel_dp_supports_fec(intel_dp, pipe_config); 2130 2131 if (!intel_dp_supports_dsc(intel_dp, pipe_config)) 2132 return -EINVAL; 2133 2134 /* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */ 2135 if (INTEL_GEN(dev_priv) >= 12) 2136 dsc_max_bpc = min_t(u8, 12, conn_state->max_requested_bpc); 2137 else 2138 dsc_max_bpc = min_t(u8, 10, 2139 conn_state->max_requested_bpc); 2140 2141 pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc); 2142 2143 /* Min Input BPC for ICL+ is 8 */ 2144 if (pipe_bpp < 8 * 3) { 2145 DRM_DEBUG_KMS("No DSC support for less than 8bpc\n"); 2146 return -EINVAL; 2147 } 2148 2149 /* 2150 * For now enable DSC for max bpp, max link rate, max lane count. 2151 * Optimize this later for the minimum possible link rate/lane count 2152 * with DSC enabled for the requested mode. 2153 */ 2154 pipe_config->pipe_bpp = pipe_bpp; 2155 pipe_config->port_clock = intel_dp->common_rates[limits->max_clock]; 2156 pipe_config->lane_count = limits->max_lane_count; 2157 2158 if (intel_dp_is_edp(intel_dp)) { 2159 pipe_config->dsc.compressed_bpp = 2160 min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4, 2161 pipe_config->pipe_bpp); 2162 pipe_config->dsc.slice_count = 2163 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd, 2164 true); 2165 } else { 2166 u16 dsc_max_output_bpp; 2167 u8 dsc_dp_slice_count; 2168 2169 dsc_max_output_bpp = 2170 intel_dp_dsc_get_output_bpp(dev_priv, 2171 pipe_config->port_clock, 2172 pipe_config->lane_count, 2173 adjusted_mode->crtc_clock, 2174 adjusted_mode->crtc_hdisplay); 2175 dsc_dp_slice_count = 2176 intel_dp_dsc_get_slice_count(intel_dp, 2177 adjusted_mode->crtc_clock, 2178 adjusted_mode->crtc_hdisplay); 2179 if (!dsc_max_output_bpp || !dsc_dp_slice_count) { 2180 DRM_DEBUG_KMS("Compressed BPP/Slice Count not supported\n"); 2181 return -EINVAL; 2182 } 2183 pipe_config->dsc.compressed_bpp = min_t(u16, 2184 dsc_max_output_bpp >> 4, 2185 pipe_config->pipe_bpp); 2186 pipe_config->dsc.slice_count = dsc_dp_slice_count; 2187 } 2188 /* 2189 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate 2190 * is greater than the maximum Cdclock and if slice count is even 2191 * then we need to use 2 VDSC instances. 2192 */ 2193 if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) { 2194 if (pipe_config->dsc.slice_count > 1) { 2195 pipe_config->dsc.dsc_split = true; 2196 } else { 2197 DRM_DEBUG_KMS("Cannot split stream to use 2 VDSC instances\n"); 2198 return -EINVAL; 2199 } 2200 } 2201 2202 ret = intel_dp_dsc_compute_params(&dig_port->base, pipe_config); 2203 if (ret < 0) { 2204 DRM_DEBUG_KMS("Cannot compute valid DSC parameters for Input Bpp = %d " 2205 "Compressed BPP = %d\n", 2206 pipe_config->pipe_bpp, 2207 pipe_config->dsc.compressed_bpp); 2208 return ret; 2209 } 2210 2211 pipe_config->dsc.compression_enable = true; 2212 DRM_DEBUG_KMS("DP DSC computed with Input Bpp = %d " 2213 "Compressed Bpp = %d Slice Count = %d\n", 2214 pipe_config->pipe_bpp, 2215 pipe_config->dsc.compressed_bpp, 2216 pipe_config->dsc.slice_count); 2217 2218 return 0; 2219 } 2220 2221 int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state) 2222 { 2223 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) 2224 return 6 * 3; 2225 else 2226 return 8 * 3; 2227 } 2228 2229 static int 2230 intel_dp_compute_link_config(struct intel_encoder *encoder, 2231 struct intel_crtc_state *pipe_config, 2232 struct drm_connector_state *conn_state) 2233 { 2234 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 2235 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2236 struct link_config_limits limits; 2237 int common_len; 2238 int ret; 2239 2240 common_len = intel_dp_common_len_rate_limit(intel_dp, 2241 intel_dp->max_link_rate); 2242 2243 /* No common link rates between source and sink */ 2244 WARN_ON(common_len <= 0); 2245 2246 limits.min_clock = 0; 2247 limits.max_clock = common_len - 1; 2248 2249 limits.min_lane_count = 1; 2250 limits.max_lane_count = intel_dp_max_lane_count(intel_dp); 2251 2252 limits.min_bpp = intel_dp_min_bpp(pipe_config); 2253 limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config); 2254 2255 if (intel_dp_is_edp(intel_dp)) { 2256 /* 2257 * Use the maximum clock and number of lanes the eDP panel 2258 * advertizes being capable of. The panels are generally 2259 * designed to support only a single clock and lane 2260 * configuration, and typically these values correspond to the 2261 * native resolution of the panel. 2262 */ 2263 limits.min_lane_count = limits.max_lane_count; 2264 limits.min_clock = limits.max_clock; 2265 } 2266 2267 intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits); 2268 2269 DRM_DEBUG_KMS("DP link computation with max lane count %i " 2270 "max rate %d max bpp %d pixel clock %iKHz\n", 2271 limits.max_lane_count, 2272 intel_dp->common_rates[limits.max_clock], 2273 limits.max_bpp, adjusted_mode->crtc_clock); 2274 2275 /* 2276 * Optimize for slow and wide. This is the place to add alternative 2277 * optimization policy. 2278 */ 2279 ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits); 2280 2281 /* enable compression if the mode doesn't fit available BW */ 2282 DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp->force_dsc_en); 2283 if (ret || intel_dp->force_dsc_en) { 2284 ret = intel_dp_dsc_compute_config(intel_dp, pipe_config, 2285 conn_state, &limits); 2286 if (ret < 0) 2287 return ret; 2288 } 2289 2290 if (pipe_config->dsc.compression_enable) { 2291 DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n", 2292 pipe_config->lane_count, pipe_config->port_clock, 2293 pipe_config->pipe_bpp, 2294 pipe_config->dsc.compressed_bpp); 2295 2296 DRM_DEBUG_KMS("DP link rate required %i available %i\n", 2297 intel_dp_link_required(adjusted_mode->crtc_clock, 2298 pipe_config->dsc.compressed_bpp), 2299 intel_dp_max_data_rate(pipe_config->port_clock, 2300 pipe_config->lane_count)); 2301 } else { 2302 DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n", 2303 pipe_config->lane_count, pipe_config->port_clock, 2304 pipe_config->pipe_bpp); 2305 2306 DRM_DEBUG_KMS("DP link rate required %i available %i\n", 2307 intel_dp_link_required(adjusted_mode->crtc_clock, 2308 pipe_config->pipe_bpp), 2309 intel_dp_max_data_rate(pipe_config->port_clock, 2310 pipe_config->lane_count)); 2311 } 2312 return 0; 2313 } 2314 2315 static int 2316 intel_dp_ycbcr420_config(struct intel_dp *intel_dp, 2317 struct drm_connector *connector, 2318 struct intel_crtc_state *crtc_state) 2319 { 2320 const struct drm_display_info *info = &connector->display_info; 2321 const struct drm_display_mode *adjusted_mode = 2322 &crtc_state->hw.adjusted_mode; 2323 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2324 int ret; 2325 2326 if (!drm_mode_is_420_only(info, adjusted_mode) || 2327 !intel_dp_get_colorimetry_status(intel_dp) || 2328 !connector->ycbcr_420_allowed) 2329 return 0; 2330 2331 crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420; 2332 2333 /* YCBCR 420 output conversion needs a scaler */ 2334 ret = skl_update_scaler_crtc(crtc_state); 2335 if (ret) { 2336 DRM_DEBUG_KMS("Scaler allocation for output failed\n"); 2337 return ret; 2338 } 2339 2340 intel_pch_panel_fitting(crtc, crtc_state, DRM_MODE_SCALE_FULLSCREEN); 2341 2342 return 0; 2343 } 2344 2345 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state, 2346 const struct drm_connector_state *conn_state) 2347 { 2348 const struct intel_digital_connector_state *intel_conn_state = 2349 const_container_of(conn_state, struct intel_digital_connector_state, base); 2350 const struct drm_display_mode *adjusted_mode = 2351 &crtc_state->hw.adjusted_mode; 2352 2353 /* 2354 * Our YCbCr output is always limited range. 2355 * crtc_state->limited_color_range only applies to RGB, 2356 * and it must never be set for YCbCr or we risk setting 2357 * some conflicting bits in PIPECONF which will mess up 2358 * the colors on the monitor. 2359 */ 2360 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) 2361 return false; 2362 2363 if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) { 2364 /* 2365 * See: 2366 * CEA-861-E - 5.1 Default Encoding Parameters 2367 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry 2368 */ 2369 return crtc_state->pipe_bpp != 18 && 2370 drm_default_rgb_quant_range(adjusted_mode) == 2371 HDMI_QUANTIZATION_RANGE_LIMITED; 2372 } else { 2373 return intel_conn_state->broadcast_rgb == 2374 INTEL_BROADCAST_RGB_LIMITED; 2375 } 2376 } 2377 2378 static bool intel_dp_port_has_audio(struct drm_i915_private *dev_priv, 2379 enum port port) 2380 { 2381 if (IS_G4X(dev_priv)) 2382 return false; 2383 if (INTEL_GEN(dev_priv) < 12 && port == PORT_A) 2384 return false; 2385 2386 return true; 2387 } 2388 2389 int 2390 intel_dp_compute_config(struct intel_encoder *encoder, 2391 struct intel_crtc_state *pipe_config, 2392 struct drm_connector_state *conn_state) 2393 { 2394 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 2395 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 2396 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2397 struct intel_lspcon *lspcon = enc_to_intel_lspcon(encoder); 2398 enum port port = encoder->port; 2399 struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->uapi.crtc); 2400 struct intel_connector *intel_connector = intel_dp->attached_connector; 2401 struct intel_digital_connector_state *intel_conn_state = 2402 to_intel_digital_connector_state(conn_state); 2403 bool constant_n = drm_dp_has_quirk(&intel_dp->desc, 2404 DP_DPCD_QUIRK_CONSTANT_N); 2405 int ret = 0, output_bpp; 2406 2407 if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A) 2408 pipe_config->has_pch_encoder = true; 2409 2410 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 2411 2412 if (lspcon->active) 2413 lspcon_ycbcr420_config(&intel_connector->base, pipe_config); 2414 else 2415 ret = intel_dp_ycbcr420_config(intel_dp, &intel_connector->base, 2416 pipe_config); 2417 2418 if (ret) 2419 return ret; 2420 2421 pipe_config->has_drrs = false; 2422 if (!intel_dp_port_has_audio(dev_priv, port)) 2423 pipe_config->has_audio = false; 2424 else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO) 2425 pipe_config->has_audio = intel_dp->has_audio; 2426 else 2427 pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON; 2428 2429 if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) { 2430 intel_fixed_panel_mode(intel_connector->panel.fixed_mode, 2431 adjusted_mode); 2432 2433 if (INTEL_GEN(dev_priv) >= 9) { 2434 ret = skl_update_scaler_crtc(pipe_config); 2435 if (ret) 2436 return ret; 2437 } 2438 2439 if (HAS_GMCH(dev_priv)) 2440 intel_gmch_panel_fitting(intel_crtc, pipe_config, 2441 conn_state->scaling_mode); 2442 else 2443 intel_pch_panel_fitting(intel_crtc, pipe_config, 2444 conn_state->scaling_mode); 2445 } 2446 2447 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) 2448 return -EINVAL; 2449 2450 if (HAS_GMCH(dev_priv) && 2451 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) 2452 return -EINVAL; 2453 2454 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) 2455 return -EINVAL; 2456 2457 if (intel_dp_hdisplay_bad(dev_priv, adjusted_mode->crtc_hdisplay)) 2458 return -EINVAL; 2459 2460 ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state); 2461 if (ret < 0) 2462 return ret; 2463 2464 pipe_config->limited_color_range = 2465 intel_dp_limited_color_range(pipe_config, conn_state); 2466 2467 if (pipe_config->dsc.compression_enable) 2468 output_bpp = pipe_config->dsc.compressed_bpp; 2469 else 2470 output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp); 2471 2472 intel_link_compute_m_n(output_bpp, 2473 pipe_config->lane_count, 2474 adjusted_mode->crtc_clock, 2475 pipe_config->port_clock, 2476 &pipe_config->dp_m_n, 2477 constant_n, pipe_config->fec_enable); 2478 2479 if (intel_connector->panel.downclock_mode != NULL && 2480 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) { 2481 pipe_config->has_drrs = true; 2482 intel_link_compute_m_n(output_bpp, 2483 pipe_config->lane_count, 2484 intel_connector->panel.downclock_mode->clock, 2485 pipe_config->port_clock, 2486 &pipe_config->dp_m2_n2, 2487 constant_n, pipe_config->fec_enable); 2488 } 2489 2490 if (!HAS_DDI(dev_priv)) 2491 intel_dp_set_clock(encoder, pipe_config); 2492 2493 intel_psr_compute_config(intel_dp, pipe_config); 2494 2495 return 0; 2496 } 2497 2498 void intel_dp_set_link_params(struct intel_dp *intel_dp, 2499 int link_rate, u8 lane_count, 2500 bool link_mst) 2501 { 2502 intel_dp->link_trained = false; 2503 intel_dp->link_rate = link_rate; 2504 intel_dp->lane_count = lane_count; 2505 intel_dp->link_mst = link_mst; 2506 } 2507 2508 static void intel_dp_prepare(struct intel_encoder *encoder, 2509 const struct intel_crtc_state *pipe_config) 2510 { 2511 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 2512 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2513 enum port port = encoder->port; 2514 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 2515 const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; 2516 2517 intel_dp_set_link_params(intel_dp, pipe_config->port_clock, 2518 pipe_config->lane_count, 2519 intel_crtc_has_type(pipe_config, 2520 INTEL_OUTPUT_DP_MST)); 2521 2522 intel_dp->regs.dp_tp_ctl = DP_TP_CTL(port); 2523 intel_dp->regs.dp_tp_status = DP_TP_STATUS(port); 2524 2525 /* 2526 * There are four kinds of DP registers: 2527 * 2528 * IBX PCH 2529 * SNB CPU 2530 * IVB CPU 2531 * CPT PCH 2532 * 2533 * IBX PCH and CPU are the same for almost everything, 2534 * except that the CPU DP PLL is configured in this 2535 * register 2536 * 2537 * CPT PCH is quite different, having many bits moved 2538 * to the TRANS_DP_CTL register instead. That 2539 * configuration happens (oddly) in ilk_pch_enable 2540 */ 2541 2542 /* Preserve the BIOS-computed detected bit. This is 2543 * supposed to be read-only. 2544 */ 2545 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED; 2546 2547 /* Handle DP bits in common between all three register formats */ 2548 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0; 2549 intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count); 2550 2551 /* Split out the IBX/CPU vs CPT settings */ 2552 2553 if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) { 2554 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 2555 intel_dp->DP |= DP_SYNC_HS_HIGH; 2556 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 2557 intel_dp->DP |= DP_SYNC_VS_HIGH; 2558 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; 2559 2560 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) 2561 intel_dp->DP |= DP_ENHANCED_FRAMING; 2562 2563 intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe); 2564 } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) { 2565 u32 trans_dp; 2566 2567 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; 2568 2569 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe)); 2570 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) 2571 trans_dp |= TRANS_DP_ENH_FRAMING; 2572 else 2573 trans_dp &= ~TRANS_DP_ENH_FRAMING; 2574 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp); 2575 } else { 2576 if (IS_G4X(dev_priv) && pipe_config->limited_color_range) 2577 intel_dp->DP |= DP_COLOR_RANGE_16_235; 2578 2579 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) 2580 intel_dp->DP |= DP_SYNC_HS_HIGH; 2581 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) 2582 intel_dp->DP |= DP_SYNC_VS_HIGH; 2583 intel_dp->DP |= DP_LINK_TRAIN_OFF; 2584 2585 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) 2586 intel_dp->DP |= DP_ENHANCED_FRAMING; 2587 2588 if (IS_CHERRYVIEW(dev_priv)) 2589 intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe); 2590 else 2591 intel_dp->DP |= DP_PIPE_SEL(crtc->pipe); 2592 } 2593 } 2594 2595 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK) 2596 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE) 2597 2598 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0) 2599 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0) 2600 2601 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK) 2602 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE) 2603 2604 static void intel_pps_verify_state(struct intel_dp *intel_dp); 2605 2606 static void wait_panel_status(struct intel_dp *intel_dp, 2607 u32 mask, 2608 u32 value) 2609 { 2610 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2611 i915_reg_t pp_stat_reg, pp_ctrl_reg; 2612 2613 lockdep_assert_held(&dev_priv->pps_mutex); 2614 2615 intel_pps_verify_state(intel_dp); 2616 2617 pp_stat_reg = _pp_stat_reg(intel_dp); 2618 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2619 2620 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n", 2621 mask, value, 2622 I915_READ(pp_stat_reg), 2623 I915_READ(pp_ctrl_reg)); 2624 2625 if (intel_de_wait_for_register(dev_priv, pp_stat_reg, 2626 mask, value, 5000)) 2627 DRM_ERROR("Panel status timeout: status %08x control %08x\n", 2628 I915_READ(pp_stat_reg), 2629 I915_READ(pp_ctrl_reg)); 2630 2631 DRM_DEBUG_KMS("Wait complete\n"); 2632 } 2633 2634 static void wait_panel_on(struct intel_dp *intel_dp) 2635 { 2636 DRM_DEBUG_KMS("Wait for panel power on\n"); 2637 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE); 2638 } 2639 2640 static void wait_panel_off(struct intel_dp *intel_dp) 2641 { 2642 DRM_DEBUG_KMS("Wait for panel power off time\n"); 2643 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE); 2644 } 2645 2646 static void wait_panel_power_cycle(struct intel_dp *intel_dp) 2647 { 2648 ktime_t panel_power_on_time; 2649 s64 panel_power_off_duration; 2650 2651 DRM_DEBUG_KMS("Wait for panel power cycle\n"); 2652 2653 /* take the difference of currrent time and panel power off time 2654 * and then make panel wait for t11_t12 if needed. */ 2655 panel_power_on_time = ktime_get_boottime(); 2656 panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time); 2657 2658 /* When we disable the VDD override bit last we have to do the manual 2659 * wait. */ 2660 if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay) 2661 wait_remaining_ms_from_jiffies(jiffies, 2662 intel_dp->panel_power_cycle_delay - panel_power_off_duration); 2663 2664 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE); 2665 } 2666 2667 static void wait_backlight_on(struct intel_dp *intel_dp) 2668 { 2669 wait_remaining_ms_from_jiffies(intel_dp->last_power_on, 2670 intel_dp->backlight_on_delay); 2671 } 2672 2673 static void edp_wait_backlight_off(struct intel_dp *intel_dp) 2674 { 2675 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off, 2676 intel_dp->backlight_off_delay); 2677 } 2678 2679 /* Read the current pp_control value, unlocking the register if it 2680 * is locked 2681 */ 2682 2683 static u32 ilk_get_pp_control(struct intel_dp *intel_dp) 2684 { 2685 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2686 u32 control; 2687 2688 lockdep_assert_held(&dev_priv->pps_mutex); 2689 2690 control = I915_READ(_pp_ctrl_reg(intel_dp)); 2691 if (WARN_ON(!HAS_DDI(dev_priv) && 2692 (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) { 2693 control &= ~PANEL_UNLOCK_MASK; 2694 control |= PANEL_UNLOCK_REGS; 2695 } 2696 return control; 2697 } 2698 2699 /* 2700 * Must be paired with edp_panel_vdd_off(). 2701 * Must hold pps_mutex around the whole on/off sequence. 2702 * Can be nested with intel_edp_panel_vdd_{on,off}() calls. 2703 */ 2704 static bool edp_panel_vdd_on(struct intel_dp *intel_dp) 2705 { 2706 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2707 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 2708 u32 pp; 2709 i915_reg_t pp_stat_reg, pp_ctrl_reg; 2710 bool need_to_disable = !intel_dp->want_panel_vdd; 2711 2712 lockdep_assert_held(&dev_priv->pps_mutex); 2713 2714 if (!intel_dp_is_edp(intel_dp)) 2715 return false; 2716 2717 cancel_delayed_work(&intel_dp->panel_vdd_work); 2718 intel_dp->want_panel_vdd = true; 2719 2720 if (edp_have_panel_vdd(intel_dp)) 2721 return need_to_disable; 2722 2723 intel_display_power_get(dev_priv, 2724 intel_aux_power_domain(intel_dig_port)); 2725 2726 DRM_DEBUG_KMS("Turning [ENCODER:%d:%s] VDD on\n", 2727 intel_dig_port->base.base.base.id, 2728 intel_dig_port->base.base.name); 2729 2730 if (!edp_have_panel_power(intel_dp)) 2731 wait_panel_power_cycle(intel_dp); 2732 2733 pp = ilk_get_pp_control(intel_dp); 2734 pp |= EDP_FORCE_VDD; 2735 2736 pp_stat_reg = _pp_stat_reg(intel_dp); 2737 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2738 2739 I915_WRITE(pp_ctrl_reg, pp); 2740 POSTING_READ(pp_ctrl_reg); 2741 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n", 2742 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg)); 2743 /* 2744 * If the panel wasn't on, delay before accessing aux channel 2745 */ 2746 if (!edp_have_panel_power(intel_dp)) { 2747 DRM_DEBUG_KMS("[ENCODER:%d:%s] panel power wasn't enabled\n", 2748 intel_dig_port->base.base.base.id, 2749 intel_dig_port->base.base.name); 2750 msleep(intel_dp->panel_power_up_delay); 2751 } 2752 2753 return need_to_disable; 2754 } 2755 2756 /* 2757 * Must be paired with intel_edp_panel_vdd_off() or 2758 * intel_edp_panel_off(). 2759 * Nested calls to these functions are not allowed since 2760 * we drop the lock. Caller must use some higher level 2761 * locking to prevent nested calls from other threads. 2762 */ 2763 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp) 2764 { 2765 intel_wakeref_t wakeref; 2766 bool vdd; 2767 2768 if (!intel_dp_is_edp(intel_dp)) 2769 return; 2770 2771 vdd = false; 2772 with_pps_lock(intel_dp, wakeref) 2773 vdd = edp_panel_vdd_on(intel_dp); 2774 I915_STATE_WARN(!vdd, "[ENCODER:%d:%s] VDD already requested on\n", 2775 dp_to_dig_port(intel_dp)->base.base.base.id, 2776 dp_to_dig_port(intel_dp)->base.base.name); 2777 } 2778 2779 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp) 2780 { 2781 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2782 struct intel_digital_port *intel_dig_port = 2783 dp_to_dig_port(intel_dp); 2784 u32 pp; 2785 i915_reg_t pp_stat_reg, pp_ctrl_reg; 2786 2787 lockdep_assert_held(&dev_priv->pps_mutex); 2788 2789 WARN_ON(intel_dp->want_panel_vdd); 2790 2791 if (!edp_have_panel_vdd(intel_dp)) 2792 return; 2793 2794 DRM_DEBUG_KMS("Turning [ENCODER:%d:%s] VDD off\n", 2795 intel_dig_port->base.base.base.id, 2796 intel_dig_port->base.base.name); 2797 2798 pp = ilk_get_pp_control(intel_dp); 2799 pp &= ~EDP_FORCE_VDD; 2800 2801 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2802 pp_stat_reg = _pp_stat_reg(intel_dp); 2803 2804 I915_WRITE(pp_ctrl_reg, pp); 2805 POSTING_READ(pp_ctrl_reg); 2806 2807 /* Make sure sequencer is idle before allowing subsequent activity */ 2808 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n", 2809 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg)); 2810 2811 if ((pp & PANEL_POWER_ON) == 0) 2812 intel_dp->panel_power_off_time = ktime_get_boottime(); 2813 2814 intel_display_power_put_unchecked(dev_priv, 2815 intel_aux_power_domain(intel_dig_port)); 2816 } 2817 2818 static void edp_panel_vdd_work(struct work_struct *__work) 2819 { 2820 struct intel_dp *intel_dp = 2821 container_of(to_delayed_work(__work), 2822 struct intel_dp, panel_vdd_work); 2823 intel_wakeref_t wakeref; 2824 2825 with_pps_lock(intel_dp, wakeref) { 2826 if (!intel_dp->want_panel_vdd) 2827 edp_panel_vdd_off_sync(intel_dp); 2828 } 2829 } 2830 2831 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp) 2832 { 2833 unsigned long delay; 2834 2835 /* 2836 * Queue the timer to fire a long time from now (relative to the power 2837 * down delay) to keep the panel power up across a sequence of 2838 * operations. 2839 */ 2840 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5); 2841 schedule_delayed_work(&intel_dp->panel_vdd_work, delay); 2842 } 2843 2844 /* 2845 * Must be paired with edp_panel_vdd_on(). 2846 * Must hold pps_mutex around the whole on/off sequence. 2847 * Can be nested with intel_edp_panel_vdd_{on,off}() calls. 2848 */ 2849 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync) 2850 { 2851 struct drm_i915_private *dev_priv __lockdep_used = dp_to_i915(intel_dp); 2852 2853 lockdep_assert_held(&dev_priv->pps_mutex); 2854 2855 if (!intel_dp_is_edp(intel_dp)) 2856 return; 2857 2858 I915_STATE_WARN(!intel_dp->want_panel_vdd, "[ENCODER:%d:%s] VDD not forced on", 2859 dp_to_dig_port(intel_dp)->base.base.base.id, 2860 dp_to_dig_port(intel_dp)->base.base.name); 2861 2862 intel_dp->want_panel_vdd = false; 2863 2864 if (sync) 2865 edp_panel_vdd_off_sync(intel_dp); 2866 else 2867 edp_panel_vdd_schedule_off(intel_dp); 2868 } 2869 2870 static void edp_panel_on(struct intel_dp *intel_dp) 2871 { 2872 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2873 u32 pp; 2874 i915_reg_t pp_ctrl_reg; 2875 2876 lockdep_assert_held(&dev_priv->pps_mutex); 2877 2878 if (!intel_dp_is_edp(intel_dp)) 2879 return; 2880 2881 DRM_DEBUG_KMS("Turn [ENCODER:%d:%s] panel power on\n", 2882 dp_to_dig_port(intel_dp)->base.base.base.id, 2883 dp_to_dig_port(intel_dp)->base.base.name); 2884 2885 if (WARN(edp_have_panel_power(intel_dp), 2886 "[ENCODER:%d:%s] panel power already on\n", 2887 dp_to_dig_port(intel_dp)->base.base.base.id, 2888 dp_to_dig_port(intel_dp)->base.base.name)) 2889 return; 2890 2891 wait_panel_power_cycle(intel_dp); 2892 2893 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2894 pp = ilk_get_pp_control(intel_dp); 2895 if (IS_GEN(dev_priv, 5)) { 2896 /* ILK workaround: disable reset around power sequence */ 2897 pp &= ~PANEL_POWER_RESET; 2898 I915_WRITE(pp_ctrl_reg, pp); 2899 POSTING_READ(pp_ctrl_reg); 2900 } 2901 2902 pp |= PANEL_POWER_ON; 2903 if (!IS_GEN(dev_priv, 5)) 2904 pp |= PANEL_POWER_RESET; 2905 2906 I915_WRITE(pp_ctrl_reg, pp); 2907 POSTING_READ(pp_ctrl_reg); 2908 2909 wait_panel_on(intel_dp); 2910 intel_dp->last_power_on = jiffies; 2911 2912 if (IS_GEN(dev_priv, 5)) { 2913 pp |= PANEL_POWER_RESET; /* restore panel reset bit */ 2914 I915_WRITE(pp_ctrl_reg, pp); 2915 POSTING_READ(pp_ctrl_reg); 2916 } 2917 } 2918 2919 void intel_edp_panel_on(struct intel_dp *intel_dp) 2920 { 2921 intel_wakeref_t wakeref; 2922 2923 if (!intel_dp_is_edp(intel_dp)) 2924 return; 2925 2926 with_pps_lock(intel_dp, wakeref) 2927 edp_panel_on(intel_dp); 2928 } 2929 2930 2931 static void edp_panel_off(struct intel_dp *intel_dp) 2932 { 2933 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2934 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 2935 u32 pp; 2936 i915_reg_t pp_ctrl_reg; 2937 2938 lockdep_assert_held(&dev_priv->pps_mutex); 2939 2940 if (!intel_dp_is_edp(intel_dp)) 2941 return; 2942 2943 DRM_DEBUG_KMS("Turn [ENCODER:%d:%s] panel power off\n", 2944 dig_port->base.base.base.id, dig_port->base.base.name); 2945 2946 WARN(!intel_dp->want_panel_vdd, "Need [ENCODER:%d:%s] VDD to turn off panel\n", 2947 dig_port->base.base.base.id, dig_port->base.base.name); 2948 2949 pp = ilk_get_pp_control(intel_dp); 2950 /* We need to switch off panel power _and_ force vdd, for otherwise some 2951 * panels get very unhappy and cease to work. */ 2952 pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD | 2953 EDP_BLC_ENABLE); 2954 2955 pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2956 2957 intel_dp->want_panel_vdd = false; 2958 2959 I915_WRITE(pp_ctrl_reg, pp); 2960 POSTING_READ(pp_ctrl_reg); 2961 2962 wait_panel_off(intel_dp); 2963 intel_dp->panel_power_off_time = ktime_get_boottime(); 2964 2965 /* We got a reference when we enabled the VDD. */ 2966 intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port)); 2967 } 2968 2969 void intel_edp_panel_off(struct intel_dp *intel_dp) 2970 { 2971 intel_wakeref_t wakeref; 2972 2973 if (!intel_dp_is_edp(intel_dp)) 2974 return; 2975 2976 with_pps_lock(intel_dp, wakeref) 2977 edp_panel_off(intel_dp); 2978 } 2979 2980 /* Enable backlight in the panel power control. */ 2981 static void _intel_edp_backlight_on(struct intel_dp *intel_dp) 2982 { 2983 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2984 intel_wakeref_t wakeref; 2985 2986 /* 2987 * If we enable the backlight right away following a panel power 2988 * on, we may see slight flicker as the panel syncs with the eDP 2989 * link. So delay a bit to make sure the image is solid before 2990 * allowing it to appear. 2991 */ 2992 wait_backlight_on(intel_dp); 2993 2994 with_pps_lock(intel_dp, wakeref) { 2995 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 2996 u32 pp; 2997 2998 pp = ilk_get_pp_control(intel_dp); 2999 pp |= EDP_BLC_ENABLE; 3000 3001 I915_WRITE(pp_ctrl_reg, pp); 3002 POSTING_READ(pp_ctrl_reg); 3003 } 3004 } 3005 3006 /* Enable backlight PWM and backlight PP control. */ 3007 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state, 3008 const struct drm_connector_state *conn_state) 3009 { 3010 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(conn_state->best_encoder)); 3011 3012 if (!intel_dp_is_edp(intel_dp)) 3013 return; 3014 3015 DRM_DEBUG_KMS("\n"); 3016 3017 intel_panel_enable_backlight(crtc_state, conn_state); 3018 _intel_edp_backlight_on(intel_dp); 3019 } 3020 3021 /* Disable backlight in the panel power control. */ 3022 static void _intel_edp_backlight_off(struct intel_dp *intel_dp) 3023 { 3024 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3025 intel_wakeref_t wakeref; 3026 3027 if (!intel_dp_is_edp(intel_dp)) 3028 return; 3029 3030 with_pps_lock(intel_dp, wakeref) { 3031 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp); 3032 u32 pp; 3033 3034 pp = ilk_get_pp_control(intel_dp); 3035 pp &= ~EDP_BLC_ENABLE; 3036 3037 I915_WRITE(pp_ctrl_reg, pp); 3038 POSTING_READ(pp_ctrl_reg); 3039 } 3040 3041 intel_dp->last_backlight_off = jiffies; 3042 edp_wait_backlight_off(intel_dp); 3043 } 3044 3045 /* Disable backlight PP control and backlight PWM. */ 3046 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state) 3047 { 3048 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(old_conn_state->best_encoder)); 3049 3050 if (!intel_dp_is_edp(intel_dp)) 3051 return; 3052 3053 DRM_DEBUG_KMS("\n"); 3054 3055 _intel_edp_backlight_off(intel_dp); 3056 intel_panel_disable_backlight(old_conn_state); 3057 } 3058 3059 /* 3060 * Hook for controlling the panel power control backlight through the bl_power 3061 * sysfs attribute. Take care to handle multiple calls. 3062 */ 3063 static void intel_edp_backlight_power(struct intel_connector *connector, 3064 bool enable) 3065 { 3066 struct intel_dp *intel_dp = intel_attached_dp(connector); 3067 intel_wakeref_t wakeref; 3068 bool is_enabled; 3069 3070 is_enabled = false; 3071 with_pps_lock(intel_dp, wakeref) 3072 is_enabled = ilk_get_pp_control(intel_dp) & EDP_BLC_ENABLE; 3073 if (is_enabled == enable) 3074 return; 3075 3076 DRM_DEBUG_KMS("panel power control backlight %s\n", 3077 enable ? "enable" : "disable"); 3078 3079 if (enable) 3080 _intel_edp_backlight_on(intel_dp); 3081 else 3082 _intel_edp_backlight_off(intel_dp); 3083 } 3084 3085 static void assert_dp_port(struct intel_dp *intel_dp, bool state) 3086 { 3087 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 3088 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); 3089 bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN; 3090 3091 I915_STATE_WARN(cur_state != state, 3092 "[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n", 3093 dig_port->base.base.base.id, dig_port->base.base.name, 3094 onoff(state), onoff(cur_state)); 3095 } 3096 #define assert_dp_port_disabled(d) assert_dp_port((d), false) 3097 3098 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state) 3099 { 3100 bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE; 3101 3102 I915_STATE_WARN(cur_state != state, 3103 "eDP PLL state assertion failure (expected %s, current %s)\n", 3104 onoff(state), onoff(cur_state)); 3105 } 3106 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true) 3107 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false) 3108 3109 static void ilk_edp_pll_on(struct intel_dp *intel_dp, 3110 const struct intel_crtc_state *pipe_config) 3111 { 3112 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 3113 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3114 3115 assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder); 3116 assert_dp_port_disabled(intel_dp); 3117 assert_edp_pll_disabled(dev_priv); 3118 3119 DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n", 3120 pipe_config->port_clock); 3121 3122 intel_dp->DP &= ~DP_PLL_FREQ_MASK; 3123 3124 if (pipe_config->port_clock == 162000) 3125 intel_dp->DP |= DP_PLL_FREQ_162MHZ; 3126 else 3127 intel_dp->DP |= DP_PLL_FREQ_270MHZ; 3128 3129 I915_WRITE(DP_A, intel_dp->DP); 3130 POSTING_READ(DP_A); 3131 udelay(500); 3132 3133 /* 3134 * [DevILK] Work around required when enabling DP PLL 3135 * while a pipe is enabled going to FDI: 3136 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI 3137 * 2. Program DP PLL enable 3138 */ 3139 if (IS_GEN(dev_priv, 5)) 3140 intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe); 3141 3142 intel_dp->DP |= DP_PLL_ENABLE; 3143 3144 I915_WRITE(DP_A, intel_dp->DP); 3145 POSTING_READ(DP_A); 3146 udelay(200); 3147 } 3148 3149 static void ilk_edp_pll_off(struct intel_dp *intel_dp, 3150 const struct intel_crtc_state *old_crtc_state) 3151 { 3152 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 3153 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3154 3155 assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder); 3156 assert_dp_port_disabled(intel_dp); 3157 assert_edp_pll_enabled(dev_priv); 3158 3159 DRM_DEBUG_KMS("disabling eDP PLL\n"); 3160 3161 intel_dp->DP &= ~DP_PLL_ENABLE; 3162 3163 I915_WRITE(DP_A, intel_dp->DP); 3164 POSTING_READ(DP_A); 3165 udelay(200); 3166 } 3167 3168 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp) 3169 { 3170 /* 3171 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus 3172 * be capable of signalling downstream hpd with a long pulse. 3173 * Whether or not that means D3 is safe to use is not clear, 3174 * but let's assume so until proven otherwise. 3175 * 3176 * FIXME should really check all downstream ports... 3177 */ 3178 return intel_dp->dpcd[DP_DPCD_REV] == 0x11 && 3179 intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT && 3180 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD; 3181 } 3182 3183 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp, 3184 const struct intel_crtc_state *crtc_state, 3185 bool enable) 3186 { 3187 int ret; 3188 3189 if (!crtc_state->dsc.compression_enable) 3190 return; 3191 3192 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE, 3193 enable ? DP_DECOMPRESSION_EN : 0); 3194 if (ret < 0) 3195 DRM_DEBUG_KMS("Failed to %s sink decompression state\n", 3196 enable ? "enable" : "disable"); 3197 } 3198 3199 /* If the sink supports it, try to set the power state appropriately */ 3200 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode) 3201 { 3202 int ret, i; 3203 3204 /* Should have a valid DPCD by this point */ 3205 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) 3206 return; 3207 3208 if (mode != DRM_MODE_DPMS_ON) { 3209 if (downstream_hpd_needs_d0(intel_dp)) 3210 return; 3211 3212 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, 3213 DP_SET_POWER_D3); 3214 } else { 3215 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp); 3216 3217 /* 3218 * When turning on, we need to retry for 1ms to give the sink 3219 * time to wake up. 3220 */ 3221 for (i = 0; i < 3; i++) { 3222 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, 3223 DP_SET_POWER_D0); 3224 if (ret == 1) 3225 break; 3226 msleep(1); 3227 } 3228 3229 if (ret == 1 && lspcon->active) 3230 lspcon_wait_pcon_mode(lspcon); 3231 } 3232 3233 if (ret != 1) 3234 DRM_DEBUG_KMS("failed to %s sink power state\n", 3235 mode == DRM_MODE_DPMS_ON ? "enable" : "disable"); 3236 } 3237 3238 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv, 3239 enum port port, enum pipe *pipe) 3240 { 3241 enum pipe p; 3242 3243 for_each_pipe(dev_priv, p) { 3244 u32 val = I915_READ(TRANS_DP_CTL(p)); 3245 3246 if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) { 3247 *pipe = p; 3248 return true; 3249 } 3250 } 3251 3252 DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port)); 3253 3254 /* must initialize pipe to something for the asserts */ 3255 *pipe = PIPE_A; 3256 3257 return false; 3258 } 3259 3260 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv, 3261 i915_reg_t dp_reg, enum port port, 3262 enum pipe *pipe) 3263 { 3264 bool ret; 3265 u32 val; 3266 3267 val = I915_READ(dp_reg); 3268 3269 ret = val & DP_PORT_EN; 3270 3271 /* asserts want to know the pipe even if the port is disabled */ 3272 if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) 3273 *pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB; 3274 else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) 3275 ret &= cpt_dp_port_selected(dev_priv, port, pipe); 3276 else if (IS_CHERRYVIEW(dev_priv)) 3277 *pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV; 3278 else 3279 *pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT; 3280 3281 return ret; 3282 } 3283 3284 static bool intel_dp_get_hw_state(struct intel_encoder *encoder, 3285 enum pipe *pipe) 3286 { 3287 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3288 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3289 intel_wakeref_t wakeref; 3290 bool ret; 3291 3292 wakeref = intel_display_power_get_if_enabled(dev_priv, 3293 encoder->power_domain); 3294 if (!wakeref) 3295 return false; 3296 3297 ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg, 3298 encoder->port, pipe); 3299 3300 intel_display_power_put(dev_priv, encoder->power_domain, wakeref); 3301 3302 return ret; 3303 } 3304 3305 static void intel_dp_get_config(struct intel_encoder *encoder, 3306 struct intel_crtc_state *pipe_config) 3307 { 3308 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3309 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3310 u32 tmp, flags = 0; 3311 enum port port = encoder->port; 3312 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 3313 3314 if (encoder->type == INTEL_OUTPUT_EDP) 3315 pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP); 3316 else 3317 pipe_config->output_types |= BIT(INTEL_OUTPUT_DP); 3318 3319 tmp = I915_READ(intel_dp->output_reg); 3320 3321 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A; 3322 3323 if (HAS_PCH_CPT(dev_priv) && port != PORT_A) { 3324 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe)); 3325 3326 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH) 3327 flags |= DRM_MODE_FLAG_PHSYNC; 3328 else 3329 flags |= DRM_MODE_FLAG_NHSYNC; 3330 3331 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH) 3332 flags |= DRM_MODE_FLAG_PVSYNC; 3333 else 3334 flags |= DRM_MODE_FLAG_NVSYNC; 3335 } else { 3336 if (tmp & DP_SYNC_HS_HIGH) 3337 flags |= DRM_MODE_FLAG_PHSYNC; 3338 else 3339 flags |= DRM_MODE_FLAG_NHSYNC; 3340 3341 if (tmp & DP_SYNC_VS_HIGH) 3342 flags |= DRM_MODE_FLAG_PVSYNC; 3343 else 3344 flags |= DRM_MODE_FLAG_NVSYNC; 3345 } 3346 3347 pipe_config->hw.adjusted_mode.flags |= flags; 3348 3349 if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235) 3350 pipe_config->limited_color_range = true; 3351 3352 pipe_config->lane_count = 3353 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1; 3354 3355 intel_dp_get_m_n(crtc, pipe_config); 3356 3357 if (port == PORT_A) { 3358 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ) 3359 pipe_config->port_clock = 162000; 3360 else 3361 pipe_config->port_clock = 270000; 3362 } 3363 3364 pipe_config->hw.adjusted_mode.crtc_clock = 3365 intel_dotclock_calculate(pipe_config->port_clock, 3366 &pipe_config->dp_m_n); 3367 3368 if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp && 3369 pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) { 3370 /* 3371 * This is a big fat ugly hack. 3372 * 3373 * Some machines in UEFI boot mode provide us a VBT that has 18 3374 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons 3375 * unknown we fail to light up. Yet the same BIOS boots up with 3376 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as 3377 * max, not what it tells us to use. 3378 * 3379 * Note: This will still be broken if the eDP panel is not lit 3380 * up by the BIOS, and thus we can't get the mode at module 3381 * load. 3382 */ 3383 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n", 3384 pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp); 3385 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp; 3386 } 3387 } 3388 3389 static void intel_disable_dp(struct intel_encoder *encoder, 3390 const struct intel_crtc_state *old_crtc_state, 3391 const struct drm_connector_state *old_conn_state) 3392 { 3393 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3394 3395 intel_dp->link_trained = false; 3396 3397 if (old_crtc_state->has_audio) 3398 intel_audio_codec_disable(encoder, 3399 old_crtc_state, old_conn_state); 3400 3401 /* Make sure the panel is off before trying to change the mode. But also 3402 * ensure that we have vdd while we switch off the panel. */ 3403 intel_edp_panel_vdd_on(intel_dp); 3404 intel_edp_backlight_off(old_conn_state); 3405 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF); 3406 intel_edp_panel_off(intel_dp); 3407 } 3408 3409 static void g4x_disable_dp(struct intel_encoder *encoder, 3410 const struct intel_crtc_state *old_crtc_state, 3411 const struct drm_connector_state *old_conn_state) 3412 { 3413 intel_disable_dp(encoder, old_crtc_state, old_conn_state); 3414 } 3415 3416 static void vlv_disable_dp(struct intel_encoder *encoder, 3417 const struct intel_crtc_state *old_crtc_state, 3418 const struct drm_connector_state *old_conn_state) 3419 { 3420 intel_disable_dp(encoder, old_crtc_state, old_conn_state); 3421 } 3422 3423 static void g4x_post_disable_dp(struct intel_encoder *encoder, 3424 const struct intel_crtc_state *old_crtc_state, 3425 const struct drm_connector_state *old_conn_state) 3426 { 3427 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3428 enum port port = encoder->port; 3429 3430 /* 3431 * Bspec does not list a specific disable sequence for g4x DP. 3432 * Follow the ilk+ sequence (disable pipe before the port) for 3433 * g4x DP as it does not suffer from underruns like the normal 3434 * g4x modeset sequence (disable pipe after the port). 3435 */ 3436 intel_dp_link_down(encoder, old_crtc_state); 3437 3438 /* Only ilk+ has port A */ 3439 if (port == PORT_A) 3440 ilk_edp_pll_off(intel_dp, old_crtc_state); 3441 } 3442 3443 static void vlv_post_disable_dp(struct intel_encoder *encoder, 3444 const struct intel_crtc_state *old_crtc_state, 3445 const struct drm_connector_state *old_conn_state) 3446 { 3447 intel_dp_link_down(encoder, old_crtc_state); 3448 } 3449 3450 static void chv_post_disable_dp(struct intel_encoder *encoder, 3451 const struct intel_crtc_state *old_crtc_state, 3452 const struct drm_connector_state *old_conn_state) 3453 { 3454 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3455 3456 intel_dp_link_down(encoder, old_crtc_state); 3457 3458 vlv_dpio_get(dev_priv); 3459 3460 /* Assert data lane reset */ 3461 chv_data_lane_soft_reset(encoder, old_crtc_state, true); 3462 3463 vlv_dpio_put(dev_priv); 3464 } 3465 3466 static void 3467 _intel_dp_set_link_train(struct intel_dp *intel_dp, 3468 u32 *DP, 3469 u8 dp_train_pat) 3470 { 3471 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3472 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 3473 enum port port = intel_dig_port->base.port; 3474 u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd); 3475 3476 if (dp_train_pat & train_pat_mask) 3477 DRM_DEBUG_KMS("Using DP training pattern TPS%d\n", 3478 dp_train_pat & train_pat_mask); 3479 3480 if (HAS_DDI(dev_priv)) { 3481 u32 temp = I915_READ(intel_dp->regs.dp_tp_ctl); 3482 3483 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE) 3484 temp |= DP_TP_CTL_SCRAMBLE_DISABLE; 3485 else 3486 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE; 3487 3488 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK; 3489 switch (dp_train_pat & train_pat_mask) { 3490 case DP_TRAINING_PATTERN_DISABLE: 3491 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL; 3492 3493 break; 3494 case DP_TRAINING_PATTERN_1: 3495 temp |= DP_TP_CTL_LINK_TRAIN_PAT1; 3496 break; 3497 case DP_TRAINING_PATTERN_2: 3498 temp |= DP_TP_CTL_LINK_TRAIN_PAT2; 3499 break; 3500 case DP_TRAINING_PATTERN_3: 3501 temp |= DP_TP_CTL_LINK_TRAIN_PAT3; 3502 break; 3503 case DP_TRAINING_PATTERN_4: 3504 temp |= DP_TP_CTL_LINK_TRAIN_PAT4; 3505 break; 3506 } 3507 I915_WRITE(intel_dp->regs.dp_tp_ctl, temp); 3508 3509 } else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) || 3510 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) { 3511 *DP &= ~DP_LINK_TRAIN_MASK_CPT; 3512 3513 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { 3514 case DP_TRAINING_PATTERN_DISABLE: 3515 *DP |= DP_LINK_TRAIN_OFF_CPT; 3516 break; 3517 case DP_TRAINING_PATTERN_1: 3518 *DP |= DP_LINK_TRAIN_PAT_1_CPT; 3519 break; 3520 case DP_TRAINING_PATTERN_2: 3521 *DP |= DP_LINK_TRAIN_PAT_2_CPT; 3522 break; 3523 case DP_TRAINING_PATTERN_3: 3524 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n"); 3525 *DP |= DP_LINK_TRAIN_PAT_2_CPT; 3526 break; 3527 } 3528 3529 } else { 3530 *DP &= ~DP_LINK_TRAIN_MASK; 3531 3532 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { 3533 case DP_TRAINING_PATTERN_DISABLE: 3534 *DP |= DP_LINK_TRAIN_OFF; 3535 break; 3536 case DP_TRAINING_PATTERN_1: 3537 *DP |= DP_LINK_TRAIN_PAT_1; 3538 break; 3539 case DP_TRAINING_PATTERN_2: 3540 *DP |= DP_LINK_TRAIN_PAT_2; 3541 break; 3542 case DP_TRAINING_PATTERN_3: 3543 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n"); 3544 *DP |= DP_LINK_TRAIN_PAT_2; 3545 break; 3546 } 3547 } 3548 } 3549 3550 static void intel_dp_enable_port(struct intel_dp *intel_dp, 3551 const struct intel_crtc_state *old_crtc_state) 3552 { 3553 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3554 3555 /* enable with pattern 1 (as per spec) */ 3556 3557 intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1); 3558 3559 /* 3560 * Magic for VLV/CHV. We _must_ first set up the register 3561 * without actually enabling the port, and then do another 3562 * write to enable the port. Otherwise link training will 3563 * fail when the power sequencer is freshly used for this port. 3564 */ 3565 intel_dp->DP |= DP_PORT_EN; 3566 if (old_crtc_state->has_audio) 3567 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE; 3568 3569 I915_WRITE(intel_dp->output_reg, intel_dp->DP); 3570 POSTING_READ(intel_dp->output_reg); 3571 } 3572 3573 static void intel_enable_dp(struct intel_encoder *encoder, 3574 const struct intel_crtc_state *pipe_config, 3575 const struct drm_connector_state *conn_state) 3576 { 3577 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3578 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3579 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 3580 u32 dp_reg = I915_READ(intel_dp->output_reg); 3581 enum pipe pipe = crtc->pipe; 3582 intel_wakeref_t wakeref; 3583 3584 if (WARN_ON(dp_reg & DP_PORT_EN)) 3585 return; 3586 3587 with_pps_lock(intel_dp, wakeref) { 3588 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 3589 vlv_init_panel_power_sequencer(encoder, pipe_config); 3590 3591 intel_dp_enable_port(intel_dp, pipe_config); 3592 3593 edp_panel_vdd_on(intel_dp); 3594 edp_panel_on(intel_dp); 3595 edp_panel_vdd_off(intel_dp, true); 3596 } 3597 3598 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 3599 unsigned int lane_mask = 0x0; 3600 3601 if (IS_CHERRYVIEW(dev_priv)) 3602 lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count); 3603 3604 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp), 3605 lane_mask); 3606 } 3607 3608 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON); 3609 intel_dp_start_link_train(intel_dp); 3610 intel_dp_stop_link_train(intel_dp); 3611 3612 if (pipe_config->has_audio) { 3613 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n", 3614 pipe_name(pipe)); 3615 intel_audio_codec_enable(encoder, pipe_config, conn_state); 3616 } 3617 } 3618 3619 static void g4x_enable_dp(struct intel_encoder *encoder, 3620 const struct intel_crtc_state *pipe_config, 3621 const struct drm_connector_state *conn_state) 3622 { 3623 intel_enable_dp(encoder, pipe_config, conn_state); 3624 intel_edp_backlight_on(pipe_config, conn_state); 3625 } 3626 3627 static void vlv_enable_dp(struct intel_encoder *encoder, 3628 const struct intel_crtc_state *pipe_config, 3629 const struct drm_connector_state *conn_state) 3630 { 3631 intel_edp_backlight_on(pipe_config, conn_state); 3632 } 3633 3634 static void g4x_pre_enable_dp(struct intel_encoder *encoder, 3635 const struct intel_crtc_state *pipe_config, 3636 const struct drm_connector_state *conn_state) 3637 { 3638 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3639 enum port port = encoder->port; 3640 3641 intel_dp_prepare(encoder, pipe_config); 3642 3643 /* Only ilk+ has port A */ 3644 if (port == PORT_A) 3645 ilk_edp_pll_on(intel_dp, pipe_config); 3646 } 3647 3648 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp) 3649 { 3650 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 3651 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev); 3652 enum pipe pipe = intel_dp->pps_pipe; 3653 i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe); 3654 3655 WARN_ON(intel_dp->active_pipe != INVALID_PIPE); 3656 3657 if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B)) 3658 return; 3659 3660 edp_panel_vdd_off_sync(intel_dp); 3661 3662 /* 3663 * VLV seems to get confused when multiple power sequencers 3664 * have the same port selected (even if only one has power/vdd 3665 * enabled). The failure manifests as vlv_wait_port_ready() failing 3666 * CHV on the other hand doesn't seem to mind having the same port 3667 * selected in multiple power sequencers, but let's clear the 3668 * port select always when logically disconnecting a power sequencer 3669 * from a port. 3670 */ 3671 DRM_DEBUG_KMS("detaching pipe %c power sequencer from [ENCODER:%d:%s]\n", 3672 pipe_name(pipe), intel_dig_port->base.base.base.id, 3673 intel_dig_port->base.base.name); 3674 I915_WRITE(pp_on_reg, 0); 3675 POSTING_READ(pp_on_reg); 3676 3677 intel_dp->pps_pipe = INVALID_PIPE; 3678 } 3679 3680 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv, 3681 enum pipe pipe) 3682 { 3683 struct intel_encoder *encoder; 3684 3685 lockdep_assert_held(&dev_priv->pps_mutex); 3686 3687 for_each_intel_dp(&dev_priv->drm, encoder) { 3688 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3689 3690 WARN(intel_dp->active_pipe == pipe, 3691 "stealing pipe %c power sequencer from active [ENCODER:%d:%s]\n", 3692 pipe_name(pipe), encoder->base.base.id, 3693 encoder->base.name); 3694 3695 if (intel_dp->pps_pipe != pipe) 3696 continue; 3697 3698 DRM_DEBUG_KMS("stealing pipe %c power sequencer from [ENCODER:%d:%s]\n", 3699 pipe_name(pipe), encoder->base.base.id, 3700 encoder->base.name); 3701 3702 /* make sure vdd is off before we steal it */ 3703 vlv_detach_power_sequencer(intel_dp); 3704 } 3705 } 3706 3707 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder, 3708 const struct intel_crtc_state *crtc_state) 3709 { 3710 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 3711 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3712 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3713 3714 lockdep_assert_held(&dev_priv->pps_mutex); 3715 3716 WARN_ON(intel_dp->active_pipe != INVALID_PIPE); 3717 3718 if (intel_dp->pps_pipe != INVALID_PIPE && 3719 intel_dp->pps_pipe != crtc->pipe) { 3720 /* 3721 * If another power sequencer was being used on this 3722 * port previously make sure to turn off vdd there while 3723 * we still have control of it. 3724 */ 3725 vlv_detach_power_sequencer(intel_dp); 3726 } 3727 3728 /* 3729 * We may be stealing the power 3730 * sequencer from another port. 3731 */ 3732 vlv_steal_power_sequencer(dev_priv, crtc->pipe); 3733 3734 intel_dp->active_pipe = crtc->pipe; 3735 3736 if (!intel_dp_is_edp(intel_dp)) 3737 return; 3738 3739 /* now it's all ours */ 3740 intel_dp->pps_pipe = crtc->pipe; 3741 3742 DRM_DEBUG_KMS("initializing pipe %c power sequencer for [ENCODER:%d:%s]\n", 3743 pipe_name(intel_dp->pps_pipe), encoder->base.base.id, 3744 encoder->base.name); 3745 3746 /* init power sequencer on this pipe and port */ 3747 intel_dp_init_panel_power_sequencer(intel_dp); 3748 intel_dp_init_panel_power_sequencer_registers(intel_dp, true); 3749 } 3750 3751 static void vlv_pre_enable_dp(struct intel_encoder *encoder, 3752 const struct intel_crtc_state *pipe_config, 3753 const struct drm_connector_state *conn_state) 3754 { 3755 vlv_phy_pre_encoder_enable(encoder, pipe_config); 3756 3757 intel_enable_dp(encoder, pipe_config, conn_state); 3758 } 3759 3760 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder, 3761 const struct intel_crtc_state *pipe_config, 3762 const struct drm_connector_state *conn_state) 3763 { 3764 intel_dp_prepare(encoder, pipe_config); 3765 3766 vlv_phy_pre_pll_enable(encoder, pipe_config); 3767 } 3768 3769 static void chv_pre_enable_dp(struct intel_encoder *encoder, 3770 const struct intel_crtc_state *pipe_config, 3771 const struct drm_connector_state *conn_state) 3772 { 3773 chv_phy_pre_encoder_enable(encoder, pipe_config); 3774 3775 intel_enable_dp(encoder, pipe_config, conn_state); 3776 3777 /* Second common lane will stay alive on its own now */ 3778 chv_phy_release_cl2_override(encoder); 3779 } 3780 3781 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder, 3782 const struct intel_crtc_state *pipe_config, 3783 const struct drm_connector_state *conn_state) 3784 { 3785 intel_dp_prepare(encoder, pipe_config); 3786 3787 chv_phy_pre_pll_enable(encoder, pipe_config); 3788 } 3789 3790 static void chv_dp_post_pll_disable(struct intel_encoder *encoder, 3791 const struct intel_crtc_state *old_crtc_state, 3792 const struct drm_connector_state *old_conn_state) 3793 { 3794 chv_phy_post_pll_disable(encoder, old_crtc_state); 3795 } 3796 3797 /* 3798 * Fetch AUX CH registers 0x202 - 0x207 which contain 3799 * link status information 3800 */ 3801 bool 3802 intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE]) 3803 { 3804 return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status, 3805 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE; 3806 } 3807 3808 /* These are source-specific values. */ 3809 u8 3810 intel_dp_voltage_max(struct intel_dp *intel_dp) 3811 { 3812 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3813 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 3814 enum port port = encoder->port; 3815 3816 if (HAS_DDI(dev_priv)) 3817 return intel_ddi_dp_voltage_max(encoder); 3818 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 3819 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3; 3820 else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) 3821 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2; 3822 else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) 3823 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3; 3824 else 3825 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2; 3826 } 3827 3828 u8 3829 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing) 3830 { 3831 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 3832 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 3833 enum port port = encoder->port; 3834 3835 if (HAS_DDI(dev_priv)) { 3836 return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing); 3837 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 3838 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { 3839 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3840 return DP_TRAIN_PRE_EMPH_LEVEL_3; 3841 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3842 return DP_TRAIN_PRE_EMPH_LEVEL_2; 3843 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3844 return DP_TRAIN_PRE_EMPH_LEVEL_1; 3845 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3846 default: 3847 return DP_TRAIN_PRE_EMPH_LEVEL_0; 3848 } 3849 } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) { 3850 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { 3851 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3852 return DP_TRAIN_PRE_EMPH_LEVEL_2; 3853 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3854 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3855 return DP_TRAIN_PRE_EMPH_LEVEL_1; 3856 default: 3857 return DP_TRAIN_PRE_EMPH_LEVEL_0; 3858 } 3859 } else { 3860 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { 3861 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3862 return DP_TRAIN_PRE_EMPH_LEVEL_2; 3863 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3864 return DP_TRAIN_PRE_EMPH_LEVEL_2; 3865 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3866 return DP_TRAIN_PRE_EMPH_LEVEL_1; 3867 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3868 default: 3869 return DP_TRAIN_PRE_EMPH_LEVEL_0; 3870 } 3871 } 3872 } 3873 3874 static u32 vlv_signal_levels(struct intel_dp *intel_dp) 3875 { 3876 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 3877 unsigned long demph_reg_value, preemph_reg_value, 3878 uniqtranscale_reg_value; 3879 u8 train_set = intel_dp->train_set[0]; 3880 3881 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { 3882 case DP_TRAIN_PRE_EMPH_LEVEL_0: 3883 preemph_reg_value = 0x0004000; 3884 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3885 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3886 demph_reg_value = 0x2B405555; 3887 uniqtranscale_reg_value = 0x552AB83A; 3888 break; 3889 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3890 demph_reg_value = 0x2B404040; 3891 uniqtranscale_reg_value = 0x5548B83A; 3892 break; 3893 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3894 demph_reg_value = 0x2B245555; 3895 uniqtranscale_reg_value = 0x5560B83A; 3896 break; 3897 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3898 demph_reg_value = 0x2B405555; 3899 uniqtranscale_reg_value = 0x5598DA3A; 3900 break; 3901 default: 3902 return 0; 3903 } 3904 break; 3905 case DP_TRAIN_PRE_EMPH_LEVEL_1: 3906 preemph_reg_value = 0x0002000; 3907 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3908 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3909 demph_reg_value = 0x2B404040; 3910 uniqtranscale_reg_value = 0x5552B83A; 3911 break; 3912 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3913 demph_reg_value = 0x2B404848; 3914 uniqtranscale_reg_value = 0x5580B83A; 3915 break; 3916 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3917 demph_reg_value = 0x2B404040; 3918 uniqtranscale_reg_value = 0x55ADDA3A; 3919 break; 3920 default: 3921 return 0; 3922 } 3923 break; 3924 case DP_TRAIN_PRE_EMPH_LEVEL_2: 3925 preemph_reg_value = 0x0000000; 3926 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3927 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3928 demph_reg_value = 0x2B305555; 3929 uniqtranscale_reg_value = 0x5570B83A; 3930 break; 3931 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3932 demph_reg_value = 0x2B2B4040; 3933 uniqtranscale_reg_value = 0x55ADDA3A; 3934 break; 3935 default: 3936 return 0; 3937 } 3938 break; 3939 case DP_TRAIN_PRE_EMPH_LEVEL_3: 3940 preemph_reg_value = 0x0006000; 3941 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3942 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3943 demph_reg_value = 0x1B405555; 3944 uniqtranscale_reg_value = 0x55ADDA3A; 3945 break; 3946 default: 3947 return 0; 3948 } 3949 break; 3950 default: 3951 return 0; 3952 } 3953 3954 vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value, 3955 uniqtranscale_reg_value, 0); 3956 3957 return 0; 3958 } 3959 3960 static u32 chv_signal_levels(struct intel_dp *intel_dp) 3961 { 3962 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 3963 u32 deemph_reg_value, margin_reg_value; 3964 bool uniq_trans_scale = false; 3965 u8 train_set = intel_dp->train_set[0]; 3966 3967 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { 3968 case DP_TRAIN_PRE_EMPH_LEVEL_0: 3969 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3970 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3971 deemph_reg_value = 128; 3972 margin_reg_value = 52; 3973 break; 3974 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3975 deemph_reg_value = 128; 3976 margin_reg_value = 77; 3977 break; 3978 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 3979 deemph_reg_value = 128; 3980 margin_reg_value = 102; 3981 break; 3982 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 3983 deemph_reg_value = 128; 3984 margin_reg_value = 154; 3985 uniq_trans_scale = true; 3986 break; 3987 default: 3988 return 0; 3989 } 3990 break; 3991 case DP_TRAIN_PRE_EMPH_LEVEL_1: 3992 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 3993 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 3994 deemph_reg_value = 85; 3995 margin_reg_value = 78; 3996 break; 3997 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 3998 deemph_reg_value = 85; 3999 margin_reg_value = 116; 4000 break; 4001 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 4002 deemph_reg_value = 85; 4003 margin_reg_value = 154; 4004 break; 4005 default: 4006 return 0; 4007 } 4008 break; 4009 case DP_TRAIN_PRE_EMPH_LEVEL_2: 4010 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 4011 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 4012 deemph_reg_value = 64; 4013 margin_reg_value = 104; 4014 break; 4015 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 4016 deemph_reg_value = 64; 4017 margin_reg_value = 154; 4018 break; 4019 default: 4020 return 0; 4021 } 4022 break; 4023 case DP_TRAIN_PRE_EMPH_LEVEL_3: 4024 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 4025 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 4026 deemph_reg_value = 43; 4027 margin_reg_value = 154; 4028 break; 4029 default: 4030 return 0; 4031 } 4032 break; 4033 default: 4034 return 0; 4035 } 4036 4037 chv_set_phy_signal_level(encoder, deemph_reg_value, 4038 margin_reg_value, uniq_trans_scale); 4039 4040 return 0; 4041 } 4042 4043 static u32 4044 g4x_signal_levels(u8 train_set) 4045 { 4046 u32 signal_levels = 0; 4047 4048 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { 4049 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: 4050 default: 4051 signal_levels |= DP_VOLTAGE_0_4; 4052 break; 4053 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: 4054 signal_levels |= DP_VOLTAGE_0_6; 4055 break; 4056 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: 4057 signal_levels |= DP_VOLTAGE_0_8; 4058 break; 4059 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: 4060 signal_levels |= DP_VOLTAGE_1_2; 4061 break; 4062 } 4063 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { 4064 case DP_TRAIN_PRE_EMPH_LEVEL_0: 4065 default: 4066 signal_levels |= DP_PRE_EMPHASIS_0; 4067 break; 4068 case DP_TRAIN_PRE_EMPH_LEVEL_1: 4069 signal_levels |= DP_PRE_EMPHASIS_3_5; 4070 break; 4071 case DP_TRAIN_PRE_EMPH_LEVEL_2: 4072 signal_levels |= DP_PRE_EMPHASIS_6; 4073 break; 4074 case DP_TRAIN_PRE_EMPH_LEVEL_3: 4075 signal_levels |= DP_PRE_EMPHASIS_9_5; 4076 break; 4077 } 4078 return signal_levels; 4079 } 4080 4081 /* SNB CPU eDP voltage swing and pre-emphasis control */ 4082 static u32 4083 snb_cpu_edp_signal_levels(u8 train_set) 4084 { 4085 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | 4086 DP_TRAIN_PRE_EMPHASIS_MASK); 4087 switch (signal_levels) { 4088 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4089 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4090 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; 4091 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4092 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B; 4093 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2: 4094 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2: 4095 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B; 4096 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4097 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4098 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B; 4099 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4100 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4101 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B; 4102 default: 4103 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" 4104 "0x%x\n", signal_levels); 4105 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; 4106 } 4107 } 4108 4109 /* IVB CPU eDP voltage swing and pre-emphasis control */ 4110 static u32 4111 ivb_cpu_edp_signal_levels(u8 train_set) 4112 { 4113 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | 4114 DP_TRAIN_PRE_EMPHASIS_MASK); 4115 switch (signal_levels) { 4116 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4117 return EDP_LINK_TRAIN_400MV_0DB_IVB; 4118 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4119 return EDP_LINK_TRAIN_400MV_3_5DB_IVB; 4120 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2: 4121 return EDP_LINK_TRAIN_400MV_6DB_IVB; 4122 4123 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4124 return EDP_LINK_TRAIN_600MV_0DB_IVB; 4125 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4126 return EDP_LINK_TRAIN_600MV_3_5DB_IVB; 4127 4128 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0: 4129 return EDP_LINK_TRAIN_800MV_0DB_IVB; 4130 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1: 4131 return EDP_LINK_TRAIN_800MV_3_5DB_IVB; 4132 4133 default: 4134 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" 4135 "0x%x\n", signal_levels); 4136 return EDP_LINK_TRAIN_500MV_0DB_IVB; 4137 } 4138 } 4139 4140 void 4141 intel_dp_set_signal_levels(struct intel_dp *intel_dp) 4142 { 4143 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 4144 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 4145 enum port port = intel_dig_port->base.port; 4146 u32 signal_levels, mask = 0; 4147 u8 train_set = intel_dp->train_set[0]; 4148 4149 if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) { 4150 signal_levels = bxt_signal_levels(intel_dp); 4151 } else if (HAS_DDI(dev_priv)) { 4152 signal_levels = ddi_signal_levels(intel_dp); 4153 mask = DDI_BUF_EMP_MASK; 4154 } else if (IS_CHERRYVIEW(dev_priv)) { 4155 signal_levels = chv_signal_levels(intel_dp); 4156 } else if (IS_VALLEYVIEW(dev_priv)) { 4157 signal_levels = vlv_signal_levels(intel_dp); 4158 } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) { 4159 signal_levels = ivb_cpu_edp_signal_levels(train_set); 4160 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB; 4161 } else if (IS_GEN(dev_priv, 6) && port == PORT_A) { 4162 signal_levels = snb_cpu_edp_signal_levels(train_set); 4163 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB; 4164 } else { 4165 signal_levels = g4x_signal_levels(train_set); 4166 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK; 4167 } 4168 4169 if (mask) 4170 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels); 4171 4172 DRM_DEBUG_KMS("Using vswing level %d\n", 4173 train_set & DP_TRAIN_VOLTAGE_SWING_MASK); 4174 DRM_DEBUG_KMS("Using pre-emphasis level %d\n", 4175 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >> 4176 DP_TRAIN_PRE_EMPHASIS_SHIFT); 4177 4178 intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels; 4179 4180 I915_WRITE(intel_dp->output_reg, intel_dp->DP); 4181 POSTING_READ(intel_dp->output_reg); 4182 } 4183 4184 void 4185 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp, 4186 u8 dp_train_pat) 4187 { 4188 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 4189 struct drm_i915_private *dev_priv = 4190 to_i915(intel_dig_port->base.base.dev); 4191 4192 _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat); 4193 4194 I915_WRITE(intel_dp->output_reg, intel_dp->DP); 4195 POSTING_READ(intel_dp->output_reg); 4196 } 4197 4198 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp) 4199 { 4200 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 4201 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 4202 enum port port = intel_dig_port->base.port; 4203 u32 val; 4204 4205 if (!HAS_DDI(dev_priv)) 4206 return; 4207 4208 val = I915_READ(intel_dp->regs.dp_tp_ctl); 4209 val &= ~DP_TP_CTL_LINK_TRAIN_MASK; 4210 val |= DP_TP_CTL_LINK_TRAIN_IDLE; 4211 I915_WRITE(intel_dp->regs.dp_tp_ctl, val); 4212 4213 /* 4214 * Until TGL on PORT_A we can have only eDP in SST mode. There the only 4215 * reason we need to set idle transmission mode is to work around a HW 4216 * issue where we enable the pipe while not in idle link-training mode. 4217 * In this case there is requirement to wait for a minimum number of 4218 * idle patterns to be sent. 4219 */ 4220 if (port == PORT_A && INTEL_GEN(dev_priv) < 12) 4221 return; 4222 4223 if (intel_de_wait_for_set(dev_priv, intel_dp->regs.dp_tp_status, 4224 DP_TP_STATUS_IDLE_DONE, 1)) 4225 DRM_ERROR("Timed out waiting for DP idle patterns\n"); 4226 } 4227 4228 static void 4229 intel_dp_link_down(struct intel_encoder *encoder, 4230 const struct intel_crtc_state *old_crtc_state) 4231 { 4232 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 4233 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 4234 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); 4235 enum port port = encoder->port; 4236 u32 DP = intel_dp->DP; 4237 4238 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)) 4239 return; 4240 4241 DRM_DEBUG_KMS("\n"); 4242 4243 if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) || 4244 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) { 4245 DP &= ~DP_LINK_TRAIN_MASK_CPT; 4246 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT; 4247 } else { 4248 DP &= ~DP_LINK_TRAIN_MASK; 4249 DP |= DP_LINK_TRAIN_PAT_IDLE; 4250 } 4251 I915_WRITE(intel_dp->output_reg, DP); 4252 POSTING_READ(intel_dp->output_reg); 4253 4254 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE); 4255 I915_WRITE(intel_dp->output_reg, DP); 4256 POSTING_READ(intel_dp->output_reg); 4257 4258 /* 4259 * HW workaround for IBX, we need to move the port 4260 * to transcoder A after disabling it to allow the 4261 * matching HDMI port to be enabled on transcoder A. 4262 */ 4263 if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) { 4264 /* 4265 * We get CPU/PCH FIFO underruns on the other pipe when 4266 * doing the workaround. Sweep them under the rug. 4267 */ 4268 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false); 4269 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false); 4270 4271 /* always enable with pattern 1 (as per spec) */ 4272 DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK); 4273 DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) | 4274 DP_LINK_TRAIN_PAT_1; 4275 I915_WRITE(intel_dp->output_reg, DP); 4276 POSTING_READ(intel_dp->output_reg); 4277 4278 DP &= ~DP_PORT_EN; 4279 I915_WRITE(intel_dp->output_reg, DP); 4280 POSTING_READ(intel_dp->output_reg); 4281 4282 intel_wait_for_vblank_if_active(dev_priv, PIPE_A); 4283 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true); 4284 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true); 4285 } 4286 4287 msleep(intel_dp->panel_power_down_delay); 4288 4289 intel_dp->DP = DP; 4290 4291 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 4292 intel_wakeref_t wakeref; 4293 4294 with_pps_lock(intel_dp, wakeref) 4295 intel_dp->active_pipe = INVALID_PIPE; 4296 } 4297 } 4298 4299 static void 4300 intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp) 4301 { 4302 u8 dpcd_ext[6]; 4303 4304 /* 4305 * Prior to DP1.3 the bit represented by 4306 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved. 4307 * if it is set DP_DPCD_REV at 0000h could be at a value less than 4308 * the true capability of the panel. The only way to check is to 4309 * then compare 0000h and 2200h. 4310 */ 4311 if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] & 4312 DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT)) 4313 return; 4314 4315 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV, 4316 &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) { 4317 DRM_ERROR("DPCD failed read at extended capabilities\n"); 4318 return; 4319 } 4320 4321 if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) { 4322 DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n"); 4323 return; 4324 } 4325 4326 if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext))) 4327 return; 4328 4329 DRM_DEBUG_KMS("Base DPCD: %*ph\n", 4330 (int)sizeof(intel_dp->dpcd), intel_dp->dpcd); 4331 4332 memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)); 4333 } 4334 4335 bool 4336 intel_dp_read_dpcd(struct intel_dp *intel_dp) 4337 { 4338 if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd, 4339 sizeof(intel_dp->dpcd)) < 0) 4340 return false; /* aux transfer failed */ 4341 4342 intel_dp_extended_receiver_capabilities(intel_dp); 4343 4344 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd); 4345 4346 return intel_dp->dpcd[DP_DPCD_REV] != 0; 4347 } 4348 4349 bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp) 4350 { 4351 u8 dprx = 0; 4352 4353 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST, 4354 &dprx) != 1) 4355 return false; 4356 return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED; 4357 } 4358 4359 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp) 4360 { 4361 /* 4362 * Clear the cached register set to avoid using stale values 4363 * for the sinks that do not support DSC. 4364 */ 4365 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd)); 4366 4367 /* Clear fec_capable to avoid using stale values */ 4368 intel_dp->fec_capable = 0; 4369 4370 /* Cache the DSC DPCD if eDP or DP rev >= 1.4 */ 4371 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 || 4372 intel_dp->edp_dpcd[0] >= DP_EDP_14) { 4373 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT, 4374 intel_dp->dsc_dpcd, 4375 sizeof(intel_dp->dsc_dpcd)) < 0) 4376 DRM_ERROR("Failed to read DPCD register 0x%x\n", 4377 DP_DSC_SUPPORT); 4378 4379 DRM_DEBUG_KMS("DSC DPCD: %*ph\n", 4380 (int)sizeof(intel_dp->dsc_dpcd), 4381 intel_dp->dsc_dpcd); 4382 4383 /* FEC is supported only on DP 1.4 */ 4384 if (!intel_dp_is_edp(intel_dp) && 4385 drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY, 4386 &intel_dp->fec_capable) < 0) 4387 DRM_ERROR("Failed to read FEC DPCD register\n"); 4388 4389 DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp->fec_capable); 4390 } 4391 } 4392 4393 static bool 4394 intel_edp_init_dpcd(struct intel_dp *intel_dp) 4395 { 4396 struct drm_i915_private *dev_priv = 4397 to_i915(dp_to_dig_port(intel_dp)->base.base.dev); 4398 4399 /* this function is meant to be called only once */ 4400 WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0); 4401 4402 if (!intel_dp_read_dpcd(intel_dp)) 4403 return false; 4404 4405 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc, 4406 drm_dp_is_branch(intel_dp->dpcd)); 4407 4408 /* 4409 * Read the eDP display control registers. 4410 * 4411 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in 4412 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it 4413 * set, but require eDP 1.4+ detection (e.g. for supported link rates 4414 * method). The display control registers should read zero if they're 4415 * not supported anyway. 4416 */ 4417 if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV, 4418 intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) == 4419 sizeof(intel_dp->edp_dpcd)) 4420 DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd), 4421 intel_dp->edp_dpcd); 4422 4423 /* 4424 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks 4425 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1] 4426 */ 4427 intel_psr_init_dpcd(intel_dp); 4428 4429 /* Read the eDP 1.4+ supported link rates. */ 4430 if (intel_dp->edp_dpcd[0] >= DP_EDP_14) { 4431 __le16 sink_rates[DP_MAX_SUPPORTED_RATES]; 4432 int i; 4433 4434 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES, 4435 sink_rates, sizeof(sink_rates)); 4436 4437 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) { 4438 int val = le16_to_cpu(sink_rates[i]); 4439 4440 if (val == 0) 4441 break; 4442 4443 /* Value read multiplied by 200kHz gives the per-lane 4444 * link rate in kHz. The source rates are, however, 4445 * stored in terms of LS_Clk kHz. The full conversion 4446 * back to symbols is 4447 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte) 4448 */ 4449 intel_dp->sink_rates[i] = (val * 200) / 10; 4450 } 4451 intel_dp->num_sink_rates = i; 4452 } 4453 4454 /* 4455 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available, 4456 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise. 4457 */ 4458 if (intel_dp->num_sink_rates) 4459 intel_dp->use_rate_select = true; 4460 else 4461 intel_dp_set_sink_rates(intel_dp); 4462 4463 intel_dp_set_common_rates(intel_dp); 4464 4465 /* Read the eDP DSC DPCD registers */ 4466 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) 4467 intel_dp_get_dsc_sink_cap(intel_dp); 4468 4469 return true; 4470 } 4471 4472 4473 static bool 4474 intel_dp_get_dpcd(struct intel_dp *intel_dp) 4475 { 4476 if (!intel_dp_read_dpcd(intel_dp)) 4477 return false; 4478 4479 /* 4480 * Don't clobber cached eDP rates. Also skip re-reading 4481 * the OUI/ID since we know it won't change. 4482 */ 4483 if (!intel_dp_is_edp(intel_dp)) { 4484 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc, 4485 drm_dp_is_branch(intel_dp->dpcd)); 4486 4487 intel_dp_set_sink_rates(intel_dp); 4488 intel_dp_set_common_rates(intel_dp); 4489 } 4490 4491 /* 4492 * Some eDP panels do not set a valid value for sink count, that is why 4493 * it don't care about read it here and in intel_edp_init_dpcd(). 4494 */ 4495 if (!intel_dp_is_edp(intel_dp) && 4496 !drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_SINK_COUNT)) { 4497 u8 count; 4498 ssize_t r; 4499 4500 r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count); 4501 if (r < 1) 4502 return false; 4503 4504 /* 4505 * Sink count can change between short pulse hpd hence 4506 * a member variable in intel_dp will track any changes 4507 * between short pulse interrupts. 4508 */ 4509 intel_dp->sink_count = DP_GET_SINK_COUNT(count); 4510 4511 /* 4512 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that 4513 * a dongle is present but no display. Unless we require to know 4514 * if a dongle is present or not, we don't need to update 4515 * downstream port information. So, an early return here saves 4516 * time from performing other operations which are not required. 4517 */ 4518 if (!intel_dp->sink_count) 4519 return false; 4520 } 4521 4522 if (!drm_dp_is_branch(intel_dp->dpcd)) 4523 return true; /* native DP sink */ 4524 4525 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10) 4526 return true; /* no per-port downstream info */ 4527 4528 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0, 4529 intel_dp->downstream_ports, 4530 DP_MAX_DOWNSTREAM_PORTS) < 0) 4531 return false; /* downstream port status fetch failed */ 4532 4533 return true; 4534 } 4535 4536 static bool 4537 intel_dp_sink_can_mst(struct intel_dp *intel_dp) 4538 { 4539 u8 mstm_cap; 4540 4541 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12) 4542 return false; 4543 4544 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1) 4545 return false; 4546 4547 return mstm_cap & DP_MST_CAP; 4548 } 4549 4550 static bool 4551 intel_dp_can_mst(struct intel_dp *intel_dp) 4552 { 4553 return i915_modparams.enable_dp_mst && 4554 intel_dp->can_mst && 4555 intel_dp_sink_can_mst(intel_dp); 4556 } 4557 4558 static void 4559 intel_dp_configure_mst(struct intel_dp *intel_dp) 4560 { 4561 struct intel_encoder *encoder = 4562 &dp_to_dig_port(intel_dp)->base; 4563 bool sink_can_mst = intel_dp_sink_can_mst(intel_dp); 4564 4565 DRM_DEBUG_KMS("[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s\n", 4566 encoder->base.base.id, encoder->base.name, 4567 yesno(intel_dp->can_mst), yesno(sink_can_mst), 4568 yesno(i915_modparams.enable_dp_mst)); 4569 4570 if (!intel_dp->can_mst) 4571 return; 4572 4573 intel_dp->is_mst = sink_can_mst && 4574 i915_modparams.enable_dp_mst; 4575 4576 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 4577 intel_dp->is_mst); 4578 } 4579 4580 static bool 4581 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector) 4582 { 4583 return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI, 4584 sink_irq_vector, DP_DPRX_ESI_LEN) == 4585 DP_DPRX_ESI_LEN; 4586 } 4587 4588 bool 4589 intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state, 4590 const struct drm_connector_state *conn_state) 4591 { 4592 /* 4593 * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication 4594 * of Color Encoding Format and Content Color Gamut], in order to 4595 * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP. 4596 */ 4597 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 4598 return true; 4599 4600 switch (conn_state->colorspace) { 4601 case DRM_MODE_COLORIMETRY_SYCC_601: 4602 case DRM_MODE_COLORIMETRY_OPYCC_601: 4603 case DRM_MODE_COLORIMETRY_BT2020_YCC: 4604 case DRM_MODE_COLORIMETRY_BT2020_RGB: 4605 case DRM_MODE_COLORIMETRY_BT2020_CYCC: 4606 return true; 4607 default: 4608 break; 4609 } 4610 4611 return false; 4612 } 4613 4614 static void 4615 intel_dp_setup_vsc_sdp(struct intel_dp *intel_dp, 4616 const struct intel_crtc_state *crtc_state, 4617 const struct drm_connector_state *conn_state) 4618 { 4619 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 4620 struct dp_sdp vsc_sdp = {}; 4621 4622 /* Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 */ 4623 vsc_sdp.sdp_header.HB0 = 0; 4624 vsc_sdp.sdp_header.HB1 = 0x7; 4625 4626 /* 4627 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/ 4628 * Colorimetry Format indication. 4629 */ 4630 vsc_sdp.sdp_header.HB2 = 0x5; 4631 4632 /* 4633 * VSC SDP supporting 3D stereo, + PSR2, + Pixel Encoding/ 4634 * Colorimetry Format indication (HB2 = 05h). 4635 */ 4636 vsc_sdp.sdp_header.HB3 = 0x13; 4637 4638 /* DP 1.4a spec, Table 2-120 */ 4639 switch (crtc_state->output_format) { 4640 case INTEL_OUTPUT_FORMAT_YCBCR444: 4641 vsc_sdp.db[16] = 0x1 << 4; /* YCbCr 444 : DB16[7:4] = 1h */ 4642 break; 4643 case INTEL_OUTPUT_FORMAT_YCBCR420: 4644 vsc_sdp.db[16] = 0x3 << 4; /* YCbCr 420 : DB16[7:4] = 3h */ 4645 break; 4646 case INTEL_OUTPUT_FORMAT_RGB: 4647 default: 4648 /* RGB: DB16[7:4] = 0h */ 4649 break; 4650 } 4651 4652 switch (conn_state->colorspace) { 4653 case DRM_MODE_COLORIMETRY_BT709_YCC: 4654 vsc_sdp.db[16] |= 0x1; 4655 break; 4656 case DRM_MODE_COLORIMETRY_XVYCC_601: 4657 vsc_sdp.db[16] |= 0x2; 4658 break; 4659 case DRM_MODE_COLORIMETRY_XVYCC_709: 4660 vsc_sdp.db[16] |= 0x3; 4661 break; 4662 case DRM_MODE_COLORIMETRY_SYCC_601: 4663 vsc_sdp.db[16] |= 0x4; 4664 break; 4665 case DRM_MODE_COLORIMETRY_OPYCC_601: 4666 vsc_sdp.db[16] |= 0x5; 4667 break; 4668 case DRM_MODE_COLORIMETRY_BT2020_CYCC: 4669 case DRM_MODE_COLORIMETRY_BT2020_RGB: 4670 vsc_sdp.db[16] |= 0x6; 4671 break; 4672 case DRM_MODE_COLORIMETRY_BT2020_YCC: 4673 vsc_sdp.db[16] |= 0x7; 4674 break; 4675 case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65: 4676 case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER: 4677 vsc_sdp.db[16] |= 0x4; /* DCI-P3 (SMPTE RP 431-2) */ 4678 break; 4679 default: 4680 /* sRGB (IEC 61966-2-1) / ITU-R BT.601: DB16[0:3] = 0h */ 4681 4682 /* RGB->YCBCR color conversion uses the BT.709 color space. */ 4683 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) 4684 vsc_sdp.db[16] |= 0x1; /* 0x1, ITU-R BT.709 */ 4685 break; 4686 } 4687 4688 /* 4689 * For pixel encoding formats YCbCr444, YCbCr422, YCbCr420, and Y Only, 4690 * the following Component Bit Depth values are defined: 4691 * 001b = 8bpc. 4692 * 010b = 10bpc. 4693 * 011b = 12bpc. 4694 * 100b = 16bpc. 4695 */ 4696 switch (crtc_state->pipe_bpp) { 4697 case 24: /* 8bpc */ 4698 vsc_sdp.db[17] = 0x1; 4699 break; 4700 case 30: /* 10bpc */ 4701 vsc_sdp.db[17] = 0x2; 4702 break; 4703 case 36: /* 12bpc */ 4704 vsc_sdp.db[17] = 0x3; 4705 break; 4706 case 48: /* 16bpc */ 4707 vsc_sdp.db[17] = 0x4; 4708 break; 4709 default: 4710 MISSING_CASE(crtc_state->pipe_bpp); 4711 break; 4712 } 4713 4714 /* 4715 * Dynamic Range (Bit 7) 4716 * 0 = VESA range, 1 = CTA range. 4717 * all YCbCr are always limited range 4718 */ 4719 vsc_sdp.db[17] |= 0x80; 4720 4721 /* 4722 * Content Type (Bits 2:0) 4723 * 000b = Not defined. 4724 * 001b = Graphics. 4725 * 010b = Photo. 4726 * 011b = Video. 4727 * 100b = Game 4728 * All other values are RESERVED. 4729 * Note: See CTA-861-G for the definition and expected 4730 * processing by a stream sink for the above contect types. 4731 */ 4732 vsc_sdp.db[18] = 0; 4733 4734 intel_dig_port->write_infoframe(&intel_dig_port->base, 4735 crtc_state, DP_SDP_VSC, &vsc_sdp, sizeof(vsc_sdp)); 4736 } 4737 4738 static void 4739 intel_dp_setup_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp, 4740 const struct intel_crtc_state *crtc_state, 4741 const struct drm_connector_state *conn_state) 4742 { 4743 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); 4744 struct dp_sdp infoframe_sdp = {}; 4745 struct hdmi_drm_infoframe drm_infoframe = {}; 4746 const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE; 4747 unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE]; 4748 ssize_t len; 4749 int ret; 4750 4751 ret = drm_hdmi_infoframe_set_hdr_metadata(&drm_infoframe, conn_state); 4752 if (ret) { 4753 DRM_DEBUG_KMS("couldn't set HDR metadata in infoframe\n"); 4754 return; 4755 } 4756 4757 len = hdmi_drm_infoframe_pack_only(&drm_infoframe, buf, sizeof(buf)); 4758 if (len < 0) { 4759 DRM_DEBUG_KMS("buffer size is smaller than hdr metadata infoframe\n"); 4760 return; 4761 } 4762 4763 if (len != infoframe_size) { 4764 DRM_DEBUG_KMS("wrong static hdr metadata size\n"); 4765 return; 4766 } 4767 4768 /* 4769 * Set up the infoframe sdp packet for HDR static metadata. 4770 * Prepare VSC Header for SU as per DP 1.4a spec, 4771 * Table 2-100 and Table 2-101 4772 */ 4773 4774 /* Packet ID, 00h for non-Audio INFOFRAME */ 4775 infoframe_sdp.sdp_header.HB0 = 0; 4776 /* 4777 * Packet Type 80h + Non-audio INFOFRAME Type value 4778 * HDMI_INFOFRAME_TYPE_DRM: 0x87, 4779 */ 4780 infoframe_sdp.sdp_header.HB1 = drm_infoframe.header.type; 4781 /* 4782 * Least Significant Eight Bits of (Data Byte Count 1) 4783 * infoframe_size - 1, 4784 */ 4785 infoframe_sdp.sdp_header.HB2 = 0x1D; 4786 /* INFOFRAME SDP Version Number */ 4787 infoframe_sdp.sdp_header.HB3 = (0x13 << 2); 4788 /* CTA Header Byte 2 (INFOFRAME Version Number) */ 4789 infoframe_sdp.db[0] = drm_infoframe.header.version; 4790 /* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */ 4791 infoframe_sdp.db[1] = drm_infoframe.header.length; 4792 /* 4793 * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after 4794 * HDMI_INFOFRAME_HEADER_SIZE 4795 */ 4796 BUILD_BUG_ON(sizeof(infoframe_sdp.db) < HDMI_DRM_INFOFRAME_SIZE + 2); 4797 memcpy(&infoframe_sdp.db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE], 4798 HDMI_DRM_INFOFRAME_SIZE); 4799 4800 /* 4801 * Size of DP infoframe sdp packet for HDR static metadata is consist of 4802 * - DP SDP Header(struct dp_sdp_header): 4 bytes 4803 * - Two Data Blocks: 2 bytes 4804 * CTA Header Byte2 (INFOFRAME Version Number) 4805 * CTA Header Byte3 (Length of INFOFRAME) 4806 * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes 4807 * 4808 * Prior to GEN11's GMP register size is identical to DP HDR static metadata 4809 * infoframe size. But GEN11+ has larger than that size, write_infoframe 4810 * will pad rest of the size. 4811 */ 4812 intel_dig_port->write_infoframe(&intel_dig_port->base, crtc_state, 4813 HDMI_PACKET_TYPE_GAMUT_METADATA, 4814 &infoframe_sdp, 4815 sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE); 4816 } 4817 4818 void intel_dp_vsc_enable(struct intel_dp *intel_dp, 4819 const struct intel_crtc_state *crtc_state, 4820 const struct drm_connector_state *conn_state) 4821 { 4822 if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state)) 4823 return; 4824 4825 intel_dp_setup_vsc_sdp(intel_dp, crtc_state, conn_state); 4826 } 4827 4828 void intel_dp_hdr_metadata_enable(struct intel_dp *intel_dp, 4829 const struct intel_crtc_state *crtc_state, 4830 const struct drm_connector_state *conn_state) 4831 { 4832 if (!conn_state->hdr_output_metadata) 4833 return; 4834 4835 intel_dp_setup_hdr_metadata_infoframe_sdp(intel_dp, 4836 crtc_state, 4837 conn_state); 4838 } 4839 4840 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp) 4841 { 4842 int status = 0; 4843 int test_link_rate; 4844 u8 test_lane_count, test_link_bw; 4845 /* (DP CTS 1.2) 4846 * 4.3.1.11 4847 */ 4848 /* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */ 4849 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT, 4850 &test_lane_count); 4851 4852 if (status <= 0) { 4853 DRM_DEBUG_KMS("Lane count read failed\n"); 4854 return DP_TEST_NAK; 4855 } 4856 test_lane_count &= DP_MAX_LANE_COUNT_MASK; 4857 4858 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE, 4859 &test_link_bw); 4860 if (status <= 0) { 4861 DRM_DEBUG_KMS("Link Rate read failed\n"); 4862 return DP_TEST_NAK; 4863 } 4864 test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw); 4865 4866 /* Validate the requested link rate and lane count */ 4867 if (!intel_dp_link_params_valid(intel_dp, test_link_rate, 4868 test_lane_count)) 4869 return DP_TEST_NAK; 4870 4871 intel_dp->compliance.test_lane_count = test_lane_count; 4872 intel_dp->compliance.test_link_rate = test_link_rate; 4873 4874 return DP_TEST_ACK; 4875 } 4876 4877 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp) 4878 { 4879 u8 test_pattern; 4880 u8 test_misc; 4881 __be16 h_width, v_height; 4882 int status = 0; 4883 4884 /* Read the TEST_PATTERN (DP CTS 3.1.5) */ 4885 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN, 4886 &test_pattern); 4887 if (status <= 0) { 4888 DRM_DEBUG_KMS("Test pattern read failed\n"); 4889 return DP_TEST_NAK; 4890 } 4891 if (test_pattern != DP_COLOR_RAMP) 4892 return DP_TEST_NAK; 4893 4894 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI, 4895 &h_width, 2); 4896 if (status <= 0) { 4897 DRM_DEBUG_KMS("H Width read failed\n"); 4898 return DP_TEST_NAK; 4899 } 4900 4901 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI, 4902 &v_height, 2); 4903 if (status <= 0) { 4904 DRM_DEBUG_KMS("V Height read failed\n"); 4905 return DP_TEST_NAK; 4906 } 4907 4908 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0, 4909 &test_misc); 4910 if (status <= 0) { 4911 DRM_DEBUG_KMS("TEST MISC read failed\n"); 4912 return DP_TEST_NAK; 4913 } 4914 if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB) 4915 return DP_TEST_NAK; 4916 if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA) 4917 return DP_TEST_NAK; 4918 switch (test_misc & DP_TEST_BIT_DEPTH_MASK) { 4919 case DP_TEST_BIT_DEPTH_6: 4920 intel_dp->compliance.test_data.bpc = 6; 4921 break; 4922 case DP_TEST_BIT_DEPTH_8: 4923 intel_dp->compliance.test_data.bpc = 8; 4924 break; 4925 default: 4926 return DP_TEST_NAK; 4927 } 4928 4929 intel_dp->compliance.test_data.video_pattern = test_pattern; 4930 intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width); 4931 intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height); 4932 /* Set test active flag here so userspace doesn't interrupt things */ 4933 intel_dp->compliance.test_active = true; 4934 4935 return DP_TEST_ACK; 4936 } 4937 4938 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp) 4939 { 4940 u8 test_result = DP_TEST_ACK; 4941 struct intel_connector *intel_connector = intel_dp->attached_connector; 4942 struct drm_connector *connector = &intel_connector->base; 4943 4944 if (intel_connector->detect_edid == NULL || 4945 connector->edid_corrupt || 4946 intel_dp->aux.i2c_defer_count > 6) { 4947 /* Check EDID read for NACKs, DEFERs and corruption 4948 * (DP CTS 1.2 Core r1.1) 4949 * 4.2.2.4 : Failed EDID read, I2C_NAK 4950 * 4.2.2.5 : Failed EDID read, I2C_DEFER 4951 * 4.2.2.6 : EDID corruption detected 4952 * Use failsafe mode for all cases 4953 */ 4954 if (intel_dp->aux.i2c_nack_count > 0 || 4955 intel_dp->aux.i2c_defer_count > 0) 4956 DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n", 4957 intel_dp->aux.i2c_nack_count, 4958 intel_dp->aux.i2c_defer_count); 4959 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE; 4960 } else { 4961 struct edid *block = intel_connector->detect_edid; 4962 4963 /* We have to write the checksum 4964 * of the last block read 4965 */ 4966 block += intel_connector->detect_edid->extensions; 4967 4968 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM, 4969 block->checksum) <= 0) 4970 DRM_DEBUG_KMS("Failed to write EDID checksum\n"); 4971 4972 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE; 4973 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED; 4974 } 4975 4976 /* Set test active flag here so userspace doesn't interrupt things */ 4977 intel_dp->compliance.test_active = true; 4978 4979 return test_result; 4980 } 4981 4982 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp) 4983 { 4984 u8 test_result = DP_TEST_NAK; 4985 return test_result; 4986 } 4987 4988 static void intel_dp_handle_test_request(struct intel_dp *intel_dp) 4989 { 4990 u8 response = DP_TEST_NAK; 4991 u8 request = 0; 4992 int status; 4993 4994 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request); 4995 if (status <= 0) { 4996 DRM_DEBUG_KMS("Could not read test request from sink\n"); 4997 goto update_status; 4998 } 4999 5000 switch (request) { 5001 case DP_TEST_LINK_TRAINING: 5002 DRM_DEBUG_KMS("LINK_TRAINING test requested\n"); 5003 response = intel_dp_autotest_link_training(intel_dp); 5004 break; 5005 case DP_TEST_LINK_VIDEO_PATTERN: 5006 DRM_DEBUG_KMS("TEST_PATTERN test requested\n"); 5007 response = intel_dp_autotest_video_pattern(intel_dp); 5008 break; 5009 case DP_TEST_LINK_EDID_READ: 5010 DRM_DEBUG_KMS("EDID test requested\n"); 5011 response = intel_dp_autotest_edid(intel_dp); 5012 break; 5013 case DP_TEST_LINK_PHY_TEST_PATTERN: 5014 DRM_DEBUG_KMS("PHY_PATTERN test requested\n"); 5015 response = intel_dp_autotest_phy_pattern(intel_dp); 5016 break; 5017 default: 5018 DRM_DEBUG_KMS("Invalid test request '%02x'\n", request); 5019 break; 5020 } 5021 5022 if (response & DP_TEST_ACK) 5023 intel_dp->compliance.test_type = request; 5024 5025 update_status: 5026 status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response); 5027 if (status <= 0) 5028 DRM_DEBUG_KMS("Could not write test response to sink\n"); 5029 } 5030 5031 static int 5032 intel_dp_check_mst_status(struct intel_dp *intel_dp) 5033 { 5034 bool bret; 5035 5036 if (intel_dp->is_mst) { 5037 u8 esi[DP_DPRX_ESI_LEN] = { 0 }; 5038 int ret = 0; 5039 int retry; 5040 bool handled; 5041 5042 WARN_ON_ONCE(intel_dp->active_mst_links < 0); 5043 bret = intel_dp_get_sink_irq_esi(intel_dp, esi); 5044 go_again: 5045 if (bret == true) { 5046 5047 /* check link status - esi[10] = 0x200c */ 5048 if (intel_dp->active_mst_links > 0 && 5049 !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) { 5050 DRM_DEBUG_KMS("channel EQ not ok, retraining\n"); 5051 intel_dp_start_link_train(intel_dp); 5052 intel_dp_stop_link_train(intel_dp); 5053 } 5054 5055 DRM_DEBUG_KMS("got esi %3ph\n", esi); 5056 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled); 5057 5058 if (handled) { 5059 for (retry = 0; retry < 3; retry++) { 5060 int wret; 5061 wret = drm_dp_dpcd_write(&intel_dp->aux, 5062 DP_SINK_COUNT_ESI+1, 5063 &esi[1], 3); 5064 if (wret == 3) { 5065 break; 5066 } 5067 } 5068 5069 bret = intel_dp_get_sink_irq_esi(intel_dp, esi); 5070 if (bret == true) { 5071 DRM_DEBUG_KMS("got esi2 %3ph\n", esi); 5072 goto go_again; 5073 } 5074 } else 5075 ret = 0; 5076 5077 return ret; 5078 } else { 5079 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n"); 5080 intel_dp->is_mst = false; 5081 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 5082 intel_dp->is_mst); 5083 } 5084 } 5085 return -EINVAL; 5086 } 5087 5088 static bool 5089 intel_dp_needs_link_retrain(struct intel_dp *intel_dp) 5090 { 5091 u8 link_status[DP_LINK_STATUS_SIZE]; 5092 5093 if (!intel_dp->link_trained) 5094 return false; 5095 5096 /* 5097 * While PSR source HW is enabled, it will control main-link sending 5098 * frames, enabling and disabling it so trying to do a retrain will fail 5099 * as the link would or not be on or it could mix training patterns 5100 * and frame data at the same time causing retrain to fail. 5101 * Also when exiting PSR, HW will retrain the link anyways fixing 5102 * any link status error. 5103 */ 5104 if (intel_psr_enabled(intel_dp)) 5105 return false; 5106 5107 if (!intel_dp_get_link_status(intel_dp, link_status)) 5108 return false; 5109 5110 /* 5111 * Validate the cached values of intel_dp->link_rate and 5112 * intel_dp->lane_count before attempting to retrain. 5113 */ 5114 if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate, 5115 intel_dp->lane_count)) 5116 return false; 5117 5118 /* Retrain if Channel EQ or CR not ok */ 5119 return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count); 5120 } 5121 5122 int intel_dp_retrain_link(struct intel_encoder *encoder, 5123 struct drm_modeset_acquire_ctx *ctx) 5124 { 5125 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5126 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 5127 struct intel_connector *connector = intel_dp->attached_connector; 5128 struct drm_connector_state *conn_state; 5129 struct intel_crtc_state *crtc_state; 5130 struct intel_crtc *crtc; 5131 int ret; 5132 5133 /* FIXME handle the MST connectors as well */ 5134 5135 if (!connector || connector->base.status != connector_status_connected) 5136 return 0; 5137 5138 ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex, 5139 ctx); 5140 if (ret) 5141 return ret; 5142 5143 conn_state = connector->base.state; 5144 5145 crtc = to_intel_crtc(conn_state->crtc); 5146 if (!crtc) 5147 return 0; 5148 5149 ret = drm_modeset_lock(&crtc->base.mutex, ctx); 5150 if (ret) 5151 return ret; 5152 5153 crtc_state = to_intel_crtc_state(crtc->base.state); 5154 5155 WARN_ON(!intel_crtc_has_dp_encoder(crtc_state)); 5156 5157 if (!crtc_state->hw.active) 5158 return 0; 5159 5160 if (conn_state->commit && 5161 !try_wait_for_completion(&conn_state->commit->hw_done)) 5162 return 0; 5163 5164 if (!intel_dp_needs_link_retrain(intel_dp)) 5165 return 0; 5166 5167 /* Suppress underruns caused by re-training */ 5168 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false); 5169 if (crtc_state->has_pch_encoder) 5170 intel_set_pch_fifo_underrun_reporting(dev_priv, 5171 intel_crtc_pch_transcoder(crtc), false); 5172 5173 intel_dp_start_link_train(intel_dp); 5174 intel_dp_stop_link_train(intel_dp); 5175 5176 /* Keep underrun reporting disabled until things are stable */ 5177 intel_wait_for_vblank(dev_priv, crtc->pipe); 5178 5179 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); 5180 if (crtc_state->has_pch_encoder) 5181 intel_set_pch_fifo_underrun_reporting(dev_priv, 5182 intel_crtc_pch_transcoder(crtc), true); 5183 5184 return 0; 5185 } 5186 5187 /* 5188 * If display is now connected check links status, 5189 * there has been known issues of link loss triggering 5190 * long pulse. 5191 * 5192 * Some sinks (eg. ASUS PB287Q) seem to perform some 5193 * weird HPD ping pong during modesets. So we can apparently 5194 * end up with HPD going low during a modeset, and then 5195 * going back up soon after. And once that happens we must 5196 * retrain the link to get a picture. That's in case no 5197 * userspace component reacted to intermittent HPD dip. 5198 */ 5199 static enum intel_hotplug_state 5200 intel_dp_hotplug(struct intel_encoder *encoder, 5201 struct intel_connector *connector, 5202 bool irq_received) 5203 { 5204 struct drm_modeset_acquire_ctx ctx; 5205 enum intel_hotplug_state state; 5206 int ret; 5207 5208 state = intel_encoder_hotplug(encoder, connector, irq_received); 5209 5210 drm_modeset_acquire_init(&ctx, 0); 5211 5212 for (;;) { 5213 ret = intel_dp_retrain_link(encoder, &ctx); 5214 5215 if (ret == -EDEADLK) { 5216 drm_modeset_backoff(&ctx); 5217 continue; 5218 } 5219 5220 break; 5221 } 5222 5223 drm_modeset_drop_locks(&ctx); 5224 drm_modeset_acquire_fini(&ctx); 5225 WARN(ret, "Acquiring modeset locks failed with %i\n", ret); 5226 5227 /* 5228 * Keeping it consistent with intel_ddi_hotplug() and 5229 * intel_hdmi_hotplug(). 5230 */ 5231 if (state == INTEL_HOTPLUG_UNCHANGED && irq_received) 5232 state = INTEL_HOTPLUG_RETRY; 5233 5234 return state; 5235 } 5236 5237 static void intel_dp_check_service_irq(struct intel_dp *intel_dp) 5238 { 5239 u8 val; 5240 5241 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) 5242 return; 5243 5244 if (drm_dp_dpcd_readb(&intel_dp->aux, 5245 DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val) 5246 return; 5247 5248 drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val); 5249 5250 if (val & DP_AUTOMATED_TEST_REQUEST) 5251 intel_dp_handle_test_request(intel_dp); 5252 5253 if (val & DP_CP_IRQ) 5254 intel_hdcp_handle_cp_irq(intel_dp->attached_connector); 5255 5256 if (val & DP_SINK_SPECIFIC_IRQ) 5257 DRM_DEBUG_DRIVER("Sink specific irq unhandled\n"); 5258 } 5259 5260 /* 5261 * According to DP spec 5262 * 5.1.2: 5263 * 1. Read DPCD 5264 * 2. Configure link according to Receiver Capabilities 5265 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3 5266 * 4. Check link status on receipt of hot-plug interrupt 5267 * 5268 * intel_dp_short_pulse - handles short pulse interrupts 5269 * when full detection is not required. 5270 * Returns %true if short pulse is handled and full detection 5271 * is NOT required and %false otherwise. 5272 */ 5273 static bool 5274 intel_dp_short_pulse(struct intel_dp *intel_dp) 5275 { 5276 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 5277 u8 old_sink_count = intel_dp->sink_count; 5278 bool ret; 5279 5280 /* 5281 * Clearing compliance test variables to allow capturing 5282 * of values for next automated test request. 5283 */ 5284 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance)); 5285 5286 /* 5287 * Now read the DPCD to see if it's actually running 5288 * If the current value of sink count doesn't match with 5289 * the value that was stored earlier or dpcd read failed 5290 * we need to do full detection 5291 */ 5292 ret = intel_dp_get_dpcd(intel_dp); 5293 5294 if ((old_sink_count != intel_dp->sink_count) || !ret) { 5295 /* No need to proceed if we are going to do full detect */ 5296 return false; 5297 } 5298 5299 intel_dp_check_service_irq(intel_dp); 5300 5301 /* Handle CEC interrupts, if any */ 5302 drm_dp_cec_irq(&intel_dp->aux); 5303 5304 /* defer to the hotplug work for link retraining if needed */ 5305 if (intel_dp_needs_link_retrain(intel_dp)) 5306 return false; 5307 5308 intel_psr_short_pulse(intel_dp); 5309 5310 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) { 5311 DRM_DEBUG_KMS("Link Training Compliance Test requested\n"); 5312 /* Send a Hotplug Uevent to userspace to start modeset */ 5313 drm_kms_helper_hotplug_event(&dev_priv->drm); 5314 } 5315 5316 return true; 5317 } 5318 5319 /* XXX this is probably wrong for multiple downstream ports */ 5320 static enum drm_connector_status 5321 intel_dp_detect_dpcd(struct intel_dp *intel_dp) 5322 { 5323 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp); 5324 u8 *dpcd = intel_dp->dpcd; 5325 u8 type; 5326 5327 if (WARN_ON(intel_dp_is_edp(intel_dp))) 5328 return connector_status_connected; 5329 5330 if (lspcon->active) 5331 lspcon_resume(lspcon); 5332 5333 if (!intel_dp_get_dpcd(intel_dp)) 5334 return connector_status_disconnected; 5335 5336 /* if there's no downstream port, we're done */ 5337 if (!drm_dp_is_branch(dpcd)) 5338 return connector_status_connected; 5339 5340 /* If we're HPD-aware, SINK_COUNT changes dynamically */ 5341 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 && 5342 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) { 5343 5344 return intel_dp->sink_count ? 5345 connector_status_connected : connector_status_disconnected; 5346 } 5347 5348 if (intel_dp_can_mst(intel_dp)) 5349 return connector_status_connected; 5350 5351 /* If no HPD, poke DDC gently */ 5352 if (drm_probe_ddc(&intel_dp->aux.ddc)) 5353 return connector_status_connected; 5354 5355 /* Well we tried, say unknown for unreliable port types */ 5356 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) { 5357 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK; 5358 if (type == DP_DS_PORT_TYPE_VGA || 5359 type == DP_DS_PORT_TYPE_NON_EDID) 5360 return connector_status_unknown; 5361 } else { 5362 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & 5363 DP_DWN_STRM_PORT_TYPE_MASK; 5364 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG || 5365 type == DP_DWN_STRM_PORT_TYPE_OTHER) 5366 return connector_status_unknown; 5367 } 5368 5369 /* Anything else is out of spec, warn and ignore */ 5370 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n"); 5371 return connector_status_disconnected; 5372 } 5373 5374 static enum drm_connector_status 5375 edp_detect(struct intel_dp *intel_dp) 5376 { 5377 return connector_status_connected; 5378 } 5379 5380 static bool ibx_digital_port_connected(struct intel_encoder *encoder) 5381 { 5382 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5383 u32 bit; 5384 5385 switch (encoder->hpd_pin) { 5386 case HPD_PORT_B: 5387 bit = SDE_PORTB_HOTPLUG; 5388 break; 5389 case HPD_PORT_C: 5390 bit = SDE_PORTC_HOTPLUG; 5391 break; 5392 case HPD_PORT_D: 5393 bit = SDE_PORTD_HOTPLUG; 5394 break; 5395 default: 5396 MISSING_CASE(encoder->hpd_pin); 5397 return false; 5398 } 5399 5400 return I915_READ(SDEISR) & bit; 5401 } 5402 5403 static bool cpt_digital_port_connected(struct intel_encoder *encoder) 5404 { 5405 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5406 u32 bit; 5407 5408 switch (encoder->hpd_pin) { 5409 case HPD_PORT_B: 5410 bit = SDE_PORTB_HOTPLUG_CPT; 5411 break; 5412 case HPD_PORT_C: 5413 bit = SDE_PORTC_HOTPLUG_CPT; 5414 break; 5415 case HPD_PORT_D: 5416 bit = SDE_PORTD_HOTPLUG_CPT; 5417 break; 5418 default: 5419 MISSING_CASE(encoder->hpd_pin); 5420 return false; 5421 } 5422 5423 return I915_READ(SDEISR) & bit; 5424 } 5425 5426 static bool spt_digital_port_connected(struct intel_encoder *encoder) 5427 { 5428 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5429 u32 bit; 5430 5431 switch (encoder->hpd_pin) { 5432 case HPD_PORT_A: 5433 bit = SDE_PORTA_HOTPLUG_SPT; 5434 break; 5435 case HPD_PORT_E: 5436 bit = SDE_PORTE_HOTPLUG_SPT; 5437 break; 5438 default: 5439 return cpt_digital_port_connected(encoder); 5440 } 5441 5442 return I915_READ(SDEISR) & bit; 5443 } 5444 5445 static bool g4x_digital_port_connected(struct intel_encoder *encoder) 5446 { 5447 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5448 u32 bit; 5449 5450 switch (encoder->hpd_pin) { 5451 case HPD_PORT_B: 5452 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X; 5453 break; 5454 case HPD_PORT_C: 5455 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X; 5456 break; 5457 case HPD_PORT_D: 5458 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X; 5459 break; 5460 default: 5461 MISSING_CASE(encoder->hpd_pin); 5462 return false; 5463 } 5464 5465 return I915_READ(PORT_HOTPLUG_STAT) & bit; 5466 } 5467 5468 static bool gm45_digital_port_connected(struct intel_encoder *encoder) 5469 { 5470 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5471 u32 bit; 5472 5473 switch (encoder->hpd_pin) { 5474 case HPD_PORT_B: 5475 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45; 5476 break; 5477 case HPD_PORT_C: 5478 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45; 5479 break; 5480 case HPD_PORT_D: 5481 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45; 5482 break; 5483 default: 5484 MISSING_CASE(encoder->hpd_pin); 5485 return false; 5486 } 5487 5488 return I915_READ(PORT_HOTPLUG_STAT) & bit; 5489 } 5490 5491 static bool ilk_digital_port_connected(struct intel_encoder *encoder) 5492 { 5493 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5494 5495 if (encoder->hpd_pin == HPD_PORT_A) 5496 return I915_READ(DEISR) & DE_DP_A_HOTPLUG; 5497 else 5498 return ibx_digital_port_connected(encoder); 5499 } 5500 5501 static bool snb_digital_port_connected(struct intel_encoder *encoder) 5502 { 5503 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5504 5505 if (encoder->hpd_pin == HPD_PORT_A) 5506 return I915_READ(DEISR) & DE_DP_A_HOTPLUG; 5507 else 5508 return cpt_digital_port_connected(encoder); 5509 } 5510 5511 static bool ivb_digital_port_connected(struct intel_encoder *encoder) 5512 { 5513 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5514 5515 if (encoder->hpd_pin == HPD_PORT_A) 5516 return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB; 5517 else 5518 return cpt_digital_port_connected(encoder); 5519 } 5520 5521 static bool bdw_digital_port_connected(struct intel_encoder *encoder) 5522 { 5523 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5524 5525 if (encoder->hpd_pin == HPD_PORT_A) 5526 return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG; 5527 else 5528 return cpt_digital_port_connected(encoder); 5529 } 5530 5531 static bool bxt_digital_port_connected(struct intel_encoder *encoder) 5532 { 5533 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5534 u32 bit; 5535 5536 switch (encoder->hpd_pin) { 5537 case HPD_PORT_A: 5538 bit = BXT_DE_PORT_HP_DDIA; 5539 break; 5540 case HPD_PORT_B: 5541 bit = BXT_DE_PORT_HP_DDIB; 5542 break; 5543 case HPD_PORT_C: 5544 bit = BXT_DE_PORT_HP_DDIC; 5545 break; 5546 default: 5547 MISSING_CASE(encoder->hpd_pin); 5548 return false; 5549 } 5550 5551 return I915_READ(GEN8_DE_PORT_ISR) & bit; 5552 } 5553 5554 static bool intel_combo_phy_connected(struct drm_i915_private *dev_priv, 5555 enum phy phy) 5556 { 5557 if (HAS_PCH_MCC(dev_priv) && phy == PHY_C) 5558 return I915_READ(SDEISR) & SDE_TC_HOTPLUG_ICP(PORT_TC1); 5559 5560 return I915_READ(SDEISR) & SDE_DDI_HOTPLUG_ICP(phy); 5561 } 5562 5563 static bool icp_digital_port_connected(struct intel_encoder *encoder) 5564 { 5565 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5566 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 5567 enum phy phy = intel_port_to_phy(dev_priv, encoder->port); 5568 5569 if (intel_phy_is_combo(dev_priv, phy)) 5570 return intel_combo_phy_connected(dev_priv, phy); 5571 else if (intel_phy_is_tc(dev_priv, phy)) 5572 return intel_tc_port_connected(dig_port); 5573 else 5574 MISSING_CASE(encoder->hpd_pin); 5575 5576 return false; 5577 } 5578 5579 /* 5580 * intel_digital_port_connected - is the specified port connected? 5581 * @encoder: intel_encoder 5582 * 5583 * In cases where there's a connector physically connected but it can't be used 5584 * by our hardware we also return false, since the rest of the driver should 5585 * pretty much treat the port as disconnected. This is relevant for type-C 5586 * (starting on ICL) where there's ownership involved. 5587 * 5588 * Return %true if port is connected, %false otherwise. 5589 */ 5590 static bool __intel_digital_port_connected(struct intel_encoder *encoder) 5591 { 5592 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5593 5594 if (HAS_GMCH(dev_priv)) { 5595 if (IS_GM45(dev_priv)) 5596 return gm45_digital_port_connected(encoder); 5597 else 5598 return g4x_digital_port_connected(encoder); 5599 } 5600 5601 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) 5602 return icp_digital_port_connected(encoder); 5603 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT) 5604 return spt_digital_port_connected(encoder); 5605 else if (IS_GEN9_LP(dev_priv)) 5606 return bxt_digital_port_connected(encoder); 5607 else if (IS_GEN(dev_priv, 8)) 5608 return bdw_digital_port_connected(encoder); 5609 else if (IS_GEN(dev_priv, 7)) 5610 return ivb_digital_port_connected(encoder); 5611 else if (IS_GEN(dev_priv, 6)) 5612 return snb_digital_port_connected(encoder); 5613 else if (IS_GEN(dev_priv, 5)) 5614 return ilk_digital_port_connected(encoder); 5615 5616 MISSING_CASE(INTEL_GEN(dev_priv)); 5617 return false; 5618 } 5619 5620 bool intel_digital_port_connected(struct intel_encoder *encoder) 5621 { 5622 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 5623 bool is_connected = false; 5624 intel_wakeref_t wakeref; 5625 5626 with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref) 5627 is_connected = __intel_digital_port_connected(encoder); 5628 5629 return is_connected; 5630 } 5631 5632 static struct edid * 5633 intel_dp_get_edid(struct intel_dp *intel_dp) 5634 { 5635 struct intel_connector *intel_connector = intel_dp->attached_connector; 5636 5637 /* use cached edid if we have one */ 5638 if (intel_connector->edid) { 5639 /* invalid edid */ 5640 if (IS_ERR(intel_connector->edid)) 5641 return NULL; 5642 5643 return drm_edid_duplicate(intel_connector->edid); 5644 } else 5645 return drm_get_edid(&intel_connector->base, 5646 &intel_dp->aux.ddc); 5647 } 5648 5649 static void 5650 intel_dp_set_edid(struct intel_dp *intel_dp) 5651 { 5652 struct intel_connector *intel_connector = intel_dp->attached_connector; 5653 struct edid *edid; 5654 5655 intel_dp_unset_edid(intel_dp); 5656 edid = intel_dp_get_edid(intel_dp); 5657 intel_connector->detect_edid = edid; 5658 5659 intel_dp->has_audio = drm_detect_monitor_audio(edid); 5660 drm_dp_cec_set_edid(&intel_dp->aux, edid); 5661 } 5662 5663 static void 5664 intel_dp_unset_edid(struct intel_dp *intel_dp) 5665 { 5666 struct intel_connector *intel_connector = intel_dp->attached_connector; 5667 5668 drm_dp_cec_unset_edid(&intel_dp->aux); 5669 kfree(intel_connector->detect_edid); 5670 intel_connector->detect_edid = NULL; 5671 5672 intel_dp->has_audio = false; 5673 } 5674 5675 static int 5676 intel_dp_detect(struct drm_connector *connector, 5677 struct drm_modeset_acquire_ctx *ctx, 5678 bool force) 5679 { 5680 struct drm_i915_private *dev_priv = to_i915(connector->dev); 5681 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); 5682 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 5683 struct intel_encoder *encoder = &dig_port->base; 5684 enum drm_connector_status status; 5685 5686 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", 5687 connector->base.id, connector->name); 5688 WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex)); 5689 5690 /* Can't disconnect eDP */ 5691 if (intel_dp_is_edp(intel_dp)) 5692 status = edp_detect(intel_dp); 5693 else if (intel_digital_port_connected(encoder)) 5694 status = intel_dp_detect_dpcd(intel_dp); 5695 else 5696 status = connector_status_disconnected; 5697 5698 if (status == connector_status_disconnected) { 5699 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance)); 5700 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd)); 5701 5702 if (intel_dp->is_mst) { 5703 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", 5704 intel_dp->is_mst, 5705 intel_dp->mst_mgr.mst_state); 5706 intel_dp->is_mst = false; 5707 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 5708 intel_dp->is_mst); 5709 } 5710 5711 goto out; 5712 } 5713 5714 if (intel_dp->reset_link_params) { 5715 /* Initial max link lane count */ 5716 intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp); 5717 5718 /* Initial max link rate */ 5719 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp); 5720 5721 intel_dp->reset_link_params = false; 5722 } 5723 5724 intel_dp_print_rates(intel_dp); 5725 5726 /* Read DP Sink DSC Cap DPCD regs for DP v1.4 */ 5727 if (INTEL_GEN(dev_priv) >= 11) 5728 intel_dp_get_dsc_sink_cap(intel_dp); 5729 5730 intel_dp_configure_mst(intel_dp); 5731 5732 if (intel_dp->is_mst) { 5733 /* 5734 * If we are in MST mode then this connector 5735 * won't appear connected or have anything 5736 * with EDID on it 5737 */ 5738 status = connector_status_disconnected; 5739 goto out; 5740 } 5741 5742 /* 5743 * Some external monitors do not signal loss of link synchronization 5744 * with an IRQ_HPD, so force a link status check. 5745 */ 5746 if (!intel_dp_is_edp(intel_dp)) { 5747 int ret; 5748 5749 ret = intel_dp_retrain_link(encoder, ctx); 5750 if (ret) 5751 return ret; 5752 } 5753 5754 /* 5755 * Clearing NACK and defer counts to get their exact values 5756 * while reading EDID which are required by Compliance tests 5757 * 4.2.2.4 and 4.2.2.5 5758 */ 5759 intel_dp->aux.i2c_nack_count = 0; 5760 intel_dp->aux.i2c_defer_count = 0; 5761 5762 intel_dp_set_edid(intel_dp); 5763 if (intel_dp_is_edp(intel_dp) || 5764 to_intel_connector(connector)->detect_edid) 5765 status = connector_status_connected; 5766 5767 intel_dp_check_service_irq(intel_dp); 5768 5769 out: 5770 if (status != connector_status_connected && !intel_dp->is_mst) 5771 intel_dp_unset_edid(intel_dp); 5772 5773 /* 5774 * Make sure the refs for power wells enabled during detect are 5775 * dropped to avoid a new detect cycle triggered by HPD polling. 5776 */ 5777 intel_display_power_flush_work(dev_priv); 5778 5779 return status; 5780 } 5781 5782 static void 5783 intel_dp_force(struct drm_connector *connector) 5784 { 5785 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); 5786 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 5787 struct intel_encoder *intel_encoder = &dig_port->base; 5788 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev); 5789 enum intel_display_power_domain aux_domain = 5790 intel_aux_power_domain(dig_port); 5791 intel_wakeref_t wakeref; 5792 5793 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", 5794 connector->base.id, connector->name); 5795 intel_dp_unset_edid(intel_dp); 5796 5797 if (connector->status != connector_status_connected) 5798 return; 5799 5800 wakeref = intel_display_power_get(dev_priv, aux_domain); 5801 5802 intel_dp_set_edid(intel_dp); 5803 5804 intel_display_power_put(dev_priv, aux_domain, wakeref); 5805 } 5806 5807 static int intel_dp_get_modes(struct drm_connector *connector) 5808 { 5809 struct intel_connector *intel_connector = to_intel_connector(connector); 5810 struct edid *edid; 5811 5812 edid = intel_connector->detect_edid; 5813 if (edid) { 5814 int ret = intel_connector_update_modes(connector, edid); 5815 if (ret) 5816 return ret; 5817 } 5818 5819 /* if eDP has no EDID, fall back to fixed mode */ 5820 if (intel_dp_is_edp(intel_attached_dp(to_intel_connector(connector))) && 5821 intel_connector->panel.fixed_mode) { 5822 struct drm_display_mode *mode; 5823 5824 mode = drm_mode_duplicate(connector->dev, 5825 intel_connector->panel.fixed_mode); 5826 if (mode) { 5827 drm_mode_probed_add(connector, mode); 5828 return 1; 5829 } 5830 } 5831 5832 return 0; 5833 } 5834 5835 static int 5836 intel_dp_connector_register(struct drm_connector *connector) 5837 { 5838 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); 5839 int ret; 5840 5841 ret = intel_connector_register(connector); 5842 if (ret) 5843 return ret; 5844 5845 i915_debugfs_connector_add(connector); 5846 5847 #ifdef __NetBSD__ 5848 DRM_DEBUG_KMS("registering %s bus for %s\n", 5849 intel_dp->aux.name, connector->name); 5850 #else 5851 DRM_DEBUG_KMS("registering %s bus for %s\n", 5852 intel_dp->aux.name, connector->kdev->kobj.name); 5853 #endif 5854 5855 intel_dp->aux.dev = connector->kdev; 5856 ret = drm_dp_aux_register(&intel_dp->aux); 5857 if (!ret) 5858 drm_dp_cec_register_connector(&intel_dp->aux, connector); 5859 return ret; 5860 } 5861 5862 static void 5863 intel_dp_connector_unregister(struct drm_connector *connector) 5864 { 5865 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); 5866 5867 drm_dp_cec_unregister_connector(&intel_dp->aux); 5868 drm_dp_aux_unregister(&intel_dp->aux); 5869 intel_connector_unregister(connector); 5870 } 5871 5872 void intel_dp_encoder_flush_work(struct drm_encoder *encoder) 5873 { 5874 struct intel_digital_port *intel_dig_port = enc_to_dig_port(to_intel_encoder(encoder)); 5875 struct intel_dp *intel_dp = &intel_dig_port->dp; 5876 5877 intel_dp_mst_encoder_cleanup(intel_dig_port); 5878 if (intel_dp_is_edp(intel_dp)) { 5879 intel_wakeref_t wakeref; 5880 5881 cancel_delayed_work_sync(&intel_dp->panel_vdd_work); 5882 /* 5883 * vdd might still be enabled do to the delayed vdd off. 5884 * Make sure vdd is actually turned off here. 5885 */ 5886 with_pps_lock(intel_dp, wakeref) 5887 edp_panel_vdd_off_sync(intel_dp); 5888 5889 if (intel_dp->edp_notifier.notifier_call) { 5890 unregister_reboot_notifier(&intel_dp->edp_notifier); 5891 intel_dp->edp_notifier.notifier_call = NULL; 5892 } 5893 } 5894 5895 intel_dp_aux_fini(intel_dp); 5896 } 5897 5898 static void intel_dp_encoder_destroy(struct drm_encoder *encoder) 5899 { 5900 intel_dp_encoder_flush_work(encoder); 5901 5902 drm_encoder_cleanup(encoder); 5903 kfree(enc_to_dig_port(to_intel_encoder(encoder))); 5904 } 5905 5906 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder) 5907 { 5908 struct intel_dp *intel_dp = enc_to_intel_dp(intel_encoder); 5909 intel_wakeref_t wakeref; 5910 5911 if (!intel_dp_is_edp(intel_dp)) 5912 return; 5913 5914 /* 5915 * vdd might still be enabled do to the delayed vdd off. 5916 * Make sure vdd is actually turned off here. 5917 */ 5918 cancel_delayed_work_sync(&intel_dp->panel_vdd_work); 5919 with_pps_lock(intel_dp, wakeref) 5920 edp_panel_vdd_off_sync(intel_dp); 5921 } 5922 5923 static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout) 5924 { 5925 long ret; 5926 5927 #define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count)) 5928 unsigned long irqflags; 5929 spin_lock_irqsave(&hdcp->cp_irq_lock, irqflags); 5930 DRM_SPIN_TIMED_WAIT_UNTIL(ret, &hdcp->cp_irq_queue, 5931 &hdcp->cp_irq_lock, 5932 msecs_to_jiffies(timeout), 5933 C); 5934 if (!ret) 5935 DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n"); 5936 spin_unlock_irqrestore(&hdcp->cp_irq_lock, irqflags); 5937 } 5938 5939 static 5940 int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port, 5941 u8 *an) 5942 { 5943 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(&intel_dig_port->base.base)); 5944 static const struct drm_dp_aux_msg msg = { 5945 .request = DP_AUX_NATIVE_WRITE, 5946 .address = DP_AUX_HDCP_AKSV, 5947 .size = DRM_HDCP_KSV_LEN, 5948 }; 5949 u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0; 5950 ssize_t dpcd_ret; 5951 int ret; 5952 5953 /* Output An first, that's easy */ 5954 dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN, 5955 an, DRM_HDCP_AN_LEN); 5956 if (dpcd_ret != DRM_HDCP_AN_LEN) { 5957 DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n", 5958 dpcd_ret); 5959 return dpcd_ret >= 0 ? -EIO : dpcd_ret; 5960 } 5961 5962 /* 5963 * Since Aksv is Oh-So-Secret, we can't access it in software. So in 5964 * order to get it on the wire, we need to create the AUX header as if 5965 * we were writing the data, and then tickle the hardware to output the 5966 * data once the header is sent out. 5967 */ 5968 intel_dp_aux_header(txbuf, &msg); 5969 5970 ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size, 5971 rxbuf, sizeof(rxbuf), 5972 DP_AUX_CH_CTL_AUX_AKSV_SELECT); 5973 if (ret < 0) { 5974 DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret); 5975 return ret; 5976 } else if (ret == 0) { 5977 DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n"); 5978 return -EIO; 5979 } 5980 5981 reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK; 5982 if (reply != DP_AUX_NATIVE_REPLY_ACK) { 5983 DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n", 5984 reply); 5985 return -EIO; 5986 } 5987 return 0; 5988 } 5989 5990 static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port, 5991 u8 *bksv) 5992 { 5993 ssize_t ret; 5994 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv, 5995 DRM_HDCP_KSV_LEN); 5996 if (ret != DRM_HDCP_KSV_LEN) { 5997 DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret); 5998 return ret >= 0 ? -EIO : ret; 5999 } 6000 return 0; 6001 } 6002 6003 static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port, 6004 u8 *bstatus) 6005 { 6006 ssize_t ret; 6007 /* 6008 * For some reason the HDMI and DP HDCP specs call this register 6009 * definition by different names. In the HDMI spec, it's called BSTATUS, 6010 * but in DP it's called BINFO. 6011 */ 6012 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO, 6013 bstatus, DRM_HDCP_BSTATUS_LEN); 6014 if (ret != DRM_HDCP_BSTATUS_LEN) { 6015 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret); 6016 return ret >= 0 ? -EIO : ret; 6017 } 6018 return 0; 6019 } 6020 6021 static 6022 int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port, 6023 u8 *bcaps) 6024 { 6025 ssize_t ret; 6026 6027 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS, 6028 bcaps, 1); 6029 if (ret != 1) { 6030 DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret); 6031 return ret >= 0 ? -EIO : ret; 6032 } 6033 6034 return 0; 6035 } 6036 6037 static 6038 int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port, 6039 bool *repeater_present) 6040 { 6041 ssize_t ret; 6042 u8 bcaps; 6043 6044 ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps); 6045 if (ret) 6046 return ret; 6047 6048 *repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT; 6049 return 0; 6050 } 6051 6052 static 6053 int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port, 6054 u8 *ri_prime) 6055 { 6056 ssize_t ret; 6057 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME, 6058 ri_prime, DRM_HDCP_RI_LEN); 6059 if (ret != DRM_HDCP_RI_LEN) { 6060 DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret); 6061 return ret >= 0 ? -EIO : ret; 6062 } 6063 return 0; 6064 } 6065 6066 static 6067 int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port, 6068 bool *ksv_ready) 6069 { 6070 ssize_t ret; 6071 u8 bstatus; 6072 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS, 6073 &bstatus, 1); 6074 if (ret != 1) { 6075 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret); 6076 return ret >= 0 ? -EIO : ret; 6077 } 6078 *ksv_ready = bstatus & DP_BSTATUS_READY; 6079 return 0; 6080 } 6081 6082 static 6083 int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port, 6084 int num_downstream, u8 *ksv_fifo) 6085 { 6086 ssize_t ret; 6087 int i; 6088 6089 /* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */ 6090 for (i = 0; i < num_downstream; i += 3) { 6091 size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN; 6092 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 6093 DP_AUX_HDCP_KSV_FIFO, 6094 ksv_fifo + i * DRM_HDCP_KSV_LEN, 6095 len); 6096 if (ret != len) { 6097 DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n", 6098 i, ret); 6099 return ret >= 0 ? -EIO : ret; 6100 } 6101 } 6102 return 0; 6103 } 6104 6105 static 6106 int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port, 6107 int i, u32 *part) 6108 { 6109 ssize_t ret; 6110 6111 if (i >= DRM_HDCP_V_PRIME_NUM_PARTS) 6112 return -EINVAL; 6113 6114 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 6115 DP_AUX_HDCP_V_PRIME(i), part, 6116 DRM_HDCP_V_PRIME_PART_LEN); 6117 if (ret != DRM_HDCP_V_PRIME_PART_LEN) { 6118 DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret); 6119 return ret >= 0 ? -EIO : ret; 6120 } 6121 return 0; 6122 } 6123 6124 static 6125 int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port, 6126 bool enable) 6127 { 6128 /* Not used for single stream DisplayPort setups */ 6129 return 0; 6130 } 6131 6132 static 6133 bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port) 6134 { 6135 ssize_t ret; 6136 u8 bstatus; 6137 6138 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS, 6139 &bstatus, 1); 6140 if (ret != 1) { 6141 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret); 6142 return false; 6143 } 6144 6145 return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ)); 6146 } 6147 6148 static 6149 int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port, 6150 bool *hdcp_capable) 6151 { 6152 ssize_t ret; 6153 u8 bcaps; 6154 6155 ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps); 6156 if (ret) 6157 return ret; 6158 6159 *hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE; 6160 return 0; 6161 } 6162 6163 struct hdcp2_dp_errata_stream_type { 6164 u8 msg_id; 6165 u8 stream_type; 6166 } __packed; 6167 6168 struct hdcp2_dp_msg_data { 6169 u8 msg_id; 6170 u32 offset; 6171 bool msg_detectable; 6172 u32 timeout; 6173 u32 timeout2; /* Added for non_paired situation */ 6174 }; 6175 6176 static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data[] = { 6177 { HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0 }, 6178 { HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET, 6179 false, HDCP_2_2_CERT_TIMEOUT_MS, 0 }, 6180 { HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET, 6181 false, 0, 0 }, 6182 { HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET, 6183 false, 0, 0 }, 6184 { HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET, 6185 true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS, 6186 HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS }, 6187 { HDCP_2_2_AKE_SEND_PAIRING_INFO, 6188 DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true, 6189 HDCP_2_2_PAIRING_TIMEOUT_MS, 0 }, 6190 { HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0 }, 6191 { HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET, 6192 false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0 }, 6193 { HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false, 6194 0, 0 }, 6195 { HDCP_2_2_REP_SEND_RECVID_LIST, 6196 DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true, 6197 HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0 }, 6198 { HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false, 6199 0, 0 }, 6200 { HDCP_2_2_REP_STREAM_MANAGE, 6201 DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false, 6202 0, 0 }, 6203 { HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET, 6204 false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0 }, 6205 /* local define to shovel this through the write_2_2 interface */ 6206 #define HDCP_2_2_ERRATA_DP_STREAM_TYPE 50 6207 { HDCP_2_2_ERRATA_DP_STREAM_TYPE, 6208 DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false, 6209 0, 0 }, 6210 }; 6211 6212 static inline 6213 int intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port, 6214 u8 *rx_status) 6215 { 6216 ssize_t ret; 6217 6218 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 6219 DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status, 6220 HDCP_2_2_DP_RXSTATUS_LEN); 6221 if (ret != HDCP_2_2_DP_RXSTATUS_LEN) { 6222 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret); 6223 return ret >= 0 ? -EIO : ret; 6224 } 6225 6226 return 0; 6227 } 6228 6229 static 6230 int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port, 6231 u8 msg_id, bool *msg_ready) 6232 { 6233 u8 rx_status; 6234 int ret; 6235 6236 *msg_ready = false; 6237 ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status); 6238 if (ret < 0) 6239 return ret; 6240 6241 switch (msg_id) { 6242 case HDCP_2_2_AKE_SEND_HPRIME: 6243 if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status)) 6244 *msg_ready = true; 6245 break; 6246 case HDCP_2_2_AKE_SEND_PAIRING_INFO: 6247 if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status)) 6248 *msg_ready = true; 6249 break; 6250 case HDCP_2_2_REP_SEND_RECVID_LIST: 6251 if (HDCP_2_2_DP_RXSTATUS_READY(rx_status)) 6252 *msg_ready = true; 6253 break; 6254 default: 6255 DRM_ERROR("Unidentified msg_id: %d\n", msg_id); 6256 return -EINVAL; 6257 } 6258 6259 return 0; 6260 } 6261 6262 static ssize_t 6263 intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port, 6264 const struct hdcp2_dp_msg_data *hdcp2_msg_data) 6265 { 6266 struct intel_dp *dp = &intel_dig_port->dp; 6267 struct intel_hdcp *hdcp = &dp->attached_connector->hdcp; 6268 u8 msg_id = hdcp2_msg_data->msg_id; 6269 int ret, timeout; 6270 bool msg_ready = false; 6271 6272 if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired) 6273 timeout = hdcp2_msg_data->timeout2; 6274 else 6275 timeout = hdcp2_msg_data->timeout; 6276 6277 /* 6278 * There is no way to detect the CERT, LPRIME and STREAM_READY 6279 * availability. So Wait for timeout and read the msg. 6280 */ 6281 if (!hdcp2_msg_data->msg_detectable) { 6282 mdelay(timeout); 6283 ret = 0; 6284 } else { 6285 /* 6286 * As we want to check the msg availability at timeout, Ignoring 6287 * the timeout at wait for CP_IRQ. 6288 */ 6289 intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout); 6290 ret = hdcp2_detect_msg_availability(intel_dig_port, 6291 msg_id, &msg_ready); 6292 if (!msg_ready) 6293 ret = -ETIMEDOUT; 6294 } 6295 6296 if (ret) 6297 DRM_DEBUG_KMS("msg_id %d, ret %d, timeout(mSec): %d\n", 6298 hdcp2_msg_data->msg_id, ret, timeout); 6299 6300 return ret; 6301 } 6302 6303 static const struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id) 6304 { 6305 int i; 6306 6307 for (i = 0; i < ARRAY_SIZE(hdcp2_dp_msg_data); i++) 6308 if (hdcp2_dp_msg_data[i].msg_id == msg_id) 6309 return &hdcp2_dp_msg_data[i]; 6310 6311 return NULL; 6312 } 6313 6314 static 6315 int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port, 6316 void *buf, size_t size) 6317 { 6318 struct intel_dp *dp = &intel_dig_port->dp; 6319 struct intel_hdcp *hdcp = &dp->attached_connector->hdcp; 6320 unsigned int offset; 6321 u8 *byte = buf; 6322 ssize_t ret, bytes_to_write, len; 6323 const struct hdcp2_dp_msg_data *hdcp2_msg_data; 6324 6325 hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte); 6326 if (!hdcp2_msg_data) 6327 return -EINVAL; 6328 6329 offset = hdcp2_msg_data->offset; 6330 6331 /* No msg_id in DP HDCP2.2 msgs */ 6332 bytes_to_write = size - 1; 6333 byte++; 6334 6335 hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count); 6336 6337 while (bytes_to_write) { 6338 len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ? 6339 DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write; 6340 6341 ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, 6342 offset, (void *)byte, len); 6343 if (ret < 0) 6344 return ret; 6345 6346 bytes_to_write -= ret; 6347 byte += ret; 6348 offset += ret; 6349 } 6350 6351 return size; 6352 } 6353 6354 static 6355 ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port) 6356 { 6357 u8 rx_info[HDCP_2_2_RXINFO_LEN]; 6358 u32 dev_cnt; 6359 ssize_t ret; 6360 6361 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 6362 DP_HDCP_2_2_REG_RXINFO_OFFSET, 6363 (void *)rx_info, HDCP_2_2_RXINFO_LEN); 6364 if (ret != HDCP_2_2_RXINFO_LEN) 6365 return ret >= 0 ? -EIO : ret; 6366 6367 dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 | 6368 HDCP_2_2_DEV_COUNT_LO(rx_info[1])); 6369 6370 if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT) 6371 dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT; 6372 6373 ret = sizeof(struct hdcp2_rep_send_receiverid_list) - 6374 HDCP_2_2_RECEIVER_IDS_MAX_LEN + 6375 (dev_cnt * HDCP_2_2_RECEIVER_ID_LEN); 6376 6377 return ret; 6378 } 6379 6380 static 6381 int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port, 6382 u8 msg_id, void *buf, size_t size) 6383 { 6384 unsigned int offset; 6385 u8 *byte = buf; 6386 ssize_t ret, bytes_to_recv, len; 6387 const struct hdcp2_dp_msg_data *hdcp2_msg_data; 6388 6389 hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id); 6390 if (!hdcp2_msg_data) 6391 return -EINVAL; 6392 offset = hdcp2_msg_data->offset; 6393 6394 ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data); 6395 if (ret < 0) 6396 return ret; 6397 6398 if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) { 6399 ret = get_receiver_id_list_size(intel_dig_port); 6400 if (ret < 0) 6401 return ret; 6402 6403 size = ret; 6404 } 6405 bytes_to_recv = size - 1; 6406 6407 /* DP adaptation msgs has no msg_id */ 6408 byte++; 6409 6410 while (bytes_to_recv) { 6411 len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ? 6412 DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv; 6413 6414 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset, 6415 (void *)byte, len); 6416 if (ret < 0) { 6417 DRM_DEBUG_KMS("msg_id %d, ret %zd\n", msg_id, ret); 6418 return ret; 6419 } 6420 6421 bytes_to_recv -= ret; 6422 byte += ret; 6423 offset += ret; 6424 } 6425 byte = buf; 6426 *byte = msg_id; 6427 6428 return size; 6429 } 6430 6431 static 6432 int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port, 6433 bool is_repeater, u8 content_type) 6434 { 6435 struct hdcp2_dp_errata_stream_type stream_type_msg; 6436 6437 if (is_repeater) 6438 return 0; 6439 6440 /* 6441 * Errata for DP: As Stream type is used for encryption, Receiver 6442 * should be communicated with stream type for the decryption of the 6443 * content. 6444 * Repeater will be communicated with stream type as a part of it's 6445 * auth later in time. 6446 */ 6447 stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE; 6448 stream_type_msg.stream_type = content_type; 6449 6450 return intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg, 6451 sizeof(stream_type_msg)); 6452 } 6453 6454 static 6455 int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port) 6456 { 6457 u8 rx_status; 6458 int ret; 6459 6460 ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status); 6461 if (ret) 6462 return ret; 6463 6464 if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status)) 6465 ret = HDCP_REAUTH_REQUEST; 6466 else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status)) 6467 ret = HDCP_LINK_INTEGRITY_FAILURE; 6468 else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status)) 6469 ret = HDCP_TOPOLOGY_CHANGE; 6470 6471 return ret; 6472 } 6473 6474 static 6475 int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port, 6476 bool *capable) 6477 { 6478 u8 rx_caps[3]; 6479 int ret; 6480 6481 *capable = false; 6482 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, 6483 DP_HDCP_2_2_REG_RX_CAPS_OFFSET, 6484 rx_caps, HDCP_2_2_RXCAPS_LEN); 6485 if (ret != HDCP_2_2_RXCAPS_LEN) 6486 return ret >= 0 ? -EIO : ret; 6487 6488 if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL && 6489 HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2])) 6490 *capable = true; 6491 6492 return 0; 6493 } 6494 6495 static const struct intel_hdcp_shim intel_dp_hdcp_shim = { 6496 .write_an_aksv = intel_dp_hdcp_write_an_aksv, 6497 .read_bksv = intel_dp_hdcp_read_bksv, 6498 .read_bstatus = intel_dp_hdcp_read_bstatus, 6499 .repeater_present = intel_dp_hdcp_repeater_present, 6500 .read_ri_prime = intel_dp_hdcp_read_ri_prime, 6501 .read_ksv_ready = intel_dp_hdcp_read_ksv_ready, 6502 .read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo, 6503 .read_v_prime_part = intel_dp_hdcp_read_v_prime_part, 6504 .toggle_signalling = intel_dp_hdcp_toggle_signalling, 6505 .check_link = intel_dp_hdcp_check_link, 6506 .hdcp_capable = intel_dp_hdcp_capable, 6507 .write_2_2_msg = intel_dp_hdcp2_write_msg, 6508 .read_2_2_msg = intel_dp_hdcp2_read_msg, 6509 .config_stream_type = intel_dp_hdcp2_config_stream_type, 6510 .check_2_2_link = intel_dp_hdcp2_check_link, 6511 .hdcp_2_2_capable = intel_dp_hdcp2_capable, 6512 .protocol = HDCP_PROTOCOL_DP, 6513 }; 6514 6515 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp) 6516 { 6517 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6518 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 6519 6520 lockdep_assert_held(&dev_priv->pps_mutex); 6521 6522 if (!edp_have_panel_vdd(intel_dp)) 6523 return; 6524 6525 /* 6526 * The VDD bit needs a power domain reference, so if the bit is 6527 * already enabled when we boot or resume, grab this reference and 6528 * schedule a vdd off, so we don't hold on to the reference 6529 * indefinitely. 6530 */ 6531 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n"); 6532 intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port)); 6533 6534 edp_panel_vdd_schedule_off(intel_dp); 6535 } 6536 6537 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp) 6538 { 6539 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6540 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; 6541 enum pipe pipe; 6542 6543 if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg, 6544 encoder->port, &pipe)) 6545 return pipe; 6546 6547 return INVALID_PIPE; 6548 } 6549 6550 void intel_dp_encoder_reset(struct drm_encoder *encoder) 6551 { 6552 struct drm_i915_private *dev_priv = to_i915(encoder->dev); 6553 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(encoder)); 6554 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp); 6555 intel_wakeref_t wakeref; 6556 6557 if (!HAS_DDI(dev_priv)) 6558 intel_dp->DP = I915_READ(intel_dp->output_reg); 6559 6560 if (lspcon->active) 6561 lspcon_resume(lspcon); 6562 6563 intel_dp->reset_link_params = true; 6564 6565 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) && 6566 !intel_dp_is_edp(intel_dp)) 6567 return; 6568 6569 with_pps_lock(intel_dp, wakeref) { 6570 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 6571 intel_dp->active_pipe = vlv_active_pipe(intel_dp); 6572 6573 if (intel_dp_is_edp(intel_dp)) { 6574 /* 6575 * Reinit the power sequencer, in case BIOS did 6576 * something nasty with it. 6577 */ 6578 intel_dp_pps_init(intel_dp); 6579 intel_edp_panel_vdd_sanitize(intel_dp); 6580 } 6581 } 6582 } 6583 6584 static const struct drm_connector_funcs intel_dp_connector_funcs = { 6585 .force = intel_dp_force, 6586 .fill_modes = drm_helper_probe_single_connector_modes, 6587 .atomic_get_property = intel_digital_connector_atomic_get_property, 6588 .atomic_set_property = intel_digital_connector_atomic_set_property, 6589 .late_register = intel_dp_connector_register, 6590 .early_unregister = intel_dp_connector_unregister, 6591 .destroy = intel_connector_destroy, 6592 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, 6593 .atomic_duplicate_state = intel_digital_connector_duplicate_state, 6594 }; 6595 6596 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = { 6597 .detect_ctx = intel_dp_detect, 6598 .get_modes = intel_dp_get_modes, 6599 .mode_valid = intel_dp_mode_valid, 6600 .atomic_check = intel_digital_connector_atomic_check, 6601 }; 6602 6603 static const struct drm_encoder_funcs intel_dp_enc_funcs = { 6604 .reset = intel_dp_encoder_reset, 6605 .destroy = intel_dp_encoder_destroy, 6606 }; 6607 6608 enum irqreturn 6609 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd) 6610 { 6611 struct intel_dp *intel_dp = &intel_dig_port->dp; 6612 6613 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) { 6614 /* 6615 * vdd off can generate a long pulse on eDP which 6616 * would require vdd on to handle it, and thus we 6617 * would end up in an endless cycle of 6618 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..." 6619 */ 6620 DRM_DEBUG_KMS("ignoring long hpd on eDP [ENCODER:%d:%s]\n", 6621 intel_dig_port->base.base.base.id, 6622 intel_dig_port->base.base.name); 6623 return IRQ_HANDLED; 6624 } 6625 6626 DRM_DEBUG_KMS("got hpd irq on [ENCODER:%d:%s] - %s\n", 6627 intel_dig_port->base.base.base.id, 6628 intel_dig_port->base.base.name, 6629 long_hpd ? "long" : "short"); 6630 6631 if (long_hpd) { 6632 intel_dp->reset_link_params = true; 6633 return IRQ_NONE; 6634 } 6635 6636 if (intel_dp->is_mst) { 6637 if (intel_dp_check_mst_status(intel_dp) == -EINVAL) { 6638 /* 6639 * If we were in MST mode, and device is not 6640 * there, get out of MST mode 6641 */ 6642 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", 6643 intel_dp->is_mst, intel_dp->mst_mgr.mst_state); 6644 intel_dp->is_mst = false; 6645 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 6646 intel_dp->is_mst); 6647 6648 return IRQ_NONE; 6649 } 6650 } 6651 6652 if (!intel_dp->is_mst) { 6653 bool handled; 6654 6655 handled = intel_dp_short_pulse(intel_dp); 6656 6657 if (!handled) 6658 return IRQ_NONE; 6659 } 6660 6661 return IRQ_HANDLED; 6662 } 6663 6664 /* check the VBT to see whether the eDP is on another port */ 6665 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port) 6666 { 6667 /* 6668 * eDP not supported on g4x. so bail out early just 6669 * for a bit extra safety in case the VBT is bonkers. 6670 */ 6671 if (INTEL_GEN(dev_priv) < 5) 6672 return false; 6673 6674 if (INTEL_GEN(dev_priv) < 9 && port == PORT_A) 6675 return true; 6676 6677 return intel_bios_is_port_edp(dev_priv, port); 6678 } 6679 6680 static void 6681 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector) 6682 { 6683 struct drm_i915_private *dev_priv = to_i915(connector->dev); 6684 enum port port = dp_to_dig_port(intel_dp)->base.port; 6685 6686 if (!IS_G4X(dev_priv) && port != PORT_A) 6687 intel_attach_force_audio_property(connector); 6688 6689 intel_attach_broadcast_rgb_property(connector); 6690 if (HAS_GMCH(dev_priv)) 6691 drm_connector_attach_max_bpc_property(connector, 6, 10); 6692 else if (INTEL_GEN(dev_priv) >= 5) 6693 drm_connector_attach_max_bpc_property(connector, 6, 12); 6694 6695 intel_attach_colorspace_property(connector); 6696 6697 if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 11) 6698 drm_object_attach_property(&connector->base, 6699 connector->dev->mode_config.hdr_output_metadata_property, 6700 0); 6701 6702 if (intel_dp_is_edp(intel_dp)) { 6703 u32 allowed_scalers; 6704 6705 allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN); 6706 if (!HAS_GMCH(dev_priv)) 6707 allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER); 6708 6709 drm_connector_attach_scaling_mode_property(connector, allowed_scalers); 6710 6711 connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT; 6712 6713 } 6714 } 6715 6716 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp) 6717 { 6718 intel_dp->panel_power_off_time = ktime_get_boottime(); 6719 intel_dp->last_power_on = jiffies; 6720 intel_dp->last_backlight_off = jiffies; 6721 } 6722 6723 static void 6724 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq) 6725 { 6726 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6727 u32 pp_on, pp_off, pp_ctl; 6728 struct pps_registers regs; 6729 6730 intel_pps_get_registers(intel_dp, ®s); 6731 6732 pp_ctl = ilk_get_pp_control(intel_dp); 6733 6734 /* Ensure PPS is unlocked */ 6735 if (!HAS_DDI(dev_priv)) 6736 I915_WRITE(regs.pp_ctrl, pp_ctl); 6737 6738 pp_on = I915_READ(regs.pp_on); 6739 pp_off = I915_READ(regs.pp_off); 6740 6741 /* Pull timing values out of registers */ 6742 seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on); 6743 seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on); 6744 seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off); 6745 seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off); 6746 6747 if (i915_mmio_reg_valid(regs.pp_div)) { 6748 u32 pp_div; 6749 6750 pp_div = I915_READ(regs.pp_div); 6751 6752 seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000; 6753 } else { 6754 seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000; 6755 } 6756 } 6757 6758 static void 6759 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq) 6760 { 6761 DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n", 6762 state_name, 6763 seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12); 6764 } 6765 6766 static void 6767 intel_pps_verify_state(struct intel_dp *intel_dp) 6768 { 6769 struct edp_power_seq hw; 6770 struct edp_power_seq *sw = &intel_dp->pps_delays; 6771 6772 intel_pps_readout_hw_state(intel_dp, &hw); 6773 6774 if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 || 6775 hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) { 6776 DRM_ERROR("PPS state mismatch\n"); 6777 intel_pps_dump_state("sw", sw); 6778 intel_pps_dump_state("hw", &hw); 6779 } 6780 } 6781 6782 static void 6783 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp) 6784 { 6785 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6786 struct edp_power_seq cur, vbt, spec, 6787 *final = &intel_dp->pps_delays; 6788 6789 lockdep_assert_held(&dev_priv->pps_mutex); 6790 6791 /* already initialized? */ 6792 if (final->t11_t12 != 0) 6793 return; 6794 6795 intel_pps_readout_hw_state(intel_dp, &cur); 6796 6797 intel_pps_dump_state("cur", &cur); 6798 6799 vbt = dev_priv->vbt.edp.pps; 6800 /* On Toshiba Satellite P50-C-18C system the VBT T12 delay 6801 * of 500ms appears to be too short. Ocassionally the panel 6802 * just fails to power back on. Increasing the delay to 800ms 6803 * seems sufficient to avoid this problem. 6804 */ 6805 if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) { 6806 vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10); 6807 DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n", 6808 vbt.t11_t12); 6809 } 6810 /* T11_T12 delay is special and actually in units of 100ms, but zero 6811 * based in the hw (so we need to add 100 ms). But the sw vbt 6812 * table multiplies it with 1000 to make it in units of 100usec, 6813 * too. */ 6814 vbt.t11_t12 += 100 * 10; 6815 6816 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of 6817 * our hw here, which are all in 100usec. */ 6818 spec.t1_t3 = 210 * 10; 6819 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */ 6820 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */ 6821 spec.t10 = 500 * 10; 6822 /* This one is special and actually in units of 100ms, but zero 6823 * based in the hw (so we need to add 100 ms). But the sw vbt 6824 * table multiplies it with 1000 to make it in units of 100usec, 6825 * too. */ 6826 spec.t11_t12 = (510 + 100) * 10; 6827 6828 intel_pps_dump_state("vbt", &vbt); 6829 6830 /* Use the max of the register settings and vbt. If both are 6831 * unset, fall back to the spec limits. */ 6832 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \ 6833 spec.field : \ 6834 max(cur.field, vbt.field)) 6835 assign_final(t1_t3); 6836 assign_final(t8); 6837 assign_final(t9); 6838 assign_final(t10); 6839 assign_final(t11_t12); 6840 #undef assign_final 6841 6842 #define get_delay(field) (DIV_ROUND_UP(final->field, 10)) 6843 intel_dp->panel_power_up_delay = get_delay(t1_t3); 6844 intel_dp->backlight_on_delay = get_delay(t8); 6845 intel_dp->backlight_off_delay = get_delay(t9); 6846 intel_dp->panel_power_down_delay = get_delay(t10); 6847 intel_dp->panel_power_cycle_delay = get_delay(t11_t12); 6848 #undef get_delay 6849 6850 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n", 6851 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay, 6852 intel_dp->panel_power_cycle_delay); 6853 6854 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n", 6855 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay); 6856 6857 /* 6858 * We override the HW backlight delays to 1 because we do manual waits 6859 * on them. For T8, even BSpec recommends doing it. For T9, if we 6860 * don't do this, we'll end up waiting for the backlight off delay 6861 * twice: once when we do the manual sleep, and once when we disable 6862 * the panel and wait for the PP_STATUS bit to become zero. 6863 */ 6864 final->t8 = 1; 6865 final->t9 = 1; 6866 6867 /* 6868 * HW has only a 100msec granularity for t11_t12 so round it up 6869 * accordingly. 6870 */ 6871 final->t11_t12 = roundup(final->t11_t12, 100 * 10); 6872 } 6873 6874 static void 6875 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp, 6876 bool force_disable_vdd) 6877 { 6878 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6879 u32 pp_on, pp_off, port_sel = 0; 6880 int div = dev_priv->rawclk_freq / 1000; 6881 struct pps_registers regs; 6882 enum port port = dp_to_dig_port(intel_dp)->base.port; 6883 const struct edp_power_seq *seq = &intel_dp->pps_delays; 6884 6885 lockdep_assert_held(&dev_priv->pps_mutex); 6886 6887 intel_pps_get_registers(intel_dp, ®s); 6888 6889 /* 6890 * On some VLV machines the BIOS can leave the VDD 6891 * enabled even on power sequencers which aren't 6892 * hooked up to any port. This would mess up the 6893 * power domain tracking the first time we pick 6894 * one of these power sequencers for use since 6895 * edp_panel_vdd_on() would notice that the VDD was 6896 * already on and therefore wouldn't grab the power 6897 * domain reference. Disable VDD first to avoid this. 6898 * This also avoids spuriously turning the VDD on as 6899 * soon as the new power sequencer gets initialized. 6900 */ 6901 if (force_disable_vdd) { 6902 u32 pp = ilk_get_pp_control(intel_dp); 6903 6904 WARN(pp & PANEL_POWER_ON, "Panel power already on\n"); 6905 6906 if (pp & EDP_FORCE_VDD) 6907 DRM_DEBUG_KMS("VDD already on, disabling first\n"); 6908 6909 pp &= ~EDP_FORCE_VDD; 6910 6911 I915_WRITE(regs.pp_ctrl, pp); 6912 } 6913 6914 pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) | 6915 REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8); 6916 pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) | 6917 REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10); 6918 6919 /* Haswell doesn't have any port selection bits for the panel 6920 * power sequencer any more. */ 6921 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 6922 port_sel = PANEL_PORT_SELECT_VLV(port); 6923 } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) { 6924 switch (port) { 6925 case PORT_A: 6926 port_sel = PANEL_PORT_SELECT_DPA; 6927 break; 6928 case PORT_C: 6929 port_sel = PANEL_PORT_SELECT_DPC; 6930 break; 6931 case PORT_D: 6932 port_sel = PANEL_PORT_SELECT_DPD; 6933 break; 6934 default: 6935 MISSING_CASE(port); 6936 break; 6937 } 6938 } 6939 6940 pp_on |= port_sel; 6941 6942 I915_WRITE(regs.pp_on, pp_on); 6943 I915_WRITE(regs.pp_off, pp_off); 6944 6945 /* 6946 * Compute the divisor for the pp clock, simply match the Bspec formula. 6947 */ 6948 if (i915_mmio_reg_valid(regs.pp_div)) { 6949 I915_WRITE(regs.pp_div, 6950 REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) | 6951 REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000))); 6952 } else { 6953 u32 pp_ctl; 6954 6955 pp_ctl = I915_READ(regs.pp_ctrl); 6956 pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK; 6957 pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)); 6958 I915_WRITE(regs.pp_ctrl, pp_ctl); 6959 } 6960 6961 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n", 6962 I915_READ(regs.pp_on), 6963 I915_READ(regs.pp_off), 6964 i915_mmio_reg_valid(regs.pp_div) ? 6965 I915_READ(regs.pp_div) : 6966 (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK)); 6967 } 6968 6969 static void intel_dp_pps_init(struct intel_dp *intel_dp) 6970 { 6971 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 6972 6973 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 6974 vlv_initial_power_sequencer_setup(intel_dp); 6975 } else { 6976 intel_dp_init_panel_power_sequencer(intel_dp); 6977 intel_dp_init_panel_power_sequencer_registers(intel_dp, false); 6978 } 6979 } 6980 6981 /** 6982 * intel_dp_set_drrs_state - program registers for RR switch to take effect 6983 * @dev_priv: i915 device 6984 * @crtc_state: a pointer to the active intel_crtc_state 6985 * @refresh_rate: RR to be programmed 6986 * 6987 * This function gets called when refresh rate (RR) has to be changed from 6988 * one frequency to another. Switches can be between high and low RR 6989 * supported by the panel or to any other RR based on media playback (in 6990 * this case, RR value needs to be passed from user space). 6991 * 6992 * The caller of this function needs to take a lock on dev_priv->drrs. 6993 */ 6994 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv, 6995 const struct intel_crtc_state *crtc_state, 6996 int refresh_rate) 6997 { 6998 struct intel_dp *intel_dp = dev_priv->drrs.dp; 6999 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc); 7000 enum drrs_refresh_rate_type index = DRRS_HIGH_RR; 7001 7002 if (refresh_rate <= 0) { 7003 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n"); 7004 return; 7005 } 7006 7007 if (intel_dp == NULL) { 7008 DRM_DEBUG_KMS("DRRS not supported.\n"); 7009 return; 7010 } 7011 7012 if (!intel_crtc) { 7013 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n"); 7014 return; 7015 } 7016 7017 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) { 7018 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n"); 7019 return; 7020 } 7021 7022 if (intel_dp->attached_connector->panel.downclock_mode->vrefresh == 7023 refresh_rate) 7024 index = DRRS_LOW_RR; 7025 7026 if (index == dev_priv->drrs.refresh_rate_type) { 7027 DRM_DEBUG_KMS( 7028 "DRRS requested for previously set RR...ignoring\n"); 7029 return; 7030 } 7031 7032 if (!crtc_state->hw.active) { 7033 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n"); 7034 return; 7035 } 7036 7037 if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) { 7038 switch (index) { 7039 case DRRS_HIGH_RR: 7040 intel_dp_set_m_n(crtc_state, M1_N1); 7041 break; 7042 case DRRS_LOW_RR: 7043 intel_dp_set_m_n(crtc_state, M2_N2); 7044 break; 7045 case DRRS_MAX_RR: 7046 default: 7047 DRM_ERROR("Unsupported refreshrate type\n"); 7048 } 7049 } else if (INTEL_GEN(dev_priv) > 6) { 7050 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder); 7051 u32 val; 7052 7053 val = I915_READ(reg); 7054 if (index > DRRS_HIGH_RR) { 7055 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 7056 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV; 7057 else 7058 val |= PIPECONF_EDP_RR_MODE_SWITCH; 7059 } else { 7060 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 7061 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV; 7062 else 7063 val &= ~PIPECONF_EDP_RR_MODE_SWITCH; 7064 } 7065 I915_WRITE(reg, val); 7066 } 7067 7068 dev_priv->drrs.refresh_rate_type = index; 7069 7070 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate); 7071 } 7072 7073 /** 7074 * intel_edp_drrs_enable - init drrs struct if supported 7075 * @intel_dp: DP struct 7076 * @crtc_state: A pointer to the active crtc state. 7077 * 7078 * Initializes frontbuffer_bits and drrs.dp 7079 */ 7080 void intel_edp_drrs_enable(struct intel_dp *intel_dp, 7081 const struct intel_crtc_state *crtc_state) 7082 { 7083 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7084 7085 if (!crtc_state->has_drrs) { 7086 DRM_DEBUG_KMS("Panel doesn't support DRRS\n"); 7087 return; 7088 } 7089 7090 if (dev_priv->psr.enabled) { 7091 DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n"); 7092 return; 7093 } 7094 7095 mutex_lock(&dev_priv->drrs.mutex); 7096 if (dev_priv->drrs.dp) { 7097 DRM_DEBUG_KMS("DRRS already enabled\n"); 7098 goto unlock; 7099 } 7100 7101 dev_priv->drrs.busy_frontbuffer_bits = 0; 7102 7103 dev_priv->drrs.dp = intel_dp; 7104 7105 unlock: 7106 mutex_unlock(&dev_priv->drrs.mutex); 7107 } 7108 7109 /** 7110 * intel_edp_drrs_disable - Disable DRRS 7111 * @intel_dp: DP struct 7112 * @old_crtc_state: Pointer to old crtc_state. 7113 * 7114 */ 7115 void intel_edp_drrs_disable(struct intel_dp *intel_dp, 7116 const struct intel_crtc_state *old_crtc_state) 7117 { 7118 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7119 7120 if (!old_crtc_state->has_drrs) 7121 return; 7122 7123 mutex_lock(&dev_priv->drrs.mutex); 7124 if (!dev_priv->drrs.dp) { 7125 mutex_unlock(&dev_priv->drrs.mutex); 7126 return; 7127 } 7128 7129 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) 7130 intel_dp_set_drrs_state(dev_priv, old_crtc_state, 7131 intel_dp->attached_connector->panel.fixed_mode->vrefresh); 7132 7133 dev_priv->drrs.dp = NULL; 7134 mutex_unlock(&dev_priv->drrs.mutex); 7135 7136 cancel_delayed_work_sync(&dev_priv->drrs.work); 7137 } 7138 7139 static void intel_edp_drrs_downclock_work(struct work_struct *work) 7140 { 7141 struct drm_i915_private *dev_priv = 7142 container_of(work, typeof(*dev_priv), drrs.work.work); 7143 struct intel_dp *intel_dp; 7144 7145 mutex_lock(&dev_priv->drrs.mutex); 7146 7147 intel_dp = dev_priv->drrs.dp; 7148 7149 if (!intel_dp) 7150 goto unlock; 7151 7152 /* 7153 * The delayed work can race with an invalidate hence we need to 7154 * recheck. 7155 */ 7156 7157 if (dev_priv->drrs.busy_frontbuffer_bits) 7158 goto unlock; 7159 7160 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) { 7161 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc; 7162 7163 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config, 7164 intel_dp->attached_connector->panel.downclock_mode->vrefresh); 7165 } 7166 7167 unlock: 7168 mutex_unlock(&dev_priv->drrs.mutex); 7169 } 7170 7171 /** 7172 * intel_edp_drrs_invalidate - Disable Idleness DRRS 7173 * @dev_priv: i915 device 7174 * @frontbuffer_bits: frontbuffer plane tracking bits 7175 * 7176 * This function gets called everytime rendering on the given planes start. 7177 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR). 7178 * 7179 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits. 7180 */ 7181 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv, 7182 unsigned int frontbuffer_bits) 7183 { 7184 struct drm_crtc *crtc; 7185 enum pipe pipe; 7186 7187 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED) 7188 return; 7189 7190 cancel_delayed_work(&dev_priv->drrs.work); 7191 7192 mutex_lock(&dev_priv->drrs.mutex); 7193 if (!dev_priv->drrs.dp) { 7194 mutex_unlock(&dev_priv->drrs.mutex); 7195 return; 7196 } 7197 7198 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc; 7199 pipe = to_intel_crtc(crtc)->pipe; 7200 7201 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe); 7202 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits; 7203 7204 /* invalidate means busy screen hence upclock */ 7205 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) 7206 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config, 7207 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh); 7208 7209 mutex_unlock(&dev_priv->drrs.mutex); 7210 } 7211 7212 /** 7213 * intel_edp_drrs_flush - Restart Idleness DRRS 7214 * @dev_priv: i915 device 7215 * @frontbuffer_bits: frontbuffer plane tracking bits 7216 * 7217 * This function gets called every time rendering on the given planes has 7218 * completed or flip on a crtc is completed. So DRRS should be upclocked 7219 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again, 7220 * if no other planes are dirty. 7221 * 7222 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits. 7223 */ 7224 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv, 7225 unsigned int frontbuffer_bits) 7226 { 7227 struct drm_crtc *crtc; 7228 enum pipe pipe; 7229 7230 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED) 7231 return; 7232 7233 cancel_delayed_work(&dev_priv->drrs.work); 7234 7235 mutex_lock(&dev_priv->drrs.mutex); 7236 if (!dev_priv->drrs.dp) { 7237 mutex_unlock(&dev_priv->drrs.mutex); 7238 return; 7239 } 7240 7241 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc; 7242 pipe = to_intel_crtc(crtc)->pipe; 7243 7244 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe); 7245 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits; 7246 7247 /* flush means busy screen hence upclock */ 7248 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) 7249 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config, 7250 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh); 7251 7252 /* 7253 * flush also means no more activity hence schedule downclock, if all 7254 * other fbs are quiescent too 7255 */ 7256 if (!dev_priv->drrs.busy_frontbuffer_bits) 7257 schedule_delayed_work(&dev_priv->drrs.work, 7258 msecs_to_jiffies(1000)); 7259 mutex_unlock(&dev_priv->drrs.mutex); 7260 } 7261 7262 /** 7263 * DOC: Display Refresh Rate Switching (DRRS) 7264 * 7265 * Display Refresh Rate Switching (DRRS) is a power conservation feature 7266 * which enables swtching between low and high refresh rates, 7267 * dynamically, based on the usage scenario. This feature is applicable 7268 * for internal panels. 7269 * 7270 * Indication that the panel supports DRRS is given by the panel EDID, which 7271 * would list multiple refresh rates for one resolution. 7272 * 7273 * DRRS is of 2 types - static and seamless. 7274 * Static DRRS involves changing refresh rate (RR) by doing a full modeset 7275 * (may appear as a blink on screen) and is used in dock-undock scenario. 7276 * Seamless DRRS involves changing RR without any visual effect to the user 7277 * and can be used during normal system usage. This is done by programming 7278 * certain registers. 7279 * 7280 * Support for static/seamless DRRS may be indicated in the VBT based on 7281 * inputs from the panel spec. 7282 * 7283 * DRRS saves power by switching to low RR based on usage scenarios. 7284 * 7285 * The implementation is based on frontbuffer tracking implementation. When 7286 * there is a disturbance on the screen triggered by user activity or a periodic 7287 * system activity, DRRS is disabled (RR is changed to high RR). When there is 7288 * no movement on screen, after a timeout of 1 second, a switch to low RR is 7289 * made. 7290 * 7291 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate() 7292 * and intel_edp_drrs_flush() are called. 7293 * 7294 * DRRS can be further extended to support other internal panels and also 7295 * the scenario of video playback wherein RR is set based on the rate 7296 * requested by userspace. 7297 */ 7298 7299 /** 7300 * intel_dp_drrs_init - Init basic DRRS work and mutex. 7301 * @connector: eDP connector 7302 * @fixed_mode: preferred mode of panel 7303 * 7304 * This function is called only once at driver load to initialize basic 7305 * DRRS stuff. 7306 * 7307 * Returns: 7308 * Downclock mode if panel supports it, else return NULL. 7309 * DRRS support is determined by the presence of downclock mode (apart 7310 * from VBT setting). 7311 */ 7312 static struct drm_display_mode * 7313 intel_dp_drrs_init(struct intel_connector *connector, 7314 struct drm_display_mode *fixed_mode) 7315 { 7316 struct drm_i915_private *dev_priv = to_i915(connector->base.dev); 7317 struct drm_display_mode *downclock_mode = NULL; 7318 7319 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work); 7320 7321 if (INTEL_GEN(dev_priv) <= 6) { 7322 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n"); 7323 return NULL; 7324 } 7325 7326 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) { 7327 DRM_DEBUG_KMS("VBT doesn't support DRRS\n"); 7328 return NULL; 7329 } 7330 7331 downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode); 7332 if (!downclock_mode) { 7333 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n"); 7334 return NULL; 7335 } 7336 7337 dev_priv->drrs.type = dev_priv->vbt.drrs_type; 7338 7339 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR; 7340 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n"); 7341 return downclock_mode; 7342 } 7343 7344 static bool intel_edp_init_connector(struct intel_dp *intel_dp, 7345 struct intel_connector *intel_connector) 7346 { 7347 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 7348 struct drm_device *dev = &dev_priv->drm; 7349 struct drm_connector *connector = &intel_connector->base; 7350 struct drm_display_mode *fixed_mode = NULL; 7351 struct drm_display_mode *downclock_mode = NULL; 7352 bool has_dpcd; 7353 enum pipe pipe = INVALID_PIPE; 7354 intel_wakeref_t wakeref; 7355 struct edid *edid; 7356 7357 if (!intel_dp_is_edp(intel_dp)) 7358 return true; 7359 7360 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work); 7361 7362 /* 7363 * On IBX/CPT we may get here with LVDS already registered. Since the 7364 * driver uses the only internal power sequencer available for both 7365 * eDP and LVDS bail out early in this case to prevent interfering 7366 * with an already powered-on LVDS power sequencer. 7367 */ 7368 if (intel_get_lvds_encoder(dev_priv)) { 7369 WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))); 7370 DRM_INFO("LVDS was detected, not registering eDP\n"); 7371 7372 return false; 7373 } 7374 7375 with_pps_lock(intel_dp, wakeref) { 7376 intel_dp_init_panel_power_timestamps(intel_dp); 7377 intel_dp_pps_init(intel_dp); 7378 intel_edp_panel_vdd_sanitize(intel_dp); 7379 } 7380 7381 /* Cache DPCD and EDID for edp. */ 7382 has_dpcd = intel_edp_init_dpcd(intel_dp); 7383 7384 if (!has_dpcd) { 7385 /* if this fails, presume the device is a ghost */ 7386 DRM_INFO("failed to retrieve link info, disabling eDP\n"); 7387 goto out_vdd_off; 7388 } 7389 7390 mutex_lock(&dev->mode_config.mutex); 7391 edid = drm_get_edid(connector, &intel_dp->aux.ddc); 7392 if (edid) { 7393 if (drm_add_edid_modes(connector, edid)) { 7394 drm_connector_update_edid_property(connector, 7395 edid); 7396 } else { 7397 kfree(edid); 7398 edid = ERR_PTR(-EINVAL); 7399 } 7400 } else { 7401 edid = ERR_PTR(-ENOENT); 7402 } 7403 intel_connector->edid = edid; 7404 7405 fixed_mode = intel_panel_edid_fixed_mode(intel_connector); 7406 if (fixed_mode) 7407 downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode); 7408 7409 /* fallback to VBT if available for eDP */ 7410 if (!fixed_mode) 7411 fixed_mode = intel_panel_vbt_fixed_mode(intel_connector); 7412 mutex_unlock(&dev->mode_config.mutex); 7413 7414 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 7415 intel_dp->edp_notifier.notifier_call = edp_notify_handler; 7416 register_reboot_notifier(&intel_dp->edp_notifier); 7417 7418 /* 7419 * Figure out the current pipe for the initial backlight setup. 7420 * If the current pipe isn't valid, try the PPS pipe, and if that 7421 * fails just assume pipe A. 7422 */ 7423 pipe = vlv_active_pipe(intel_dp); 7424 7425 if (pipe != PIPE_A && pipe != PIPE_B) 7426 pipe = intel_dp->pps_pipe; 7427 7428 if (pipe != PIPE_A && pipe != PIPE_B) 7429 pipe = PIPE_A; 7430 7431 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n", 7432 pipe_name(pipe)); 7433 } 7434 7435 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode); 7436 intel_connector->panel.backlight.power = intel_edp_backlight_power; 7437 intel_panel_setup_backlight(connector, pipe); 7438 7439 if (fixed_mode) 7440 drm_connector_init_panel_orientation_property( 7441 connector, fixed_mode->hdisplay, fixed_mode->vdisplay); 7442 7443 return true; 7444 7445 out_vdd_off: 7446 cancel_delayed_work_sync(&intel_dp->panel_vdd_work); 7447 /* 7448 * vdd might still be enabled do to the delayed vdd off. 7449 * Make sure vdd is actually turned off here. 7450 */ 7451 with_pps_lock(intel_dp, wakeref) 7452 edp_panel_vdd_off_sync(intel_dp); 7453 7454 return false; 7455 } 7456 7457 static void intel_dp_modeset_retry_work_fn(struct work_struct *work) 7458 { 7459 struct intel_connector *intel_connector; 7460 struct drm_connector *connector; 7461 7462 intel_connector = container_of(work, typeof(*intel_connector), 7463 modeset_retry_work); 7464 connector = &intel_connector->base; 7465 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id, 7466 connector->name); 7467 7468 /* Grab the locks before changing connector property*/ 7469 mutex_lock(&connector->dev->mode_config.mutex); 7470 /* Set connector link status to BAD and send a Uevent to notify 7471 * userspace to do a modeset. 7472 */ 7473 drm_connector_set_link_status_property(connector, 7474 DRM_MODE_LINK_STATUS_BAD); 7475 mutex_unlock(&connector->dev->mode_config.mutex); 7476 /* Send Hotplug uevent so userspace can reprobe */ 7477 drm_kms_helper_hotplug_event(connector->dev); 7478 } 7479 7480 bool 7481 intel_dp_init_connector(struct intel_digital_port *intel_dig_port, 7482 struct intel_connector *intel_connector) 7483 { 7484 struct drm_connector *connector = &intel_connector->base; 7485 struct intel_dp *intel_dp = &intel_dig_port->dp; 7486 struct intel_encoder *intel_encoder = &intel_dig_port->base; 7487 struct drm_device *dev = intel_encoder->base.dev; 7488 struct drm_i915_private *dev_priv = to_i915(dev); 7489 enum port port = intel_encoder->port; 7490 enum phy phy = intel_port_to_phy(dev_priv, port); 7491 int type; 7492 7493 /* Initialize the work for modeset in case of link train failure */ 7494 INIT_WORK(&intel_connector->modeset_retry_work, 7495 intel_dp_modeset_retry_work_fn); 7496 7497 if (WARN(intel_dig_port->max_lanes < 1, 7498 "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n", 7499 intel_dig_port->max_lanes, intel_encoder->base.base.id, 7500 intel_encoder->base.name)) 7501 return false; 7502 7503 intel_dp_set_source_rates(intel_dp); 7504 7505 intel_dp->reset_link_params = true; 7506 intel_dp->pps_pipe = INVALID_PIPE; 7507 intel_dp->active_pipe = INVALID_PIPE; 7508 7509 /* Preserve the current hw state. */ 7510 intel_dp->DP = I915_READ(intel_dp->output_reg); 7511 intel_dp->attached_connector = intel_connector; 7512 7513 if (intel_dp_is_port_edp(dev_priv, port)) { 7514 /* 7515 * Currently we don't support eDP on TypeC ports, although in 7516 * theory it could work on TypeC legacy ports. 7517 */ 7518 WARN_ON(intel_phy_is_tc(dev_priv, phy)); 7519 type = DRM_MODE_CONNECTOR_eDP; 7520 } else { 7521 type = DRM_MODE_CONNECTOR_DisplayPort; 7522 } 7523 7524 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 7525 intel_dp->active_pipe = vlv_active_pipe(intel_dp); 7526 7527 /* 7528 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but 7529 * for DP the encoder type can be set by the caller to 7530 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it. 7531 */ 7532 if (type == DRM_MODE_CONNECTOR_eDP) 7533 intel_encoder->type = INTEL_OUTPUT_EDP; 7534 7535 /* eDP only on port B and/or C on vlv/chv */ 7536 if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && 7537 intel_dp_is_edp(intel_dp) && 7538 port != PORT_B && port != PORT_C)) 7539 return false; 7540 7541 DRM_DEBUG_KMS("Adding %s connector on [ENCODER:%d:%s]\n", 7542 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP", 7543 intel_encoder->base.base.id, intel_encoder->base.name); 7544 7545 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type); 7546 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs); 7547 7548 if (!HAS_GMCH(dev_priv)) 7549 connector->interlace_allowed = true; 7550 connector->doublescan_allowed = 0; 7551 7552 if (INTEL_GEN(dev_priv) >= 11) 7553 connector->ycbcr_420_allowed = true; 7554 7555 intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port); 7556 7557 intel_dp_aux_init(intel_dp); 7558 7559 intel_connector_attach_encoder(intel_connector, intel_encoder); 7560 7561 if (HAS_DDI(dev_priv)) 7562 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state; 7563 else 7564 intel_connector->get_hw_state = intel_connector_get_hw_state; 7565 7566 /* init MST on ports that can support it */ 7567 intel_dp_mst_encoder_init(intel_dig_port, 7568 intel_connector->base.base.id); 7569 7570 if (!intel_edp_init_connector(intel_dp, intel_connector)) { 7571 intel_dp_aux_fini(intel_dp); 7572 intel_dp_mst_encoder_cleanup(intel_dig_port); 7573 goto fail; 7574 } 7575 7576 intel_dp_add_properties(intel_dp, connector); 7577 7578 if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) { 7579 int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim); 7580 if (ret) 7581 DRM_DEBUG_KMS("HDCP init failed, skipping.\n"); 7582 } 7583 7584 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written 7585 * 0xd. Failure to do so will result in spurious interrupts being 7586 * generated on the port when a cable is not attached. 7587 */ 7588 if (IS_G45(dev_priv)) { 7589 u32 temp = I915_READ(PEG_BAND_GAP_DATA); 7590 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd); 7591 } 7592 7593 return true; 7594 7595 fail: 7596 drm_connector_cleanup(connector); 7597 7598 return false; 7599 } 7600 7601 bool intel_dp_init(struct drm_i915_private *dev_priv, 7602 i915_reg_t output_reg, 7603 enum port port) 7604 { 7605 struct intel_digital_port *intel_dig_port; 7606 struct intel_encoder *intel_encoder; 7607 struct drm_encoder *encoder; 7608 struct intel_connector *intel_connector; 7609 7610 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL); 7611 if (!intel_dig_port) 7612 return false; 7613 7614 intel_connector = intel_connector_alloc(); 7615 if (!intel_connector) 7616 goto err_connector_alloc; 7617 7618 intel_encoder = &intel_dig_port->base; 7619 encoder = &intel_encoder->base; 7620 7621 if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base, 7622 &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS, 7623 "DP %c", port_name(port))) 7624 goto err_encoder_init; 7625 7626 intel_encoder->hotplug = intel_dp_hotplug; 7627 intel_encoder->compute_config = intel_dp_compute_config; 7628 intel_encoder->get_hw_state = intel_dp_get_hw_state; 7629 intel_encoder->get_config = intel_dp_get_config; 7630 intel_encoder->update_pipe = intel_panel_update_backlight; 7631 intel_encoder->suspend = intel_dp_encoder_suspend; 7632 if (IS_CHERRYVIEW(dev_priv)) { 7633 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable; 7634 intel_encoder->pre_enable = chv_pre_enable_dp; 7635 intel_encoder->enable = vlv_enable_dp; 7636 intel_encoder->disable = vlv_disable_dp; 7637 intel_encoder->post_disable = chv_post_disable_dp; 7638 intel_encoder->post_pll_disable = chv_dp_post_pll_disable; 7639 } else if (IS_VALLEYVIEW(dev_priv)) { 7640 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable; 7641 intel_encoder->pre_enable = vlv_pre_enable_dp; 7642 intel_encoder->enable = vlv_enable_dp; 7643 intel_encoder->disable = vlv_disable_dp; 7644 intel_encoder->post_disable = vlv_post_disable_dp; 7645 } else { 7646 intel_encoder->pre_enable = g4x_pre_enable_dp; 7647 intel_encoder->enable = g4x_enable_dp; 7648 intel_encoder->disable = g4x_disable_dp; 7649 intel_encoder->post_disable = g4x_post_disable_dp; 7650 } 7651 7652 intel_dig_port->dp.output_reg = output_reg; 7653 intel_dig_port->max_lanes = 4; 7654 7655 intel_encoder->type = INTEL_OUTPUT_DP; 7656 intel_encoder->power_domain = intel_port_to_power_domain(port); 7657 if (IS_CHERRYVIEW(dev_priv)) { 7658 if (port == PORT_D) 7659 intel_encoder->pipe_mask = BIT(PIPE_C); 7660 else 7661 intel_encoder->pipe_mask = BIT(PIPE_A) | BIT(PIPE_B); 7662 } else { 7663 intel_encoder->pipe_mask = ~0; 7664 } 7665 intel_encoder->cloneable = 0; 7666 intel_encoder->port = port; 7667 7668 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse; 7669 7670 if (port != PORT_A) 7671 intel_infoframe_init(intel_dig_port); 7672 7673 intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port); 7674 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) 7675 goto err_init_connector; 7676 7677 return true; 7678 7679 err_init_connector: 7680 drm_encoder_cleanup(encoder); 7681 err_encoder_init: 7682 kfree(intel_connector); 7683 err_connector_alloc: 7684 kfree(intel_dig_port); 7685 return false; 7686 } 7687 7688 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv) 7689 { 7690 struct intel_encoder *encoder; 7691 7692 for_each_intel_encoder(&dev_priv->drm, encoder) { 7693 struct intel_dp *intel_dp; 7694 7695 if (encoder->type != INTEL_OUTPUT_DDI) 7696 continue; 7697 7698 intel_dp = enc_to_intel_dp(encoder); 7699 7700 if (!intel_dp->can_mst) 7701 continue; 7702 7703 if (intel_dp->is_mst) 7704 drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr); 7705 } 7706 } 7707 7708 void intel_dp_mst_resume(struct drm_i915_private *dev_priv) 7709 { 7710 struct intel_encoder *encoder; 7711 7712 for_each_intel_encoder(&dev_priv->drm, encoder) { 7713 struct intel_dp *intel_dp; 7714 int ret; 7715 7716 if (encoder->type != INTEL_OUTPUT_DDI) 7717 continue; 7718 7719 intel_dp = enc_to_intel_dp(encoder); 7720 7721 if (!intel_dp->can_mst) 7722 continue; 7723 7724 ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr, 7725 true); 7726 if (ret) { 7727 intel_dp->is_mst = false; 7728 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, 7729 false); 7730 } 7731 } 7732 } 7733