1 /* $NetBSD: intel_engine_cs.c,v 1.9 2021/12/19 12:40:43 riastradh Exp $ */ 2 3 /* 4 * Copyright 2016 Intel Corporation 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice (including the next 14 * paragraph) shall be included in all copies or substantial portions of the 15 * Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 23 * IN THE SOFTWARE. 24 * 25 */ 26 27 #include <sys/cdefs.h> 28 __KERNEL_RCSID(0, "$NetBSD: intel_engine_cs.c,v 1.9 2021/12/19 12:40:43 riastradh Exp $"); 29 30 #include <drm/drm_print.h> 31 32 #include "gem/i915_gem_context.h" 33 34 #include "i915_drv.h" 35 36 #include "intel_context.h" 37 #include "intel_engine.h" 38 #include "intel_engine_pm.h" 39 #include "intel_engine_pool.h" 40 #include "intel_engine_user.h" 41 #include "intel_gt.h" 42 #include "intel_gt_requests.h" 43 #include "intel_lrc.h" 44 #include "intel_reset.h" 45 #include "intel_ring.h" 46 47 /* Haswell does have the CXT_SIZE register however it does not appear to be 48 * valid. Now, docs explain in dwords what is in the context object. The full 49 * size is 70720 bytes, however, the power context and execlist context will 50 * never be saved (power context is stored elsewhere, and execlists don't work 51 * on HSW) - so the final size, including the extra state required for the 52 * Resource Streamer, is 66944 bytes, which rounds to 17 pages. 53 */ 54 #define HSW_CXT_TOTAL_SIZE (17 * PAGE_SIZE) 55 56 #define DEFAULT_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE) 57 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE) 58 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE) 59 #define GEN10_LR_CONTEXT_RENDER_SIZE (18 * PAGE_SIZE) 60 #define GEN11_LR_CONTEXT_RENDER_SIZE (14 * PAGE_SIZE) 61 62 #define GEN8_LR_CONTEXT_OTHER_SIZE ( 2 * PAGE_SIZE) 63 64 #define MAX_MMIO_BASES 3 65 struct engine_info { 66 unsigned int hw_id; 67 u8 class; 68 u8 instance; 69 /* mmio bases table *must* be sorted in reverse gen order */ 70 struct engine_mmio_base { 71 u32 gen : 8; 72 u32 base : 24; 73 } mmio_bases[MAX_MMIO_BASES]; 74 }; 75 76 static const struct engine_info intel_engines[] = { 77 [RCS0] = { 78 .hw_id = RCS0_HW, 79 .class = RENDER_CLASS, 80 .instance = 0, 81 .mmio_bases = { 82 { .gen = 1, .base = RENDER_RING_BASE } 83 }, 84 }, 85 [BCS0] = { 86 .hw_id = BCS0_HW, 87 .class = COPY_ENGINE_CLASS, 88 .instance = 0, 89 .mmio_bases = { 90 { .gen = 6, .base = BLT_RING_BASE } 91 }, 92 }, 93 [VCS0] = { 94 .hw_id = VCS0_HW, 95 .class = VIDEO_DECODE_CLASS, 96 .instance = 0, 97 .mmio_bases = { 98 { .gen = 11, .base = GEN11_BSD_RING_BASE }, 99 { .gen = 6, .base = GEN6_BSD_RING_BASE }, 100 { .gen = 4, .base = BSD_RING_BASE } 101 }, 102 }, 103 [VCS1] = { 104 .hw_id = VCS1_HW, 105 .class = VIDEO_DECODE_CLASS, 106 .instance = 1, 107 .mmio_bases = { 108 { .gen = 11, .base = GEN11_BSD2_RING_BASE }, 109 { .gen = 8, .base = GEN8_BSD2_RING_BASE } 110 }, 111 }, 112 [VCS2] = { 113 .hw_id = VCS2_HW, 114 .class = VIDEO_DECODE_CLASS, 115 .instance = 2, 116 .mmio_bases = { 117 { .gen = 11, .base = GEN11_BSD3_RING_BASE } 118 }, 119 }, 120 [VCS3] = { 121 .hw_id = VCS3_HW, 122 .class = VIDEO_DECODE_CLASS, 123 .instance = 3, 124 .mmio_bases = { 125 { .gen = 11, .base = GEN11_BSD4_RING_BASE } 126 }, 127 }, 128 [VECS0] = { 129 .hw_id = VECS0_HW, 130 .class = VIDEO_ENHANCEMENT_CLASS, 131 .instance = 0, 132 .mmio_bases = { 133 { .gen = 11, .base = GEN11_VEBOX_RING_BASE }, 134 { .gen = 7, .base = VEBOX_RING_BASE } 135 }, 136 }, 137 [VECS1] = { 138 .hw_id = VECS1_HW, 139 .class = VIDEO_ENHANCEMENT_CLASS, 140 .instance = 1, 141 .mmio_bases = { 142 { .gen = 11, .base = GEN11_VEBOX2_RING_BASE } 143 }, 144 }, 145 }; 146 147 /** 148 * intel_engine_context_size() - return the size of the context for an engine 149 * @gt: the gt 150 * @class: engine class 151 * 152 * Each engine class may require a different amount of space for a context 153 * image. 154 * 155 * Return: size (in bytes) of an engine class specific context image 156 * 157 * Note: this size includes the HWSP, which is part of the context image 158 * in LRC mode, but does not include the "shared data page" used with 159 * GuC submission. The caller should account for this if using the GuC. 160 */ 161 u32 intel_engine_context_size(struct intel_gt *gt, u8 class) 162 { 163 struct intel_uncore *uncore = gt->uncore; 164 u32 cxt_size; 165 166 BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE); 167 168 switch (class) { 169 case RENDER_CLASS: 170 switch (INTEL_GEN(gt->i915)) { 171 default: 172 MISSING_CASE(INTEL_GEN(gt->i915)); 173 return DEFAULT_LR_CONTEXT_RENDER_SIZE; 174 case 12: 175 case 11: 176 return GEN11_LR_CONTEXT_RENDER_SIZE; 177 case 10: 178 return GEN10_LR_CONTEXT_RENDER_SIZE; 179 case 9: 180 return GEN9_LR_CONTEXT_RENDER_SIZE; 181 case 8: 182 return GEN8_LR_CONTEXT_RENDER_SIZE; 183 case 7: 184 if (IS_HASWELL(gt->i915)) 185 return HSW_CXT_TOTAL_SIZE; 186 187 cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE); 188 return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64, 189 PAGE_SIZE); 190 case 6: 191 cxt_size = intel_uncore_read(uncore, CXT_SIZE); 192 return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64, 193 PAGE_SIZE); 194 case 5: 195 case 4: 196 /* 197 * There is a discrepancy here between the size reported 198 * by the register and the size of the context layout 199 * in the docs. Both are described as authorative! 200 * 201 * The discrepancy is on the order of a few cachelines, 202 * but the total is under one page (4k), which is our 203 * minimum allocation anyway so it should all come 204 * out in the wash. 205 */ 206 cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1; 207 DRM_DEBUG_DRIVER("gen%d CXT_SIZE = %d bytes [0x%08x]\n", 208 INTEL_GEN(gt->i915), 209 cxt_size * 64, 210 cxt_size - 1); 211 return round_up(cxt_size * 64, PAGE_SIZE); 212 case 3: 213 case 2: 214 /* For the special day when i810 gets merged. */ 215 case 1: 216 return 0; 217 } 218 break; 219 default: 220 MISSING_CASE(class); 221 /* fall through */ 222 case VIDEO_DECODE_CLASS: 223 case VIDEO_ENHANCEMENT_CLASS: 224 case COPY_ENGINE_CLASS: 225 if (INTEL_GEN(gt->i915) < 8) 226 return 0; 227 return GEN8_LR_CONTEXT_OTHER_SIZE; 228 } 229 } 230 231 static u32 __engine_mmio_base(struct drm_i915_private *i915, 232 const struct engine_mmio_base *bases) 233 { 234 int i; 235 236 for (i = 0; i < MAX_MMIO_BASES; i++) 237 if (INTEL_GEN(i915) >= bases[i].gen) 238 break; 239 240 GEM_BUG_ON(i == MAX_MMIO_BASES); 241 GEM_BUG_ON(!bases[i].base); 242 243 return bases[i].base; 244 } 245 246 static void __sprint_engine_name(struct intel_engine_cs *engine) 247 { 248 /* 249 * Before we know what the uABI name for this engine will be, 250 * we still would like to keep track of this engine in the debug logs. 251 * We throw in a ' here as a reminder that this isn't its final name. 252 */ 253 GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u", 254 intel_engine_class_repr(engine->class), 255 engine->instance) >= sizeof(engine->name)); 256 } 257 258 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask) 259 { 260 /* 261 * Though they added more rings on g4x/ilk, they did not add 262 * per-engine HWSTAM until gen6. 263 */ 264 if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS) 265 return; 266 267 if (INTEL_GEN(engine->i915) >= 3) 268 ENGINE_WRITE(engine, RING_HWSTAM, mask); 269 else 270 ENGINE_WRITE16(engine, RING_HWSTAM, mask); 271 } 272 273 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine) 274 { 275 /* Mask off all writes into the unknown HWSP */ 276 intel_engine_set_hwsp_writemask(engine, ~0u); 277 } 278 279 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id) 280 { 281 const struct engine_info *info = &intel_engines[id]; 282 struct intel_engine_cs *engine; 283 284 BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH)); 285 BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH)); 286 287 if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine))) 288 return -EINVAL; 289 290 if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS)) 291 return -EINVAL; 292 293 if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE)) 294 return -EINVAL; 295 296 if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance])) 297 return -EINVAL; 298 299 engine = kzalloc(sizeof(*engine), GFP_KERNEL); 300 if (!engine) 301 return -ENOMEM; 302 303 BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES); 304 305 engine->id = id; 306 engine->legacy_idx = INVALID_ENGINE; 307 engine->mask = BIT(id); 308 engine->i915 = gt->i915; 309 engine->gt = gt; 310 engine->uncore = gt->uncore; 311 engine->hw_id = engine->guc_id = info->hw_id; 312 engine->mmio_base = __engine_mmio_base(gt->i915, info->mmio_bases); 313 314 engine->class = info->class; 315 engine->instance = info->instance; 316 __sprint_engine_name(engine); 317 318 engine->props.heartbeat_interval_ms = 319 CONFIG_DRM_I915_HEARTBEAT_INTERVAL; 320 engine->props.preempt_timeout_ms = 321 CONFIG_DRM_I915_PREEMPT_TIMEOUT; 322 engine->props.stop_timeout_ms = 323 CONFIG_DRM_I915_STOP_TIMEOUT; 324 engine->props.timeslice_duration_ms = 325 CONFIG_DRM_I915_TIMESLICE_DURATION; 326 327 engine->context_size = intel_engine_context_size(gt, engine->class); 328 if (WARN_ON(engine->context_size > BIT(20))) 329 engine->context_size = 0; 330 if (engine->context_size) 331 DRIVER_CAPS(gt->i915)->has_logical_contexts = true; 332 333 /* Nothing to do here, execute in order of dependencies */ 334 engine->schedule = NULL; 335 336 ewma__engine_latency_init(&engine->latency); 337 seqlock_init(&engine->stats.lock); 338 339 ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier); 340 341 /* Scrub mmio state on takeover */ 342 intel_engine_sanitize_mmio(engine); 343 344 gt->engine_class[info->class][info->instance] = engine; 345 gt->engine[id] = engine; 346 347 gt->i915->engine[id] = engine; 348 349 return 0; 350 } 351 352 static void __setup_engine_capabilities(struct intel_engine_cs *engine) 353 { 354 struct drm_i915_private *i915 = engine->i915; 355 356 if (engine->class == VIDEO_DECODE_CLASS) { 357 /* 358 * HEVC support is present on first engine instance 359 * before Gen11 and on all instances afterwards. 360 */ 361 if (INTEL_GEN(i915) >= 11 || 362 (INTEL_GEN(i915) >= 9 && engine->instance == 0)) 363 engine->uabi_capabilities |= 364 I915_VIDEO_CLASS_CAPABILITY_HEVC; 365 366 /* 367 * SFC block is present only on even logical engine 368 * instances. 369 */ 370 if ((INTEL_GEN(i915) >= 11 && 371 RUNTIME_INFO(i915)->vdbox_sfc_access & engine->mask) || 372 (INTEL_GEN(i915) >= 9 && engine->instance == 0)) 373 engine->uabi_capabilities |= 374 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC; 375 } else if (engine->class == VIDEO_ENHANCEMENT_CLASS) { 376 if (INTEL_GEN(i915) >= 9) 377 engine->uabi_capabilities |= 378 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC; 379 } 380 } 381 382 static void intel_setup_engine_capabilities(struct intel_gt *gt) 383 { 384 struct intel_engine_cs *engine; 385 enum intel_engine_id id; 386 387 for_each_engine(engine, gt, id) 388 __setup_engine_capabilities(engine); 389 } 390 391 /** 392 * intel_engines_release() - free the resources allocated for Command Streamers 393 * @gt: pointer to struct intel_gt 394 */ 395 void intel_engines_release(struct intel_gt *gt) 396 { 397 struct intel_engine_cs *engine; 398 enum intel_engine_id id; 399 400 /* Decouple the backend; but keep the layout for late GPU resets */ 401 for_each_engine(engine, gt, id) { 402 if (!engine->release) 403 continue; 404 405 engine->release(engine); 406 engine->release = NULL; 407 408 memset(&engine->reset, 0, sizeof(engine->reset)); 409 410 gt->i915->engine[id] = NULL; 411 } 412 } 413 414 void intel_engines_free(struct intel_gt *gt) 415 { 416 struct intel_engine_cs *engine; 417 enum intel_engine_id id; 418 419 for_each_engine(engine, gt, id) { 420 seqlock_destroy(&engine->stats.lock); 421 kfree(engine); 422 gt->engine[id] = NULL; 423 } 424 } 425 426 /** 427 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers 428 * @gt: pointer to struct intel_gt 429 * 430 * Return: non-zero if the initialization failed. 431 */ 432 int intel_engines_init_mmio(struct intel_gt *gt) 433 { 434 struct drm_i915_private *i915 = gt->i915; 435 struct intel_device_info *device_info = mkwrite_device_info(i915); 436 const unsigned int engine_mask = INTEL_INFO(i915)->engine_mask; 437 unsigned int mask = 0; 438 unsigned int i; 439 int err; 440 441 WARN_ON(engine_mask == 0); 442 WARN_ON(engine_mask & 443 GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES)); 444 445 if (i915_inject_probe_failure(i915)) 446 return -ENODEV; 447 448 for (i = 0; i < ARRAY_SIZE(intel_engines); i++) { 449 if (!HAS_ENGINE(i915, i)) 450 continue; 451 452 err = intel_engine_setup(gt, i); 453 if (err) 454 goto cleanup; 455 456 mask |= BIT(i); 457 } 458 459 /* 460 * Catch failures to update intel_engines table when the new engines 461 * are added to the driver by a warning and disabling the forgotten 462 * engines. 463 */ 464 if (WARN_ON(mask != engine_mask)) 465 device_info->engine_mask = mask; 466 467 RUNTIME_INFO(i915)->num_engines = hweight32(mask); 468 469 intel_gt_check_and_clear_faults(gt); 470 471 intel_setup_engine_capabilities(gt); 472 473 return 0; 474 475 cleanup: 476 intel_engines_free(gt); 477 return err; 478 } 479 480 void intel_engine_init_execlists(struct intel_engine_cs *engine) 481 { 482 struct intel_engine_execlists * const execlists = &engine->execlists; 483 484 execlists->port_mask = 1; 485 GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists))); 486 GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS); 487 488 memset(execlists->pending, 0, sizeof(execlists->pending)); 489 execlists->active = 490 memset(execlists->inflight, 0, sizeof(execlists->inflight)); 491 492 execlists->queue_priority_hint = INT_MIN; 493 i915_sched_init(execlists); 494 } 495 496 static void cleanup_status_page(struct intel_engine_cs *engine) 497 { 498 struct i915_vma *vma; 499 500 /* Prevent writes into HWSP after returning the page to the system */ 501 intel_engine_set_hwsp_writemask(engine, ~0u); 502 503 vma = fetch_and_zero(&engine->status_page.vma); 504 if (!vma) 505 return; 506 507 if (!HWS_NEEDS_PHYSICAL(engine->i915)) 508 i915_vma_unpin(vma); 509 510 i915_gem_object_unpin_map(vma->obj); 511 i915_gem_object_put(vma->obj); 512 } 513 514 static int pin_ggtt_status_page(struct intel_engine_cs *engine, 515 struct i915_vma *vma) 516 { 517 unsigned int flags; 518 519 flags = PIN_GLOBAL; 520 if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt)) 521 /* 522 * On g33, we cannot place HWS above 256MiB, so 523 * restrict its pinning to the low mappable arena. 524 * Though this restriction is not documented for 525 * gen4, gen5, or byt, they also behave similarly 526 * and hang if the HWS is placed at the top of the 527 * GTT. To generalise, it appears that all !llc 528 * platforms have issues with us placing the HWS 529 * above the mappable region (even though we never 530 * actually map it). 531 */ 532 flags |= PIN_MAPPABLE; 533 else 534 flags |= PIN_HIGH; 535 536 return i915_vma_pin(vma, 0, 0, flags); 537 } 538 539 static int init_status_page(struct intel_engine_cs *engine) 540 { 541 struct drm_i915_gem_object *obj; 542 struct i915_vma *vma; 543 void *vaddr; 544 int ret; 545 546 /* 547 * Though the HWS register does support 36bit addresses, historically 548 * we have had hangs and corruption reported due to wild writes if 549 * the HWS is placed above 4G. We only allow objects to be allocated 550 * in GFP_DMA32 for i965, and no earlier physical address users had 551 * access to more than 4G. 552 */ 553 obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE); 554 if (IS_ERR(obj)) { 555 DRM_ERROR("Failed to allocate status page\n"); 556 return PTR_ERR(obj); 557 } 558 559 i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC); 560 561 vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL); 562 if (IS_ERR(vma)) { 563 ret = PTR_ERR(vma); 564 goto err; 565 } 566 567 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB); 568 if (IS_ERR(vaddr)) { 569 ret = PTR_ERR(vaddr); 570 goto err; 571 } 572 573 engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE); 574 engine->status_page.vma = vma; 575 576 if (!HWS_NEEDS_PHYSICAL(engine->i915)) { 577 ret = pin_ggtt_status_page(engine, vma); 578 if (ret) 579 goto err_unpin; 580 } 581 582 return 0; 583 584 err_unpin: 585 i915_gem_object_unpin_map(obj); 586 err: 587 i915_gem_object_put(obj); 588 return ret; 589 } 590 591 static int engine_setup_common(struct intel_engine_cs *engine) 592 { 593 int err; 594 595 init_llist_head(&engine->barrier_tasks); 596 597 err = init_status_page(engine); 598 if (err) 599 return err; 600 601 intel_engine_init_active(engine, ENGINE_PHYSICAL); 602 intel_engine_init_breadcrumbs(engine); 603 intel_engine_init_execlists(engine); 604 intel_engine_init_cmd_parser(engine); 605 intel_engine_init__pm(engine); 606 intel_engine_init_retire(engine); 607 608 intel_engine_pool_init(&engine->pool); 609 610 /* Use the whole device by default */ 611 engine->sseu = 612 intel_sseu_from_device_info(&RUNTIME_INFO(engine->i915)->sseu); 613 614 intel_engine_init_workarounds(engine); 615 intel_engine_init_whitelist(engine); 616 intel_engine_init_ctx_wa(engine); 617 618 return 0; 619 } 620 621 struct measure_breadcrumb { 622 struct i915_request rq; 623 struct intel_timeline timeline; 624 struct intel_ring ring; 625 u32 cs[1024]; 626 }; 627 628 static int measure_breadcrumb_dw(struct intel_engine_cs *engine) 629 { 630 struct measure_breadcrumb *frame; 631 int dw = -ENOMEM; 632 633 GEM_BUG_ON(!engine->gt->scratch); 634 635 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 636 if (!frame) 637 return -ENOMEM; 638 639 if (intel_timeline_init(&frame->timeline, 640 engine->gt, 641 engine->status_page.vma)) 642 goto out_frame; 643 644 mutex_lock(&frame->timeline.mutex); 645 646 frame->ring.vaddr = frame->cs; 647 frame->ring.size = sizeof(frame->cs); 648 frame->ring.effective_size = frame->ring.size; 649 intel_ring_update_space(&frame->ring); 650 651 frame->rq.i915 = engine->i915; 652 frame->rq.engine = engine; 653 frame->rq.ring = &frame->ring; 654 rcu_assign_pointer(frame->rq.timeline, &frame->timeline); 655 656 dw = intel_timeline_pin(&frame->timeline); 657 if (dw < 0) 658 goto out_timeline; 659 660 spin_lock_irq(&engine->active.lock); 661 dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs; 662 spin_unlock_irq(&engine->active.lock); 663 664 GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */ 665 666 intel_timeline_unpin(&frame->timeline); 667 668 out_timeline: 669 mutex_unlock(&frame->timeline.mutex); 670 intel_timeline_fini(&frame->timeline); 671 out_frame: 672 kfree(frame); 673 return dw; 674 } 675 676 void 677 intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass) 678 { 679 INIT_LIST_HEAD(&engine->active.requests); 680 INIT_LIST_HEAD(&engine->active.hold); 681 682 spin_lock_init(&engine->active.lock); 683 lockdep_set_subclass(&engine->active.lock, subclass); 684 685 /* 686 * Due to an interesting quirk in lockdep's internal debug tracking, 687 * after setting a subclass we must ensure the lock is used. Otherwise, 688 * nr_unused_locks is incremented once too often. 689 */ 690 #ifdef CONFIG_DEBUG_LOCK_ALLOC 691 local_irq_disable(); 692 lock_map_acquire(&engine->active.lock.dep_map); 693 lock_map_release(&engine->active.lock.dep_map); 694 local_irq_enable(); 695 #endif 696 } 697 698 static struct intel_context * 699 create_kernel_context(struct intel_engine_cs *engine) 700 { 701 static struct lock_class_key kernel; 702 struct intel_context *ce; 703 int err; 704 705 ce = intel_context_create(engine); 706 if (IS_ERR(ce)) 707 return ce; 708 709 __set_bit(CONTEXT_BARRIER_BIT, &ce->flags); 710 711 err = intel_context_pin(ce); /* perma-pin so it is always available */ 712 if (err) { 713 intel_context_put(ce); 714 return ERR_PTR(err); 715 } 716 717 /* 718 * Give our perma-pinned kernel timelines a separate lockdep class, 719 * so that we can use them from within the normal user timelines 720 * should we need to inject GPU operations during their request 721 * construction. 722 */ 723 lockdep_set_class(&ce->timeline->mutex, &kernel); 724 725 return ce; 726 } 727 728 /** 729 * intel_engines_init_common - initialize cengine state which might require hw access 730 * @engine: Engine to initialize. 731 * 732 * Initializes @engine@ structure members shared between legacy and execlists 733 * submission modes which do require hardware access. 734 * 735 * Typcally done at later stages of submission mode specific engine setup. 736 * 737 * Returns zero on success or an error code on failure. 738 */ 739 static int engine_init_common(struct intel_engine_cs *engine) 740 { 741 struct intel_context *ce; 742 int ret; 743 744 engine->set_default_submission(engine); 745 746 ret = measure_breadcrumb_dw(engine); 747 if (ret < 0) 748 return ret; 749 750 engine->emit_fini_breadcrumb_dw = ret; 751 752 /* 753 * We may need to do things with the shrinker which 754 * require us to immediately switch back to the default 755 * context. This can cause a problem as pinning the 756 * default context also requires GTT space which may not 757 * be available. To avoid this we always pin the default 758 * context. 759 */ 760 ce = create_kernel_context(engine); 761 if (IS_ERR(ce)) 762 return PTR_ERR(ce); 763 764 engine->kernel_context = ce; 765 766 return 0; 767 } 768 769 int intel_engines_init(struct intel_gt *gt) 770 { 771 int (*setup)(struct intel_engine_cs *engine); 772 struct intel_engine_cs *engine; 773 enum intel_engine_id id; 774 int err; 775 776 if (HAS_EXECLISTS(gt->i915)) 777 setup = intel_execlists_submission_setup; 778 else 779 setup = intel_ring_submission_setup; 780 781 for_each_engine(engine, gt, id) { 782 err = engine_setup_common(engine); 783 if (err) 784 return err; 785 786 err = setup(engine); 787 if (err) 788 return err; 789 790 err = engine_init_common(engine); 791 if (err) 792 return err; 793 794 intel_engine_add_user(engine); 795 } 796 797 return 0; 798 } 799 800 /** 801 * intel_engines_cleanup_common - cleans up the engine state created by 802 * the common initiailizers. 803 * @engine: Engine to cleanup. 804 * 805 * This cleans up everything created by the common helpers. 806 */ 807 void intel_engine_cleanup_common(struct intel_engine_cs *engine) 808 { 809 GEM_BUG_ON(!list_empty(&engine->active.requests)); 810 tasklet_kill(&engine->execlists.tasklet); /* flush the callback */ 811 812 cleanup_status_page(engine); 813 814 intel_engine_fini_retire(engine); 815 intel_engine_fini__pm(engine); 816 intel_engine_pool_fini(&engine->pool); 817 intel_engine_fini_breadcrumbs(engine); 818 intel_engine_cleanup_cmd_parser(engine); 819 820 if (engine->default_state) 821 i915_gem_object_put(engine->default_state); 822 823 if (engine->kernel_context) { 824 intel_context_unpin(engine->kernel_context); 825 intel_context_put(engine->kernel_context); 826 } 827 GEM_BUG_ON(!llist_empty(&engine->barrier_tasks)); 828 829 intel_wa_list_free(&engine->ctx_wa_list); 830 intel_wa_list_free(&engine->wa_list); 831 intel_wa_list_free(&engine->whitelist); 832 833 spin_lock_destroy(&engine->active.lock); 834 } 835 836 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine) 837 { 838 struct drm_i915_private *i915 = engine->i915; 839 840 u64 acthd; 841 842 if (INTEL_GEN(i915) >= 8) 843 acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW); 844 else if (INTEL_GEN(i915) >= 4) 845 acthd = ENGINE_READ(engine, RING_ACTHD); 846 else 847 acthd = ENGINE_READ(engine, ACTHD); 848 849 return acthd; 850 } 851 852 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine) 853 { 854 u64 bbaddr; 855 856 if (INTEL_GEN(engine->i915) >= 8) 857 bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW); 858 else 859 bbaddr = ENGINE_READ(engine, RING_BBADDR); 860 861 return bbaddr; 862 } 863 864 static unsigned long stop_timeout(const struct intel_engine_cs *engine) 865 { 866 if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */ 867 return 0; 868 869 /* 870 * If we are doing a normal GPU reset, we can take our time and allow 871 * the engine to quiesce. We've stopped submission to the engine, and 872 * if we wait long enough an innocent context should complete and 873 * leave the engine idle. So they should not be caught unaware by 874 * the forthcoming GPU reset (which usually follows the stop_cs)! 875 */ 876 return READ_ONCE(engine->props.stop_timeout_ms); 877 } 878 879 int intel_engine_stop_cs(struct intel_engine_cs *engine) 880 { 881 struct intel_uncore *uncore = engine->uncore; 882 const u32 base = engine->mmio_base; 883 const i915_reg_t mode = RING_MI_MODE(base); 884 int err; 885 886 if (INTEL_GEN(engine->i915) < 3) 887 return -ENODEV; 888 889 ENGINE_TRACE(engine, "\n"); 890 891 intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING)); 892 893 err = 0; 894 if (__intel_wait_for_register_fw(uncore, 895 mode, MODE_IDLE, MODE_IDLE, 896 1000, stop_timeout(engine), 897 NULL)) { 898 ENGINE_TRACE(engine, "timed out on STOP_RING -> IDLE\n"); 899 err = -ETIMEDOUT; 900 } 901 902 /* A final mmio read to let GPU writes be hopefully flushed to memory */ 903 intel_uncore_posting_read_fw(uncore, mode); 904 905 return err; 906 } 907 908 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine) 909 { 910 ENGINE_TRACE(engine, "\n"); 911 912 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING)); 913 } 914 915 const char *i915_cache_level_str(struct drm_i915_private *i915, int type) 916 { 917 switch (type) { 918 case I915_CACHE_NONE: return " uncached"; 919 case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped"; 920 case I915_CACHE_L3_LLC: return " L3+LLC"; 921 case I915_CACHE_WT: return " WT"; 922 default: return ""; 923 } 924 } 925 926 static u32 927 read_subslice_reg(const struct intel_engine_cs *engine, 928 int slice, int subslice, i915_reg_t reg) 929 { 930 struct drm_i915_private *i915 = engine->i915; 931 struct intel_uncore *uncore = engine->uncore; 932 u32 mcr_mask, mcr_ss, mcr, old_mcr, val; 933 enum forcewake_domains fw_domains; 934 935 if (INTEL_GEN(i915) >= 11) { 936 mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK; 937 mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice); 938 } else { 939 mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK; 940 mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice); 941 } 942 943 fw_domains = intel_uncore_forcewake_for_reg(uncore, reg, 944 FW_REG_READ); 945 fw_domains |= intel_uncore_forcewake_for_reg(uncore, 946 GEN8_MCR_SELECTOR, 947 FW_REG_READ | FW_REG_WRITE); 948 949 spin_lock_irq(&uncore->lock); 950 intel_uncore_forcewake_get__locked(uncore, fw_domains); 951 952 old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR); 953 954 mcr &= ~mcr_mask; 955 mcr |= mcr_ss; 956 intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr); 957 958 val = intel_uncore_read_fw(uncore, reg); 959 960 mcr &= ~mcr_mask; 961 mcr |= old_mcr & mcr_mask; 962 963 intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr); 964 965 intel_uncore_forcewake_put__locked(uncore, fw_domains); 966 spin_unlock_irq(&uncore->lock); 967 968 return val; 969 } 970 971 /* NB: please notice the memset */ 972 void intel_engine_get_instdone(const struct intel_engine_cs *engine, 973 struct intel_instdone *instdone) 974 { 975 struct drm_i915_private *i915 = engine->i915; 976 const struct sseu_dev_info *sseu = &RUNTIME_INFO(i915)->sseu; 977 struct intel_uncore *uncore = engine->uncore; 978 u32 mmio_base = engine->mmio_base; 979 int slice; 980 int subslice; 981 982 memset(instdone, 0, sizeof(*instdone)); 983 984 switch (INTEL_GEN(i915)) { 985 default: 986 instdone->instdone = 987 intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); 988 989 if (engine->id != RCS0) 990 break; 991 992 instdone->slice_common = 993 intel_uncore_read(uncore, GEN7_SC_INSTDONE); 994 for_each_instdone_slice_subslice(i915, sseu, slice, subslice) { 995 instdone->sampler[slice][subslice] = 996 read_subslice_reg(engine, slice, subslice, 997 GEN7_SAMPLER_INSTDONE); 998 instdone->row[slice][subslice] = 999 read_subslice_reg(engine, slice, subslice, 1000 GEN7_ROW_INSTDONE); 1001 } 1002 break; 1003 case 7: 1004 instdone->instdone = 1005 intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); 1006 1007 if (engine->id != RCS0) 1008 break; 1009 1010 instdone->slice_common = 1011 intel_uncore_read(uncore, GEN7_SC_INSTDONE); 1012 instdone->sampler[0][0] = 1013 intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE); 1014 instdone->row[0][0] = 1015 intel_uncore_read(uncore, GEN7_ROW_INSTDONE); 1016 1017 break; 1018 case 6: 1019 case 5: 1020 case 4: 1021 instdone->instdone = 1022 intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); 1023 if (engine->id == RCS0) 1024 /* HACK: Using the wrong struct member */ 1025 instdone->slice_common = 1026 intel_uncore_read(uncore, GEN4_INSTDONE1); 1027 break; 1028 case 3: 1029 case 2: 1030 instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE); 1031 break; 1032 } 1033 } 1034 1035 static bool ring_is_idle(struct intel_engine_cs *engine) 1036 { 1037 bool idle = true; 1038 1039 if (I915_SELFTEST_ONLY(!engine->mmio_base)) 1040 return true; 1041 1042 if (!intel_engine_pm_get_if_awake(engine)) 1043 return true; 1044 1045 /* First check that no commands are left in the ring */ 1046 if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) != 1047 (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR)) 1048 idle = false; 1049 1050 /* No bit for gen2, so assume the CS parser is idle */ 1051 if (INTEL_GEN(engine->i915) > 2 && 1052 !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE)) 1053 idle = false; 1054 1055 intel_engine_pm_put(engine); 1056 1057 return idle; 1058 } 1059 1060 void intel_engine_flush_submission(struct intel_engine_cs *engine) 1061 { 1062 struct tasklet_struct *t = &engine->execlists.tasklet; 1063 1064 if (__tasklet_is_scheduled(t)) { 1065 #ifdef __NetBSD__ 1066 int s = splsoftserial(); 1067 #else 1068 local_bh_disable(); 1069 #endif 1070 if (tasklet_trylock(t)) { 1071 /* Must wait for any GPU reset in progress. */ 1072 if (__tasklet_is_enabled(t)) 1073 t->func(t->data); 1074 tasklet_unlock(t); 1075 } 1076 #ifdef __NetBSD__ 1077 splx(s); 1078 #else 1079 local_bh_enable(); 1080 #endif 1081 } 1082 1083 /* Otherwise flush the tasklet if it was running on another cpu */ 1084 tasklet_unlock_wait(t); 1085 } 1086 1087 /** 1088 * intel_engine_is_idle() - Report if the engine has finished process all work 1089 * @engine: the intel_engine_cs 1090 * 1091 * Return true if there are no requests pending, nothing left to be submitted 1092 * to hardware, and that the engine is idle. 1093 */ 1094 bool intel_engine_is_idle(struct intel_engine_cs *engine) 1095 { 1096 /* More white lies, if wedged, hw state is inconsistent */ 1097 if (intel_gt_is_wedged(engine->gt)) 1098 return true; 1099 1100 if (!intel_engine_pm_is_awake(engine)) 1101 return true; 1102 1103 /* Waiting to drain ELSP? */ 1104 if (execlists_active(&engine->execlists)) { 1105 #ifdef __NetBSD__ 1106 xc_barrier(XC_HIGHPRI); 1107 #else 1108 synchronize_hardirq(engine->i915->drm.pdev->irq); 1109 #endif 1110 1111 intel_engine_flush_submission(engine); 1112 1113 if (execlists_active(&engine->execlists)) 1114 return false; 1115 } 1116 1117 /* ELSP is empty, but there are ready requests? E.g. after reset */ 1118 if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root)) 1119 return false; 1120 1121 /* Ring stopped? */ 1122 return ring_is_idle(engine); 1123 } 1124 1125 bool intel_engines_are_idle(struct intel_gt *gt) 1126 { 1127 struct intel_engine_cs *engine; 1128 enum intel_engine_id id; 1129 1130 /* 1131 * If the driver is wedged, HW state may be very inconsistent and 1132 * report that it is still busy, even though we have stopped using it. 1133 */ 1134 if (intel_gt_is_wedged(gt)) 1135 return true; 1136 1137 /* Already parked (and passed an idleness test); must still be idle */ 1138 if (!READ_ONCE(gt->awake)) 1139 return true; 1140 1141 for_each_engine(engine, gt, id) { 1142 if (!intel_engine_is_idle(engine)) 1143 return false; 1144 } 1145 1146 return true; 1147 } 1148 1149 void intel_engines_reset_default_submission(struct intel_gt *gt) 1150 { 1151 struct intel_engine_cs *engine; 1152 enum intel_engine_id id; 1153 1154 for_each_engine(engine, gt, id) 1155 engine->set_default_submission(engine); 1156 } 1157 1158 bool intel_engine_can_store_dword(struct intel_engine_cs *engine) 1159 { 1160 switch (INTEL_GEN(engine->i915)) { 1161 case 2: 1162 return false; /* uses physical not virtual addresses */ 1163 case 3: 1164 /* maybe only uses physical not virtual addresses */ 1165 return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915)); 1166 case 4: 1167 return !IS_I965G(engine->i915); /* who knows! */ 1168 case 6: 1169 return engine->class != VIDEO_DECODE_CLASS; /* b0rked */ 1170 default: 1171 return true; 1172 } 1173 } 1174 1175 static int print_sched_attr(struct drm_i915_private *i915, 1176 const struct i915_sched_attr *attr, 1177 char *buf, int x, int len) 1178 { 1179 if (attr->priority == I915_PRIORITY_INVALID) 1180 return x; 1181 1182 x += snprintf(buf + x, len - x, 1183 " prio=%d", attr->priority); 1184 1185 return x; 1186 } 1187 1188 static void print_request(struct drm_printer *m, 1189 struct i915_request *rq, 1190 const char *prefix) 1191 { 1192 const char *name = rq->fence.ops->get_timeline_name(&rq->fence); 1193 char buf[80] = ""; 1194 int x = 0; 1195 1196 x = print_sched_attr(rq->i915, &rq->sched.attr, buf, x, sizeof(buf)); 1197 1198 drm_printf(m, "%s %"PRIx64":%"PRIx64"%s%s %s @ %dms: %s\n", 1199 prefix, 1200 (uint64_t)rq->fence.context, (uint64_t)rq->fence.seqno, 1201 i915_request_completed(rq) ? "!" : 1202 i915_request_started(rq) ? "*" : 1203 "", 1204 test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, 1205 &rq->fence.flags) ? "+" : 1206 test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, 1207 &rq->fence.flags) ? "-" : 1208 "", 1209 buf, 1210 jiffies_to_msecs(jiffies - rq->emitted_jiffies), 1211 name); 1212 } 1213 1214 #define hexdump intel_hexdump 1215 1216 static void hexdump(struct drm_printer *m, const void *buf, size_t len) 1217 { 1218 const size_t rowsize = 8 * sizeof(u32); 1219 const void *prev = NULL; 1220 bool skip = false; 1221 size_t pos; 1222 1223 for (pos = 0; pos < len; pos += rowsize) { 1224 char line[128]; 1225 1226 if (prev && !memcmp(prev, buf + pos, rowsize)) { 1227 if (!skip) { 1228 drm_printf(m, "*\n"); 1229 skip = true; 1230 } 1231 continue; 1232 } 1233 1234 WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos, 1235 rowsize, sizeof(u32), 1236 line, sizeof(line), 1237 false) >= sizeof(line)); 1238 drm_printf(m, "[%04zx] %s\n", pos, line); 1239 1240 prev = buf + pos; 1241 skip = false; 1242 } 1243 } 1244 1245 static struct intel_timeline *get_timeline(struct i915_request *rq) 1246 { 1247 struct intel_timeline *tl; 1248 1249 /* 1250 * Even though we are holding the engine->active.lock here, there 1251 * is no control over the submission queue per-se and we are 1252 * inspecting the active state at a random point in time, with an 1253 * unknown queue. Play safe and make sure the timeline remains valid. 1254 * (Only being used for pretty printing, one extra kref shouldn't 1255 * cause a camel stampede!) 1256 */ 1257 rcu_read_lock(); 1258 tl = rcu_dereference(rq->timeline); 1259 if (!kref_get_unless_zero(&tl->kref)) 1260 tl = NULL; 1261 rcu_read_unlock(); 1262 1263 return tl; 1264 } 1265 1266 static const char *repr_timer(const struct timer_list *t) 1267 { 1268 #ifdef __NetBSD__ 1269 if (!callout_active(__UNCONST(&t->tl_callout))) 1270 return "inactive"; 1271 1272 if (callout_pending(__UNCONST(&t->tl_callout))) 1273 return "pending"; 1274 #else 1275 if (!READ_ONCE(t->expires)) 1276 return "inactive"; 1277 1278 if (timer_pending(t)) 1279 return "active"; 1280 #endif 1281 1282 return "expired"; 1283 } 1284 1285 static void intel_engine_print_registers(struct intel_engine_cs *engine, 1286 struct drm_printer *m) 1287 { 1288 struct drm_i915_private *dev_priv = engine->i915; 1289 struct intel_engine_execlists * const execlists = &engine->execlists; 1290 u64 addr; 1291 1292 if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7)) 1293 drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID)); 1294 drm_printf(m, "\tRING_START: 0x%08x\n", 1295 ENGINE_READ(engine, RING_START)); 1296 drm_printf(m, "\tRING_HEAD: 0x%08x\n", 1297 ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR); 1298 drm_printf(m, "\tRING_TAIL: 0x%08x\n", 1299 ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR); 1300 drm_printf(m, "\tRING_CTL: 0x%08x%s\n", 1301 ENGINE_READ(engine, RING_CTL), 1302 ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : ""); 1303 if (INTEL_GEN(engine->i915) > 2) { 1304 drm_printf(m, "\tRING_MODE: 0x%08x%s\n", 1305 ENGINE_READ(engine, RING_MI_MODE), 1306 ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : ""); 1307 } 1308 1309 if (INTEL_GEN(dev_priv) >= 6) { 1310 drm_printf(m, "\tRING_IMR: %08x\n", 1311 ENGINE_READ(engine, RING_IMR)); 1312 } 1313 1314 addr = intel_engine_get_active_head(engine); 1315 drm_printf(m, "\tACTHD: 0x%08x_%08x\n", 1316 upper_32_bits(addr), lower_32_bits(addr)); 1317 addr = intel_engine_get_last_batch_head(engine); 1318 drm_printf(m, "\tBBADDR: 0x%08x_%08x\n", 1319 upper_32_bits(addr), lower_32_bits(addr)); 1320 if (INTEL_GEN(dev_priv) >= 8) 1321 addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW); 1322 else if (INTEL_GEN(dev_priv) >= 4) 1323 addr = ENGINE_READ(engine, RING_DMA_FADD); 1324 else 1325 addr = ENGINE_READ(engine, DMA_FADD_I8XX); 1326 drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n", 1327 upper_32_bits(addr), lower_32_bits(addr)); 1328 if (INTEL_GEN(dev_priv) >= 4) { 1329 drm_printf(m, "\tIPEIR: 0x%08x\n", 1330 ENGINE_READ(engine, RING_IPEIR)); 1331 drm_printf(m, "\tIPEHR: 0x%08x\n", 1332 ENGINE_READ(engine, RING_IPEHR)); 1333 } else { 1334 drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR)); 1335 drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR)); 1336 } 1337 1338 if (HAS_EXECLISTS(dev_priv)) { 1339 struct i915_request * const *port, *rq; 1340 const u32 *hws = 1341 &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX]; 1342 const u8 num_entries = execlists->csb_size; 1343 unsigned int idx; 1344 u8 read, write; 1345 1346 drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n", 1347 #ifdef __NetBSD__ /* XXX sigh */ 1348 "<abstraction violation>", 1349 "<abstraction violation>", 1350 #else 1351 yesno(test_bit(TASKLET_STATE_SCHED, 1352 &engine->execlists.tasklet.state)), 1353 enableddisabled(!atomic_read(&engine->execlists.tasklet.count)), 1354 #endif 1355 repr_timer(&engine->execlists.preempt), 1356 repr_timer(&engine->execlists.timer)); 1357 1358 read = execlists->csb_head; 1359 write = READ_ONCE(*execlists->csb_write); 1360 1361 drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n", 1362 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO), 1363 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI), 1364 read, write, num_entries); 1365 1366 if (read >= num_entries) 1367 read = 0; 1368 if (write >= num_entries) 1369 write = 0; 1370 if (read > write) 1371 write += num_entries; 1372 while (read < write) { 1373 idx = ++read % num_entries; 1374 drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n", 1375 idx, hws[idx * 2], hws[idx * 2 + 1]); 1376 } 1377 1378 #ifdef __NetBSD__ 1379 int s = execlists_active_lock_bh(execlists); 1380 #else 1381 execlists_active_lock_bh(execlists); 1382 #endif 1383 rcu_read_lock(); 1384 for (port = execlists->active; (rq = *port); port++) { 1385 char hdr[80]; 1386 int len; 1387 1388 len = snprintf(hdr, sizeof(hdr), 1389 "\t\tActive[%d]: ", 1390 (int)(port - execlists->active)); 1391 if (!i915_request_signaled(rq)) { 1392 struct intel_timeline *tl = get_timeline(rq); 1393 1394 len += snprintf(hdr + len, sizeof(hdr) - len, 1395 "ring:{start:%08x, hwsp:%08x, seqno:%08x}, ", 1396 i915_ggtt_offset(rq->ring->vma), 1397 tl ? tl->hwsp_offset : 0, 1398 hwsp_seqno(rq)); 1399 1400 if (tl) 1401 intel_timeline_put(tl); 1402 } 1403 snprintf(hdr + len, sizeof(hdr) - len, "rq: "); 1404 print_request(m, rq, hdr); 1405 } 1406 for (port = execlists->pending; (rq = *port); port++) { 1407 struct intel_timeline *tl = get_timeline(rq); 1408 char hdr[80]; 1409 1410 snprintf(hdr, sizeof(hdr), 1411 "\t\tPending[%d] ring:{start:%08x, hwsp:%08x, seqno:%08x}, rq: ", 1412 (int)(port - execlists->pending), 1413 i915_ggtt_offset(rq->ring->vma), 1414 tl ? tl->hwsp_offset : 0, 1415 hwsp_seqno(rq)); 1416 print_request(m, rq, hdr); 1417 1418 if (tl) 1419 intel_timeline_put(tl); 1420 } 1421 rcu_read_unlock(); 1422 #ifdef __NetBSD__ 1423 execlists_active_unlock_bh(execlists, s); 1424 #else 1425 execlists_active_unlock_bh(execlists); 1426 #endif 1427 } else if (INTEL_GEN(dev_priv) > 6) { 1428 drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n", 1429 ENGINE_READ(engine, RING_PP_DIR_BASE)); 1430 drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n", 1431 ENGINE_READ(engine, RING_PP_DIR_BASE_READ)); 1432 drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n", 1433 ENGINE_READ(engine, RING_PP_DIR_DCLV)); 1434 } 1435 } 1436 1437 static void print_request_ring(struct drm_printer *m, struct i915_request *rq) 1438 { 1439 void *ring; 1440 int size; 1441 1442 drm_printf(m, 1443 "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n", 1444 rq->head, rq->postfix, rq->tail, 1445 rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u, 1446 rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u); 1447 1448 size = rq->tail - rq->head; 1449 if (rq->tail < rq->head) 1450 size += rq->ring->size; 1451 1452 ring = kmalloc(size, GFP_ATOMIC); 1453 if (ring) { 1454 const void *vaddr = rq->ring->vaddr; 1455 unsigned int head = rq->head; 1456 unsigned int len = 0; 1457 1458 if (rq->tail < head) { 1459 len = rq->ring->size - head; 1460 memcpy(ring, vaddr + head, len); 1461 head = 0; 1462 } 1463 memcpy(ring + len, vaddr + head, size - len); 1464 1465 hexdump(m, ring, size); 1466 kfree(ring); 1467 } 1468 } 1469 1470 static unsigned long list_count(struct list_head *list) 1471 { 1472 struct list_head *pos; 1473 unsigned long count = 0; 1474 1475 list_for_each(pos, list) 1476 count++; 1477 1478 return count; 1479 } 1480 1481 void intel_engine_dump(struct intel_engine_cs *engine, 1482 struct drm_printer *m, 1483 const char *header, ...) 1484 { 1485 struct i915_gpu_error * const error = &engine->i915->gpu_error; 1486 struct i915_request *rq; 1487 intel_wakeref_t wakeref; 1488 unsigned long flags; 1489 1490 if (header) { 1491 va_list ap; 1492 1493 va_start(ap, header); 1494 drm_vprintf(m, header, &ap); 1495 va_end(ap); 1496 } 1497 1498 if (intel_gt_is_wedged(engine->gt)) 1499 drm_printf(m, "*** WEDGED ***\n"); 1500 1501 drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count)); 1502 drm_printf(m, "\tBarriers?: %s\n", 1503 yesno(!llist_empty(&engine->barrier_tasks))); 1504 drm_printf(m, "\tLatency: %luus\n", 1505 ewma__engine_latency_read(&engine->latency)); 1506 1507 rcu_read_lock(); 1508 rq = READ_ONCE(engine->heartbeat.systole); 1509 if (rq) 1510 drm_printf(m, "\tHeartbeat: %d ms ago\n", 1511 jiffies_to_msecs(jiffies - rq->emitted_jiffies)); 1512 rcu_read_unlock(); 1513 drm_printf(m, "\tReset count: %d (global %d)\n", 1514 i915_reset_engine_count(error, engine), 1515 i915_reset_count(error)); 1516 1517 drm_printf(m, "\tRequests:\n"); 1518 1519 spin_lock_irqsave(&engine->active.lock, flags); 1520 rq = intel_engine_find_active_request(engine); 1521 if (rq) { 1522 struct intel_timeline *tl = get_timeline(rq); 1523 1524 print_request(m, rq, "\t\tactive "); 1525 1526 drm_printf(m, "\t\tring->start: 0x%08x\n", 1527 i915_ggtt_offset(rq->ring->vma)); 1528 drm_printf(m, "\t\tring->head: 0x%08x\n", 1529 rq->ring->head); 1530 drm_printf(m, "\t\tring->tail: 0x%08x\n", 1531 rq->ring->tail); 1532 drm_printf(m, "\t\tring->emit: 0x%08x\n", 1533 rq->ring->emit); 1534 drm_printf(m, "\t\tring->space: 0x%08x\n", 1535 rq->ring->space); 1536 1537 if (tl) { 1538 drm_printf(m, "\t\tring->hwsp: 0x%08x\n", 1539 tl->hwsp_offset); 1540 intel_timeline_put(tl); 1541 } 1542 1543 print_request_ring(m, rq); 1544 1545 if (rq->context->lrc_reg_state) { 1546 drm_printf(m, "Logical Ring Context:\n"); 1547 hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE); 1548 } 1549 } 1550 drm_printf(m, "\tOn hold?: %lu\n", list_count(&engine->active.hold)); 1551 spin_unlock_irqrestore(&engine->active.lock, flags); 1552 1553 drm_printf(m, "\tMMIO base: 0x%08x\n", engine->mmio_base); 1554 wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm); 1555 if (wakeref) { 1556 intel_engine_print_registers(engine, m); 1557 intel_runtime_pm_put(engine->uncore->rpm, wakeref); 1558 } else { 1559 drm_printf(m, "\tDevice is asleep; skipping register dump\n"); 1560 } 1561 1562 intel_execlists_show_requests(engine, m, print_request, 8); 1563 1564 drm_printf(m, "HWSP:\n"); 1565 hexdump(m, engine->status_page.addr, PAGE_SIZE); 1566 1567 drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine))); 1568 1569 intel_engine_print_breadcrumbs(engine, m); 1570 } 1571 1572 /** 1573 * intel_enable_engine_stats() - Enable engine busy tracking on engine 1574 * @engine: engine to enable stats collection 1575 * 1576 * Start collecting the engine busyness data for @engine. 1577 * 1578 * Returns 0 on success or a negative error code. 1579 */ 1580 int intel_enable_engine_stats(struct intel_engine_cs *engine) 1581 { 1582 struct intel_engine_execlists *execlists = &engine->execlists; 1583 unsigned long flags; 1584 int err = 0; 1585 1586 if (!intel_engine_supports_stats(engine)) 1587 return -ENODEV; 1588 1589 #ifdef __NetBSD__ 1590 int s = execlists_active_lock_bh(execlists); 1591 #else 1592 execlists_active_lock_bh(execlists); 1593 #endif 1594 write_seqlock_irqsave(&engine->stats.lock, flags); 1595 1596 if (unlikely(engine->stats.enabled == ~0)) { 1597 err = -EBUSY; 1598 goto unlock; 1599 } 1600 1601 if (engine->stats.enabled++ == 0) { 1602 struct i915_request * const *port; 1603 struct i915_request *rq; 1604 1605 engine->stats.enabled_at = ktime_get(); 1606 1607 /* XXX submission method oblivious? */ 1608 for (port = execlists->active; (rq = *port); port++) 1609 engine->stats.active++; 1610 1611 for (port = execlists->pending; (rq = *port); port++) { 1612 /* Exclude any contexts already counted in active */ 1613 if (!intel_context_inflight_count(rq->context)) 1614 engine->stats.active++; 1615 } 1616 1617 if (engine->stats.active) 1618 engine->stats.start = engine->stats.enabled_at; 1619 } 1620 1621 unlock: 1622 write_sequnlock_irqrestore(&engine->stats.lock, flags); 1623 #ifdef __NetBSD__ 1624 execlists_active_unlock_bh(execlists, s); 1625 #else 1626 execlists_active_unlock_bh(execlists); 1627 #endif 1628 1629 return err; 1630 } 1631 1632 static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine) 1633 { 1634 ktime_t total = engine->stats.total; 1635 1636 /* 1637 * If the engine is executing something at the moment 1638 * add it to the total. 1639 */ 1640 if (engine->stats.active) 1641 total = ktime_add(total, 1642 ktime_sub(ktime_get(), engine->stats.start)); 1643 1644 return total; 1645 } 1646 1647 /** 1648 * intel_engine_get_busy_time() - Return current accumulated engine busyness 1649 * @engine: engine to report on 1650 * 1651 * Returns accumulated time @engine was busy since engine stats were enabled. 1652 */ 1653 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine) 1654 { 1655 unsigned int seq; 1656 ktime_t total; 1657 1658 do { 1659 seq = read_seqbegin(&engine->stats.lock); 1660 total = __intel_engine_get_busy_time(engine); 1661 } while (read_seqretry(&engine->stats.lock, seq)); 1662 1663 return total; 1664 } 1665 1666 /** 1667 * intel_disable_engine_stats() - Disable engine busy tracking on engine 1668 * @engine: engine to disable stats collection 1669 * 1670 * Stops collecting the engine busyness data for @engine. 1671 */ 1672 void intel_disable_engine_stats(struct intel_engine_cs *engine) 1673 { 1674 unsigned long flags; 1675 1676 if (!intel_engine_supports_stats(engine)) 1677 return; 1678 1679 write_seqlock_irqsave(&engine->stats.lock, flags); 1680 WARN_ON_ONCE(engine->stats.enabled == 0); 1681 if (--engine->stats.enabled == 0) { 1682 engine->stats.total = __intel_engine_get_busy_time(engine); 1683 engine->stats.active = 0; 1684 } 1685 write_sequnlock_irqrestore(&engine->stats.lock, flags); 1686 } 1687 1688 static bool match_ring(struct i915_request *rq) 1689 { 1690 u32 ring = ENGINE_READ(rq->engine, RING_START); 1691 1692 return ring == i915_ggtt_offset(rq->ring->vma); 1693 } 1694 1695 struct i915_request * 1696 intel_engine_find_active_request(struct intel_engine_cs *engine) 1697 { 1698 struct i915_request *request, *active = NULL; 1699 1700 /* 1701 * We are called by the error capture, reset and to dump engine 1702 * state at random points in time. In particular, note that neither is 1703 * crucially ordered with an interrupt. After a hang, the GPU is dead 1704 * and we assume that no more writes can happen (we waited long enough 1705 * for all writes that were in transaction to be flushed) - adding an 1706 * extra delay for a recent interrupt is pointless. Hence, we do 1707 * not need an engine->irq_seqno_barrier() before the seqno reads. 1708 * At all other times, we must assume the GPU is still running, but 1709 * we only care about the snapshot of this moment. 1710 */ 1711 lockdep_assert_held(&engine->active.lock); 1712 list_for_each_entry(request, &engine->active.requests, sched.link) { 1713 if (i915_request_completed(request)) 1714 continue; 1715 1716 if (!i915_request_started(request)) 1717 continue; 1718 1719 /* More than one preemptible request may match! */ 1720 if (!match_ring(request)) 1721 continue; 1722 1723 active = request; 1724 break; 1725 } 1726 1727 return active; 1728 } 1729 1730 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1731 #include "mock_engine.c" 1732 #include "selftest_engine.c" 1733 #include "selftest_engine_cs.c" 1734 #endif 1735