1 /* $NetBSD: intel_guc.c,v 1.4 2021/12/19 12:32:15 riastradh Exp $ */ 2 3 // SPDX-License-Identifier: MIT 4 /* 5 * Copyright 2014-2019 Intel Corporation 6 */ 7 8 #include <sys/cdefs.h> 9 __KERNEL_RCSID(0, "$NetBSD: intel_guc.c,v 1.4 2021/12/19 12:32:15 riastradh Exp $"); 10 11 #include "gt/intel_gt.h" 12 #include "gt/intel_gt_irq.h" 13 #include "gt/intel_gt_pm_irq.h" 14 #include "intel_guc.h" 15 #include "intel_guc_ads.h" 16 #include "intel_guc_submission.h" 17 #include "i915_drv.h" 18 19 #include <linux/nbsd-namespace.h> 20 21 /** 22 * DOC: GuC 23 * 24 * The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is 25 * designed to offload some of the functionality usually performed by the host 26 * driver; currently the main operations it can take care of are: 27 * 28 * - Authentication of the HuC, which is required to fully enable HuC usage. 29 * - Low latency graphics context scheduling (a.k.a. GuC submission). 30 * - GT Power management. 31 * 32 * The enable_guc module parameter can be used to select which of those 33 * operations to enable within GuC. Note that not all the operations are 34 * supported on all gen9+ platforms. 35 * 36 * Enabling the GuC is not mandatory and therefore the firmware is only loaded 37 * if at least one of the operations is selected. However, not loading the GuC 38 * might result in the loss of some features that do require the GuC (currently 39 * just the HuC, but more are expected to land in the future). 40 */ 41 42 void intel_guc_notify(struct intel_guc *guc) 43 { 44 struct intel_gt *gt = guc_to_gt(guc); 45 46 /* 47 * On Gen11+, the value written to the register is passes as a payload 48 * to the FW. However, the FW currently treats all values the same way 49 * (H2G interrupt), so we can just write the value that the HW expects 50 * on older gens. 51 */ 52 intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER); 53 } 54 55 static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i) 56 { 57 GEM_BUG_ON(!guc->send_regs.base); 58 GEM_BUG_ON(!guc->send_regs.count); 59 GEM_BUG_ON(i >= guc->send_regs.count); 60 61 return _MMIO(guc->send_regs.base + 4 * i); 62 } 63 64 void intel_guc_init_send_regs(struct intel_guc *guc) 65 { 66 struct intel_gt *gt = guc_to_gt(guc); 67 enum forcewake_domains fw_domains = 0; 68 unsigned int i; 69 70 if (INTEL_GEN(gt->i915) >= 11) { 71 guc->send_regs.base = 72 i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0)); 73 guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT; 74 } else { 75 guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0)); 76 guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN; 77 BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT); 78 } 79 80 for (i = 0; i < guc->send_regs.count; i++) { 81 fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore, 82 guc_send_reg(guc, i), 83 FW_REG_READ | FW_REG_WRITE); 84 } 85 guc->send_regs.fw_domains = fw_domains; 86 } 87 88 static void gen9_reset_guc_interrupts(struct intel_guc *guc) 89 { 90 struct intel_gt *gt = guc_to_gt(guc); 91 92 assert_rpm_wakelock_held(>->i915->runtime_pm); 93 94 spin_lock_irq(>->irq_lock); 95 gen6_gt_pm_reset_iir(gt, gt->pm_guc_events); 96 spin_unlock_irq(>->irq_lock); 97 } 98 99 static void gen9_enable_guc_interrupts(struct intel_guc *guc) 100 { 101 struct intel_gt *gt = guc_to_gt(guc); 102 103 assert_rpm_wakelock_held(>->i915->runtime_pm); 104 105 spin_lock_irq(>->irq_lock); 106 if (!guc->interrupts.enabled) { 107 WARN_ON_ONCE(intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) & 108 gt->pm_guc_events); 109 guc->interrupts.enabled = true; 110 gen6_gt_pm_enable_irq(gt, gt->pm_guc_events); 111 } 112 spin_unlock_irq(>->irq_lock); 113 } 114 115 static void gen9_disable_guc_interrupts(struct intel_guc *guc) 116 { 117 struct intel_gt *gt = guc_to_gt(guc); 118 119 assert_rpm_wakelock_held(>->i915->runtime_pm); 120 121 spin_lock_irq(>->irq_lock); 122 guc->interrupts.enabled = false; 123 124 gen6_gt_pm_disable_irq(gt, gt->pm_guc_events); 125 126 spin_unlock_irq(>->irq_lock); 127 intel_synchronize_irq(gt->i915); 128 129 gen9_reset_guc_interrupts(guc); 130 } 131 132 static void gen11_reset_guc_interrupts(struct intel_guc *guc) 133 { 134 struct intel_gt *gt = guc_to_gt(guc); 135 136 spin_lock_irq(>->irq_lock); 137 gen11_gt_reset_one_iir(gt, 0, GEN11_GUC); 138 spin_unlock_irq(>->irq_lock); 139 } 140 141 static void gen11_enable_guc_interrupts(struct intel_guc *guc) 142 { 143 struct intel_gt *gt = guc_to_gt(guc); 144 145 spin_lock_irq(>->irq_lock); 146 if (!guc->interrupts.enabled) { 147 u32 events = REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST); 148 149 WARN_ON_ONCE(gen11_gt_reset_one_iir(gt, 0, GEN11_GUC)); 150 intel_uncore_write(gt->uncore, 151 GEN11_GUC_SG_INTR_ENABLE, events); 152 intel_uncore_write(gt->uncore, 153 GEN11_GUC_SG_INTR_MASK, ~events); 154 guc->interrupts.enabled = true; 155 } 156 spin_unlock_irq(>->irq_lock); 157 } 158 159 static void gen11_disable_guc_interrupts(struct intel_guc *guc) 160 { 161 struct intel_gt *gt = guc_to_gt(guc); 162 163 spin_lock_irq(>->irq_lock); 164 guc->interrupts.enabled = false; 165 166 intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_MASK, ~0); 167 intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_ENABLE, 0); 168 169 spin_unlock_irq(>->irq_lock); 170 intel_synchronize_irq(gt->i915); 171 172 gen11_reset_guc_interrupts(guc); 173 } 174 175 void intel_guc_init_early(struct intel_guc *guc) 176 { 177 struct drm_i915_private *i915 = guc_to_gt(guc)->i915; 178 179 intel_guc_fw_init_early(guc); 180 intel_guc_ct_init_early(&guc->ct); 181 intel_guc_log_init_early(&guc->log); 182 intel_guc_submission_init_early(guc); 183 184 mutex_init(&guc->send_mutex); 185 spin_lock_init(&guc->irq_lock); 186 if (INTEL_GEN(i915) >= 11) { 187 guc->notify_reg = GEN11_GUC_HOST_INTERRUPT; 188 guc->interrupts.reset = gen11_reset_guc_interrupts; 189 guc->interrupts.enable = gen11_enable_guc_interrupts; 190 guc->interrupts.disable = gen11_disable_guc_interrupts; 191 } else { 192 guc->notify_reg = GUC_SEND_INTERRUPT; 193 guc->interrupts.reset = gen9_reset_guc_interrupts; 194 guc->interrupts.enable = gen9_enable_guc_interrupts; 195 guc->interrupts.disable = gen9_disable_guc_interrupts; 196 } 197 } 198 199 static u32 guc_ctl_debug_flags(struct intel_guc *guc) 200 { 201 u32 level = intel_guc_log_get_level(&guc->log); 202 u32 flags = 0; 203 204 if (!GUC_LOG_LEVEL_IS_VERBOSE(level)) 205 flags |= GUC_LOG_DISABLED; 206 else 207 flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) << 208 GUC_LOG_VERBOSITY_SHIFT; 209 210 return flags; 211 } 212 213 static u32 guc_ctl_feature_flags(struct intel_guc *guc) 214 { 215 u32 flags = 0; 216 217 if (!intel_guc_is_submission_supported(guc)) 218 flags |= GUC_CTL_DISABLE_SCHEDULER; 219 220 return flags; 221 } 222 223 static u32 guc_ctl_ctxinfo_flags(struct intel_guc *guc) 224 { 225 u32 flags = 0; 226 227 if (intel_guc_is_submission_supported(guc)) { 228 u32 ctxnum, base; 229 230 base = intel_guc_ggtt_offset(guc, guc->stage_desc_pool); 231 ctxnum = GUC_MAX_STAGE_DESCRIPTORS / 16; 232 233 base >>= PAGE_SHIFT; 234 flags |= (base << GUC_CTL_BASE_ADDR_SHIFT) | 235 (ctxnum << GUC_CTL_CTXNUM_IN16_SHIFT); 236 } 237 return flags; 238 } 239 240 static u32 guc_ctl_log_params_flags(struct intel_guc *guc) 241 { 242 u32 offset = intel_guc_ggtt_offset(guc, guc->log.vma) >> PAGE_SHIFT; 243 u32 flags; 244 245 #if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0) 246 #define UNIT SZ_1M 247 #define FLAG GUC_LOG_ALLOC_IN_MEGABYTE 248 #else 249 #define UNIT SZ_4K 250 #define FLAG 0 251 #endif 252 253 BUILD_BUG_ON(!CRASH_BUFFER_SIZE); 254 BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, UNIT)); 255 BUILD_BUG_ON(!DPC_BUFFER_SIZE); 256 BUILD_BUG_ON(!IS_ALIGNED(DPC_BUFFER_SIZE, UNIT)); 257 BUILD_BUG_ON(!ISR_BUFFER_SIZE); 258 BUILD_BUG_ON(!IS_ALIGNED(ISR_BUFFER_SIZE, UNIT)); 259 260 BUILD_BUG_ON((CRASH_BUFFER_SIZE / UNIT - 1) > 261 (GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT)); 262 BUILD_BUG_ON((DPC_BUFFER_SIZE / UNIT - 1) > 263 (GUC_LOG_DPC_MASK >> GUC_LOG_DPC_SHIFT)); 264 BUILD_BUG_ON((ISR_BUFFER_SIZE / UNIT - 1) > 265 (GUC_LOG_ISR_MASK >> GUC_LOG_ISR_SHIFT)); 266 267 flags = GUC_LOG_VALID | 268 GUC_LOG_NOTIFY_ON_HALF_FULL | 269 FLAG | 270 ((CRASH_BUFFER_SIZE / UNIT - 1) << GUC_LOG_CRASH_SHIFT) | 271 ((DPC_BUFFER_SIZE / UNIT - 1) << GUC_LOG_DPC_SHIFT) | 272 ((ISR_BUFFER_SIZE / UNIT - 1) << GUC_LOG_ISR_SHIFT) | 273 (offset << GUC_LOG_BUF_ADDR_SHIFT); 274 275 #undef UNIT 276 #undef FLAG 277 278 return flags; 279 } 280 281 static u32 guc_ctl_ads_flags(struct intel_guc *guc) 282 { 283 u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT; 284 u32 flags = ads << GUC_ADS_ADDR_SHIFT; 285 286 return flags; 287 } 288 289 /* 290 * Initialise the GuC parameter block before starting the firmware 291 * transfer. These parameters are read by the firmware on startup 292 * and cannot be changed thereafter. 293 */ 294 static void guc_init_params(struct intel_guc *guc) 295 { 296 u32 *params = guc->params; 297 int i; 298 299 BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32)); 300 301 params[GUC_CTL_CTXINFO] = guc_ctl_ctxinfo_flags(guc); 302 params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc); 303 params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc); 304 params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc); 305 params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc); 306 307 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) 308 DRM_DEBUG_DRIVER("param[%2d] = %#x\n", i, params[i]); 309 } 310 311 /* 312 * Initialise the GuC parameter block before starting the firmware 313 * transfer. These parameters are read by the firmware on startup 314 * and cannot be changed thereafter. 315 */ 316 void intel_guc_write_params(struct intel_guc *guc) 317 { 318 struct intel_uncore *uncore = guc_to_gt(guc)->uncore; 319 int i; 320 321 /* 322 * All SOFT_SCRATCH registers are in FORCEWAKE_BLITTER domain and 323 * they are power context saved so it's ok to release forcewake 324 * when we are done here and take it again at xfer time. 325 */ 326 intel_uncore_forcewake_get(uncore, FORCEWAKE_BLITTER); 327 328 intel_uncore_write(uncore, SOFT_SCRATCH(0), 0); 329 330 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) 331 intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]); 332 333 intel_uncore_forcewake_put(uncore, FORCEWAKE_BLITTER); 334 } 335 336 int intel_guc_init(struct intel_guc *guc) 337 { 338 struct intel_gt *gt = guc_to_gt(guc); 339 int ret; 340 341 ret = intel_uc_fw_init(&guc->fw); 342 if (ret) 343 goto err_fetch; 344 345 ret = intel_guc_log_create(&guc->log); 346 if (ret) 347 goto err_fw; 348 349 ret = intel_guc_ads_create(guc); 350 if (ret) 351 goto err_log; 352 GEM_BUG_ON(!guc->ads_vma); 353 354 ret = intel_guc_ct_init(&guc->ct); 355 if (ret) 356 goto err_ads; 357 358 if (intel_guc_is_submission_supported(guc)) { 359 /* 360 * This is stuff we need to have available at fw load time 361 * if we are planning to enable submission later 362 */ 363 ret = intel_guc_submission_init(guc); 364 if (ret) 365 goto err_ct; 366 } 367 368 /* now that everything is perma-pinned, initialize the parameters */ 369 guc_init_params(guc); 370 371 /* We need to notify the guc whenever we change the GGTT */ 372 i915_ggtt_enable_guc(gt->ggtt); 373 374 return 0; 375 376 err_ct: 377 intel_guc_ct_fini(&guc->ct); 378 err_ads: 379 intel_guc_ads_destroy(guc); 380 err_log: 381 intel_guc_log_destroy(&guc->log); 382 err_fw: 383 intel_uc_fw_fini(&guc->fw); 384 err_fetch: 385 intel_uc_fw_cleanup_fetch(&guc->fw); 386 DRM_DEV_DEBUG_DRIVER(gt->i915->drm.dev, "failed with %d\n", ret); 387 return ret; 388 } 389 390 void intel_guc_fini(struct intel_guc *guc) 391 { 392 struct intel_gt *gt = guc_to_gt(guc); 393 394 if (!intel_uc_fw_is_available(&guc->fw)) 395 return; 396 397 i915_ggtt_disable_guc(gt->ggtt); 398 399 if (intel_guc_is_submission_supported(guc)) 400 intel_guc_submission_fini(guc); 401 402 intel_guc_ct_fini(&guc->ct); 403 404 intel_guc_ads_destroy(guc); 405 intel_guc_log_destroy(&guc->log); 406 intel_uc_fw_fini(&guc->fw); 407 intel_uc_fw_cleanup_fetch(&guc->fw); 408 409 intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_DISABLED); 410 411 spin_lock_destroy(&guc->irq_lock); 412 mutex_destroy(&guc->send_mutex); 413 } 414 415 /* 416 * This function implements the MMIO based host to GuC interface. 417 */ 418 int intel_guc_send_mmio(struct intel_guc *guc, const u32 *action, u32 len, 419 u32 *response_buf, u32 response_buf_size) 420 { 421 struct intel_uncore *uncore = guc_to_gt(guc)->uncore; 422 u32 status; 423 int i; 424 int ret; 425 426 GEM_BUG_ON(!len); 427 GEM_BUG_ON(len > guc->send_regs.count); 428 429 /* We expect only action code */ 430 GEM_BUG_ON(*action & ~INTEL_GUC_MSG_CODE_MASK); 431 432 /* If CT is available, we expect to use MMIO only during init/fini */ 433 GEM_BUG_ON(*action != INTEL_GUC_ACTION_REGISTER_COMMAND_TRANSPORT_BUFFER && 434 *action != INTEL_GUC_ACTION_DEREGISTER_COMMAND_TRANSPORT_BUFFER); 435 436 mutex_lock(&guc->send_mutex); 437 intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains); 438 439 for (i = 0; i < len; i++) 440 intel_uncore_write(uncore, guc_send_reg(guc, i), action[i]); 441 442 intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1)); 443 444 intel_guc_notify(guc); 445 446 /* 447 * No GuC command should ever take longer than 10ms. 448 * Fast commands should still complete in 10us. 449 */ 450 ret = __intel_wait_for_register_fw(uncore, 451 guc_send_reg(guc, 0), 452 INTEL_GUC_MSG_TYPE_MASK, 453 INTEL_GUC_MSG_TYPE_RESPONSE << 454 INTEL_GUC_MSG_TYPE_SHIFT, 455 10, 10, &status); 456 /* If GuC explicitly returned an error, convert it to -EIO */ 457 if (!ret && !INTEL_GUC_MSG_IS_RESPONSE_SUCCESS(status)) 458 ret = -EIO; 459 460 if (ret) { 461 DRM_ERROR("MMIO: GuC action %#x failed with error %d %#x\n", 462 action[0], ret, status); 463 goto out; 464 } 465 466 if (response_buf) { 467 int count = min(response_buf_size, guc->send_regs.count - 1); 468 469 for (i = 0; i < count; i++) 470 response_buf[i] = intel_uncore_read(uncore, 471 guc_send_reg(guc, i + 1)); 472 } 473 474 /* Use data from the GuC response as our return value */ 475 ret = INTEL_GUC_MSG_TO_DATA(status); 476 477 out: 478 intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains); 479 mutex_unlock(&guc->send_mutex); 480 481 return ret; 482 } 483 484 int intel_guc_to_host_process_recv_msg(struct intel_guc *guc, 485 const u32 *payload, u32 len) 486 { 487 u32 msg; 488 489 if (unlikely(!len)) 490 return -EPROTO; 491 492 /* Make sure to handle only enabled messages */ 493 msg = payload[0] & guc->msg_enabled_mask; 494 495 if (msg & (INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER | 496 INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED)) 497 intel_guc_log_handle_flush_event(&guc->log); 498 499 return 0; 500 } 501 502 int intel_guc_sample_forcewake(struct intel_guc *guc) 503 { 504 struct drm_i915_private *dev_priv = guc_to_gt(guc)->i915; 505 u32 action[2]; 506 507 action[0] = INTEL_GUC_ACTION_SAMPLE_FORCEWAKE; 508 /* WaRsDisableCoarsePowerGating:skl,cnl */ 509 if (!HAS_RC6(dev_priv) || NEEDS_WaRsDisableCoarsePowerGating(dev_priv)) 510 action[1] = 0; 511 else 512 /* bit 0 and 1 are for Render and Media domain separately */ 513 action[1] = GUC_FORCEWAKE_RENDER | GUC_FORCEWAKE_MEDIA; 514 515 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 516 } 517 518 /** 519 * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode 520 * @guc: intel_guc structure 521 * @rsa_offset: rsa offset w.r.t ggtt base of huc vma 522 * 523 * Triggers a HuC firmware authentication request to the GuC via intel_guc_send 524 * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by 525 * intel_huc_auth(). 526 * 527 * Return: non-zero code on error 528 */ 529 int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset) 530 { 531 u32 action[] = { 532 INTEL_GUC_ACTION_AUTHENTICATE_HUC, 533 rsa_offset 534 }; 535 536 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 537 } 538 539 /** 540 * intel_guc_suspend() - notify GuC entering suspend state 541 * @guc: the guc 542 */ 543 int intel_guc_suspend(struct intel_guc *guc) 544 { 545 struct intel_uncore *uncore = guc_to_gt(guc)->uncore; 546 int ret; 547 u32 status; 548 u32 action[] = { 549 INTEL_GUC_ACTION_ENTER_S_STATE, 550 GUC_POWER_D1, /* any value greater than GUC_POWER_D0 */ 551 }; 552 553 /* 554 * If GuC communication is enabled but submission is not supported, 555 * we do not need to suspend the GuC. 556 */ 557 if (!intel_guc_submission_is_enabled(guc)) 558 return 0; 559 560 /* 561 * The ENTER_S_STATE action queues the save/restore operation in GuC FW 562 * and then returns, so waiting on the H2G is not enough to guarantee 563 * GuC is done. When all the processing is done, GuC writes 564 * INTEL_GUC_SLEEP_STATE_SUCCESS to scratch register 14, so we can poll 565 * on that. Note that GuC does not ensure that the value in the register 566 * is different from INTEL_GUC_SLEEP_STATE_SUCCESS while the action is 567 * in progress so we need to take care of that ourselves as well. 568 */ 569 570 intel_uncore_write(uncore, SOFT_SCRATCH(14), 571 INTEL_GUC_SLEEP_STATE_INVALID_MASK); 572 573 ret = intel_guc_send(guc, action, ARRAY_SIZE(action)); 574 if (ret) 575 return ret; 576 577 ret = __intel_wait_for_register(uncore, SOFT_SCRATCH(14), 578 INTEL_GUC_SLEEP_STATE_INVALID_MASK, 579 0, 0, 10, &status); 580 if (ret) 581 return ret; 582 583 if (status != INTEL_GUC_SLEEP_STATE_SUCCESS) { 584 DRM_ERROR("GuC failed to change sleep state. " 585 "action=0x%x, err=%u\n", 586 action[0], status); 587 return -EIO; 588 } 589 590 return 0; 591 } 592 593 /** 594 * intel_guc_reset_engine() - ask GuC to reset an engine 595 * @guc: intel_guc structure 596 * @engine: engine to be reset 597 */ 598 int intel_guc_reset_engine(struct intel_guc *guc, 599 struct intel_engine_cs *engine) 600 { 601 /* XXX: to be implemented with submission interface rework */ 602 603 return -ENODEV; 604 } 605 606 /** 607 * intel_guc_resume() - notify GuC resuming from suspend state 608 * @guc: the guc 609 */ 610 int intel_guc_resume(struct intel_guc *guc) 611 { 612 u32 action[] = { 613 INTEL_GUC_ACTION_EXIT_S_STATE, 614 GUC_POWER_D0, 615 }; 616 617 /* 618 * If GuC communication is enabled but submission is not supported, 619 * we do not need to resume the GuC but we do need to enable the 620 * GuC communication on resume (above). 621 */ 622 if (!intel_guc_submission_is_enabled(guc)) 623 return 0; 624 625 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 626 } 627 628 /** 629 * DOC: GuC Memory Management 630 * 631 * GuC can't allocate any memory for its own usage, so all the allocations must 632 * be handled by the host driver. GuC accesses the memory via the GGTT, with the 633 * exception of the top and bottom parts of the 4GB address space, which are 634 * instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM) 635 * or other parts of the HW. The driver must take care not to place objects that 636 * the GuC is going to access in these reserved ranges. The layout of the GuC 637 * address space is shown below: 638 * 639 * :: 640 * 641 * +===========> +====================+ <== FFFF_FFFF 642 * ^ | Reserved | 643 * | +====================+ <== GUC_GGTT_TOP 644 * | | | 645 * | | DRAM | 646 * GuC | | 647 * Address +===> +====================+ <== GuC ggtt_pin_bias 648 * Space ^ | | 649 * | | | | 650 * | GuC | GuC | 651 * | WOPCM | WOPCM | 652 * | Size | | 653 * | | | | 654 * v v | | 655 * +=======+===> +====================+ <== 0000_0000 656 * 657 * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM 658 * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped 659 * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size. 660 */ 661 662 /** 663 * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage 664 * @guc: the guc 665 * @size: size of area to allocate (both virtual space and memory) 666 * 667 * This is a wrapper to create an object for use with the GuC. In order to 668 * use it inside the GuC, an object needs to be pinned lifetime, so we allocate 669 * both some backing storage and a range inside the Global GTT. We must pin 670 * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that 671 * range is reserved inside GuC. 672 * 673 * Return: A i915_vma if successful, otherwise an ERR_PTR. 674 */ 675 struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size) 676 { 677 struct intel_gt *gt = guc_to_gt(guc); 678 struct drm_i915_gem_object *obj; 679 struct i915_vma *vma; 680 u64 flags; 681 int ret; 682 683 obj = i915_gem_object_create_shmem(gt->i915, size); 684 if (IS_ERR(obj)) 685 return ERR_CAST(obj); 686 687 vma = i915_vma_instance(obj, >->ggtt->vm, NULL); 688 if (IS_ERR(vma)) 689 goto err; 690 691 flags = PIN_GLOBAL | PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma); 692 ret = i915_vma_pin(vma, 0, 0, flags); 693 if (ret) { 694 vma = ERR_PTR(ret); 695 goto err; 696 } 697 698 return i915_vma_make_unshrinkable(vma); 699 700 err: 701 i915_gem_object_put(obj); 702 return vma; 703 } 704 705 /** 706 * intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage 707 * @guc: the guc 708 * @size: size of area to allocate (both virtual space and memory) 709 * @out_vma: return variable for the allocated vma pointer 710 * @out_vaddr: return variable for the obj mapping 711 * 712 * This wrapper calls intel_guc_allocate_vma() and then maps the allocated 713 * object with I915_MAP_WB. 714 * 715 * Return: 0 if successful, a negative errno code otherwise. 716 */ 717 int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size, 718 struct i915_vma **out_vma, void **out_vaddr) 719 { 720 struct i915_vma *vma; 721 void *vaddr; 722 723 vma = intel_guc_allocate_vma(guc, size); 724 if (IS_ERR(vma)) 725 return PTR_ERR(vma); 726 727 vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB); 728 if (IS_ERR(vaddr)) { 729 i915_vma_unpin_and_release(&vma, 0); 730 return PTR_ERR(vaddr); 731 } 732 733 *out_vma = vma; 734 *out_vaddr = vaddr; 735 736 return 0; 737 } 738