Home | History | Annotate | Line # | Download | only in uc
      1 /*	$NetBSD: intel_guc.c,v 1.4 2021/12/19 12:32:15 riastradh Exp $	*/
      2 
      3 // SPDX-License-Identifier: MIT
      4 /*
      5  * Copyright  2014-2019 Intel Corporation
      6  */
      7 
      8 #include <sys/cdefs.h>
      9 __KERNEL_RCSID(0, "$NetBSD: intel_guc.c,v 1.4 2021/12/19 12:32:15 riastradh Exp $");
     10 
     11 #include "gt/intel_gt.h"
     12 #include "gt/intel_gt_irq.h"
     13 #include "gt/intel_gt_pm_irq.h"
     14 #include "intel_guc.h"
     15 #include "intel_guc_ads.h"
     16 #include "intel_guc_submission.h"
     17 #include "i915_drv.h"
     18 
     19 #include <linux/nbsd-namespace.h>
     20 
     21 /**
     22  * DOC: GuC
     23  *
     24  * The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is
     25  * designed to offload some of the functionality usually performed by the host
     26  * driver; currently the main operations it can take care of are:
     27  *
     28  * - Authentication of the HuC, which is required to fully enable HuC usage.
     29  * - Low latency graphics context scheduling (a.k.a. GuC submission).
     30  * - GT Power management.
     31  *
     32  * The enable_guc module parameter can be used to select which of those
     33  * operations to enable within GuC. Note that not all the operations are
     34  * supported on all gen9+ platforms.
     35  *
     36  * Enabling the GuC is not mandatory and therefore the firmware is only loaded
     37  * if at least one of the operations is selected. However, not loading the GuC
     38  * might result in the loss of some features that do require the GuC (currently
     39  * just the HuC, but more are expected to land in the future).
     40  */
     41 
     42 void intel_guc_notify(struct intel_guc *guc)
     43 {
     44 	struct intel_gt *gt = guc_to_gt(guc);
     45 
     46 	/*
     47 	 * On Gen11+, the value written to the register is passes as a payload
     48 	 * to the FW. However, the FW currently treats all values the same way
     49 	 * (H2G interrupt), so we can just write the value that the HW expects
     50 	 * on older gens.
     51 	 */
     52 	intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER);
     53 }
     54 
     55 static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i)
     56 {
     57 	GEM_BUG_ON(!guc->send_regs.base);
     58 	GEM_BUG_ON(!guc->send_regs.count);
     59 	GEM_BUG_ON(i >= guc->send_regs.count);
     60 
     61 	return _MMIO(guc->send_regs.base + 4 * i);
     62 }
     63 
     64 void intel_guc_init_send_regs(struct intel_guc *guc)
     65 {
     66 	struct intel_gt *gt = guc_to_gt(guc);
     67 	enum forcewake_domains fw_domains = 0;
     68 	unsigned int i;
     69 
     70 	if (INTEL_GEN(gt->i915) >= 11) {
     71 		guc->send_regs.base =
     72 				i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0));
     73 		guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT;
     74 	} else {
     75 		guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0));
     76 		guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN;
     77 		BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT);
     78 	}
     79 
     80 	for (i = 0; i < guc->send_regs.count; i++) {
     81 		fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore,
     82 					guc_send_reg(guc, i),
     83 					FW_REG_READ | FW_REG_WRITE);
     84 	}
     85 	guc->send_regs.fw_domains = fw_domains;
     86 }
     87 
     88 static void gen9_reset_guc_interrupts(struct intel_guc *guc)
     89 {
     90 	struct intel_gt *gt = guc_to_gt(guc);
     91 
     92 	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
     93 
     94 	spin_lock_irq(&gt->irq_lock);
     95 	gen6_gt_pm_reset_iir(gt, gt->pm_guc_events);
     96 	spin_unlock_irq(&gt->irq_lock);
     97 }
     98 
     99 static void gen9_enable_guc_interrupts(struct intel_guc *guc)
    100 {
    101 	struct intel_gt *gt = guc_to_gt(guc);
    102 
    103 	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
    104 
    105 	spin_lock_irq(&gt->irq_lock);
    106 	if (!guc->interrupts.enabled) {
    107 		WARN_ON_ONCE(intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) &
    108 			     gt->pm_guc_events);
    109 		guc->interrupts.enabled = true;
    110 		gen6_gt_pm_enable_irq(gt, gt->pm_guc_events);
    111 	}
    112 	spin_unlock_irq(&gt->irq_lock);
    113 }
    114 
    115 static void gen9_disable_guc_interrupts(struct intel_guc *guc)
    116 {
    117 	struct intel_gt *gt = guc_to_gt(guc);
    118 
    119 	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
    120 
    121 	spin_lock_irq(&gt->irq_lock);
    122 	guc->interrupts.enabled = false;
    123 
    124 	gen6_gt_pm_disable_irq(gt, gt->pm_guc_events);
    125 
    126 	spin_unlock_irq(&gt->irq_lock);
    127 	intel_synchronize_irq(gt->i915);
    128 
    129 	gen9_reset_guc_interrupts(guc);
    130 }
    131 
    132 static void gen11_reset_guc_interrupts(struct intel_guc *guc)
    133 {
    134 	struct intel_gt *gt = guc_to_gt(guc);
    135 
    136 	spin_lock_irq(&gt->irq_lock);
    137 	gen11_gt_reset_one_iir(gt, 0, GEN11_GUC);
    138 	spin_unlock_irq(&gt->irq_lock);
    139 }
    140 
    141 static void gen11_enable_guc_interrupts(struct intel_guc *guc)
    142 {
    143 	struct intel_gt *gt = guc_to_gt(guc);
    144 
    145 	spin_lock_irq(&gt->irq_lock);
    146 	if (!guc->interrupts.enabled) {
    147 		u32 events = REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST);
    148 
    149 		WARN_ON_ONCE(gen11_gt_reset_one_iir(gt, 0, GEN11_GUC));
    150 		intel_uncore_write(gt->uncore,
    151 				   GEN11_GUC_SG_INTR_ENABLE, events);
    152 		intel_uncore_write(gt->uncore,
    153 				   GEN11_GUC_SG_INTR_MASK, ~events);
    154 		guc->interrupts.enabled = true;
    155 	}
    156 	spin_unlock_irq(&gt->irq_lock);
    157 }
    158 
    159 static void gen11_disable_guc_interrupts(struct intel_guc *guc)
    160 {
    161 	struct intel_gt *gt = guc_to_gt(guc);
    162 
    163 	spin_lock_irq(&gt->irq_lock);
    164 	guc->interrupts.enabled = false;
    165 
    166 	intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_MASK, ~0);
    167 	intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_ENABLE, 0);
    168 
    169 	spin_unlock_irq(&gt->irq_lock);
    170 	intel_synchronize_irq(gt->i915);
    171 
    172 	gen11_reset_guc_interrupts(guc);
    173 }
    174 
    175 void intel_guc_init_early(struct intel_guc *guc)
    176 {
    177 	struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
    178 
    179 	intel_guc_fw_init_early(guc);
    180 	intel_guc_ct_init_early(&guc->ct);
    181 	intel_guc_log_init_early(&guc->log);
    182 	intel_guc_submission_init_early(guc);
    183 
    184 	mutex_init(&guc->send_mutex);
    185 	spin_lock_init(&guc->irq_lock);
    186 	if (INTEL_GEN(i915) >= 11) {
    187 		guc->notify_reg = GEN11_GUC_HOST_INTERRUPT;
    188 		guc->interrupts.reset = gen11_reset_guc_interrupts;
    189 		guc->interrupts.enable = gen11_enable_guc_interrupts;
    190 		guc->interrupts.disable = gen11_disable_guc_interrupts;
    191 	} else {
    192 		guc->notify_reg = GUC_SEND_INTERRUPT;
    193 		guc->interrupts.reset = gen9_reset_guc_interrupts;
    194 		guc->interrupts.enable = gen9_enable_guc_interrupts;
    195 		guc->interrupts.disable = gen9_disable_guc_interrupts;
    196 	}
    197 }
    198 
    199 static u32 guc_ctl_debug_flags(struct intel_guc *guc)
    200 {
    201 	u32 level = intel_guc_log_get_level(&guc->log);
    202 	u32 flags = 0;
    203 
    204 	if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
    205 		flags |= GUC_LOG_DISABLED;
    206 	else
    207 		flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
    208 			 GUC_LOG_VERBOSITY_SHIFT;
    209 
    210 	return flags;
    211 }
    212 
    213 static u32 guc_ctl_feature_flags(struct intel_guc *guc)
    214 {
    215 	u32 flags = 0;
    216 
    217 	if (!intel_guc_is_submission_supported(guc))
    218 		flags |= GUC_CTL_DISABLE_SCHEDULER;
    219 
    220 	return flags;
    221 }
    222 
    223 static u32 guc_ctl_ctxinfo_flags(struct intel_guc *guc)
    224 {
    225 	u32 flags = 0;
    226 
    227 	if (intel_guc_is_submission_supported(guc)) {
    228 		u32 ctxnum, base;
    229 
    230 		base = intel_guc_ggtt_offset(guc, guc->stage_desc_pool);
    231 		ctxnum = GUC_MAX_STAGE_DESCRIPTORS / 16;
    232 
    233 		base >>= PAGE_SHIFT;
    234 		flags |= (base << GUC_CTL_BASE_ADDR_SHIFT) |
    235 			(ctxnum << GUC_CTL_CTXNUM_IN16_SHIFT);
    236 	}
    237 	return flags;
    238 }
    239 
    240 static u32 guc_ctl_log_params_flags(struct intel_guc *guc)
    241 {
    242 	u32 offset = intel_guc_ggtt_offset(guc, guc->log.vma) >> PAGE_SHIFT;
    243 	u32 flags;
    244 
    245 	#if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0)
    246 	#define UNIT SZ_1M
    247 	#define FLAG GUC_LOG_ALLOC_IN_MEGABYTE
    248 	#else
    249 	#define UNIT SZ_4K
    250 	#define FLAG 0
    251 	#endif
    252 
    253 	BUILD_BUG_ON(!CRASH_BUFFER_SIZE);
    254 	BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, UNIT));
    255 	BUILD_BUG_ON(!DPC_BUFFER_SIZE);
    256 	BUILD_BUG_ON(!IS_ALIGNED(DPC_BUFFER_SIZE, UNIT));
    257 	BUILD_BUG_ON(!ISR_BUFFER_SIZE);
    258 	BUILD_BUG_ON(!IS_ALIGNED(ISR_BUFFER_SIZE, UNIT));
    259 
    260 	BUILD_BUG_ON((CRASH_BUFFER_SIZE / UNIT - 1) >
    261 			(GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT));
    262 	BUILD_BUG_ON((DPC_BUFFER_SIZE / UNIT - 1) >
    263 			(GUC_LOG_DPC_MASK >> GUC_LOG_DPC_SHIFT));
    264 	BUILD_BUG_ON((ISR_BUFFER_SIZE / UNIT - 1) >
    265 			(GUC_LOG_ISR_MASK >> GUC_LOG_ISR_SHIFT));
    266 
    267 	flags = GUC_LOG_VALID |
    268 		GUC_LOG_NOTIFY_ON_HALF_FULL |
    269 		FLAG |
    270 		((CRASH_BUFFER_SIZE / UNIT - 1) << GUC_LOG_CRASH_SHIFT) |
    271 		((DPC_BUFFER_SIZE / UNIT - 1) << GUC_LOG_DPC_SHIFT) |
    272 		((ISR_BUFFER_SIZE / UNIT - 1) << GUC_LOG_ISR_SHIFT) |
    273 		(offset << GUC_LOG_BUF_ADDR_SHIFT);
    274 
    275 	#undef UNIT
    276 	#undef FLAG
    277 
    278 	return flags;
    279 }
    280 
    281 static u32 guc_ctl_ads_flags(struct intel_guc *guc)
    282 {
    283 	u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT;
    284 	u32 flags = ads << GUC_ADS_ADDR_SHIFT;
    285 
    286 	return flags;
    287 }
    288 
    289 /*
    290  * Initialise the GuC parameter block before starting the firmware
    291  * transfer. These parameters are read by the firmware on startup
    292  * and cannot be changed thereafter.
    293  */
    294 static void guc_init_params(struct intel_guc *guc)
    295 {
    296 	u32 *params = guc->params;
    297 	int i;
    298 
    299 	BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
    300 
    301 	params[GUC_CTL_CTXINFO] = guc_ctl_ctxinfo_flags(guc);
    302 	params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
    303 	params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
    304 	params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
    305 	params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
    306 
    307 	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
    308 		DRM_DEBUG_DRIVER("param[%2d] = %#x\n", i, params[i]);
    309 }
    310 
    311 /*
    312  * Initialise the GuC parameter block before starting the firmware
    313  * transfer. These parameters are read by the firmware on startup
    314  * and cannot be changed thereafter.
    315  */
    316 void intel_guc_write_params(struct intel_guc *guc)
    317 {
    318 	struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
    319 	int i;
    320 
    321 	/*
    322 	 * All SOFT_SCRATCH registers are in FORCEWAKE_BLITTER domain and
    323 	 * they are power context saved so it's ok to release forcewake
    324 	 * when we are done here and take it again at xfer time.
    325 	 */
    326 	intel_uncore_forcewake_get(uncore, FORCEWAKE_BLITTER);
    327 
    328 	intel_uncore_write(uncore, SOFT_SCRATCH(0), 0);
    329 
    330 	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
    331 		intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]);
    332 
    333 	intel_uncore_forcewake_put(uncore, FORCEWAKE_BLITTER);
    334 }
    335 
    336 int intel_guc_init(struct intel_guc *guc)
    337 {
    338 	struct intel_gt *gt = guc_to_gt(guc);
    339 	int ret;
    340 
    341 	ret = intel_uc_fw_init(&guc->fw);
    342 	if (ret)
    343 		goto err_fetch;
    344 
    345 	ret = intel_guc_log_create(&guc->log);
    346 	if (ret)
    347 		goto err_fw;
    348 
    349 	ret = intel_guc_ads_create(guc);
    350 	if (ret)
    351 		goto err_log;
    352 	GEM_BUG_ON(!guc->ads_vma);
    353 
    354 	ret = intel_guc_ct_init(&guc->ct);
    355 	if (ret)
    356 		goto err_ads;
    357 
    358 	if (intel_guc_is_submission_supported(guc)) {
    359 		/*
    360 		 * This is stuff we need to have available at fw load time
    361 		 * if we are planning to enable submission later
    362 		 */
    363 		ret = intel_guc_submission_init(guc);
    364 		if (ret)
    365 			goto err_ct;
    366 	}
    367 
    368 	/* now that everything is perma-pinned, initialize the parameters */
    369 	guc_init_params(guc);
    370 
    371 	/* We need to notify the guc whenever we change the GGTT */
    372 	i915_ggtt_enable_guc(gt->ggtt);
    373 
    374 	return 0;
    375 
    376 err_ct:
    377 	intel_guc_ct_fini(&guc->ct);
    378 err_ads:
    379 	intel_guc_ads_destroy(guc);
    380 err_log:
    381 	intel_guc_log_destroy(&guc->log);
    382 err_fw:
    383 	intel_uc_fw_fini(&guc->fw);
    384 err_fetch:
    385 	intel_uc_fw_cleanup_fetch(&guc->fw);
    386 	DRM_DEV_DEBUG_DRIVER(gt->i915->drm.dev, "failed with %d\n", ret);
    387 	return ret;
    388 }
    389 
    390 void intel_guc_fini(struct intel_guc *guc)
    391 {
    392 	struct intel_gt *gt = guc_to_gt(guc);
    393 
    394 	if (!intel_uc_fw_is_available(&guc->fw))
    395 		return;
    396 
    397 	i915_ggtt_disable_guc(gt->ggtt);
    398 
    399 	if (intel_guc_is_submission_supported(guc))
    400 		intel_guc_submission_fini(guc);
    401 
    402 	intel_guc_ct_fini(&guc->ct);
    403 
    404 	intel_guc_ads_destroy(guc);
    405 	intel_guc_log_destroy(&guc->log);
    406 	intel_uc_fw_fini(&guc->fw);
    407 	intel_uc_fw_cleanup_fetch(&guc->fw);
    408 
    409 	intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_DISABLED);
    410 
    411 	spin_lock_destroy(&guc->irq_lock);
    412 	mutex_destroy(&guc->send_mutex);
    413 }
    414 
    415 /*
    416  * This function implements the MMIO based host to GuC interface.
    417  */
    418 int intel_guc_send_mmio(struct intel_guc *guc, const u32 *action, u32 len,
    419 			u32 *response_buf, u32 response_buf_size)
    420 {
    421 	struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
    422 	u32 status;
    423 	int i;
    424 	int ret;
    425 
    426 	GEM_BUG_ON(!len);
    427 	GEM_BUG_ON(len > guc->send_regs.count);
    428 
    429 	/* We expect only action code */
    430 	GEM_BUG_ON(*action & ~INTEL_GUC_MSG_CODE_MASK);
    431 
    432 	/* If CT is available, we expect to use MMIO only during init/fini */
    433 	GEM_BUG_ON(*action != INTEL_GUC_ACTION_REGISTER_COMMAND_TRANSPORT_BUFFER &&
    434 		   *action != INTEL_GUC_ACTION_DEREGISTER_COMMAND_TRANSPORT_BUFFER);
    435 
    436 	mutex_lock(&guc->send_mutex);
    437 	intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains);
    438 
    439 	for (i = 0; i < len; i++)
    440 		intel_uncore_write(uncore, guc_send_reg(guc, i), action[i]);
    441 
    442 	intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1));
    443 
    444 	intel_guc_notify(guc);
    445 
    446 	/*
    447 	 * No GuC command should ever take longer than 10ms.
    448 	 * Fast commands should still complete in 10us.
    449 	 */
    450 	ret = __intel_wait_for_register_fw(uncore,
    451 					   guc_send_reg(guc, 0),
    452 					   INTEL_GUC_MSG_TYPE_MASK,
    453 					   INTEL_GUC_MSG_TYPE_RESPONSE <<
    454 					   INTEL_GUC_MSG_TYPE_SHIFT,
    455 					   10, 10, &status);
    456 	/* If GuC explicitly returned an error, convert it to -EIO */
    457 	if (!ret && !INTEL_GUC_MSG_IS_RESPONSE_SUCCESS(status))
    458 		ret = -EIO;
    459 
    460 	if (ret) {
    461 		DRM_ERROR("MMIO: GuC action %#x failed with error %d %#x\n",
    462 			  action[0], ret, status);
    463 		goto out;
    464 	}
    465 
    466 	if (response_buf) {
    467 		int count = min(response_buf_size, guc->send_regs.count - 1);
    468 
    469 		for (i = 0; i < count; i++)
    470 			response_buf[i] = intel_uncore_read(uncore,
    471 							    guc_send_reg(guc, i + 1));
    472 	}
    473 
    474 	/* Use data from the GuC response as our return value */
    475 	ret = INTEL_GUC_MSG_TO_DATA(status);
    476 
    477 out:
    478 	intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains);
    479 	mutex_unlock(&guc->send_mutex);
    480 
    481 	return ret;
    482 }
    483 
    484 int intel_guc_to_host_process_recv_msg(struct intel_guc *guc,
    485 				       const u32 *payload, u32 len)
    486 {
    487 	u32 msg;
    488 
    489 	if (unlikely(!len))
    490 		return -EPROTO;
    491 
    492 	/* Make sure to handle only enabled messages */
    493 	msg = payload[0] & guc->msg_enabled_mask;
    494 
    495 	if (msg & (INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER |
    496 		   INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED))
    497 		intel_guc_log_handle_flush_event(&guc->log);
    498 
    499 	return 0;
    500 }
    501 
    502 int intel_guc_sample_forcewake(struct intel_guc *guc)
    503 {
    504 	struct drm_i915_private *dev_priv = guc_to_gt(guc)->i915;
    505 	u32 action[2];
    506 
    507 	action[0] = INTEL_GUC_ACTION_SAMPLE_FORCEWAKE;
    508 	/* WaRsDisableCoarsePowerGating:skl,cnl */
    509 	if (!HAS_RC6(dev_priv) || NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
    510 		action[1] = 0;
    511 	else
    512 		/* bit 0 and 1 are for Render and Media domain separately */
    513 		action[1] = GUC_FORCEWAKE_RENDER | GUC_FORCEWAKE_MEDIA;
    514 
    515 	return intel_guc_send(guc, action, ARRAY_SIZE(action));
    516 }
    517 
    518 /**
    519  * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode
    520  * @guc: intel_guc structure
    521  * @rsa_offset: rsa offset w.r.t ggtt base of huc vma
    522  *
    523  * Triggers a HuC firmware authentication request to the GuC via intel_guc_send
    524  * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by
    525  * intel_huc_auth().
    526  *
    527  * Return:	non-zero code on error
    528  */
    529 int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset)
    530 {
    531 	u32 action[] = {
    532 		INTEL_GUC_ACTION_AUTHENTICATE_HUC,
    533 		rsa_offset
    534 	};
    535 
    536 	return intel_guc_send(guc, action, ARRAY_SIZE(action));
    537 }
    538 
    539 /**
    540  * intel_guc_suspend() - notify GuC entering suspend state
    541  * @guc:	the guc
    542  */
    543 int intel_guc_suspend(struct intel_guc *guc)
    544 {
    545 	struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
    546 	int ret;
    547 	u32 status;
    548 	u32 action[] = {
    549 		INTEL_GUC_ACTION_ENTER_S_STATE,
    550 		GUC_POWER_D1, /* any value greater than GUC_POWER_D0 */
    551 	};
    552 
    553 	/*
    554 	 * If GuC communication is enabled but submission is not supported,
    555 	 * we do not need to suspend the GuC.
    556 	 */
    557 	if (!intel_guc_submission_is_enabled(guc))
    558 		return 0;
    559 
    560 	/*
    561 	 * The ENTER_S_STATE action queues the save/restore operation in GuC FW
    562 	 * and then returns, so waiting on the H2G is not enough to guarantee
    563 	 * GuC is done. When all the processing is done, GuC writes
    564 	 * INTEL_GUC_SLEEP_STATE_SUCCESS to scratch register 14, so we can poll
    565 	 * on that. Note that GuC does not ensure that the value in the register
    566 	 * is different from INTEL_GUC_SLEEP_STATE_SUCCESS while the action is
    567 	 * in progress so we need to take care of that ourselves as well.
    568 	 */
    569 
    570 	intel_uncore_write(uncore, SOFT_SCRATCH(14),
    571 			   INTEL_GUC_SLEEP_STATE_INVALID_MASK);
    572 
    573 	ret = intel_guc_send(guc, action, ARRAY_SIZE(action));
    574 	if (ret)
    575 		return ret;
    576 
    577 	ret = __intel_wait_for_register(uncore, SOFT_SCRATCH(14),
    578 					INTEL_GUC_SLEEP_STATE_INVALID_MASK,
    579 					0, 0, 10, &status);
    580 	if (ret)
    581 		return ret;
    582 
    583 	if (status != INTEL_GUC_SLEEP_STATE_SUCCESS) {
    584 		DRM_ERROR("GuC failed to change sleep state. "
    585 			  "action=0x%x, err=%u\n",
    586 			  action[0], status);
    587 		return -EIO;
    588 	}
    589 
    590 	return 0;
    591 }
    592 
    593 /**
    594  * intel_guc_reset_engine() - ask GuC to reset an engine
    595  * @guc:	intel_guc structure
    596  * @engine:	engine to be reset
    597  */
    598 int intel_guc_reset_engine(struct intel_guc *guc,
    599 			   struct intel_engine_cs *engine)
    600 {
    601 	/* XXX: to be implemented with submission interface rework */
    602 
    603 	return -ENODEV;
    604 }
    605 
    606 /**
    607  * intel_guc_resume() - notify GuC resuming from suspend state
    608  * @guc:	the guc
    609  */
    610 int intel_guc_resume(struct intel_guc *guc)
    611 {
    612 	u32 action[] = {
    613 		INTEL_GUC_ACTION_EXIT_S_STATE,
    614 		GUC_POWER_D0,
    615 	};
    616 
    617 	/*
    618 	 * If GuC communication is enabled but submission is not supported,
    619 	 * we do not need to resume the GuC but we do need to enable the
    620 	 * GuC communication on resume (above).
    621 	 */
    622 	if (!intel_guc_submission_is_enabled(guc))
    623 		return 0;
    624 
    625 	return intel_guc_send(guc, action, ARRAY_SIZE(action));
    626 }
    627 
    628 /**
    629  * DOC: GuC Memory Management
    630  *
    631  * GuC can't allocate any memory for its own usage, so all the allocations must
    632  * be handled by the host driver. GuC accesses the memory via the GGTT, with the
    633  * exception of the top and bottom parts of the 4GB address space, which are
    634  * instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM)
    635  * or other parts of the HW. The driver must take care not to place objects that
    636  * the GuC is going to access in these reserved ranges. The layout of the GuC
    637  * address space is shown below:
    638  *
    639  * ::
    640  *
    641  *     +===========> +====================+ <== FFFF_FFFF
    642  *     ^             |      Reserved      |
    643  *     |             +====================+ <== GUC_GGTT_TOP
    644  *     |             |                    |
    645  *     |             |        DRAM        |
    646  *    GuC            |                    |
    647  *  Address    +===> +====================+ <== GuC ggtt_pin_bias
    648  *   Space     ^     |                    |
    649  *     |       |     |                    |
    650  *     |      GuC    |        GuC         |
    651  *     |     WOPCM   |       WOPCM        |
    652  *     |      Size   |                    |
    653  *     |       |     |                    |
    654  *     v       v     |                    |
    655  *     +=======+===> +====================+ <== 0000_0000
    656  *
    657  * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM
    658  * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped
    659  * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size.
    660  */
    661 
    662 /**
    663  * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
    664  * @guc:	the guc
    665  * @size:	size of area to allocate (both virtual space and memory)
    666  *
    667  * This is a wrapper to create an object for use with the GuC. In order to
    668  * use it inside the GuC, an object needs to be pinned lifetime, so we allocate
    669  * both some backing storage and a range inside the Global GTT. We must pin
    670  * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that
    671  * range is reserved inside GuC.
    672  *
    673  * Return:	A i915_vma if successful, otherwise an ERR_PTR.
    674  */
    675 struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
    676 {
    677 	struct intel_gt *gt = guc_to_gt(guc);
    678 	struct drm_i915_gem_object *obj;
    679 	struct i915_vma *vma;
    680 	u64 flags;
    681 	int ret;
    682 
    683 	obj = i915_gem_object_create_shmem(gt->i915, size);
    684 	if (IS_ERR(obj))
    685 		return ERR_CAST(obj);
    686 
    687 	vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
    688 	if (IS_ERR(vma))
    689 		goto err;
    690 
    691 	flags = PIN_GLOBAL | PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
    692 	ret = i915_vma_pin(vma, 0, 0, flags);
    693 	if (ret) {
    694 		vma = ERR_PTR(ret);
    695 		goto err;
    696 	}
    697 
    698 	return i915_vma_make_unshrinkable(vma);
    699 
    700 err:
    701 	i915_gem_object_put(obj);
    702 	return vma;
    703 }
    704 
    705 /**
    706  * intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage
    707  * @guc:	the guc
    708  * @size:	size of area to allocate (both virtual space and memory)
    709  * @out_vma:	return variable for the allocated vma pointer
    710  * @out_vaddr:	return variable for the obj mapping
    711  *
    712  * This wrapper calls intel_guc_allocate_vma() and then maps the allocated
    713  * object with I915_MAP_WB.
    714  *
    715  * Return:	0 if successful, a negative errno code otherwise.
    716  */
    717 int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size,
    718 				   struct i915_vma **out_vma, void **out_vaddr)
    719 {
    720 	struct i915_vma *vma;
    721 	void *vaddr;
    722 
    723 	vma = intel_guc_allocate_vma(guc, size);
    724 	if (IS_ERR(vma))
    725 		return PTR_ERR(vma);
    726 
    727 	vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
    728 	if (IS_ERR(vaddr)) {
    729 		i915_vma_unpin_and_release(&vma, 0);
    730 		return PTR_ERR(vaddr);
    731 	}
    732 
    733 	*out_vma = vma;
    734 	*out_vaddr = vaddr;
    735 
    736 	return 0;
    737 }
    738