Home | History | Annotate | Line # | Download | only in netinet6
      1 /*	$NetBSD: ip6_output.c,v 1.235 2024/04/19 00:55:35 riastradh Exp $	*/
      2 /*	$KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $	*/
      3 
      4 /*
      5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. Neither the name of the project nor the names of its contributors
     17  *    may be used to endorse or promote products derived from this software
     18  *    without specific prior written permission.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     30  * SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.235 2024/04/19 00:55:35 riastradh Exp $");
     66 
     67 #ifdef _KERNEL_OPT
     68 #include "opt_inet.h"
     69 #include "opt_inet6.h"
     70 #include "opt_ipsec.h"
     71 #endif
     72 
     73 #include <sys/param.h>
     74 #include <sys/malloc.h>
     75 #include <sys/mbuf.h>
     76 #include <sys/errno.h>
     77 #include <sys/socket.h>
     78 #include <sys/socketvar.h>
     79 #include <sys/syslog.h>
     80 #include <sys/systm.h>
     81 #include <sys/proc.h>
     82 #include <sys/kauth.h>
     83 
     84 #include <net/if.h>
     85 #include <net/route.h>
     86 #include <net/pfil.h>
     87 
     88 #include <netinet/in.h>
     89 #include <netinet/in_var.h>
     90 #include <netinet/ip6.h>
     91 #include <netinet/ip_var.h>
     92 #include <netinet/icmp6.h>
     93 #include <netinet/in_offload.h>
     94 #include <netinet/portalgo.h>
     95 #include <netinet6/in6_offload.h>
     96 #include <netinet6/ip6_var.h>
     97 #include <netinet6/ip6_private.h>
     98 #include <netinet6/in6_pcb.h>
     99 #include <netinet6/nd6.h>
    100 #include <netinet6/ip6protosw.h>
    101 #include <netinet6/scope6_var.h>
    102 
    103 #ifdef IPSEC
    104 #include <netipsec/ipsec.h>
    105 #include <netipsec/ipsec6.h>
    106 #include <netipsec/key.h>
    107 #endif
    108 
    109 extern pfil_head_t *inet6_pfil_hook;	/* XXX */
    110 
    111 struct ip6_exthdrs {
    112 	struct mbuf *ip6e_ip6;
    113 	struct mbuf *ip6e_hbh;
    114 	struct mbuf *ip6e_dest1;
    115 	struct mbuf *ip6e_rthdr;
    116 	struct mbuf *ip6e_dest2;
    117 };
    118 
    119 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **,
    120 	kauth_cred_t, int);
    121 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *);
    122 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, kauth_cred_t,
    123 	int, int, int);
    124 static int ip6_setmoptions(const struct sockopt *, struct inpcb *);
    125 static int ip6_getmoptions(struct sockopt *, struct inpcb *);
    126 static int ip6_copyexthdr(struct mbuf **, void *, int);
    127 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
    128 	struct ip6_frag **);
    129 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
    130 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
    131 static int ip6_getpmtu(struct rtentry *, struct ifnet *, u_long *, int *);
    132 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
    133 static int ip6_ifaddrvalid(const struct in6_addr *, const struct in6_addr *);
    134 static int ip6_handle_rthdr(struct ip6_rthdr *, struct ip6_hdr *);
    135 
    136 #ifdef RFC2292
    137 static int ip6_pcbopts(struct ip6_pktopts **, struct socket *, struct sockopt *);
    138 #endif
    139 
    140 static int
    141 ip6_handle_rthdr(struct ip6_rthdr *rh, struct ip6_hdr *ip6)
    142 {
    143 	int error = 0;
    144 
    145 	switch (rh->ip6r_type) {
    146 	case IPV6_RTHDR_TYPE_0:
    147 		/* Dropped, RFC5095. */
    148 	default:	/* is it possible? */
    149 		error = EINVAL;
    150 	}
    151 
    152 	return error;
    153 }
    154 
    155 /*
    156  * Send an IP packet to a host.
    157  */
    158 int
    159 ip6_if_output(struct ifnet * const ifp, struct ifnet * const origifp,
    160     struct mbuf * const m, const struct sockaddr_in6 * const dst,
    161     const struct rtentry *rt)
    162 {
    163 	int error = 0;
    164 
    165 	if (rt != NULL) {
    166 		error = rt_check_reject_route(rt, ifp);
    167 		if (error != 0) {
    168 			IP6_STATINC(IP6_STAT_RTREJECT);
    169 			m_freem(m);
    170 			return error;
    171 		}
    172 	}
    173 
    174 	/* discard the packet if IPv6 operation is disabled on the interface */
    175 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
    176 		m_freem(m);
    177 		return ENETDOWN; /* better error? */
    178 	}
    179 
    180 	if ((ifp->if_flags & IFF_LOOPBACK) != 0)
    181 		error = if_output_lock(ifp, origifp, m, sin6tocsa(dst), rt);
    182 	else
    183 		error = if_output_lock(ifp, ifp, m, sin6tocsa(dst), rt);
    184 	return error;
    185 }
    186 
    187 /*
    188  * IP6 output. The packet in mbuf chain m contains a skeletal IP6
    189  * header (with pri, len, nxt, hlim, src, dst).
    190  *
    191  * This function may modify ver and hlim only. The mbuf chain containing the
    192  * packet will be freed. The mbuf opt, if present, will not be freed.
    193  *
    194  * Type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
    195  * nd_ifinfo.linkmtu is u_int32_t. So we use u_long to hold largest one,
    196  * which is rt_rmx.rmx_mtu.
    197  */
    198 int
    199 ip6_output(
    200     struct mbuf *m0,
    201     struct ip6_pktopts *opt,
    202     struct route *ro,
    203     int flags,
    204     struct ip6_moptions *im6o,
    205     struct inpcb *inp,
    206     struct ifnet **ifpp		/* XXX: just for statistics */
    207 )
    208 {
    209 	struct ip6_hdr *ip6, *mhip6;
    210 	struct ifnet *ifp = NULL, *origifp = NULL;
    211 	struct mbuf *m = m0;
    212 	int tlen, len, off;
    213 	bool tso;
    214 	struct route ip6route;
    215 	struct rtentry *rt = NULL, *rt_pmtu;
    216 	const struct sockaddr_in6 *dst;
    217 	struct sockaddr_in6 src_sa, dst_sa;
    218 	int error = 0;
    219 	struct in6_ifaddr *ia = NULL;
    220 	u_long mtu;
    221 	int alwaysfrag, dontfrag;
    222 	u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
    223 	struct ip6_exthdrs exthdrs;
    224 	struct in6_addr finaldst, src0, dst0;
    225 	u_int32_t zone;
    226 	struct route *ro_pmtu = NULL;
    227 	int hdrsplit = 0;
    228 	int needipsec = 0;
    229 #ifdef IPSEC
    230 	struct secpolicy *sp = NULL;
    231 #endif
    232 	struct psref psref, psref_ia;
    233 	int bound = curlwp_bind();
    234 	bool release_psref_ia = false;
    235 
    236 #ifdef DIAGNOSTIC
    237 	if ((m->m_flags & M_PKTHDR) == 0)
    238 		panic("ip6_output: no HDR");
    239 	if ((m->m_pkthdr.csum_flags &
    240 	    (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) {
    241 		panic("ip6_output: IPv4 checksum offload flags: %d",
    242 		    m->m_pkthdr.csum_flags);
    243 	}
    244 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) ==
    245 	    (M_CSUM_TCPv6|M_CSUM_UDPv6)) {
    246 		panic("ip6_output: conflicting checksum offload flags: %d",
    247 		    m->m_pkthdr.csum_flags);
    248 	}
    249 #endif
    250 
    251 	M_CSUM_DATA_IPv6_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr));
    252 
    253 #define MAKE_EXTHDR(hp, mp)						\
    254     do {								\
    255 	if (hp) {							\
    256 		struct ip6_ext *eh = (struct ip6_ext *)(hp);		\
    257 		error = ip6_copyexthdr((mp), (void *)(hp), 		\
    258 		    ((eh)->ip6e_len + 1) << 3);				\
    259 		if (error)						\
    260 			goto freehdrs;					\
    261 	}								\
    262     } while (/*CONSTCOND*/ 0)
    263 
    264 	memset(&exthdrs, 0, sizeof(exthdrs));
    265 	if (opt) {
    266 		/* Hop-by-Hop options header */
    267 		MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
    268 		/* Destination options header (1st part) */
    269 		MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
    270 		/* Routing header */
    271 		MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
    272 		/* Destination options header (2nd part) */
    273 		MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
    274 	}
    275 
    276 	/*
    277 	 * Calculate the total length of the extension header chain.
    278 	 * Keep the length of the unfragmentable part for fragmentation.
    279 	 */
    280 	optlen = 0;
    281 	if (exthdrs.ip6e_hbh)
    282 		optlen += exthdrs.ip6e_hbh->m_len;
    283 	if (exthdrs.ip6e_dest1)
    284 		optlen += exthdrs.ip6e_dest1->m_len;
    285 	if (exthdrs.ip6e_rthdr)
    286 		optlen += exthdrs.ip6e_rthdr->m_len;
    287 	unfragpartlen = optlen + sizeof(struct ip6_hdr);
    288 	/* NOTE: we don't add AH/ESP length here. do that later. */
    289 	if (exthdrs.ip6e_dest2)
    290 		optlen += exthdrs.ip6e_dest2->m_len;
    291 
    292 #ifdef IPSEC
    293 	if (ipsec_used) {
    294 		/* Check the security policy (SP) for the packet */
    295 		sp = ipsec6_check_policy(m, inp, flags, &needipsec, &error);
    296 		if (error != 0) {
    297 			/*
    298 			 * Hack: -EINVAL is used to signal that a packet
    299 			 * should be silently discarded.  This is typically
    300 			 * because we asked key management for an SA and
    301 			 * it was delayed (e.g. kicked up to IKE).
    302 			 */
    303 			if (error == -EINVAL)
    304 				error = 0;
    305 			IP6_STATINC(IP6_STAT_IPSECDROP_OUT);
    306 			goto freehdrs;
    307 		}
    308 	}
    309 #endif
    310 
    311 	if (needipsec &&
    312 	    (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
    313 		in6_undefer_cksum_tcpudp(m);
    314 		m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
    315 	}
    316 
    317 	/*
    318 	 * If we need IPsec, or there is at least one extension header,
    319 	 * separate IP6 header from the payload.
    320 	 */
    321 	if ((needipsec || optlen) && !hdrsplit) {
    322 		if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
    323 			IP6_STATINC(IP6_STAT_ODROPPED);
    324 			m = NULL;
    325 			goto freehdrs;
    326 		}
    327 		m = exthdrs.ip6e_ip6;
    328 		hdrsplit++;
    329 	}
    330 
    331 	/* adjust pointer */
    332 	ip6 = mtod(m, struct ip6_hdr *);
    333 
    334 	/* adjust mbuf packet header length */
    335 	m->m_pkthdr.len += optlen;
    336 	plen = m->m_pkthdr.len - sizeof(*ip6);
    337 
    338 	/* If this is a jumbo payload, insert a jumbo payload option. */
    339 	if (plen > IPV6_MAXPACKET) {
    340 		if (!hdrsplit) {
    341 			if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
    342 				IP6_STATINC(IP6_STAT_ODROPPED);
    343 				m = NULL;
    344 				goto freehdrs;
    345 			}
    346 			m = exthdrs.ip6e_ip6;
    347 			hdrsplit++;
    348 		}
    349 		/* adjust pointer */
    350 		ip6 = mtod(m, struct ip6_hdr *);
    351 		if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) {
    352 			IP6_STATINC(IP6_STAT_ODROPPED);
    353 			goto freehdrs;
    354 		}
    355 		optlen += 8; /* XXX JUMBOOPTLEN */
    356 		ip6->ip6_plen = 0;
    357 	} else
    358 		ip6->ip6_plen = htons(plen);
    359 
    360 	/*
    361 	 * Concatenate headers and fill in next header fields.
    362 	 * Here we have, on "m"
    363 	 *	IPv6 payload
    364 	 * and we insert headers accordingly.  Finally, we should be getting:
    365 	 *	IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
    366 	 *
    367 	 * during the header composing process, "m" points to IPv6 header.
    368 	 * "mprev" points to an extension header prior to esp.
    369 	 */
    370 	{
    371 		u_char *nexthdrp = &ip6->ip6_nxt;
    372 		struct mbuf *mprev = m;
    373 
    374 		/*
    375 		 * we treat dest2 specially.  this makes IPsec processing
    376 		 * much easier.  the goal here is to make mprev point the
    377 		 * mbuf prior to dest2.
    378 		 *
    379 		 * result: IPv6 dest2 payload
    380 		 * m and mprev will point to IPv6 header.
    381 		 */
    382 		if (exthdrs.ip6e_dest2) {
    383 			if (!hdrsplit)
    384 				panic("assumption failed: hdr not split");
    385 			exthdrs.ip6e_dest2->m_next = m->m_next;
    386 			m->m_next = exthdrs.ip6e_dest2;
    387 			*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
    388 			ip6->ip6_nxt = IPPROTO_DSTOPTS;
    389 		}
    390 
    391 #define MAKE_CHAIN(m, mp, p, i)\
    392     do {\
    393 	if (m) {\
    394 		if (!hdrsplit) \
    395 			panic("assumption failed: hdr not split"); \
    396 		*mtod((m), u_char *) = *(p);\
    397 		*(p) = (i);\
    398 		p = mtod((m), u_char *);\
    399 		(m)->m_next = (mp)->m_next;\
    400 		(mp)->m_next = (m);\
    401 		(mp) = (m);\
    402 	}\
    403     } while (/*CONSTCOND*/ 0)
    404 		/*
    405 		 * result: IPv6 hbh dest1 rthdr dest2 payload
    406 		 * m will point to IPv6 header.  mprev will point to the
    407 		 * extension header prior to dest2 (rthdr in the above case).
    408 		 */
    409 		MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
    410 		MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
    411 		    IPPROTO_DSTOPTS);
    412 		MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
    413 		    IPPROTO_ROUTING);
    414 
    415 		M_CSUM_DATA_IPv6_SET(m->m_pkthdr.csum_data,
    416 		    sizeof(struct ip6_hdr) + optlen);
    417 	}
    418 
    419 	/* Need to save for pmtu */
    420 	finaldst = ip6->ip6_dst;
    421 
    422 	/*
    423 	 * If there is a routing header, replace destination address field
    424 	 * with the first hop of the routing header.
    425 	 */
    426 	if (exthdrs.ip6e_rthdr) {
    427 		struct ip6_rthdr *rh;
    428 
    429 		rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
    430 
    431 		error = ip6_handle_rthdr(rh, ip6);
    432 		if (error != 0) {
    433 			IP6_STATINC(IP6_STAT_ODROPPED);
    434 			goto bad;
    435 		}
    436 	}
    437 
    438 	/* Source address validation */
    439 	if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
    440 	    (flags & IPV6_UNSPECSRC) == 0) {
    441 		error = EOPNOTSUPP;
    442 		IP6_STATINC(IP6_STAT_BADSCOPE);
    443 		goto bad;
    444 	}
    445 	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
    446 		error = EOPNOTSUPP;
    447 		IP6_STATINC(IP6_STAT_BADSCOPE);
    448 		goto bad;
    449 	}
    450 
    451 	IP6_STATINC(IP6_STAT_LOCALOUT);
    452 
    453 	/*
    454 	 * Route packet.
    455 	 */
    456 	/* initialize cached route */
    457 	if (ro == NULL) {
    458 		memset(&ip6route, 0, sizeof(ip6route));
    459 		ro = &ip6route;
    460 	}
    461 	ro_pmtu = ro;
    462 	if (opt && opt->ip6po_rthdr)
    463 		ro = &opt->ip6po_route;
    464 
    465 	/*
    466 	 * if specified, try to fill in the traffic class field.
    467 	 * do not override if a non-zero value is already set.
    468 	 * we check the diffserv field and the ecn field separately.
    469 	 */
    470 	if (opt && opt->ip6po_tclass >= 0) {
    471 		int mask = 0;
    472 
    473 		if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
    474 			mask |= 0xfc;
    475 		if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
    476 			mask |= 0x03;
    477 		if (mask != 0)
    478 			ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
    479 	}
    480 
    481 	/* fill in or override the hop limit field, if necessary. */
    482 	if (opt && opt->ip6po_hlim != -1)
    483 		ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
    484 	else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
    485 		if (im6o != NULL)
    486 			ip6->ip6_hlim = im6o->im6o_multicast_hlim;
    487 		else
    488 			ip6->ip6_hlim = ip6_defmcasthlim;
    489 	}
    490 
    491 #ifdef IPSEC
    492 	if (needipsec) {
    493 		error = ipsec6_process_packet(m, sp->req, flags);
    494 
    495 		/*
    496 		 * Preserve KAME behaviour: ENOENT can be returned
    497 		 * when an SA acquire is in progress.  Don't propagate
    498 		 * this to user-level; it confuses applications.
    499 		 * XXX this will go away when the SADB is redone.
    500 		 */
    501 		if (error == ENOENT)
    502 			error = 0;
    503 
    504 		goto done;
    505 	}
    506 #endif
    507 
    508 	/* adjust pointer */
    509 	ip6 = mtod(m, struct ip6_hdr *);
    510 
    511 	sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
    512 
    513 	/* We do not need a route for multicast */
    514 	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
    515 		struct in6_pktinfo *pi = NULL;
    516 
    517 		/*
    518 		 * If the outgoing interface for the address is specified by
    519 		 * the caller, use it.
    520 		 */
    521 		if (opt && (pi = opt->ip6po_pktinfo) != NULL) {
    522 			/* XXX boundary check is assumed to be already done. */
    523 			ifp = if_get_byindex(pi->ipi6_ifindex, &psref);
    524 		} else if (im6o != NULL) {
    525 			ifp = if_get_byindex(im6o->im6o_multicast_if_index,
    526 			    &psref);
    527 		}
    528 	}
    529 
    530 	if (ifp == NULL) {
    531 		error = in6_selectroute(&dst_sa, opt, &ro, &rt, true);
    532 		if (error != 0)
    533 			goto bad;
    534 		ifp = if_get_byindex(rt->rt_ifp->if_index, &psref);
    535 	}
    536 
    537 	if (rt == NULL) {
    538 		/*
    539 		 * If in6_selectroute() does not return a route entry,
    540 		 * dst may not have been updated.
    541 		 */
    542 		error = rtcache_setdst(ro, sin6tosa(&dst_sa));
    543 		if (error) {
    544 			IP6_STATINC(IP6_STAT_ODROPPED);
    545 			goto bad;
    546 		}
    547 	}
    548 
    549 	/*
    550 	 * then rt (for unicast) and ifp must be non-NULL valid values.
    551 	 */
    552 	if ((flags & IPV6_FORWARDING) == 0) {
    553 		/* XXX: the FORWARDING flag can be set for mrouting. */
    554 		in6_ifstat_inc(ifp, ifs6_out_request);
    555 	}
    556 	if (rt != NULL) {
    557 		ia = (struct in6_ifaddr *)(rt->rt_ifa);
    558 		rt->rt_use++;
    559 	}
    560 
    561 	/*
    562 	 * The outgoing interface must be in the zone of source and
    563 	 * destination addresses.  We should use ia_ifp to support the
    564 	 * case of sending packets to an address of our own.
    565 	 */
    566 	if (ia != NULL) {
    567 		origifp = ia->ia_ifp;
    568 		if (if_is_deactivated(origifp)) {
    569 			IP6_STATINC(IP6_STAT_ODROPPED);
    570 			goto bad;
    571 		}
    572 		if_acquire(origifp, &psref_ia);
    573 		release_psref_ia = true;
    574 	} else
    575 		origifp = ifp;
    576 
    577 	src0 = ip6->ip6_src;
    578 	if (in6_setscope(&src0, origifp, &zone))
    579 		goto badscope;
    580 	sockaddr_in6_init(&src_sa, &ip6->ip6_src, 0, 0, 0);
    581 	if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
    582 		goto badscope;
    583 
    584 	dst0 = ip6->ip6_dst;
    585 	if (in6_setscope(&dst0, origifp, &zone))
    586 		goto badscope;
    587 	/* re-initialize to be sure */
    588 	sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
    589 	if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id)
    590 		goto badscope;
    591 
    592 	/* scope check is done. */
    593 
    594 	/* Ensure we only send from a valid address. */
    595 	if ((ifp->if_flags & IFF_LOOPBACK) == 0 &&
    596 	    (flags & IPV6_FORWARDING) == 0 &&
    597 	    (error = ip6_ifaddrvalid(&src0, &dst0)) != 0)
    598 	{
    599 		char ip6buf[INET6_ADDRSTRLEN];
    600 		nd6log(LOG_ERR,
    601 		    "refusing to send from invalid address %s (pid %d)\n",
    602 		    IN6_PRINT(ip6buf, &src0), curproc->p_pid);
    603 		IP6_STATINC(IP6_STAT_ODROPPED);
    604 		in6_ifstat_inc(origifp, ifs6_out_discard);
    605 		if (error == 1)
    606 			/*
    607 			 * Address exists, but is tentative or detached.
    608 			 * We can't send from it because it's invalid,
    609 			 * so we drop the packet.
    610 			 */
    611 			error = 0;
    612 		else
    613 			error = EADDRNOTAVAIL;
    614 		goto bad;
    615 	}
    616 
    617 	if (rt != NULL && (rt->rt_flags & RTF_GATEWAY) &&
    618 	    !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
    619 		dst = satocsin6(rt->rt_gateway);
    620 	else
    621 		dst = satocsin6(rtcache_getdst(ro));
    622 
    623 	/*
    624 	 * XXXXXX: original code follows:
    625 	 */
    626 	if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
    627 		m->m_flags &= ~(M_BCAST | M_MCAST);	/* just in case */
    628 	else {
    629 		bool ingroup;
    630 
    631 		m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
    632 
    633 		in6_ifstat_inc(ifp, ifs6_out_mcast);
    634 
    635 		/*
    636 		 * Confirm that the outgoing interface supports multicast.
    637 		 */
    638 		if (!(ifp->if_flags & IFF_MULTICAST)) {
    639 			IP6_STATINC(IP6_STAT_NOROUTE);
    640 			in6_ifstat_inc(ifp, ifs6_out_discard);
    641 			error = ENETUNREACH;
    642 			goto bad;
    643 		}
    644 
    645 		ingroup = in6_multi_group(&ip6->ip6_dst, ifp);
    646 		if (ingroup && (im6o == NULL || im6o->im6o_multicast_loop)) {
    647 			/*
    648 			 * If we belong to the destination multicast group
    649 			 * on the outgoing interface, and the caller did not
    650 			 * forbid loopback, loop back a copy.
    651 			 */
    652 			KASSERT(dst != NULL);
    653 			ip6_mloopback(ifp, m, dst);
    654 		} else {
    655 			/*
    656 			 * If we are acting as a multicast router, perform
    657 			 * multicast forwarding as if the packet had just
    658 			 * arrived on the interface to which we are about
    659 			 * to send.  The multicast forwarding function
    660 			 * recursively calls this function, using the
    661 			 * IPV6_FORWARDING flag to prevent infinite recursion.
    662 			 *
    663 			 * Multicasts that are looped back by ip6_mloopback(),
    664 			 * above, will be forwarded by the ip6_input() routine,
    665 			 * if necessary.
    666 			 */
    667 			if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
    668 				if (ip6_mforward(ip6, ifp, m) != 0) {
    669 					m_freem(m);
    670 					goto done;
    671 				}
    672 			}
    673 		}
    674 		/*
    675 		 * Multicasts with a hoplimit of zero may be looped back,
    676 		 * above, but must not be transmitted on a network.
    677 		 * Also, multicasts addressed to the loopback interface
    678 		 * are not sent -- the above call to ip6_mloopback() will
    679 		 * loop back a copy if this host actually belongs to the
    680 		 * destination group on the loopback interface.
    681 		 */
    682 		if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
    683 		    IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
    684 			m_freem(m);
    685 			goto done;
    686 		}
    687 	}
    688 
    689 	/*
    690 	 * Fill the outgoing interface to tell the upper layer
    691 	 * to increment per-interface statistics.
    692 	 */
    693 	if (ifpp)
    694 		*ifpp = ifp;
    695 
    696 	/* Determine path MTU. */
    697 	/*
    698 	 * ro_pmtu represent final destination while
    699 	 * ro might represent immediate destination.
    700 	 * Use ro_pmtu destination since MTU might differ.
    701 	 */
    702 	if (ro_pmtu != ro) {
    703 		union {
    704 			struct sockaddr		dst;
    705 			struct sockaddr_in6	dst6;
    706 		} u;
    707 
    708 		/* ro_pmtu may not have a cache */
    709 		sockaddr_in6_init(&u.dst6, &finaldst, 0, 0, 0);
    710 		rt_pmtu = rtcache_lookup(ro_pmtu, &u.dst);
    711 	} else
    712 		rt_pmtu = rt;
    713 	error = ip6_getpmtu(rt_pmtu, ifp, &mtu, &alwaysfrag);
    714 	if (rt_pmtu != NULL && rt_pmtu != rt)
    715 		rtcache_unref(rt_pmtu, ro_pmtu);
    716 	KASSERT(error == 0); /* ip6_getpmtu never fail if ifp is passed */
    717 
    718 	/*
    719 	 * The caller of this function may specify to use the minimum MTU
    720 	 * in some cases.
    721 	 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
    722 	 * setting.  The logic is a bit complicated; by default, unicast
    723 	 * packets will follow path MTU while multicast packets will be sent at
    724 	 * the minimum MTU.  If IP6PO_MINMTU_ALL is specified, all packets
    725 	 * including unicast ones will be sent at the minimum MTU.  Multicast
    726 	 * packets will always be sent at the minimum MTU unless
    727 	 * IP6PO_MINMTU_DISABLE is explicitly specified.
    728 	 * See RFC 3542 for more details.
    729 	 */
    730 	if (mtu > IPV6_MMTU) {
    731 		if ((flags & IPV6_MINMTU))
    732 			mtu = IPV6_MMTU;
    733 		else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
    734 			mtu = IPV6_MMTU;
    735 		else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
    736 			 (opt == NULL ||
    737 			  opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
    738 			mtu = IPV6_MMTU;
    739 		}
    740 	}
    741 
    742 	/*
    743 	 * clear embedded scope identifiers if necessary.
    744 	 * in6_clearscope will touch the addresses only when necessary.
    745 	 */
    746 	in6_clearscope(&ip6->ip6_src);
    747 	in6_clearscope(&ip6->ip6_dst);
    748 
    749 	/*
    750 	 * If the outgoing packet contains a hop-by-hop options header,
    751 	 * it must be examined and processed even by the source node.
    752 	 * (RFC 2460, section 4.)
    753 	 *
    754 	 * XXX Is this really necessary?
    755 	 */
    756 	if (ip6->ip6_nxt == IPPROTO_HOPOPTS) {
    757 		u_int32_t dummy1 = 0; /* XXX unused */
    758 		u_int32_t dummy2; /* XXX unused */
    759 		int hoff = sizeof(struct ip6_hdr);
    760 
    761 		if (ip6_hopopts_input(&dummy1, &dummy2, &m, &hoff)) {
    762 			/* m was already freed at this point */
    763 			error = EINVAL;
    764 			goto done;
    765 		}
    766 
    767 		ip6 = mtod(m, struct ip6_hdr *);
    768 	}
    769 
    770 	/*
    771 	 * Run through list of hooks for output packets.
    772 	 */
    773 	error = pfil_run_hooks(inet6_pfil_hook, &m, ifp, PFIL_OUT);
    774 	if (error != 0 || m == NULL) {
    775 		IP6_STATINC(IP6_STAT_PFILDROP_OUT);
    776 		goto done;
    777 	}
    778 	ip6 = mtod(m, struct ip6_hdr *);
    779 
    780 	/*
    781 	 * Send the packet to the outgoing interface.
    782 	 * If necessary, do IPv6 fragmentation before sending.
    783 	 *
    784 	 * the logic here is rather complex:
    785 	 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
    786 	 * 1-a:	send as is if tlen <= path mtu
    787 	 * 1-b:	fragment if tlen > path mtu
    788 	 *
    789 	 * 2: if user asks us not to fragment (dontfrag == 1)
    790 	 * 2-a:	send as is if tlen <= interface mtu
    791 	 * 2-b:	error if tlen > interface mtu
    792 	 *
    793 	 * 3: if we always need to attach fragment header (alwaysfrag == 1)
    794 	 *	always fragment
    795 	 *
    796 	 * 4: if dontfrag == 1 && alwaysfrag == 1
    797 	 *	error, as we cannot handle this conflicting request
    798 	 */
    799 	tlen = m->m_pkthdr.len;
    800 	tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0;
    801 	if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
    802 		dontfrag = 1;
    803 	else
    804 		dontfrag = 0;
    805 
    806 	if (dontfrag && alwaysfrag) {	/* case 4 */
    807 		/* conflicting request - can't transmit */
    808 		IP6_STATINC(IP6_STAT_CANTFRAG);
    809 		error = EMSGSIZE;
    810 		goto bad;
    811 	}
    812 	if (dontfrag && (!tso && tlen > ifp->if_mtu)) {	/* case 2-b */
    813 		/*
    814 		 * Even if the DONTFRAG option is specified, we cannot send the
    815 		 * packet when the data length is larger than the MTU of the
    816 		 * outgoing interface.
    817 		 * Notify the error by sending IPV6_PATHMTU ancillary data as
    818 		 * well as returning an error code (the latter is not described
    819 		 * in the API spec.)
    820 		 */
    821 		u_int32_t mtu32;
    822 		struct ip6ctlparam ip6cp;
    823 
    824 		mtu32 = (u_int32_t)mtu;
    825 		memset(&ip6cp, 0, sizeof(ip6cp));
    826 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
    827 		pfctlinput2(PRC_MSGSIZE,
    828 		    rtcache_getdst(ro_pmtu), &ip6cp);
    829 
    830 		IP6_STATINC(IP6_STAT_CANTFRAG);
    831 		error = EMSGSIZE;
    832 		goto bad;
    833 	}
    834 
    835 	/*
    836 	 * transmit packet without fragmentation
    837 	 */
    838 	if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) {
    839 		/* case 1-a and 2-a */
    840 		struct in6_ifaddr *ia6;
    841 		int sw_csum;
    842 		int s;
    843 
    844 		ip6 = mtod(m, struct ip6_hdr *);
    845 		s = pserialize_read_enter();
    846 		ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
    847 		if (ia6) {
    848 			/* Record statistics for this interface address. */
    849 			ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len;
    850 		}
    851 		pserialize_read_exit(s);
    852 
    853 		sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
    854 		if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
    855 			if (IN6_NEED_CHECKSUM(ifp,
    856 			    sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
    857 				in6_undefer_cksum_tcpudp(m);
    858 			}
    859 			m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
    860 		}
    861 
    862 		KASSERT(dst != NULL);
    863 		if (__predict_false(sw_csum & M_CSUM_TSOv6)) {
    864 			/*
    865 			 * TSO6 is required by a packet, but disabled for
    866 			 * the interface.
    867 			 */
    868 			error = ip6_tso_output(ifp, origifp, m, dst, rt);
    869 		} else
    870 			error = ip6_if_output(ifp, origifp, m, dst, rt);
    871 		goto done;
    872 	}
    873 
    874 	if (tso) {
    875 		IP6_STATINC(IP6_STAT_CANTFRAG); /* XXX */
    876 		error = EINVAL; /* XXX */
    877 		goto bad;
    878 	}
    879 
    880 	/*
    881 	 * try to fragment the packet.  case 1-b and 3
    882 	 */
    883 	if (mtu < IPV6_MMTU) {
    884 		/* path MTU cannot be less than IPV6_MMTU */
    885 		IP6_STATINC(IP6_STAT_CANTFRAG);
    886 		error = EMSGSIZE;
    887 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
    888 		goto bad;
    889 	} else if (ip6->ip6_plen == 0) {
    890 		/* jumbo payload cannot be fragmented */
    891 		IP6_STATINC(IP6_STAT_CANTFRAG);
    892 		error = EMSGSIZE;
    893 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
    894 		goto bad;
    895 	} else {
    896 		const uint32_t id = ip6_randomid();
    897 		struct mbuf **mnext, *m_frgpart;
    898 		const int hlen = unfragpartlen;
    899 		struct ip6_frag *ip6f;
    900 		u_char nextproto;
    901 
    902 		if (mtu > IPV6_MAXPACKET)
    903 			mtu = IPV6_MAXPACKET;
    904 
    905 		/*
    906 		 * Must be able to put at least 8 bytes per fragment.
    907 		 */
    908 		len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
    909 		if (len < 8) {
    910 			IP6_STATINC(IP6_STAT_CANTFRAG);
    911 			error = EMSGSIZE;
    912 			in6_ifstat_inc(ifp, ifs6_out_fragfail);
    913 			goto bad;
    914 		}
    915 
    916 		mnext = &m->m_nextpkt;
    917 
    918 		/*
    919 		 * Change the next header field of the last header in the
    920 		 * unfragmentable part.
    921 		 */
    922 		if (exthdrs.ip6e_rthdr) {
    923 			nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
    924 			*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
    925 		} else if (exthdrs.ip6e_dest1) {
    926 			nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
    927 			*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
    928 		} else if (exthdrs.ip6e_hbh) {
    929 			nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
    930 			*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
    931 		} else {
    932 			nextproto = ip6->ip6_nxt;
    933 			ip6->ip6_nxt = IPPROTO_FRAGMENT;
    934 		}
    935 
    936 		if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6))
    937 		    != 0) {
    938 			if (IN6_NEED_CHECKSUM(ifp,
    939 			    m->m_pkthdr.csum_flags &
    940 			    (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
    941 				in6_undefer_cksum_tcpudp(m);
    942 			}
    943 			m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
    944 		}
    945 
    946 		/*
    947 		 * Loop through length of segment after first fragment,
    948 		 * make new header and copy data of each part and link onto
    949 		 * chain.
    950 		 */
    951 		m0 = m;
    952 		for (off = hlen; off < tlen; off += len) {
    953 			struct mbuf *mlast;
    954 
    955 			MGETHDR(m, M_DONTWAIT, MT_HEADER);
    956 			if (!m) {
    957 				error = ENOBUFS;
    958 				IP6_STATINC(IP6_STAT_ODROPPED);
    959 				goto sendorfree;
    960 			}
    961 			m_reset_rcvif(m);
    962 			m->m_flags = m0->m_flags & M_COPYFLAGS;
    963 			*mnext = m;
    964 			mnext = &m->m_nextpkt;
    965 			m->m_data += max_linkhdr;
    966 			mhip6 = mtod(m, struct ip6_hdr *);
    967 			*mhip6 = *ip6;
    968 			m->m_len = sizeof(*mhip6);
    969 
    970 			ip6f = NULL;
    971 			error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
    972 			if (error) {
    973 				IP6_STATINC(IP6_STAT_ODROPPED);
    974 				goto sendorfree;
    975 			}
    976 
    977 			/* Fill in the Frag6 Header */
    978 			ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
    979 			if (off + len >= tlen)
    980 				len = tlen - off;
    981 			else
    982 				ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
    983 			ip6f->ip6f_reserved = 0;
    984 			ip6f->ip6f_ident = id;
    985 			ip6f->ip6f_nxt = nextproto;
    986 
    987 			mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
    988 			    sizeof(*ip6f) - sizeof(struct ip6_hdr)));
    989 			if ((m_frgpart = m_copym(m0, off, len, M_DONTWAIT)) == NULL) {
    990 				error = ENOBUFS;
    991 				IP6_STATINC(IP6_STAT_ODROPPED);
    992 				goto sendorfree;
    993 			}
    994 			for (mlast = m; mlast->m_next; mlast = mlast->m_next)
    995 				;
    996 			mlast->m_next = m_frgpart;
    997 
    998 			m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
    999 			m_reset_rcvif(m);
   1000 			IP6_STATINC(IP6_STAT_OFRAGMENTS);
   1001 			in6_ifstat_inc(ifp, ifs6_out_fragcreat);
   1002 		}
   1003 
   1004 		in6_ifstat_inc(ifp, ifs6_out_fragok);
   1005 	}
   1006 
   1007 sendorfree:
   1008 	m = m0->m_nextpkt;
   1009 	m0->m_nextpkt = 0;
   1010 	m_freem(m0);
   1011 	for (m0 = m; m; m = m0) {
   1012 		m0 = m->m_nextpkt;
   1013 		m->m_nextpkt = 0;
   1014 		if (error == 0) {
   1015 			struct in6_ifaddr *ia6;
   1016 			int s;
   1017 			ip6 = mtod(m, struct ip6_hdr *);
   1018 			s = pserialize_read_enter();
   1019 			ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
   1020 			if (ia6) {
   1021 				/*
   1022 				 * Record statistics for this interface
   1023 				 * address.
   1024 				 */
   1025 				ia6->ia_ifa.ifa_data.ifad_outbytes +=
   1026 				    m->m_pkthdr.len;
   1027 			}
   1028 			pserialize_read_exit(s);
   1029 			KASSERT(dst != NULL);
   1030 			error = ip6_if_output(ifp, origifp, m, dst, rt);
   1031 		} else
   1032 			m_freem(m);
   1033 	}
   1034 
   1035 	if (error == 0)
   1036 		IP6_STATINC(IP6_STAT_FRAGMENTED);
   1037 
   1038 done:
   1039 	rtcache_unref(rt, ro);
   1040 	if (ro == &ip6route)
   1041 		rtcache_free(&ip6route);
   1042 #ifdef IPSEC
   1043 	if (sp != NULL)
   1044 		KEY_SP_UNREF(&sp);
   1045 #endif
   1046 	if_put(ifp, &psref);
   1047 	if (release_psref_ia)
   1048 		if_put(origifp, &psref_ia);
   1049 	curlwp_bindx(bound);
   1050 
   1051 	return error;
   1052 
   1053 freehdrs:
   1054 	m_freem(exthdrs.ip6e_hbh);
   1055 	m_freem(exthdrs.ip6e_dest1);
   1056 	m_freem(exthdrs.ip6e_rthdr);
   1057 	m_freem(exthdrs.ip6e_dest2);
   1058 	/* FALLTHROUGH */
   1059 bad:
   1060 	m_freem(m);
   1061 	goto done;
   1062 
   1063 badscope:
   1064 	IP6_STATINC(IP6_STAT_BADSCOPE);
   1065 	in6_ifstat_inc(origifp, ifs6_out_discard);
   1066 	if (error == 0)
   1067 		error = EHOSTUNREACH; /* XXX */
   1068 	goto bad;
   1069 }
   1070 
   1071 static int
   1072 ip6_copyexthdr(struct mbuf **mp, void *hdr, int hlen)
   1073 {
   1074 	struct mbuf *m;
   1075 
   1076 	if (hlen > MCLBYTES)
   1077 		return ENOBUFS; /* XXX */
   1078 
   1079 	MGET(m, M_DONTWAIT, MT_DATA);
   1080 	if (!m)
   1081 		return ENOBUFS;
   1082 
   1083 	if (hlen > MLEN) {
   1084 		MCLGET(m, M_DONTWAIT);
   1085 		if ((m->m_flags & M_EXT) == 0) {
   1086 			m_free(m);
   1087 			return ENOBUFS;
   1088 		}
   1089 	}
   1090 	m->m_len = hlen;
   1091 	if (hdr)
   1092 		memcpy(mtod(m, void *), hdr, hlen);
   1093 
   1094 	*mp = m;
   1095 	return 0;
   1096 }
   1097 
   1098 /*
   1099  * Insert jumbo payload option.
   1100  */
   1101 static int
   1102 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
   1103 {
   1104 	struct mbuf *mopt;
   1105 	u_int8_t *optbuf;
   1106 	u_int32_t v;
   1107 
   1108 #define JUMBOOPTLEN	8	/* length of jumbo payload option and padding */
   1109 
   1110 	/*
   1111 	 * If there is no hop-by-hop options header, allocate new one.
   1112 	 * If there is one but it doesn't have enough space to store the
   1113 	 * jumbo payload option, allocate a cluster to store the whole options.
   1114 	 * Otherwise, use it to store the options.
   1115 	 */
   1116 	if (exthdrs->ip6e_hbh == NULL) {
   1117 		MGET(mopt, M_DONTWAIT, MT_DATA);
   1118 		if (mopt == 0)
   1119 			return (ENOBUFS);
   1120 		mopt->m_len = JUMBOOPTLEN;
   1121 		optbuf = mtod(mopt, u_int8_t *);
   1122 		optbuf[1] = 0;	/* = ((JUMBOOPTLEN) >> 3) - 1 */
   1123 		exthdrs->ip6e_hbh = mopt;
   1124 	} else {
   1125 		struct ip6_hbh *hbh;
   1126 
   1127 		mopt = exthdrs->ip6e_hbh;
   1128 		if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
   1129 			const int oldoptlen = mopt->m_len;
   1130 			struct mbuf *n;
   1131 
   1132 			/*
   1133 			 * Assumptions:
   1134 			 * - exthdrs->ip6e_hbh is not referenced from places
   1135 			 *   other than exthdrs.
   1136 			 * - exthdrs->ip6e_hbh is not an mbuf chain.
   1137 			 */
   1138 			KASSERT(mopt->m_next == NULL);
   1139 
   1140 			/*
   1141 			 * Give up if the whole (new) hbh header does not fit
   1142 			 * even in an mbuf cluster.
   1143 			 */
   1144 			if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
   1145 				return ENOBUFS;
   1146 
   1147 			/*
   1148 			 * At this point, we must always prepare a cluster.
   1149 			 */
   1150 			MGET(n, M_DONTWAIT, MT_DATA);
   1151 			if (n) {
   1152 				MCLGET(n, M_DONTWAIT);
   1153 				if ((n->m_flags & M_EXT) == 0) {
   1154 					m_freem(n);
   1155 					n = NULL;
   1156 				}
   1157 			}
   1158 			if (!n)
   1159 				return ENOBUFS;
   1160 
   1161 			n->m_len = oldoptlen + JUMBOOPTLEN;
   1162 			bcopy(mtod(mopt, void *), mtod(n, void *),
   1163 			    oldoptlen);
   1164 			optbuf = mtod(n, u_int8_t *) + oldoptlen;
   1165 			m_freem(mopt);
   1166 			mopt = exthdrs->ip6e_hbh = n;
   1167 		} else {
   1168 			optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
   1169 			mopt->m_len += JUMBOOPTLEN;
   1170 		}
   1171 		optbuf[0] = IP6OPT_PADN;
   1172 		optbuf[1] = 0;
   1173 
   1174 		/*
   1175 		 * Adjust the header length according to the pad and
   1176 		 * the jumbo payload option.
   1177 		 */
   1178 		hbh = mtod(mopt, struct ip6_hbh *);
   1179 		hbh->ip6h_len += (JUMBOOPTLEN >> 3);
   1180 	}
   1181 
   1182 	/* fill in the option. */
   1183 	optbuf[2] = IP6OPT_JUMBO;
   1184 	optbuf[3] = 4;
   1185 	v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
   1186 	memcpy(&optbuf[4], &v, sizeof(u_int32_t));
   1187 
   1188 	/* finally, adjust the packet header length */
   1189 	exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
   1190 
   1191 	return 0;
   1192 #undef JUMBOOPTLEN
   1193 }
   1194 
   1195 /*
   1196  * Insert fragment header and copy unfragmentable header portions.
   1197  *
   1198  * *frghdrp will not be read, and it is guaranteed that either an
   1199  * error is returned or that *frghdrp will point to space allocated
   1200  * for the fragment header.
   1201  *
   1202  * On entry, m contains:
   1203  *     IPv6 Header
   1204  * On exit, it contains:
   1205  *     IPv6 Header -> Unfragmentable Part -> Frag6 Header
   1206  */
   1207 static int
   1208 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
   1209 	struct ip6_frag **frghdrp)
   1210 {
   1211 	struct mbuf *n, *mlast;
   1212 
   1213 	if (hlen > sizeof(struct ip6_hdr)) {
   1214 		n = m_copym(m0, sizeof(struct ip6_hdr),
   1215 		    hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
   1216 		if (n == NULL)
   1217 			return ENOBUFS;
   1218 		m->m_next = n;
   1219 	} else
   1220 		n = m;
   1221 
   1222 	/* Search for the last mbuf of unfragmentable part. */
   1223 	for (mlast = n; mlast->m_next; mlast = mlast->m_next)
   1224 		;
   1225 
   1226 	if ((mlast->m_flags & M_EXT) == 0 &&
   1227 	    M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
   1228 		/* use the trailing space of the last mbuf for the fragment hdr */
   1229 		*frghdrp = (struct ip6_frag *)(mtod(mlast, char *) +
   1230 		    mlast->m_len);
   1231 		mlast->m_len += sizeof(struct ip6_frag);
   1232 	} else {
   1233 		/* allocate a new mbuf for the fragment header */
   1234 		struct mbuf *mfrg;
   1235 
   1236 		MGET(mfrg, M_DONTWAIT, MT_DATA);
   1237 		if (mfrg == NULL)
   1238 			return ENOBUFS;
   1239 		mfrg->m_len = sizeof(struct ip6_frag);
   1240 		*frghdrp = mtod(mfrg, struct ip6_frag *);
   1241 		mlast->m_next = mfrg;
   1242 	}
   1243 
   1244 	return 0;
   1245 }
   1246 
   1247 static int
   1248 ip6_getpmtu(struct rtentry *rt, struct ifnet *ifp, u_long *mtup,
   1249     int *alwaysfragp)
   1250 {
   1251 	u_int32_t mtu = 0;
   1252 	int alwaysfrag = 0;
   1253 	int error = 0;
   1254 
   1255 	if (rt != NULL) {
   1256 		if (ifp == NULL)
   1257 			ifp = rt->rt_ifp;
   1258 		mtu = rt->rt_rmx.rmx_mtu;
   1259 		if (mtu == 0)
   1260 			mtu = ifp->if_mtu;
   1261 		else if (mtu < IPV6_MMTU) {
   1262 			/*
   1263 			 * RFC2460 section 5, last paragraph:
   1264 			 * if we record ICMPv6 too big message with
   1265 			 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
   1266 			 * or smaller, with fragment header attached.
   1267 			 * (fragment header is needed regardless from the
   1268 			 * packet size, for translators to identify packets)
   1269 			 */
   1270 			alwaysfrag = 1;
   1271 			mtu = IPV6_MMTU;
   1272 		} else if (mtu > ifp->if_mtu) {
   1273 			/*
   1274 			 * The MTU on the route is larger than the MTU on
   1275 			 * the interface!  This shouldn't happen, unless the
   1276 			 * MTU of the interface has been changed after the
   1277 			 * interface was brought up.  Change the MTU in the
   1278 			 * route to match the interface MTU (as long as the
   1279 			 * field isn't locked).
   1280 			 */
   1281 			mtu = ifp->if_mtu;
   1282 			if (!(rt->rt_rmx.rmx_locks & RTV_MTU))
   1283 				rt->rt_rmx.rmx_mtu = mtu;
   1284 		}
   1285 	} else if (ifp) {
   1286 		mtu = ifp->if_mtu;
   1287 	} else
   1288 		error = EHOSTUNREACH; /* XXX */
   1289 
   1290 	*mtup = mtu;
   1291 	if (alwaysfragp)
   1292 		*alwaysfragp = alwaysfrag;
   1293 	return (error);
   1294 }
   1295 
   1296 /*
   1297  * IP6 socket option processing.
   1298  */
   1299 int
   1300 ip6_ctloutput(int op, struct socket *so, struct sockopt *sopt)
   1301 {
   1302 	int optdatalen, uproto;
   1303 	void *optdata;
   1304 	struct inpcb *inp = sotoinpcb(so);
   1305 	struct ip_moptions **mopts;
   1306 	int error, optval;
   1307 	int level, optname;
   1308 
   1309 	KASSERT(solocked(so));
   1310 	KASSERT(sopt != NULL);
   1311 
   1312 	level = sopt->sopt_level;
   1313 	optname = sopt->sopt_name;
   1314 
   1315 	error = optval = 0;
   1316 	uproto = (int)so->so_proto->pr_protocol;
   1317 
   1318 	switch (level) {
   1319 	case IPPROTO_IP:
   1320 		switch (optname) {
   1321 		case IP_ADD_MEMBERSHIP:
   1322 		case IP_DROP_MEMBERSHIP:
   1323 		case IP_MULTICAST_IF:
   1324 		case IP_MULTICAST_LOOP:
   1325 		case IP_MULTICAST_TTL:
   1326 			mopts = &inp->inp_moptions;
   1327 			switch (op) {
   1328 			case PRCO_GETOPT:
   1329 				return ip_getmoptions(*mopts, sopt);
   1330 			case PRCO_SETOPT:
   1331 				return ip_setmoptions(mopts, sopt);
   1332 			default:
   1333 				return EINVAL;
   1334 			}
   1335 		default:
   1336 			return ENOPROTOOPT;
   1337 		}
   1338 	case IPPROTO_IPV6:
   1339 		break;
   1340 	default:
   1341 		return ENOPROTOOPT;
   1342 	}
   1343 	switch (op) {
   1344 	case PRCO_SETOPT:
   1345 		switch (optname) {
   1346 #ifdef RFC2292
   1347 		case IPV6_2292PKTOPTIONS:
   1348 			error = ip6_pcbopts(&in6p_outputopts(inp), so, sopt);
   1349 			break;
   1350 #endif
   1351 
   1352 		/*
   1353 		 * Use of some Hop-by-Hop options or some
   1354 		 * Destination options, might require special
   1355 		 * privilege.  That is, normal applications
   1356 		 * (without special privilege) might be forbidden
   1357 		 * from setting certain options in outgoing packets,
   1358 		 * and might never see certain options in received
   1359 		 * packets. [RFC 2292 Section 6]
   1360 		 * KAME specific note:
   1361 		 *  KAME prevents non-privileged users from sending or
   1362 		 *  receiving ANY hbh/dst options in order to avoid
   1363 		 *  overhead of parsing options in the kernel.
   1364 		 */
   1365 		case IPV6_RECVHOPOPTS:
   1366 		case IPV6_RECVDSTOPTS:
   1367 		case IPV6_RECVRTHDRDSTOPTS:
   1368 			error = kauth_authorize_network(
   1369 			    kauth_cred_get(),
   1370 			    KAUTH_NETWORK_IPV6, KAUTH_REQ_NETWORK_IPV6_HOPBYHOP,
   1371 			    NULL, NULL, NULL);
   1372 			if (error)
   1373 				break;
   1374 			/* FALLTHROUGH */
   1375 		case IPV6_UNICAST_HOPS:
   1376 		case IPV6_HOPLIMIT:
   1377 		case IPV6_FAITH:
   1378 
   1379 		case IPV6_RECVPKTINFO:
   1380 		case IPV6_RECVHOPLIMIT:
   1381 		case IPV6_RECVRTHDR:
   1382 		case IPV6_RECVPATHMTU:
   1383 		case IPV6_RECVTCLASS:
   1384 		case IPV6_V6ONLY:
   1385 		case IPV6_BINDANY:
   1386 			error = sockopt_getint(sopt, &optval);
   1387 			if (error)
   1388 				break;
   1389 			switch (optname) {
   1390 			case IPV6_UNICAST_HOPS:
   1391 				if (optval < -1 || optval >= 256)
   1392 					error = EINVAL;
   1393 				else {
   1394 					/* -1 = kernel default */
   1395 					in6p_hops6(inp) = optval;
   1396 				}
   1397 				break;
   1398 #define OPTSET(bit) \
   1399 do { \
   1400 if (optval) \
   1401 	inp->inp_flags |= (bit); \
   1402 else \
   1403 	inp->inp_flags &= ~(bit); \
   1404 } while (/*CONSTCOND*/ 0)
   1405 
   1406 #ifdef RFC2292
   1407 #define OPTSET2292(bit) 			\
   1408 do { 						\
   1409 inp->inp_flags |= IN6P_RFC2292; 	\
   1410 if (optval) 				\
   1411 	inp->inp_flags |= (bit); 	\
   1412 else 					\
   1413 	inp->inp_flags &= ~(bit); 	\
   1414 } while (/*CONSTCOND*/ 0)
   1415 #endif
   1416 
   1417 #define OPTBIT(bit) (inp->inp_flags & (bit) ? 1 : 0)
   1418 
   1419 			case IPV6_RECVPKTINFO:
   1420 #ifdef RFC2292
   1421 				/* cannot mix with RFC2292 */
   1422 				if (OPTBIT(IN6P_RFC2292)) {
   1423 					error = EINVAL;
   1424 					break;
   1425 				}
   1426 #endif
   1427 				OPTSET(IN6P_PKTINFO);
   1428 				break;
   1429 
   1430 			case IPV6_HOPLIMIT:
   1431 			{
   1432 				struct ip6_pktopts **optp;
   1433 
   1434 #ifdef RFC2292
   1435 				/* cannot mix with RFC2292 */
   1436 				if (OPTBIT(IN6P_RFC2292)) {
   1437 					error = EINVAL;
   1438 					break;
   1439 				}
   1440 #endif
   1441 				optp = &in6p_outputopts(inp);
   1442 				error = ip6_pcbopt(IPV6_HOPLIMIT,
   1443 						   (u_char *)&optval,
   1444 						   sizeof(optval),
   1445 						   optp,
   1446 						   kauth_cred_get(), uproto);
   1447 				break;
   1448 			}
   1449 
   1450 			case IPV6_RECVHOPLIMIT:
   1451 #ifdef RFC2292
   1452 				/* cannot mix with RFC2292 */
   1453 				if (OPTBIT(IN6P_RFC2292)) {
   1454 					error = EINVAL;
   1455 					break;
   1456 				}
   1457 #endif
   1458 				OPTSET(IN6P_HOPLIMIT);
   1459 				break;
   1460 
   1461 			case IPV6_RECVHOPOPTS:
   1462 #ifdef RFC2292
   1463 				/* cannot mix with RFC2292 */
   1464 				if (OPTBIT(IN6P_RFC2292)) {
   1465 					error = EINVAL;
   1466 					break;
   1467 				}
   1468 #endif
   1469 				OPTSET(IN6P_HOPOPTS);
   1470 				break;
   1471 
   1472 			case IPV6_RECVDSTOPTS:
   1473 #ifdef RFC2292
   1474 				/* cannot mix with RFC2292 */
   1475 				if (OPTBIT(IN6P_RFC2292)) {
   1476 					error = EINVAL;
   1477 					break;
   1478 				}
   1479 #endif
   1480 				OPTSET(IN6P_DSTOPTS);
   1481 				break;
   1482 
   1483 			case IPV6_RECVRTHDRDSTOPTS:
   1484 #ifdef RFC2292
   1485 				/* cannot mix with RFC2292 */
   1486 				if (OPTBIT(IN6P_RFC2292)) {
   1487 					error = EINVAL;
   1488 					break;
   1489 				}
   1490 #endif
   1491 				OPTSET(IN6P_RTHDRDSTOPTS);
   1492 				break;
   1493 
   1494 			case IPV6_RECVRTHDR:
   1495 #ifdef RFC2292
   1496 				/* cannot mix with RFC2292 */
   1497 				if (OPTBIT(IN6P_RFC2292)) {
   1498 					error = EINVAL;
   1499 					break;
   1500 				}
   1501 #endif
   1502 				OPTSET(IN6P_RTHDR);
   1503 				break;
   1504 
   1505 			case IPV6_FAITH:
   1506 				OPTSET(IN6P_FAITH);
   1507 				break;
   1508 
   1509 			case IPV6_RECVPATHMTU:
   1510 				/*
   1511 				 * We ignore this option for TCP
   1512 				 * sockets.
   1513 				 * (RFC3542 leaves this case
   1514 				 * unspecified.)
   1515 				 */
   1516 				if (uproto != IPPROTO_TCP)
   1517 					OPTSET(IN6P_MTU);
   1518 				break;
   1519 
   1520 			case IPV6_V6ONLY:
   1521 				/*
   1522 				 * make setsockopt(IPV6_V6ONLY)
   1523 				 * available only prior to bind(2).
   1524 				 * see ipng mailing list, Jun 22 2001.
   1525 				 */
   1526 				if (inp->inp_lport ||
   1527 				    !IN6_IS_ADDR_UNSPECIFIED(&in6p_laddr(inp))) {
   1528 					error = EINVAL;
   1529 					break;
   1530 				}
   1531 #ifdef INET6_BINDV6ONLY
   1532 				if (!optval)
   1533 					error = EINVAL;
   1534 #else
   1535 				OPTSET(IN6P_IPV6_V6ONLY);
   1536 #endif
   1537 				break;
   1538 
   1539 			case IPV6_RECVTCLASS:
   1540 #ifdef RFC2292
   1541 				/* cannot mix with RFC2292 XXX */
   1542 				if (OPTBIT(IN6P_RFC2292)) {
   1543 					error = EINVAL;
   1544 					break;
   1545 				}
   1546 #endif
   1547 				OPTSET(IN6P_TCLASS);
   1548 				break;
   1549 
   1550 			case IPV6_BINDANY:
   1551 				error = kauth_authorize_network(
   1552 				    kauth_cred_get(), KAUTH_NETWORK_BIND,
   1553 				    KAUTH_REQ_NETWORK_BIND_ANYADDR, so, NULL,
   1554 				    NULL);
   1555 				if (error)
   1556 					break;
   1557 				OPTSET(IN6P_BINDANY);
   1558 				break;
   1559 			}
   1560 			break;
   1561 
   1562 		case IPV6_OTCLASS:
   1563 		{
   1564 			struct ip6_pktopts **optp;
   1565 			u_int8_t tclass;
   1566 
   1567 			error = sockopt_get(sopt, &tclass, sizeof(tclass));
   1568 			if (error)
   1569 				break;
   1570 			optp = &in6p_outputopts(inp);
   1571 			error = ip6_pcbopt(optname,
   1572 					   (u_char *)&tclass,
   1573 					   sizeof(tclass),
   1574 					   optp,
   1575 					   kauth_cred_get(), uproto);
   1576 			break;
   1577 		}
   1578 
   1579 		case IPV6_TCLASS:
   1580 		case IPV6_DONTFRAG:
   1581 		case IPV6_USE_MIN_MTU:
   1582 		case IPV6_PREFER_TEMPADDR:
   1583 			error = sockopt_getint(sopt, &optval);
   1584 			if (error)
   1585 				break;
   1586 			{
   1587 				struct ip6_pktopts **optp;
   1588 				optp = &in6p_outputopts(inp);
   1589 				error = ip6_pcbopt(optname,
   1590 						   (u_char *)&optval,
   1591 						   sizeof(optval),
   1592 						   optp,
   1593 						   kauth_cred_get(), uproto);
   1594 				break;
   1595 			}
   1596 
   1597 #ifdef RFC2292
   1598 		case IPV6_2292PKTINFO:
   1599 		case IPV6_2292HOPLIMIT:
   1600 		case IPV6_2292HOPOPTS:
   1601 		case IPV6_2292DSTOPTS:
   1602 		case IPV6_2292RTHDR:
   1603 			/* RFC 2292 */
   1604 			error = sockopt_getint(sopt, &optval);
   1605 			if (error)
   1606 				break;
   1607 
   1608 			switch (optname) {
   1609 			case IPV6_2292PKTINFO:
   1610 				OPTSET2292(IN6P_PKTINFO);
   1611 				break;
   1612 			case IPV6_2292HOPLIMIT:
   1613 				OPTSET2292(IN6P_HOPLIMIT);
   1614 				break;
   1615 			case IPV6_2292HOPOPTS:
   1616 				/*
   1617 				 * Check super-user privilege.
   1618 				 * See comments for IPV6_RECVHOPOPTS.
   1619 				 */
   1620 				error = kauth_authorize_network(
   1621 				    kauth_cred_get(),
   1622 				    KAUTH_NETWORK_IPV6,
   1623 				    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
   1624 				    NULL, NULL);
   1625 				if (error)
   1626 					return (error);
   1627 				OPTSET2292(IN6P_HOPOPTS);
   1628 				break;
   1629 			case IPV6_2292DSTOPTS:
   1630 				error = kauth_authorize_network(
   1631 				    kauth_cred_get(),
   1632 				    KAUTH_NETWORK_IPV6,
   1633 				    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
   1634 				    NULL, NULL);
   1635 				if (error)
   1636 					return (error);
   1637 				OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
   1638 				break;
   1639 			case IPV6_2292RTHDR:
   1640 				OPTSET2292(IN6P_RTHDR);
   1641 				break;
   1642 			}
   1643 			break;
   1644 #endif
   1645 		case IPV6_PKTINFO:
   1646 		case IPV6_HOPOPTS:
   1647 		case IPV6_RTHDR:
   1648 		case IPV6_DSTOPTS:
   1649 		case IPV6_RTHDRDSTOPTS:
   1650 		case IPV6_NEXTHOP: {
   1651 			/* new advanced API (RFC3542) */
   1652 			void *optbuf;
   1653 			int optbuflen;
   1654 			struct ip6_pktopts **optp;
   1655 
   1656 #ifdef RFC2292
   1657 			/* cannot mix with RFC2292 */
   1658 			if (OPTBIT(IN6P_RFC2292)) {
   1659 				error = EINVAL;
   1660 				break;
   1661 			}
   1662 #endif
   1663 
   1664 			optbuflen = sopt->sopt_size;
   1665 			optbuf = malloc(optbuflen, M_IP6OPT, M_NOWAIT);
   1666 			if (optbuf == NULL) {
   1667 				error = ENOBUFS;
   1668 				break;
   1669 			}
   1670 
   1671 			error = sockopt_get(sopt, optbuf, optbuflen);
   1672 			if (error) {
   1673 				free(optbuf, M_IP6OPT);
   1674 				break;
   1675 			}
   1676 			optp = &in6p_outputopts(inp);
   1677 			error = ip6_pcbopt(optname, optbuf, optbuflen,
   1678 			    optp, kauth_cred_get(), uproto);
   1679 
   1680 			free(optbuf, M_IP6OPT);
   1681 			break;
   1682 			}
   1683 #undef OPTSET
   1684 
   1685 		case IPV6_MULTICAST_IF:
   1686 		case IPV6_MULTICAST_HOPS:
   1687 		case IPV6_MULTICAST_LOOP:
   1688 		case IPV6_JOIN_GROUP:
   1689 		case IPV6_LEAVE_GROUP:
   1690 			error = ip6_setmoptions(sopt, inp);
   1691 			break;
   1692 
   1693 		case IPV6_PORTRANGE:
   1694 			error = sockopt_getint(sopt, &optval);
   1695 			if (error)
   1696 				break;
   1697 
   1698 			switch (optval) {
   1699 			case IPV6_PORTRANGE_DEFAULT:
   1700 				inp->inp_flags &= ~(IN6P_LOWPORT);
   1701 				inp->inp_flags &= ~(IN6P_HIGHPORT);
   1702 				break;
   1703 
   1704 			case IPV6_PORTRANGE_HIGH:
   1705 				inp->inp_flags &= ~(IN6P_LOWPORT);
   1706 				inp->inp_flags |= IN6P_HIGHPORT;
   1707 				break;
   1708 
   1709 			case IPV6_PORTRANGE_LOW:
   1710 				inp->inp_flags &= ~(IN6P_HIGHPORT);
   1711 				inp->inp_flags |= IN6P_LOWPORT;
   1712 				break;
   1713 
   1714 			default:
   1715 				error = EINVAL;
   1716 				break;
   1717 			}
   1718 			break;
   1719 
   1720 		case IPV6_PORTALGO:
   1721 			error = sockopt_getint(sopt, &optval);
   1722 			if (error)
   1723 				break;
   1724 
   1725 			error = portalgo_algo_index_select(inp, optval);
   1726 			break;
   1727 
   1728 #if defined(IPSEC)
   1729 		case IPV6_IPSEC_POLICY:
   1730 			if (ipsec_enabled) {
   1731 				error = ipsec_set_policy(inp,
   1732 				    sopt->sopt_data, sopt->sopt_size,
   1733 				    kauth_cred_get());
   1734 			} else
   1735 				error = ENOPROTOOPT;
   1736 			break;
   1737 #endif /* IPSEC */
   1738 
   1739 		default:
   1740 			error = ENOPROTOOPT;
   1741 			break;
   1742 		}
   1743 		break;
   1744 
   1745 	case PRCO_GETOPT:
   1746 		switch (optname) {
   1747 #ifdef RFC2292
   1748 		case IPV6_2292PKTOPTIONS:
   1749 			/*
   1750 			 * RFC3542 (effectively) deprecated the
   1751 			 * semantics of the 2292-style pktoptions.
   1752 			 * Since it was not reliable in nature (i.e.,
   1753 			 * applications had to expect the lack of some
   1754 			 * information after all), it would make sense
   1755 			 * to simplify this part by always returning
   1756 			 * empty data.
   1757 			 */
   1758 			break;
   1759 #endif
   1760 
   1761 		case IPV6_RECVHOPOPTS:
   1762 		case IPV6_RECVDSTOPTS:
   1763 		case IPV6_RECVRTHDRDSTOPTS:
   1764 		case IPV6_UNICAST_HOPS:
   1765 		case IPV6_RECVPKTINFO:
   1766 		case IPV6_RECVHOPLIMIT:
   1767 		case IPV6_RECVRTHDR:
   1768 		case IPV6_RECVPATHMTU:
   1769 
   1770 		case IPV6_FAITH:
   1771 		case IPV6_V6ONLY:
   1772 		case IPV6_PORTRANGE:
   1773 		case IPV6_RECVTCLASS:
   1774 		case IPV6_BINDANY:
   1775 			switch (optname) {
   1776 
   1777 			case IPV6_RECVHOPOPTS:
   1778 				optval = OPTBIT(IN6P_HOPOPTS);
   1779 				break;
   1780 
   1781 			case IPV6_RECVDSTOPTS:
   1782 				optval = OPTBIT(IN6P_DSTOPTS);
   1783 				break;
   1784 
   1785 			case IPV6_RECVRTHDRDSTOPTS:
   1786 				optval = OPTBIT(IN6P_RTHDRDSTOPTS);
   1787 				break;
   1788 
   1789 			case IPV6_UNICAST_HOPS:
   1790 				optval = in6p_hops6(inp);
   1791 				break;
   1792 
   1793 			case IPV6_RECVPKTINFO:
   1794 				optval = OPTBIT(IN6P_PKTINFO);
   1795 				break;
   1796 
   1797 			case IPV6_RECVHOPLIMIT:
   1798 				optval = OPTBIT(IN6P_HOPLIMIT);
   1799 				break;
   1800 
   1801 			case IPV6_RECVRTHDR:
   1802 				optval = OPTBIT(IN6P_RTHDR);
   1803 				break;
   1804 
   1805 			case IPV6_RECVPATHMTU:
   1806 				optval = OPTBIT(IN6P_MTU);
   1807 				break;
   1808 
   1809 			case IPV6_FAITH:
   1810 				optval = OPTBIT(IN6P_FAITH);
   1811 				break;
   1812 
   1813 			case IPV6_V6ONLY:
   1814 				optval = OPTBIT(IN6P_IPV6_V6ONLY);
   1815 				break;
   1816 
   1817 			case IPV6_PORTRANGE:
   1818 			    {
   1819 				int flags;
   1820 				flags = inp->inp_flags;
   1821 				if (flags & IN6P_HIGHPORT)
   1822 					optval = IPV6_PORTRANGE_HIGH;
   1823 				else if (flags & IN6P_LOWPORT)
   1824 					optval = IPV6_PORTRANGE_LOW;
   1825 				else
   1826 					optval = 0;
   1827 				break;
   1828 			    }
   1829 			case IPV6_RECVTCLASS:
   1830 				optval = OPTBIT(IN6P_TCLASS);
   1831 				break;
   1832 
   1833 			case IPV6_BINDANY:
   1834 				optval = OPTBIT(IN6P_BINDANY);
   1835 				break;
   1836 			}
   1837 
   1838 			if (error)
   1839 				break;
   1840 			error = sockopt_setint(sopt, optval);
   1841 			break;
   1842 
   1843 		case IPV6_PATHMTU:
   1844 		    {
   1845 			u_long pmtu = 0;
   1846 			struct ip6_mtuinfo mtuinfo;
   1847 			struct route *ro = &inp->inp_route;
   1848 			struct rtentry *rt;
   1849 			union {
   1850 				struct sockaddr		dst;
   1851 				struct sockaddr_in6	dst6;
   1852 			} u;
   1853 
   1854 			if (!(so->so_state & SS_ISCONNECTED))
   1855 				return (ENOTCONN);
   1856 			/*
   1857 			 * XXX: we dot not consider the case of source
   1858 			 * routing, or optional information to specify
   1859 			 * the outgoing interface.
   1860 			 */
   1861 			sockaddr_in6_init(&u.dst6, &in6p_faddr(inp), 0, 0, 0);
   1862 			rt = rtcache_lookup(ro, &u.dst);
   1863 			error = ip6_getpmtu(rt, NULL, &pmtu, NULL);
   1864 			rtcache_unref(rt, ro);
   1865 			if (error)
   1866 				break;
   1867 			if (pmtu > IPV6_MAXPACKET)
   1868 				pmtu = IPV6_MAXPACKET;
   1869 
   1870 			memset(&mtuinfo, 0, sizeof(mtuinfo));
   1871 			mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
   1872 			optdata = (void *)&mtuinfo;
   1873 			optdatalen = sizeof(mtuinfo);
   1874 			if (optdatalen > MCLBYTES)
   1875 				return (EMSGSIZE); /* XXX */
   1876 			error = sockopt_set(sopt, optdata, optdatalen);
   1877 			break;
   1878 		    }
   1879 
   1880 #ifdef RFC2292
   1881 		case IPV6_2292PKTINFO:
   1882 		case IPV6_2292HOPLIMIT:
   1883 		case IPV6_2292HOPOPTS:
   1884 		case IPV6_2292RTHDR:
   1885 		case IPV6_2292DSTOPTS:
   1886 			switch (optname) {
   1887 			case IPV6_2292PKTINFO:
   1888 				optval = OPTBIT(IN6P_PKTINFO);
   1889 				break;
   1890 			case IPV6_2292HOPLIMIT:
   1891 				optval = OPTBIT(IN6P_HOPLIMIT);
   1892 				break;
   1893 			case IPV6_2292HOPOPTS:
   1894 				optval = OPTBIT(IN6P_HOPOPTS);
   1895 				break;
   1896 			case IPV6_2292RTHDR:
   1897 				optval = OPTBIT(IN6P_RTHDR);
   1898 				break;
   1899 			case IPV6_2292DSTOPTS:
   1900 				optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
   1901 				break;
   1902 			}
   1903 			error = sockopt_setint(sopt, optval);
   1904 			break;
   1905 #endif
   1906 		case IPV6_PKTINFO:
   1907 		case IPV6_HOPOPTS:
   1908 		case IPV6_RTHDR:
   1909 		case IPV6_DSTOPTS:
   1910 		case IPV6_RTHDRDSTOPTS:
   1911 		case IPV6_NEXTHOP:
   1912 		case IPV6_OTCLASS:
   1913 		case IPV6_TCLASS:
   1914 		case IPV6_DONTFRAG:
   1915 		case IPV6_USE_MIN_MTU:
   1916 		case IPV6_PREFER_TEMPADDR:
   1917 			error = ip6_getpcbopt(in6p_outputopts(inp),
   1918 			    optname, sopt);
   1919 			break;
   1920 
   1921 		case IPV6_MULTICAST_IF:
   1922 		case IPV6_MULTICAST_HOPS:
   1923 		case IPV6_MULTICAST_LOOP:
   1924 		case IPV6_JOIN_GROUP:
   1925 		case IPV6_LEAVE_GROUP:
   1926 			error = ip6_getmoptions(sopt, inp);
   1927 			break;
   1928 
   1929 		case IPV6_PORTALGO:
   1930 			optval = inp->inp_portalgo;
   1931 			error = sockopt_setint(sopt, optval);
   1932 			break;
   1933 
   1934 #if defined(IPSEC)
   1935 		case IPV6_IPSEC_POLICY:
   1936 			if (ipsec_used) {
   1937 				struct mbuf *m = NULL;
   1938 
   1939 				/*
   1940 				 * XXX: this will return EINVAL as sopt is
   1941 				 * empty
   1942 				 */
   1943 				error = ipsec_get_policy(inp, sopt->sopt_data,
   1944 				    sopt->sopt_size, &m);
   1945 				if (!error)
   1946 					error = sockopt_setmbuf(sopt, m);
   1947 			} else
   1948 				error = ENOPROTOOPT;
   1949 			break;
   1950 #endif /* IPSEC */
   1951 
   1952 		default:
   1953 			error = ENOPROTOOPT;
   1954 			break;
   1955 		}
   1956 		break;
   1957 	}
   1958 	return (error);
   1959 }
   1960 
   1961 int
   1962 ip6_raw_ctloutput(int op, struct socket *so, struct sockopt *sopt)
   1963 {
   1964 	int error = 0, optval;
   1965 	const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
   1966 	struct inpcb *inp = sotoinpcb(so);
   1967 	int level, optname;
   1968 
   1969 	KASSERT(sopt != NULL);
   1970 
   1971 	level = sopt->sopt_level;
   1972 	optname = sopt->sopt_name;
   1973 
   1974 	if (level != IPPROTO_IPV6) {
   1975 		return ENOPROTOOPT;
   1976 	}
   1977 
   1978 	switch (optname) {
   1979 	case IPV6_CHECKSUM:
   1980 		/*
   1981 		 * For ICMPv6 sockets, no modification allowed for checksum
   1982 		 * offset, permit "no change" values to help existing apps.
   1983 		 *
   1984 		 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM
   1985 		 * for an ICMPv6 socket will fail."  The current
   1986 		 * behavior does not meet RFC3542.
   1987 		 */
   1988 		switch (op) {
   1989 		case PRCO_SETOPT:
   1990 			error = sockopt_getint(sopt, &optval);
   1991 			if (error)
   1992 				break;
   1993 			if (optval < -1 ||
   1994 			    (optval > 0 && (optval % 2) != 0)) {
   1995 				/*
   1996 				 * The API assumes non-negative even offset
   1997 				 * values or -1 as a special value.
   1998 				 */
   1999 				error = EINVAL;
   2000 			} else if (so->so_proto->pr_protocol ==
   2001 			    IPPROTO_ICMPV6) {
   2002 				if (optval != icmp6off)
   2003 					error = EINVAL;
   2004 			} else
   2005 				in6p_cksum(inp) = optval;
   2006 			break;
   2007 
   2008 		case PRCO_GETOPT:
   2009 			if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
   2010 				optval = icmp6off;
   2011 			else
   2012 				optval = in6p_cksum(inp);
   2013 
   2014 			error = sockopt_setint(sopt, optval);
   2015 			break;
   2016 
   2017 		default:
   2018 			error = EINVAL;
   2019 			break;
   2020 		}
   2021 		break;
   2022 
   2023 	default:
   2024 		error = ENOPROTOOPT;
   2025 		break;
   2026 	}
   2027 
   2028 	return (error);
   2029 }
   2030 
   2031 #ifdef RFC2292
   2032 /*
   2033  * Set up IP6 options in pcb for insertion in output packets or
   2034  * specifying behavior of outgoing packets.
   2035  */
   2036 static int
   2037 ip6_pcbopts(struct ip6_pktopts **pktopt, struct socket *so,
   2038     struct sockopt *sopt)
   2039 {
   2040 	struct ip6_pktopts *opt = *pktopt;
   2041 	struct mbuf *m;
   2042 	int error = 0;
   2043 
   2044 	KASSERT(solocked(so));
   2045 
   2046 	/* turn off any old options. */
   2047 	if (opt) {
   2048 #ifdef DIAGNOSTIC
   2049 	    if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
   2050 		opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
   2051 		opt->ip6po_rhinfo.ip6po_rhi_rthdr)
   2052 		    printf("ip6_pcbopts: all specified options are cleared.\n");
   2053 #endif
   2054 		ip6_clearpktopts(opt, -1);
   2055 	} else {
   2056 		opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT);
   2057 		if (opt == NULL)
   2058 			return (ENOBUFS);
   2059 	}
   2060 	*pktopt = NULL;
   2061 
   2062 	if (sopt == NULL || sopt->sopt_size == 0) {
   2063 		/*
   2064 		 * Only turning off any previous options, regardless of
   2065 		 * whether the opt is just created or given.
   2066 		 */
   2067 		free(opt, M_IP6OPT);
   2068 		return (0);
   2069 	}
   2070 
   2071 	/*  set options specified by user. */
   2072 	m = sockopt_getmbuf(sopt);
   2073 	if (m == NULL) {
   2074 		free(opt, M_IP6OPT);
   2075 		return (ENOBUFS);
   2076 	}
   2077 
   2078 	error = ip6_setpktopts(m, opt, NULL, kauth_cred_get(),
   2079 	    so->so_proto->pr_protocol);
   2080 	m_freem(m);
   2081 	if (error != 0) {
   2082 		ip6_clearpktopts(opt, -1); /* XXX: discard all options */
   2083 		free(opt, M_IP6OPT);
   2084 		return (error);
   2085 	}
   2086 	*pktopt = opt;
   2087 	return (0);
   2088 }
   2089 #endif
   2090 
   2091 /*
   2092  * initialize ip6_pktopts.  beware that there are non-zero default values in
   2093  * the struct.
   2094  */
   2095 void
   2096 ip6_initpktopts(struct ip6_pktopts *opt)
   2097 {
   2098 
   2099 	memset(opt, 0, sizeof(*opt));
   2100 	opt->ip6po_hlim = -1;	/* -1 means default hop limit */
   2101 	opt->ip6po_tclass = -1;	/* -1 means default traffic class */
   2102 	opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
   2103 	opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM;
   2104 }
   2105 
   2106 #define sin6tosa(sin6)	((struct sockaddr *)(sin6)) /* XXX */
   2107 static int
   2108 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
   2109     kauth_cred_t cred, int uproto)
   2110 {
   2111 	struct ip6_pktopts *opt;
   2112 
   2113 	if (*pktopt == NULL) {
   2114 		*pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
   2115 		    M_NOWAIT);
   2116 		if (*pktopt == NULL)
   2117 			return (ENOBUFS);
   2118 
   2119 		ip6_initpktopts(*pktopt);
   2120 	}
   2121 	opt = *pktopt;
   2122 
   2123 	return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto));
   2124 }
   2125 
   2126 static int
   2127 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
   2128 {
   2129 	void *optdata = NULL;
   2130 	int optdatalen = 0;
   2131 	struct ip6_ext *ip6e;
   2132 	int error = 0;
   2133 	struct in6_pktinfo null_pktinfo;
   2134 	int deftclass = 0, on;
   2135 	int defminmtu = IP6PO_MINMTU_MCASTONLY;
   2136 	int defpreftemp = IP6PO_TEMPADDR_SYSTEM;
   2137 
   2138 	switch (optname) {
   2139 	case IPV6_PKTINFO:
   2140 		if (pktopt && pktopt->ip6po_pktinfo)
   2141 			optdata = (void *)pktopt->ip6po_pktinfo;
   2142 		else {
   2143 			/* XXX: we don't have to do this every time... */
   2144 			memset(&null_pktinfo, 0, sizeof(null_pktinfo));
   2145 			optdata = (void *)&null_pktinfo;
   2146 		}
   2147 		optdatalen = sizeof(struct in6_pktinfo);
   2148 		break;
   2149 	case IPV6_OTCLASS:
   2150 		/* XXX */
   2151 		return (EINVAL);
   2152 	case IPV6_TCLASS:
   2153 		if (pktopt && pktopt->ip6po_tclass >= 0)
   2154 			optdata = (void *)&pktopt->ip6po_tclass;
   2155 		else
   2156 			optdata = (void *)&deftclass;
   2157 		optdatalen = sizeof(int);
   2158 		break;
   2159 	case IPV6_HOPOPTS:
   2160 		if (pktopt && pktopt->ip6po_hbh) {
   2161 			optdata = (void *)pktopt->ip6po_hbh;
   2162 			ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
   2163 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2164 		}
   2165 		break;
   2166 	case IPV6_RTHDR:
   2167 		if (pktopt && pktopt->ip6po_rthdr) {
   2168 			optdata = (void *)pktopt->ip6po_rthdr;
   2169 			ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
   2170 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2171 		}
   2172 		break;
   2173 	case IPV6_RTHDRDSTOPTS:
   2174 		if (pktopt && pktopt->ip6po_dest1) {
   2175 			optdata = (void *)pktopt->ip6po_dest1;
   2176 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
   2177 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2178 		}
   2179 		break;
   2180 	case IPV6_DSTOPTS:
   2181 		if (pktopt && pktopt->ip6po_dest2) {
   2182 			optdata = (void *)pktopt->ip6po_dest2;
   2183 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
   2184 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2185 		}
   2186 		break;
   2187 	case IPV6_NEXTHOP:
   2188 		if (pktopt && pktopt->ip6po_nexthop) {
   2189 			optdata = (void *)pktopt->ip6po_nexthop;
   2190 			optdatalen = pktopt->ip6po_nexthop->sa_len;
   2191 		}
   2192 		break;
   2193 	case IPV6_USE_MIN_MTU:
   2194 		if (pktopt)
   2195 			optdata = (void *)&pktopt->ip6po_minmtu;
   2196 		else
   2197 			optdata = (void *)&defminmtu;
   2198 		optdatalen = sizeof(int);
   2199 		break;
   2200 	case IPV6_DONTFRAG:
   2201 		if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
   2202 			on = 1;
   2203 		else
   2204 			on = 0;
   2205 		optdata = (void *)&on;
   2206 		optdatalen = sizeof(on);
   2207 		break;
   2208 	case IPV6_PREFER_TEMPADDR:
   2209 		if (pktopt)
   2210 			optdata = (void *)&pktopt->ip6po_prefer_tempaddr;
   2211 		else
   2212 			optdata = (void *)&defpreftemp;
   2213 		optdatalen = sizeof(int);
   2214 		break;
   2215 	default:		/* should not happen */
   2216 #ifdef DIAGNOSTIC
   2217 		panic("ip6_getpcbopt: unexpected option\n");
   2218 #endif
   2219 		return (ENOPROTOOPT);
   2220 	}
   2221 
   2222 	error = sockopt_set(sopt, optdata, optdatalen);
   2223 
   2224 	return (error);
   2225 }
   2226 
   2227 void
   2228 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
   2229 {
   2230 	if (optname == -1 || optname == IPV6_PKTINFO) {
   2231 		if (pktopt->ip6po_pktinfo)
   2232 			free(pktopt->ip6po_pktinfo, M_IP6OPT);
   2233 		pktopt->ip6po_pktinfo = NULL;
   2234 	}
   2235 	if (optname == -1 || optname == IPV6_HOPLIMIT)
   2236 		pktopt->ip6po_hlim = -1;
   2237 	if (optname == -1 || optname == IPV6_TCLASS)
   2238 		pktopt->ip6po_tclass = -1;
   2239 	if (optname == -1 || optname == IPV6_NEXTHOP) {
   2240 		rtcache_free(&pktopt->ip6po_nextroute);
   2241 		if (pktopt->ip6po_nexthop)
   2242 			free(pktopt->ip6po_nexthop, M_IP6OPT);
   2243 		pktopt->ip6po_nexthop = NULL;
   2244 	}
   2245 	if (optname == -1 || optname == IPV6_HOPOPTS) {
   2246 		if (pktopt->ip6po_hbh)
   2247 			free(pktopt->ip6po_hbh, M_IP6OPT);
   2248 		pktopt->ip6po_hbh = NULL;
   2249 	}
   2250 	if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
   2251 		if (pktopt->ip6po_dest1)
   2252 			free(pktopt->ip6po_dest1, M_IP6OPT);
   2253 		pktopt->ip6po_dest1 = NULL;
   2254 	}
   2255 	if (optname == -1 || optname == IPV6_RTHDR) {
   2256 		if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
   2257 			free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
   2258 		pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
   2259 		rtcache_free(&pktopt->ip6po_route);
   2260 	}
   2261 	if (optname == -1 || optname == IPV6_DSTOPTS) {
   2262 		if (pktopt->ip6po_dest2)
   2263 			free(pktopt->ip6po_dest2, M_IP6OPT);
   2264 		pktopt->ip6po_dest2 = NULL;
   2265 	}
   2266 }
   2267 
   2268 #define PKTOPT_EXTHDRCPY(type) 					\
   2269 do {								\
   2270 	if (src->type) {					\
   2271 		int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
   2272 		dst->type = malloc(hlen, M_IP6OPT, canwait);	\
   2273 		if (dst->type == NULL)				\
   2274 			goto bad;				\
   2275 		memcpy(dst->type, src->type, hlen);		\
   2276 	}							\
   2277 } while (/*CONSTCOND*/ 0)
   2278 
   2279 static int
   2280 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
   2281 {
   2282 	dst->ip6po_hlim = src->ip6po_hlim;
   2283 	dst->ip6po_tclass = src->ip6po_tclass;
   2284 	dst->ip6po_flags = src->ip6po_flags;
   2285 	dst->ip6po_minmtu = src->ip6po_minmtu;
   2286 	dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr;
   2287 	if (src->ip6po_pktinfo) {
   2288 		dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
   2289 		    M_IP6OPT, canwait);
   2290 		if (dst->ip6po_pktinfo == NULL)
   2291 			goto bad;
   2292 		*dst->ip6po_pktinfo = *src->ip6po_pktinfo;
   2293 	}
   2294 	if (src->ip6po_nexthop) {
   2295 		dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
   2296 		    M_IP6OPT, canwait);
   2297 		if (dst->ip6po_nexthop == NULL)
   2298 			goto bad;
   2299 		memcpy(dst->ip6po_nexthop, src->ip6po_nexthop,
   2300 		    src->ip6po_nexthop->sa_len);
   2301 	}
   2302 	PKTOPT_EXTHDRCPY(ip6po_hbh);
   2303 	PKTOPT_EXTHDRCPY(ip6po_dest1);
   2304 	PKTOPT_EXTHDRCPY(ip6po_dest2);
   2305 	PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
   2306 	return (0);
   2307 
   2308   bad:
   2309 	if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT);
   2310 	if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT);
   2311 	if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT);
   2312 	if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT);
   2313 	if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT);
   2314 	if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT);
   2315 
   2316 	return (ENOBUFS);
   2317 }
   2318 #undef PKTOPT_EXTHDRCPY
   2319 
   2320 struct ip6_pktopts *
   2321 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
   2322 {
   2323 	int error;
   2324 	struct ip6_pktopts *dst;
   2325 
   2326 	dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
   2327 	if (dst == NULL)
   2328 		return (NULL);
   2329 	ip6_initpktopts(dst);
   2330 
   2331 	if ((error = copypktopts(dst, src, canwait)) != 0) {
   2332 		free(dst, M_IP6OPT);
   2333 		return (NULL);
   2334 	}
   2335 
   2336 	return (dst);
   2337 }
   2338 
   2339 void
   2340 ip6_freepcbopts(struct ip6_pktopts *pktopt)
   2341 {
   2342 	if (pktopt == NULL)
   2343 		return;
   2344 
   2345 	ip6_clearpktopts(pktopt, -1);
   2346 
   2347 	free(pktopt, M_IP6OPT);
   2348 }
   2349 
   2350 int
   2351 ip6_get_membership(const struct sockopt *sopt, struct ifnet **ifp,
   2352     struct psref *psref, void *v, size_t l)
   2353 {
   2354 	struct ipv6_mreq mreq;
   2355 	int error;
   2356 	struct in6_addr *ia = &mreq.ipv6mr_multiaddr;
   2357 	struct in_addr *ia4 = (void *)&ia->s6_addr32[3];
   2358 
   2359 	error = sockopt_get(sopt, &mreq, sizeof(mreq));
   2360 	if (error != 0)
   2361 		return error;
   2362 
   2363 	if (IN6_IS_ADDR_UNSPECIFIED(ia)) {
   2364 		/*
   2365 		 * We use the unspecified address to specify to accept
   2366 		 * all multicast addresses. Only super user is allowed
   2367 		 * to do this.
   2368 		 */
   2369 		if (kauth_authorize_network(kauth_cred_get(),
   2370 		    KAUTH_NETWORK_IPV6,
   2371 		    KAUTH_REQ_NETWORK_IPV6_JOIN_MULTICAST, NULL, NULL, NULL))
   2372 			return EACCES;
   2373 	} else if (IN6_IS_ADDR_V4MAPPED(ia)) {
   2374 		// Don't bother if we are not going to use ifp.
   2375 		if (l == sizeof(*ia)) {
   2376 			memcpy(v, ia, l);
   2377 			return 0;
   2378 		}
   2379 	} else if (!IN6_IS_ADDR_MULTICAST(ia)) {
   2380 		return EINVAL;
   2381 	}
   2382 
   2383 	/*
   2384 	 * If no interface was explicitly specified, choose an
   2385 	 * appropriate one according to the given multicast address.
   2386 	 */
   2387 	if (mreq.ipv6mr_interface == 0) {
   2388 		struct rtentry *rt;
   2389 		union {
   2390 			struct sockaddr		dst;
   2391 			struct sockaddr_in	dst4;
   2392 			struct sockaddr_in6	dst6;
   2393 		} u;
   2394 		struct route ro;
   2395 
   2396 		/*
   2397 		 * Look up the routing table for the
   2398 		 * address, and choose the outgoing interface.
   2399 		 *   XXX: is it a good approach?
   2400 		 */
   2401 		memset(&ro, 0, sizeof(ro));
   2402 		if (IN6_IS_ADDR_V4MAPPED(ia))
   2403 			sockaddr_in_init(&u.dst4, ia4, 0);
   2404 		else
   2405 			sockaddr_in6_init(&u.dst6, ia, 0, 0, 0);
   2406 		error = rtcache_setdst(&ro, &u.dst);
   2407 		if (error != 0)
   2408 			return error;
   2409 		rt = rtcache_init(&ro);
   2410 		*ifp = rt != NULL ?
   2411 		    if_get_byindex(rt->rt_ifp->if_index, psref) : NULL;
   2412 		rtcache_unref(rt, &ro);
   2413 		rtcache_free(&ro);
   2414 	} else {
   2415 		/*
   2416 		 * If the interface is specified, validate it.
   2417 		 */
   2418 		*ifp = if_get_byindex(mreq.ipv6mr_interface, psref);
   2419 		if (*ifp == NULL)
   2420 			return ENXIO;	/* XXX EINVAL? */
   2421 	}
   2422 	if (sizeof(*ia) == l)
   2423 		memcpy(v, ia, l);
   2424 	else
   2425 		memcpy(v, ia4, l);
   2426 	return 0;
   2427 }
   2428 
   2429 /*
   2430  * Set the IP6 multicast options in response to user setsockopt().
   2431  */
   2432 static int
   2433 ip6_setmoptions(const struct sockopt *sopt, struct inpcb *inp)
   2434 {
   2435 	int error = 0;
   2436 	u_int loop, ifindex;
   2437 	struct ipv6_mreq mreq;
   2438 	struct in6_addr ia;
   2439 	struct ifnet *ifp;
   2440 	struct ip6_moptions *im6o = in6p_moptions(inp);
   2441 	struct in6_multi_mship *imm;
   2442 
   2443 	KASSERT(inp_locked(inp));
   2444 
   2445 	if (im6o == NULL) {
   2446 		/*
   2447 		 * No multicast option buffer attached to the pcb;
   2448 		 * allocate one and initialize to default values.
   2449 		 */
   2450 		im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_NOWAIT);
   2451 		if (im6o == NULL)
   2452 			return (ENOBUFS);
   2453 		in6p_moptions(inp) = im6o;
   2454 		im6o->im6o_multicast_if_index = 0;
   2455 		im6o->im6o_multicast_hlim = ip6_defmcasthlim;
   2456 		im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
   2457 		LIST_INIT(&im6o->im6o_memberships);
   2458 	}
   2459 
   2460 	switch (sopt->sopt_name) {
   2461 
   2462 	case IPV6_MULTICAST_IF: {
   2463 		int s;
   2464 		/*
   2465 		 * Select the interface for outgoing multicast packets.
   2466 		 */
   2467 		error = sockopt_get(sopt, &ifindex, sizeof(ifindex));
   2468 		if (error != 0)
   2469 			break;
   2470 
   2471 		s = pserialize_read_enter();
   2472 		if (ifindex != 0) {
   2473 			if ((ifp = if_byindex(ifindex)) == NULL) {
   2474 				pserialize_read_exit(s);
   2475 				error = ENXIO;	/* XXX EINVAL? */
   2476 				break;
   2477 			}
   2478 			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
   2479 				pserialize_read_exit(s);
   2480 				error = EADDRNOTAVAIL;
   2481 				break;
   2482 			}
   2483 		} else
   2484 			ifp = NULL;
   2485 		im6o->im6o_multicast_if_index = if_get_index(ifp);
   2486 		pserialize_read_exit(s);
   2487 		break;
   2488 	    }
   2489 
   2490 	case IPV6_MULTICAST_HOPS:
   2491 	    {
   2492 		/*
   2493 		 * Set the IP6 hoplimit for outgoing multicast packets.
   2494 		 */
   2495 		int optval;
   2496 
   2497 		error = sockopt_getint(sopt, &optval);
   2498 		if (error != 0)
   2499 			break;
   2500 
   2501 		if (optval < -1 || optval >= 256)
   2502 			error = EINVAL;
   2503 		else if (optval == -1)
   2504 			im6o->im6o_multicast_hlim = ip6_defmcasthlim;
   2505 		else
   2506 			im6o->im6o_multicast_hlim = optval;
   2507 		break;
   2508 	    }
   2509 
   2510 	case IPV6_MULTICAST_LOOP:
   2511 		/*
   2512 		 * Set the loopback flag for outgoing multicast packets.
   2513 		 * Must be zero or one.
   2514 		 */
   2515 		error = sockopt_get(sopt, &loop, sizeof(loop));
   2516 		if (error != 0)
   2517 			break;
   2518 		if (loop > 1) {
   2519 			error = EINVAL;
   2520 			break;
   2521 		}
   2522 		im6o->im6o_multicast_loop = loop;
   2523 		break;
   2524 
   2525 	case IPV6_JOIN_GROUP: {
   2526 		int bound;
   2527 		struct psref psref;
   2528 		/*
   2529 		 * Add a multicast group membership.
   2530 		 * Group must be a valid IP6 multicast address.
   2531 		 */
   2532 		bound = curlwp_bind();
   2533 		ifp = NULL;
   2534 		error = ip6_get_membership(sopt, &ifp, &psref, &ia, sizeof(ia));
   2535 		if (error != 0) {
   2536 			KASSERT(ifp == NULL);
   2537 			curlwp_bindx(bound);
   2538 			return error;
   2539 		}
   2540 
   2541 		if (IN6_IS_ADDR_V4MAPPED(&ia)) {
   2542 			error = ip_setmoptions(&inp->inp_moptions, sopt);
   2543 			goto put_break;
   2544 		}
   2545 		/*
   2546 		 * See if we found an interface, and confirm that it
   2547 		 * supports multicast
   2548 		 */
   2549 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   2550 			error = EADDRNOTAVAIL;
   2551 			goto put_break;
   2552 		}
   2553 
   2554 		if (in6_setscope(&ia, ifp, NULL)) {
   2555 			error = EADDRNOTAVAIL; /* XXX: should not happen */
   2556 			goto put_break;
   2557 		}
   2558 
   2559 		/*
   2560 		 * See if the membership already exists.
   2561 		 */
   2562 		LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) {
   2563 			if (imm->i6mm_maddr->in6m_ifp == ifp &&
   2564 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
   2565 			    &ia))
   2566 				goto put_break;
   2567 		}
   2568 		if (imm != NULL) {
   2569 			error = EADDRINUSE;
   2570 			goto put_break;
   2571 		}
   2572 		/*
   2573 		 * Everything looks good; add a new record to the multicast
   2574 		 * address list for the given interface.
   2575 		 */
   2576 		imm = in6_joingroup(ifp, &ia, &error, 0);
   2577 		if (imm == NULL)
   2578 			goto put_break;
   2579 		LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
   2580 	    put_break:
   2581 		if_put(ifp, &psref);
   2582 		curlwp_bindx(bound);
   2583 		break;
   2584 	    }
   2585 
   2586 	case IPV6_LEAVE_GROUP: {
   2587 		/*
   2588 		 * Drop a multicast group membership.
   2589 		 * Group must be a valid IP6 multicast address.
   2590 		 */
   2591 		error = sockopt_get(sopt, &mreq, sizeof(mreq));
   2592 		if (error != 0)
   2593 			break;
   2594 
   2595 		if (IN6_IS_ADDR_V4MAPPED(&mreq.ipv6mr_multiaddr)) {
   2596 			error = ip_setmoptions(&inp->inp_moptions, sopt);
   2597 			break;
   2598 		}
   2599 		/*
   2600 		 * If an interface address was specified, get a pointer
   2601 		 * to its ifnet structure.
   2602 		 */
   2603 		if (mreq.ipv6mr_interface != 0) {
   2604 			if ((ifp = if_byindex(mreq.ipv6mr_interface)) == NULL) {
   2605 				error = ENXIO;	/* XXX EINVAL? */
   2606 				break;
   2607 			}
   2608 		} else
   2609 			ifp = NULL;
   2610 
   2611 		/* Fill in the scope zone ID */
   2612 		if (ifp) {
   2613 			if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) {
   2614 				/* XXX: should not happen */
   2615 				error = EADDRNOTAVAIL;
   2616 				break;
   2617 			}
   2618 		} else if (mreq.ipv6mr_interface != 0) {
   2619 			/*
   2620 			 * XXX: This case would happens when the (positive)
   2621 			 * index is in the valid range, but the corresponding
   2622 			 * interface has been detached dynamically.  The above
   2623 			 * check probably avoids such case to happen here, but
   2624 			 * we check it explicitly for safety.
   2625 			 */
   2626 			error = EADDRNOTAVAIL;
   2627 			break;
   2628 		} else {	/* ipv6mr_interface == 0 */
   2629 			struct sockaddr_in6 sa6_mc;
   2630 
   2631 			/*
   2632 			 * The API spec says as follows:
   2633 			 *  If the interface index is specified as 0, the
   2634 			 *  system may choose a multicast group membership to
   2635 			 *  drop by matching the multicast address only.
   2636 			 * On the other hand, we cannot disambiguate the scope
   2637 			 * zone unless an interface is provided.  Thus, we
   2638 			 * check if there's ambiguity with the default scope
   2639 			 * zone as the last resort.
   2640 			 */
   2641 			sockaddr_in6_init(&sa6_mc, &mreq.ipv6mr_multiaddr,
   2642 			    0, 0, 0);
   2643 			error = sa6_embedscope(&sa6_mc, ip6_use_defzone);
   2644 			if (error != 0)
   2645 				break;
   2646 			mreq.ipv6mr_multiaddr = sa6_mc.sin6_addr;
   2647 		}
   2648 
   2649 		/*
   2650 		 * Find the membership in the membership list.
   2651 		 */
   2652 		LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) {
   2653 			if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
   2654 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
   2655 			    &mreq.ipv6mr_multiaddr))
   2656 				break;
   2657 		}
   2658 		if (imm == NULL) {
   2659 			/* Unable to resolve interface */
   2660 			error = EADDRNOTAVAIL;
   2661 			break;
   2662 		}
   2663 		/*
   2664 		 * Give up the multicast address record to which the
   2665 		 * membership points.
   2666 		 */
   2667 		LIST_REMOVE(imm, i6mm_chain);
   2668 		in6_leavegroup(imm);
   2669 		/* in6m_ifp should not leave thanks to inp_lock */
   2670 		break;
   2671 	    }
   2672 
   2673 	default:
   2674 		error = EOPNOTSUPP;
   2675 		break;
   2676 	}
   2677 
   2678 	/*
   2679 	 * If all options have default values, no need to keep the mbuf.
   2680 	 */
   2681 	if (im6o->im6o_multicast_if_index == 0 &&
   2682 	    im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
   2683 	    im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
   2684 	    LIST_EMPTY(&im6o->im6o_memberships)) {
   2685 		free(in6p_moptions(inp), M_IPMOPTS);
   2686 		in6p_moptions(inp) = NULL;
   2687 	}
   2688 
   2689 	return (error);
   2690 }
   2691 
   2692 /*
   2693  * Return the IP6 multicast options in response to user getsockopt().
   2694  */
   2695 static int
   2696 ip6_getmoptions(struct sockopt *sopt, struct inpcb *inp)
   2697 {
   2698 	u_int optval;
   2699 	int error;
   2700 	struct ip6_moptions *im6o = in6p_moptions(inp);
   2701 
   2702 	switch (sopt->sopt_name) {
   2703 	case IPV6_MULTICAST_IF:
   2704 		if (im6o == NULL || im6o->im6o_multicast_if_index == 0)
   2705 			optval = 0;
   2706 		else
   2707 			optval = im6o->im6o_multicast_if_index;
   2708 
   2709 		error = sockopt_set(sopt, &optval, sizeof(optval));
   2710 		break;
   2711 
   2712 	case IPV6_MULTICAST_HOPS:
   2713 		if (im6o == NULL)
   2714 			optval = ip6_defmcasthlim;
   2715 		else
   2716 			optval = im6o->im6o_multicast_hlim;
   2717 
   2718 		error = sockopt_set(sopt, &optval, sizeof(optval));
   2719 		break;
   2720 
   2721 	case IPV6_MULTICAST_LOOP:
   2722 		if (im6o == NULL)
   2723 			optval = IPV6_DEFAULT_MULTICAST_LOOP;
   2724 		else
   2725 			optval = im6o->im6o_multicast_loop;
   2726 
   2727 		error = sockopt_set(sopt, &optval, sizeof(optval));
   2728 		break;
   2729 
   2730 	default:
   2731 		error = EOPNOTSUPP;
   2732 	}
   2733 
   2734 	return (error);
   2735 }
   2736 
   2737 /*
   2738  * Discard the IP6 multicast options.
   2739  */
   2740 void
   2741 ip6_freemoptions(struct ip6_moptions *im6o)
   2742 {
   2743 	struct in6_multi_mship *imm, *nimm;
   2744 
   2745 	if (im6o == NULL)
   2746 		return;
   2747 
   2748 	/* The owner of im6o (inp) should be protected by solock */
   2749 	LIST_FOREACH_SAFE(imm, &im6o->im6o_memberships, i6mm_chain, nimm) {
   2750 		LIST_REMOVE(imm, i6mm_chain);
   2751 		in6_leavegroup(imm);
   2752 	}
   2753 	free(im6o, M_IPMOPTS);
   2754 }
   2755 
   2756 /*
   2757  * Set IPv6 outgoing packet options based on advanced API.
   2758  */
   2759 int
   2760 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
   2761 	struct ip6_pktopts *stickyopt, kauth_cred_t cred, int uproto)
   2762 {
   2763 	struct cmsghdr *cm = 0;
   2764 
   2765 	if (control == NULL || opt == NULL)
   2766 		return (EINVAL);
   2767 
   2768 	ip6_initpktopts(opt);
   2769 	if (stickyopt) {
   2770 		int error;
   2771 
   2772 		/*
   2773 		 * If stickyopt is provided, make a local copy of the options
   2774 		 * for this particular packet, then override them by ancillary
   2775 		 * objects.
   2776 		 * XXX: copypktopts() does not copy the cached route to a next
   2777 		 * hop (if any).  This is not very good in terms of efficiency,
   2778 		 * but we can allow this since this option should be rarely
   2779 		 * used.
   2780 		 */
   2781 		if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
   2782 			return (error);
   2783 	}
   2784 
   2785 	/*
   2786 	 * XXX: Currently, we assume all the optional information is stored
   2787 	 * in a single mbuf.
   2788 	 */
   2789 	if (control->m_next)
   2790 		return (EINVAL);
   2791 
   2792 	/* XXX if cm->cmsg_len is not aligned, control->m_len can become <0 */
   2793 	for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
   2794 	    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
   2795 		int error;
   2796 
   2797 		if (control->m_len < CMSG_LEN(0))
   2798 			return (EINVAL);
   2799 
   2800 		cm = mtod(control, struct cmsghdr *);
   2801 		if (cm->cmsg_len < CMSG_LEN(0) || cm->cmsg_len > control->m_len)
   2802 			return (EINVAL);
   2803 		if (cm->cmsg_level != IPPROTO_IPV6)
   2804 			continue;
   2805 
   2806 		error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
   2807 		    cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
   2808 		if (error)
   2809 			return (error);
   2810 	}
   2811 
   2812 	return (0);
   2813 }
   2814 
   2815 /*
   2816  * Set a particular packet option, as a sticky option or an ancillary data
   2817  * item.  "len" can be 0 only when it's a sticky option.
   2818  * We have 4 cases of combination of "sticky" and "cmsg":
   2819  * "sticky=0, cmsg=0": impossible
   2820  * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
   2821  * "sticky=1, cmsg=0": RFC3542 socket option
   2822  * "sticky=1, cmsg=1": RFC2292 socket option
   2823  */
   2824 static int
   2825 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
   2826     kauth_cred_t cred, int sticky, int cmsg, int uproto)
   2827 {
   2828 	int minmtupolicy;
   2829 	int error;
   2830 
   2831 	if (!sticky && !cmsg) {
   2832 #ifdef DIAGNOSTIC
   2833 		printf("ip6_setpktopt: impossible case\n");
   2834 #endif
   2835 		return (EINVAL);
   2836 	}
   2837 
   2838 	/*
   2839 	 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
   2840 	 * not be specified in the context of RFC3542.  Conversely,
   2841 	 * RFC3542 types should not be specified in the context of RFC2292.
   2842 	 */
   2843 	if (!cmsg) {
   2844 		switch (optname) {
   2845 		case IPV6_2292PKTINFO:
   2846 		case IPV6_2292HOPLIMIT:
   2847 		case IPV6_2292NEXTHOP:
   2848 		case IPV6_2292HOPOPTS:
   2849 		case IPV6_2292DSTOPTS:
   2850 		case IPV6_2292RTHDR:
   2851 		case IPV6_2292PKTOPTIONS:
   2852 			return (ENOPROTOOPT);
   2853 		}
   2854 	}
   2855 	if (sticky && cmsg) {
   2856 		switch (optname) {
   2857 		case IPV6_PKTINFO:
   2858 		case IPV6_HOPLIMIT:
   2859 		case IPV6_NEXTHOP:
   2860 		case IPV6_HOPOPTS:
   2861 		case IPV6_DSTOPTS:
   2862 		case IPV6_RTHDRDSTOPTS:
   2863 		case IPV6_RTHDR:
   2864 		case IPV6_USE_MIN_MTU:
   2865 		case IPV6_DONTFRAG:
   2866 		case IPV6_OTCLASS:
   2867 		case IPV6_TCLASS:
   2868 		case IPV6_PREFER_TEMPADDR: /* XXX not an RFC3542 option */
   2869 			return (ENOPROTOOPT);
   2870 		}
   2871 	}
   2872 
   2873 	switch (optname) {
   2874 #ifdef RFC2292
   2875 	case IPV6_2292PKTINFO:
   2876 #endif
   2877 	case IPV6_PKTINFO:
   2878 	{
   2879 		struct in6_pktinfo *pktinfo;
   2880 
   2881 		if (len != sizeof(struct in6_pktinfo))
   2882 			return (EINVAL);
   2883 
   2884 		pktinfo = (struct in6_pktinfo *)buf;
   2885 
   2886 		/*
   2887 		 * An application can clear any sticky IPV6_PKTINFO option by
   2888 		 * doing a "regular" setsockopt with ipi6_addr being
   2889 		 * in6addr_any and ipi6_ifindex being zero.
   2890 		 * [RFC 3542, Section 6]
   2891 		 */
   2892 		if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
   2893 		    pktinfo->ipi6_ifindex == 0 &&
   2894 		    IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
   2895 			ip6_clearpktopts(opt, optname);
   2896 			break;
   2897 		}
   2898 
   2899 		if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
   2900 		    sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
   2901 			return (EINVAL);
   2902 		}
   2903 
   2904 		/* Validate the interface index if specified. */
   2905 		if (pktinfo->ipi6_ifindex) {
   2906 			struct ifnet *ifp;
   2907 			int s = pserialize_read_enter();
   2908 			ifp = if_byindex(pktinfo->ipi6_ifindex);
   2909 			if (ifp == NULL) {
   2910 				pserialize_read_exit(s);
   2911 				return ENXIO;
   2912 			}
   2913 			pserialize_read_exit(s);
   2914 		}
   2915 
   2916 		/*
   2917 		 * We store the address anyway, and let in6_selectsrc()
   2918 		 * validate the specified address.  This is because ipi6_addr
   2919 		 * may not have enough information about its scope zone, and
   2920 		 * we may need additional information (such as outgoing
   2921 		 * interface or the scope zone of a destination address) to
   2922 		 * disambiguate the scope.
   2923 		 * XXX: the delay of the validation may confuse the
   2924 		 * application when it is used as a sticky option.
   2925 		 */
   2926 		if (opt->ip6po_pktinfo == NULL) {
   2927 			opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
   2928 			    M_IP6OPT, M_NOWAIT);
   2929 			if (opt->ip6po_pktinfo == NULL)
   2930 				return (ENOBUFS);
   2931 		}
   2932 		memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo));
   2933 		break;
   2934 	}
   2935 
   2936 #ifdef RFC2292
   2937 	case IPV6_2292HOPLIMIT:
   2938 #endif
   2939 	case IPV6_HOPLIMIT:
   2940 	{
   2941 		int *hlimp;
   2942 
   2943 		/*
   2944 		 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
   2945 		 * to simplify the ordering among hoplimit options.
   2946 		 */
   2947 		if (optname == IPV6_HOPLIMIT && sticky)
   2948 			return (ENOPROTOOPT);
   2949 
   2950 		if (len != sizeof(int))
   2951 			return (EINVAL);
   2952 		hlimp = (int *)buf;
   2953 		if (*hlimp < -1 || *hlimp > 255)
   2954 			return (EINVAL);
   2955 
   2956 		opt->ip6po_hlim = *hlimp;
   2957 		break;
   2958 	}
   2959 
   2960 	case IPV6_OTCLASS:
   2961 		if (len != sizeof(u_int8_t))
   2962 			return (EINVAL);
   2963 
   2964 		opt->ip6po_tclass = *(u_int8_t *)buf;
   2965 		break;
   2966 
   2967 	case IPV6_TCLASS:
   2968 	{
   2969 		int tclass;
   2970 
   2971 		if (len != sizeof(int))
   2972 			return (EINVAL);
   2973 		tclass = *(int *)buf;
   2974 		if (tclass < -1 || tclass > 255)
   2975 			return (EINVAL);
   2976 
   2977 		opt->ip6po_tclass = tclass;
   2978 		break;
   2979 	}
   2980 
   2981 #ifdef RFC2292
   2982 	case IPV6_2292NEXTHOP:
   2983 #endif
   2984 	case IPV6_NEXTHOP:
   2985 		error = kauth_authorize_network(cred,
   2986 		    KAUTH_NETWORK_IPV6,
   2987 		    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
   2988 		if (error)
   2989 			return (error);
   2990 
   2991 		if (len == 0) {	/* just remove the option */
   2992 			ip6_clearpktopts(opt, IPV6_NEXTHOP);
   2993 			break;
   2994 		}
   2995 
   2996 		/* check if cmsg_len is large enough for sa_len */
   2997 		if (len < sizeof(struct sockaddr) || len < *buf)
   2998 			return (EINVAL);
   2999 
   3000 		switch (((struct sockaddr *)buf)->sa_family) {
   3001 		case AF_INET6:
   3002 		{
   3003 			struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
   3004 
   3005 			if (sa6->sin6_len != sizeof(struct sockaddr_in6))
   3006 				return (EINVAL);
   3007 
   3008 			if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
   3009 			    IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
   3010 				return (EINVAL);
   3011 			}
   3012 			if ((error = sa6_embedscope(sa6, ip6_use_defzone))
   3013 			    != 0) {
   3014 				return (error);
   3015 			}
   3016 			break;
   3017 		}
   3018 		case AF_LINK:	/* eventually be supported? */
   3019 		default:
   3020 			return (EAFNOSUPPORT);
   3021 		}
   3022 
   3023 		/* turn off the previous option, then set the new option. */
   3024 		ip6_clearpktopts(opt, IPV6_NEXTHOP);
   3025 		opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
   3026 		if (opt->ip6po_nexthop == NULL)
   3027 			return (ENOBUFS);
   3028 		memcpy(opt->ip6po_nexthop, buf, *buf);
   3029 		break;
   3030 
   3031 #ifdef RFC2292
   3032 	case IPV6_2292HOPOPTS:
   3033 #endif
   3034 	case IPV6_HOPOPTS:
   3035 	{
   3036 		struct ip6_hbh *hbh;
   3037 		int hbhlen;
   3038 
   3039 		/*
   3040 		 * XXX: We don't allow a non-privileged user to set ANY HbH
   3041 		 * options, since per-option restriction has too much
   3042 		 * overhead.
   3043 		 */
   3044 		error = kauth_authorize_network(cred,
   3045 		    KAUTH_NETWORK_IPV6,
   3046 		    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
   3047 		if (error)
   3048 			return (error);
   3049 
   3050 		if (len == 0) {
   3051 			ip6_clearpktopts(opt, IPV6_HOPOPTS);
   3052 			break;	/* just remove the option */
   3053 		}
   3054 
   3055 		/* message length validation */
   3056 		if (len < sizeof(struct ip6_hbh))
   3057 			return (EINVAL);
   3058 		hbh = (struct ip6_hbh *)buf;
   3059 		hbhlen = (hbh->ip6h_len + 1) << 3;
   3060 		if (len != hbhlen)
   3061 			return (EINVAL);
   3062 
   3063 		/* turn off the previous option, then set the new option. */
   3064 		ip6_clearpktopts(opt, IPV6_HOPOPTS);
   3065 		opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
   3066 		if (opt->ip6po_hbh == NULL)
   3067 			return (ENOBUFS);
   3068 		memcpy(opt->ip6po_hbh, hbh, hbhlen);
   3069 
   3070 		break;
   3071 	}
   3072 
   3073 #ifdef RFC2292
   3074 	case IPV6_2292DSTOPTS:
   3075 #endif
   3076 	case IPV6_DSTOPTS:
   3077 	case IPV6_RTHDRDSTOPTS:
   3078 	{
   3079 		struct ip6_dest *dest, **newdest = NULL;
   3080 		int destlen;
   3081 
   3082 		/* XXX: see the comment for IPV6_HOPOPTS */
   3083 		error = kauth_authorize_network(cred,
   3084 		    KAUTH_NETWORK_IPV6,
   3085 		    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
   3086 		if (error)
   3087 			return (error);
   3088 
   3089 		if (len == 0) {
   3090 			ip6_clearpktopts(opt, optname);
   3091 			break;	/* just remove the option */
   3092 		}
   3093 
   3094 		/* message length validation */
   3095 		if (len < sizeof(struct ip6_dest))
   3096 			return (EINVAL);
   3097 		dest = (struct ip6_dest *)buf;
   3098 		destlen = (dest->ip6d_len + 1) << 3;
   3099 		if (len != destlen)
   3100 			return (EINVAL);
   3101 		/*
   3102 		 * Determine the position that the destination options header
   3103 		 * should be inserted; before or after the routing header.
   3104 		 */
   3105 		switch (optname) {
   3106 		case IPV6_2292DSTOPTS:
   3107 			/*
   3108 			 * The old advanced API is ambiguous on this point.
   3109 			 * Our approach is to determine the position based
   3110 			 * according to the existence of a routing header.
   3111 			 * Note, however, that this depends on the order of the
   3112 			 * extension headers in the ancillary data; the 1st
   3113 			 * part of the destination options header must appear
   3114 			 * before the routing header in the ancillary data,
   3115 			 * too.
   3116 			 * RFC3542 solved the ambiguity by introducing
   3117 			 * separate ancillary data or option types.
   3118 			 */
   3119 			if (opt->ip6po_rthdr == NULL)
   3120 				newdest = &opt->ip6po_dest1;
   3121 			else
   3122 				newdest = &opt->ip6po_dest2;
   3123 			break;
   3124 		case IPV6_RTHDRDSTOPTS:
   3125 			newdest = &opt->ip6po_dest1;
   3126 			break;
   3127 		case IPV6_DSTOPTS:
   3128 			newdest = &opt->ip6po_dest2;
   3129 			break;
   3130 		}
   3131 
   3132 		/* turn off the previous option, then set the new option. */
   3133 		ip6_clearpktopts(opt, optname);
   3134 		*newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
   3135 		if (*newdest == NULL)
   3136 			return (ENOBUFS);
   3137 		memcpy(*newdest, dest, destlen);
   3138 
   3139 		break;
   3140 	}
   3141 
   3142 #ifdef RFC2292
   3143 	case IPV6_2292RTHDR:
   3144 #endif
   3145 	case IPV6_RTHDR:
   3146 	{
   3147 		struct ip6_rthdr *rth;
   3148 		int rthlen;
   3149 
   3150 		if (len == 0) {
   3151 			ip6_clearpktopts(opt, IPV6_RTHDR);
   3152 			break;	/* just remove the option */
   3153 		}
   3154 
   3155 		/* message length validation */
   3156 		if (len < sizeof(struct ip6_rthdr))
   3157 			return (EINVAL);
   3158 		rth = (struct ip6_rthdr *)buf;
   3159 		rthlen = (rth->ip6r_len + 1) << 3;
   3160 		if (len != rthlen)
   3161 			return (EINVAL);
   3162 		switch (rth->ip6r_type) {
   3163 		case IPV6_RTHDR_TYPE_0:
   3164 			/* Dropped, RFC5095. */
   3165 		default:
   3166 			return (EINVAL);	/* not supported */
   3167 		}
   3168 		/* turn off the previous option */
   3169 		ip6_clearpktopts(opt, IPV6_RTHDR);
   3170 		opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
   3171 		if (opt->ip6po_rthdr == NULL)
   3172 			return (ENOBUFS);
   3173 		memcpy(opt->ip6po_rthdr, rth, rthlen);
   3174 		break;
   3175 	}
   3176 
   3177 	case IPV6_USE_MIN_MTU:
   3178 		if (len != sizeof(int))
   3179 			return (EINVAL);
   3180 		minmtupolicy = *(int *)buf;
   3181 		if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
   3182 		    minmtupolicy != IP6PO_MINMTU_DISABLE &&
   3183 		    minmtupolicy != IP6PO_MINMTU_ALL) {
   3184 			return (EINVAL);
   3185 		}
   3186 		opt->ip6po_minmtu = minmtupolicy;
   3187 		break;
   3188 
   3189 	case IPV6_DONTFRAG:
   3190 		if (len != sizeof(int))
   3191 			return (EINVAL);
   3192 
   3193 		if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
   3194 			/*
   3195 			 * we ignore this option for TCP sockets.
   3196 			 * (RFC3542 leaves this case unspecified.)
   3197 			 */
   3198 			opt->ip6po_flags &= ~IP6PO_DONTFRAG;
   3199 		} else
   3200 			opt->ip6po_flags |= IP6PO_DONTFRAG;
   3201 		break;
   3202 
   3203 	case IPV6_PREFER_TEMPADDR:
   3204 	{
   3205 		int preftemp;
   3206 
   3207 		if (len != sizeof(int))
   3208 			return (EINVAL);
   3209 		preftemp = *(int *)buf;
   3210 		switch (preftemp) {
   3211 		case IP6PO_TEMPADDR_SYSTEM:
   3212 		case IP6PO_TEMPADDR_NOTPREFER:
   3213 		case IP6PO_TEMPADDR_PREFER:
   3214 			break;
   3215 		default:
   3216 			return (EINVAL);
   3217 		}
   3218 		opt->ip6po_prefer_tempaddr = preftemp;
   3219 		break;
   3220 	}
   3221 
   3222 	default:
   3223 		return (ENOPROTOOPT);
   3224 	} /* end of switch */
   3225 
   3226 	return (0);
   3227 }
   3228 
   3229 /*
   3230  * Routine called from ip6_output() to loop back a copy of an IP6 multicast
   3231  * packet to the input queue of a specified interface.  Note that this
   3232  * calls the output routine of the loopback "driver", but with an interface
   3233  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
   3234  */
   3235 void
   3236 ip6_mloopback(struct ifnet *ifp, struct mbuf *m,
   3237 	const struct sockaddr_in6 *dst)
   3238 {
   3239 	struct mbuf *copym;
   3240 	struct ip6_hdr *ip6;
   3241 
   3242 	copym = m_copypacket(m, M_DONTWAIT);
   3243 	if (copym == NULL)
   3244 		return;
   3245 
   3246 	/*
   3247 	 * Make sure to deep-copy IPv6 header portion in case the data
   3248 	 * is in an mbuf cluster, so that we can safely override the IPv6
   3249 	 * header portion later.
   3250 	 */
   3251 	if ((copym->m_flags & M_EXT) != 0 ||
   3252 	    copym->m_len < sizeof(struct ip6_hdr)) {
   3253 		copym = m_pullup(copym, sizeof(struct ip6_hdr));
   3254 		if (copym == NULL)
   3255 			return;
   3256 	}
   3257 
   3258 #ifdef DIAGNOSTIC
   3259 	if (copym->m_len < sizeof(*ip6)) {
   3260 		m_freem(copym);
   3261 		return;
   3262 	}
   3263 #endif
   3264 
   3265 	ip6 = mtod(copym, struct ip6_hdr *);
   3266 	/*
   3267 	 * clear embedded scope identifiers if necessary.
   3268 	 * in6_clearscope will touch the addresses only when necessary.
   3269 	 */
   3270 	in6_clearscope(&ip6->ip6_src);
   3271 	in6_clearscope(&ip6->ip6_dst);
   3272 
   3273 	(void)looutput(ifp, copym, (const struct sockaddr *)dst, NULL);
   3274 }
   3275 
   3276 /*
   3277  * Chop IPv6 header off from the payload.
   3278  */
   3279 static int
   3280 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs)
   3281 {
   3282 	struct mbuf *mh;
   3283 	struct ip6_hdr *ip6;
   3284 
   3285 	ip6 = mtod(m, struct ip6_hdr *);
   3286 	if (m->m_len > sizeof(*ip6)) {
   3287 		MGETHDR(mh, M_DONTWAIT, MT_HEADER);
   3288 		if (mh == NULL) {
   3289 			m_freem(m);
   3290 			return ENOBUFS;
   3291 		}
   3292 		m_move_pkthdr(mh, m);
   3293 		m_align(mh, sizeof(*ip6));
   3294 		m->m_len -= sizeof(*ip6);
   3295 		m->m_data += sizeof(*ip6);
   3296 		mh->m_next = m;
   3297 		mh->m_len = sizeof(*ip6);
   3298 		memcpy(mtod(mh, void *), (void *)ip6, sizeof(*ip6));
   3299 		m = mh;
   3300 	}
   3301 	exthdrs->ip6e_ip6 = m;
   3302 	return 0;
   3303 }
   3304 
   3305 /*
   3306  * Compute IPv6 extension header length.
   3307  */
   3308 int
   3309 ip6_optlen(struct inpcb *inp)
   3310 {
   3311 	int len;
   3312 
   3313 	if (!in6p_outputopts(inp))
   3314 		return 0;
   3315 
   3316 	len = 0;
   3317 #define elen(x) \
   3318     (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
   3319 
   3320 	len += elen(in6p_outputopts(inp)->ip6po_hbh);
   3321 	len += elen(in6p_outputopts(inp)->ip6po_dest1);
   3322 	len += elen(in6p_outputopts(inp)->ip6po_rthdr);
   3323 	len += elen(in6p_outputopts(inp)->ip6po_dest2);
   3324 	return len;
   3325 #undef elen
   3326 }
   3327 
   3328 /*
   3329  * Ensure sending address is valid.
   3330  * Returns 0 on success, -1 if an error should be sent back or 1
   3331  * if the packet could be dropped without error (protocol dependent).
   3332  */
   3333 static int
   3334 ip6_ifaddrvalid(const struct in6_addr *src, const struct in6_addr *dst)
   3335 {
   3336 	struct sockaddr_in6 sin6;
   3337 	int s, error;
   3338 	struct ifaddr *ifa;
   3339 	struct in6_ifaddr *ia6;
   3340 
   3341 	if (IN6_IS_ADDR_UNSPECIFIED(src))
   3342 		return 0;
   3343 
   3344 	memset(&sin6, 0, sizeof(sin6));
   3345 	sin6.sin6_family = AF_INET6;
   3346 	sin6.sin6_len = sizeof(sin6);
   3347 	sin6.sin6_addr = *src;
   3348 
   3349 	s = pserialize_read_enter();
   3350 	ifa = ifa_ifwithaddr(sin6tosa(&sin6));
   3351 	if ((ia6 = ifatoia6(ifa)) == NULL ||
   3352 	    ia6->ia6_flags & (IN6_IFF_ANYCAST | IN6_IFF_DUPLICATED))
   3353 		error = -1;
   3354 	else if (ia6->ia6_flags & IN6_IFF_TENTATIVE)
   3355 		error = 1;
   3356 	else if (ia6->ia6_flags & IN6_IFF_DETACHED &&
   3357 	    (sin6.sin6_addr = *dst, ifa_ifwithaddr(sin6tosa(&sin6)) == NULL))
   3358 		/* Allow internal traffic to DETACHED addresses */
   3359 		error = 1;
   3360 	else
   3361 		error = 0;
   3362 	pserialize_read_exit(s);
   3363 
   3364 	return error;
   3365 }
   3366