Home | History | Annotate | Line # | Download | only in netinet
      1 /*	$NetBSD: ip_mroute.c,v 1.166 2025/06/11 02:44:13 ozaki-r Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1992, 1993
      5  *      The Regents of the University of California.  All rights reserved.
      6  *
      7  * This code is derived from software contributed to Berkeley by
      8  * Stephen Deering of Stanford University.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. Neither the name of the University nor the names of its contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  *
     34  *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
     35  */
     36 
     37 /*
     38  * Copyright (c) 1989 Stephen Deering
     39  *
     40  * This code is derived from software contributed to Berkeley by
     41  * Stephen Deering of Stanford University.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *      This product includes software developed by the University of
     54  *      California, Berkeley and its contributors.
     55  * 4. Neither the name of the University nor the names of its contributors
     56  *    may be used to endorse or promote products derived from this software
     57  *    without specific prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69  * SUCH DAMAGE.
     70  *
     71  *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
     72  */
     73 
     74 /*
     75  * IP multicast forwarding procedures
     76  *
     77  * Written by David Waitzman, BBN Labs, August 1988.
     78  * Modified by Steve Deering, Stanford, February 1989.
     79  * Modified by Mark J. Steiglitz, Stanford, May, 1991
     80  * Modified by Van Jacobson, LBL, January 1993
     81  * Modified by Ajit Thyagarajan, PARC, August 1993
     82  * Modified by Bill Fenner, PARC, April 1994
     83  * Modified by Charles M. Hannum, NetBSD, May 1995.
     84  * Modified by Ahmed Helmy, SGI, June 1996
     85  * Modified by George Edmond Eddy (Rusty), ISI, February 1998
     86  * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
     87  * Modified by Hitoshi Asaeda, WIDE, August 2000
     88  * Modified by Pavlin Radoslavov, ICSI, October 2002
     89  *
     90  * MROUTING Revision: 1.2
     91  * and PIM-SMv2 and PIM-DM support, advanced API support,
     92  * bandwidth metering and signaling
     93  */
     94 
     95 #include <sys/cdefs.h>
     96 __KERNEL_RCSID(0, "$NetBSD: ip_mroute.c,v 1.166 2025/06/11 02:44:13 ozaki-r Exp $");
     97 
     98 #ifdef _KERNEL_OPT
     99 #include "opt_inet.h"
    100 #include "opt_ipsec.h"
    101 #include "opt_pim.h"
    102 #endif
    103 
    104 #ifdef PIM
    105 #define _PIM_VT 1
    106 #endif
    107 
    108 #include <sys/param.h>
    109 #include <sys/systm.h>
    110 #include <sys/callout.h>
    111 #include <sys/mbuf.h>
    112 #include <sys/socket.h>
    113 #include <sys/socketvar.h>
    114 #include <sys/errno.h>
    115 #include <sys/time.h>
    116 #include <sys/kernel.h>
    117 #include <sys/kmem.h>
    118 #include <sys/ioctl.h>
    119 #include <sys/syslog.h>
    120 
    121 #include <net/if.h>
    122 #include <net/raw_cb.h>
    123 
    124 #include <netinet/in.h>
    125 #include <netinet/in_var.h>
    126 #include <netinet/in_systm.h>
    127 #include <netinet/in_offload.h>
    128 #include <netinet/ip.h>
    129 #include <netinet/ip_var.h>
    130 #include <netinet/in_pcb.h>
    131 #include <netinet/udp.h>
    132 #include <netinet/igmp.h>
    133 #include <netinet/igmp_var.h>
    134 #include <netinet/ip_mroute.h>
    135 #ifdef PIM
    136 #include <netinet/pim.h>
    137 #include <netinet/pim_var.h>
    138 #endif
    139 #include <netinet/ip_encap.h>
    140 
    141 #ifdef IPSEC
    142 #include <netipsec/ipsec.h>
    143 #include <netipsec/key.h>
    144 #endif
    145 
    146 #define IP_MULTICASTOPTS 0
    147 #define	M_PULLUP(m, len)						 \
    148 	do {								 \
    149 		if ((m) && ((m)->m_flags & M_EXT || (m)->m_len < (len))) \
    150 			(m) = m_pullup((m), (len));			 \
    151 	} while (/*CONSTCOND*/ 0)
    152 
    153 /*
    154  * Globals.  All but ip_mrouter and ip_mrtproto could be static,
    155  * except for netstat or debugging purposes.
    156  */
    157 struct socket  *ip_mrouter  = NULL;
    158 int		ip_mrtproto = IGMP_DVMRP;    /* for netstat only */
    159 
    160 #define	MFCHASH(a, g)							\
    161 	((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^	\
    162 	  ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & mfchash)
    163 LIST_HEAD(mfchashhdr, mfc) *mfchashtbl;
    164 u_long	mfchash;
    165 
    166 u_char		nexpire[MFCTBLSIZ];
    167 struct vif	viftable[MAXVIFS];
    168 struct mrtstat	mrtstat;
    169 u_int		mrtdebug = 0;	/* debug level */
    170 #define		DEBUG_MFC	0x02
    171 #define		DEBUG_FORWARD	0x04
    172 #define		DEBUG_EXPIRE	0x08
    173 #define		DEBUG_XMIT	0x10
    174 #define		DEBUG_PIM	0x20
    175 
    176 #define		VIFI_INVALID	((vifi_t) -1)
    177 
    178 u_int tbfdebug = 0;	/* tbf debug level */
    179 
    180 /* vif attachment using sys/netinet/ip_encap.c */
    181 static void vif_input(struct mbuf *, int, int, void *);
    182 static int vif_encapcheck(struct mbuf *, int, int, void *);
    183 
    184 static const struct encapsw vif_encapsw = {
    185 	.encapsw4 = {
    186 		.pr_input	= vif_input,
    187 		.pr_ctlinput	= NULL,
    188 	}
    189 };
    190 
    191 #define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second */
    192 #define		UPCALL_EXPIRE	6		/* number of timeouts */
    193 
    194 /*
    195  * Define the token bucket filter structures
    196  */
    197 
    198 #define		TBF_REPROCESS	(hz / 100)	/* 100x / second */
    199 
    200 static int get_sg_cnt(struct sioc_sg_req *);
    201 static int get_vif_cnt(struct sioc_vif_req *);
    202 static int ip_mrouter_init(struct socket *, int);
    203 static int set_assert(int);
    204 static int add_vif(struct vifctl *);
    205 static int del_vif(vifi_t *);
    206 static void update_mfc_params(struct mfc *, struct mfcctl2 *);
    207 static void init_mfc_params(struct mfc *, struct mfcctl2 *);
    208 static void expire_mfc(struct mfc *);
    209 static int add_mfc(struct sockopt *);
    210 #ifdef UPCALL_TIMING
    211 static void collate(struct timeval *);
    212 #endif
    213 static int del_mfc(struct sockopt *);
    214 static int set_api_config(struct sockopt *); /* chose API capabilities */
    215 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
    216 static void expire_upcalls(void *);
    217 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *);
    218 static void phyint_send(struct ip *, struct vif *, struct mbuf *);
    219 static void encap_send(struct ip *, struct vif *, struct mbuf *);
    220 static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_int32_t);
    221 static void tbf_queue(struct vif *, struct mbuf *);
    222 static void tbf_process_q(struct vif *);
    223 static void tbf_reprocess_q(void *);
    224 static int tbf_dq_sel(struct vif *, struct ip *);
    225 static void tbf_send_packet(struct vif *, struct mbuf *);
    226 static void tbf_update_tokens(struct vif *);
    227 static int priority(struct vif *, struct ip *);
    228 static int ip_mforward_real(struct mbuf *, struct ifnet *);
    229 
    230 
    231 /*
    232  * Bandwidth monitoring
    233  */
    234 static void free_bw_list(struct bw_meter *);
    235 static int add_bw_upcall(struct bw_upcall *);
    236 static int del_bw_upcall(struct bw_upcall *);
    237 static void bw_meter_receive_packet(struct bw_meter *, int , struct timeval *);
    238 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *);
    239 static void bw_upcalls_send(void);
    240 static void schedule_bw_meter(struct bw_meter *, struct timeval *);
    241 static void unschedule_bw_meter(struct bw_meter *);
    242 static void bw_meter_process(void);
    243 static void expire_bw_upcalls_send(void *);
    244 static void expire_bw_meter_process(void *);
    245 
    246 #ifdef PIM
    247 static int pim_register_send(struct ip *, struct vif *,
    248     struct mbuf *, struct mfc *);
    249 static int pim_register_send_rp(struct ip *, struct vif *,
    250     struct mbuf *, struct mfc *);
    251 static int pim_register_send_upcall(struct ip *, struct vif *,
    252     struct mbuf *, struct mfc *);
    253 static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
    254 #endif
    255 
    256 #define	ENCAP_TTL	64
    257 #define	ENCAP_PROTO	IPPROTO_IPIP
    258 
    259 /* prototype IP hdr for encapsulated packets */
    260 static const struct ip multicast_encap_iphdr = {
    261 	.ip_hl = sizeof(struct ip) >> 2,
    262 	.ip_v = IPVERSION,
    263 	.ip_len = sizeof(struct ip),
    264 	.ip_ttl = ENCAP_TTL,
    265 	.ip_p = ENCAP_PROTO,
    266 };
    267 
    268 /*
    269  * Bandwidth meter variables and constants
    270  */
    271 
    272 /*
    273  * Pending timeouts are stored in a hash table, the key being the
    274  * expiration time. Periodically, the entries are analysed and processed.
    275  */
    276 #define BW_METER_BUCKETS	1024
    277 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
    278 struct callout bw_meter_ch;
    279 #define BW_METER_PERIOD (hz)		/* periodical handling of bw meters */
    280 
    281 /*
    282  * Pending upcalls are stored in a vector which is flushed when
    283  * full, or periodically
    284  */
    285 static struct bw_upcall	bw_upcalls[BW_UPCALLS_MAX];
    286 static u_int	bw_upcalls_n; /* # of pending upcalls */
    287 struct callout	bw_upcalls_ch;
    288 #define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
    289 
    290 #ifdef PIM
    291 struct pimstat pimstat;
    292 
    293 /*
    294  * Note: the PIM Register encapsulation adds the following in front of a
    295  * data packet:
    296  *
    297  * struct pim_encap_hdr {
    298  *     struct ip ip;
    299  *     struct pim_encap_pimhdr  pim;
    300  * }
    301  */
    302 
    303 struct pim_encap_pimhdr {
    304 	struct pim pim;
    305 	uint32_t   flags;
    306 };
    307 
    308 static struct ip pim_encap_iphdr = {
    309 	.ip_v = IPVERSION,
    310 	.ip_hl = sizeof(struct ip) >> 2,
    311 	.ip_len = sizeof(struct ip),
    312 	.ip_ttl = ENCAP_TTL,
    313 	.ip_p = IPPROTO_PIM,
    314 };
    315 
    316 static struct pim_encap_pimhdr pim_encap_pimhdr = {
    317     {
    318 	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
    319 	0,			/* reserved */
    320 	0,			/* checksum */
    321     },
    322     0				/* flags */
    323 };
    324 
    325 static struct ifnet multicast_register_if;
    326 static vifi_t reg_vif_num = VIFI_INVALID;
    327 #endif /* PIM */
    328 
    329 
    330 /*
    331  * Private variables.
    332  */
    333 static vifi_t	   numvifs = 0;
    334 
    335 static struct callout expire_upcalls_ch;
    336 
    337 /*
    338  * whether or not special PIM assert processing is enabled.
    339  */
    340 static int pim_assert;
    341 /*
    342  * Rate limit for assert notification messages, in usec
    343  */
    344 #define ASSERT_MSG_TIME		3000000
    345 
    346 /*
    347  * Kernel multicast routing API capabilities and setup.
    348  * If more API capabilities are added to the kernel, they should be
    349  * recorded in `mrt_api_support'.
    350  */
    351 static const u_int32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
    352 					  MRT_MFC_FLAGS_BORDER_VIF |
    353 					  MRT_MFC_RP |
    354 					  MRT_MFC_BW_UPCALL);
    355 static u_int32_t mrt_api_config = 0;
    356 
    357 /*
    358  * Find a route for a given origin IP address and Multicast group address
    359  * Type of service parameter to be added in the future!!!
    360  * Statistics are updated by the caller if needed
    361  * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
    362  */
    363 static struct mfc *
    364 mfc_find(struct in_addr *o, struct in_addr *g)
    365 {
    366 	struct mfc *rt;
    367 
    368 	LIST_FOREACH(rt, &mfchashtbl[MFCHASH(*o, *g)], mfc_hash) {
    369 		if (in_hosteq(rt->mfc_origin, *o) &&
    370 		    in_hosteq(rt->mfc_mcastgrp, *g) &&
    371 		    (rt->mfc_stall == NULL))
    372 			break;
    373 	}
    374 
    375 	return rt;
    376 }
    377 
    378 /*
    379  * Macros to compute elapsed time efficiently
    380  * Borrowed from Van Jacobson's scheduling code
    381  */
    382 #define TV_DELTA(a, b, delta) do {					\
    383 	int xxs;							\
    384 	delta = (a).tv_usec - (b).tv_usec;				\
    385 	xxs = (a).tv_sec - (b).tv_sec;					\
    386 	switch (xxs) {							\
    387 	case 2:								\
    388 		delta += 1000000;					\
    389 		/* fall through */					\
    390 	case 1:								\
    391 		delta += 1000000;					\
    392 		/* fall through */					\
    393 	case 0:								\
    394 		break;							\
    395 	default:							\
    396 		delta += (1000000 * xxs);				\
    397 		break;							\
    398 	}								\
    399 } while (/*CONSTCOND*/ 0)
    400 
    401 #ifdef UPCALL_TIMING
    402 u_int32_t upcall_data[51];
    403 #endif /* UPCALL_TIMING */
    404 
    405 /*
    406  * Handle MRT setsockopt commands to modify the multicast routing tables.
    407  */
    408 int
    409 ip_mrouter_set(struct socket *so, struct sockopt *sopt)
    410 {
    411 	int error;
    412 	int optval;
    413 	struct vifctl vifc;
    414 	vifi_t vifi;
    415 	struct bw_upcall bwuc;
    416 
    417 	if (sopt->sopt_name != MRT_INIT && so != ip_mrouter)
    418 		error = ENOPROTOOPT;
    419 	else {
    420 		switch (sopt->sopt_name) {
    421 		case MRT_INIT:
    422 			error = sockopt_getint(sopt, &optval);
    423 			if (error)
    424 				break;
    425 
    426 			error = ip_mrouter_init(so, optval);
    427 			break;
    428 		case MRT_DONE:
    429 			error = ip_mrouter_done();
    430 			break;
    431 		case MRT_ADD_VIF:
    432 			error = sockopt_get(sopt, &vifc, sizeof(vifc));
    433 			if (error)
    434 				break;
    435 			error = add_vif(&vifc);
    436 			break;
    437 		case MRT_DEL_VIF:
    438 			error = sockopt_get(sopt, &vifi, sizeof(vifi));
    439 			if (error)
    440 				break;
    441 			error = del_vif(&vifi);
    442 			break;
    443 		case MRT_ADD_MFC:
    444 			error = add_mfc(sopt);
    445 			break;
    446 		case MRT_DEL_MFC:
    447 			error = del_mfc(sopt);
    448 			break;
    449 		case MRT_ASSERT:
    450 			error = sockopt_getint(sopt, &optval);
    451 			if (error)
    452 				break;
    453 			error = set_assert(optval);
    454 			break;
    455 		case MRT_API_CONFIG:
    456 			error = set_api_config(sopt);
    457 			break;
    458 		case MRT_ADD_BW_UPCALL:
    459 			error = sockopt_get(sopt, &bwuc, sizeof(bwuc));
    460 			if (error)
    461 				break;
    462 			error = add_bw_upcall(&bwuc);
    463 			break;
    464 		case MRT_DEL_BW_UPCALL:
    465 			error = sockopt_get(sopt, &bwuc, sizeof(bwuc));
    466 			if (error)
    467 				break;
    468 			error = del_bw_upcall(&bwuc);
    469 			break;
    470 		default:
    471 			error = ENOPROTOOPT;
    472 			break;
    473 		}
    474 	}
    475 	return error;
    476 }
    477 
    478 /*
    479  * Handle MRT getsockopt commands
    480  */
    481 int
    482 ip_mrouter_get(struct socket *so, struct sockopt *sopt)
    483 {
    484 	int error;
    485 
    486 	if (so != ip_mrouter)
    487 		error = ENOPROTOOPT;
    488 	else {
    489 		switch (sopt->sopt_name) {
    490 		case MRT_VERSION:
    491 			error = sockopt_setint(sopt, 0x0305); /* XXX !!!! */
    492 			break;
    493 		case MRT_ASSERT:
    494 			error = sockopt_setint(sopt, pim_assert);
    495 			break;
    496 		case MRT_API_SUPPORT:
    497 			error = sockopt_set(sopt, &mrt_api_support,
    498 			    sizeof(mrt_api_support));
    499 			break;
    500 		case MRT_API_CONFIG:
    501 			error = sockopt_set(sopt, &mrt_api_config,
    502 			    sizeof(mrt_api_config));
    503 			break;
    504 		default:
    505 			error = ENOPROTOOPT;
    506 			break;
    507 		}
    508 	}
    509 	return error;
    510 }
    511 
    512 /*
    513  * Handle ioctl commands to obtain information from the cache
    514  */
    515 int
    516 mrt_ioctl(struct socket *so, u_long cmd, void *data)
    517 {
    518 	int error;
    519 
    520 	if (so != ip_mrouter)
    521 		error = EINVAL;
    522 	else
    523 		switch (cmd) {
    524 		case SIOCGETVIFCNT:
    525 			error = get_vif_cnt((struct sioc_vif_req *)data);
    526 			break;
    527 		case SIOCGETSGCNT:
    528 			error = get_sg_cnt((struct sioc_sg_req *)data);
    529 			break;
    530 		default:
    531 			error = EINVAL;
    532 			break;
    533 		}
    534 
    535 	return error;
    536 }
    537 
    538 /*
    539  * returns the packet, byte, rpf-failure count for the source group provided
    540  */
    541 static int
    542 get_sg_cnt(struct sioc_sg_req *req)
    543 {
    544 	int s;
    545 	struct mfc *rt;
    546 
    547 	s = splsoftnet();
    548 	rt = mfc_find(&req->src, &req->grp);
    549 	if (rt == NULL) {
    550 		splx(s);
    551 		req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
    552 		return EADDRNOTAVAIL;
    553 	}
    554 	req->pktcnt = rt->mfc_pkt_cnt;
    555 	req->bytecnt = rt->mfc_byte_cnt;
    556 	req->wrong_if = rt->mfc_wrong_if;
    557 	splx(s);
    558 
    559 	return 0;
    560 }
    561 
    562 /*
    563  * returns the input and output packet and byte counts on the vif provided
    564  */
    565 static int
    566 get_vif_cnt(struct sioc_vif_req *req)
    567 {
    568 	vifi_t vifi = req->vifi;
    569 
    570 	if (vifi >= numvifs)
    571 		return EINVAL;
    572 
    573 	req->icount = viftable[vifi].v_pkt_in;
    574 	req->ocount = viftable[vifi].v_pkt_out;
    575 	req->ibytes = viftable[vifi].v_bytes_in;
    576 	req->obytes = viftable[vifi].v_bytes_out;
    577 
    578 	return 0;
    579 }
    580 
    581 /*
    582  * Enable multicast routing
    583  */
    584 static int
    585 ip_mrouter_init(struct socket *so, int v)
    586 {
    587 	if (mrtdebug)
    588 		log(LOG_DEBUG,
    589 		    "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
    590 		    so->so_type, so->so_proto->pr_protocol);
    591 
    592 	if (so->so_type != SOCK_RAW ||
    593 	    so->so_proto->pr_protocol != IPPROTO_IGMP)
    594 		return EOPNOTSUPP;
    595 
    596 	if (v != 1)
    597 		return EINVAL;
    598 
    599 	if (ip_mrouter != NULL)
    600 		return EADDRINUSE;
    601 
    602 	ip_mrouter = so;
    603 
    604 	mfchashtbl = hashinit(MFCTBLSIZ, HASH_LIST, true, &mfchash);
    605 	memset((void *)nexpire, 0, sizeof(nexpire));
    606 
    607 	pim_assert = 0;
    608 
    609 	callout_init(&expire_upcalls_ch, 0);
    610 	callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT,
    611 		      expire_upcalls, NULL);
    612 
    613 	callout_init(&bw_upcalls_ch, 0);
    614 	callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
    615 		      expire_bw_upcalls_send, NULL);
    616 
    617 	callout_init(&bw_meter_ch, 0);
    618 	callout_reset(&bw_meter_ch, BW_METER_PERIOD,
    619 		      expire_bw_meter_process, NULL);
    620 
    621 	if (mrtdebug)
    622 		log(LOG_DEBUG, "ip_mrouter_init\n");
    623 
    624 	return 0;
    625 }
    626 
    627 /*
    628  * Disable multicast routing
    629  */
    630 int
    631 ip_mrouter_done(void)
    632 {
    633 	vifi_t vifi;
    634 	struct vif *vifp;
    635 	int i;
    636 	int s;
    637 
    638 	s = splsoftnet();
    639 
    640 	/* Clear out all the vifs currently in use. */
    641 	for (vifi = 0; vifi < numvifs; vifi++) {
    642 		vifp = &viftable[vifi];
    643 		if (!in_nullhost(vifp->v_lcl_addr))
    644 			reset_vif(vifp);
    645 	}
    646 
    647 	numvifs = 0;
    648 	pim_assert = 0;
    649 	mrt_api_config = 0;
    650 
    651 	callout_stop(&expire_upcalls_ch);
    652 	callout_stop(&bw_upcalls_ch);
    653 	callout_stop(&bw_meter_ch);
    654 
    655 	/*
    656 	 * Free all multicast forwarding cache entries.
    657 	 */
    658 	for (i = 0; i < MFCTBLSIZ; i++) {
    659 		struct mfc *rt, *nrt;
    660 
    661 		for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
    662 			nrt = LIST_NEXT(rt, mfc_hash);
    663 
    664 			expire_mfc(rt);
    665 		}
    666 	}
    667 
    668 	memset((void *)nexpire, 0, sizeof(nexpire));
    669 	hashdone(mfchashtbl, HASH_LIST, mfchash);
    670 	mfchashtbl = NULL;
    671 
    672 	bw_upcalls_n = 0;
    673 	memset(bw_meter_timers, 0, sizeof(bw_meter_timers));
    674 
    675 	/* Reset de-encapsulation cache. */
    676 
    677 	ip_mrouter = NULL;
    678 
    679 	splx(s);
    680 
    681 	if (mrtdebug)
    682 		log(LOG_DEBUG, "ip_mrouter_done\n");
    683 
    684 	return 0;
    685 }
    686 
    687 void
    688 ip_mrouter_detach(struct ifnet *ifp)
    689 {
    690 	int vifi, i;
    691 	struct vif *vifp;
    692 	struct mfc *rt;
    693 	struct rtdetq *rte;
    694 
    695 	/* XXX not sure about side effect to userland routing daemon */
    696 	for (vifi = 0; vifi < numvifs; vifi++) {
    697 		vifp = &viftable[vifi];
    698 		if (vifp->v_ifp == ifp)
    699 			reset_vif(vifp);
    700 	}
    701 	for (i = 0; i < MFCTBLSIZ; i++) {
    702 		if (nexpire[i] == 0)
    703 			continue;
    704 		LIST_FOREACH(rt, &mfchashtbl[i], mfc_hash) {
    705 			for (rte = rt->mfc_stall; rte; rte = rte->next) {
    706 				if (rte->ifp == ifp)
    707 					rte->ifp = NULL;
    708 			}
    709 		}
    710 	}
    711 }
    712 
    713 /*
    714  * Set PIM assert processing global
    715  */
    716 static int
    717 set_assert(int i)
    718 {
    719 	pim_assert = !!i;
    720 	return 0;
    721 }
    722 
    723 /*
    724  * Configure API capabilities
    725  */
    726 static int
    727 set_api_config(struct sockopt *sopt)
    728 {
    729 	u_int32_t apival;
    730 	int i, error;
    731 
    732 	/*
    733 	 * We can set the API capabilities only if it is the first operation
    734 	 * after MRT_INIT. I.e.:
    735 	 *  - there are no vifs installed
    736 	 *  - pim_assert is not enabled
    737 	 *  - the MFC table is empty
    738 	 */
    739 	error = sockopt_get(sopt, &apival, sizeof(apival));
    740 	if (error)
    741 		return error;
    742 	if (numvifs > 0)
    743 		return EPERM;
    744 	if (pim_assert)
    745 		return EPERM;
    746 	for (i = 0; i < MFCTBLSIZ; i++) {
    747 		if (LIST_FIRST(&mfchashtbl[i]) != NULL)
    748 			return EPERM;
    749 	}
    750 
    751 	mrt_api_config = apival & mrt_api_support;
    752 	return 0;
    753 }
    754 
    755 /*
    756  * Add a vif to the vif table
    757  */
    758 static int
    759 add_vif(struct vifctl *vifcp)
    760 {
    761 	struct vif *vifp;
    762 	struct ifnet *ifp;
    763 	int error, s;
    764 	struct sockaddr_in sin;
    765 
    766 	if (vifcp->vifc_vifi >= MAXVIFS)
    767 		return EINVAL;
    768 	if (in_nullhost(vifcp->vifc_lcl_addr))
    769 		return EADDRNOTAVAIL;
    770 
    771 	vifp = &viftable[vifcp->vifc_vifi];
    772 	if (!in_nullhost(vifp->v_lcl_addr))
    773 		return EADDRINUSE;
    774 
    775 	/* Find the interface with an address in AF_INET family. */
    776 #ifdef PIM
    777 	if (vifcp->vifc_flags & VIFF_REGISTER) {
    778 		/*
    779 		 * XXX: Because VIFF_REGISTER does not really need a valid
    780 		 * local interface (e.g. it could be 127.0.0.2), we don't
    781 		 * check its address.
    782 		 */
    783 		ifp = NULL;
    784 	} else
    785 #endif
    786 	{
    787 		struct ifaddr *ifa;
    788 
    789 		sockaddr_in_init(&sin, &vifcp->vifc_lcl_addr, 0);
    790 		s = pserialize_read_enter();
    791 		ifa = ifa_ifwithaddr(sintosa(&sin));
    792 		if (ifa == NULL) {
    793 			pserialize_read_exit(s);
    794 			return EADDRNOTAVAIL;
    795 		}
    796 		ifp = ifa->ifa_ifp;
    797 		/* FIXME NOMPSAFE */
    798 		pserialize_read_exit(s);
    799 	}
    800 
    801 	if (vifcp->vifc_flags & VIFF_TUNNEL) {
    802 		if (vifcp->vifc_flags & VIFF_SRCRT) {
    803 			log(LOG_ERR, "source routed tunnels not supported\n");
    804 			return EOPNOTSUPP;
    805 		}
    806 
    807 		/* attach this vif to decapsulator dispatch table */
    808 		/*
    809 		 * XXX Use addresses in registration so that matching
    810 		 * can be done with radix tree in decapsulator.  But,
    811 		 * we need to check inner header for multicast, so
    812 		 * this requires both radix tree lookup and then a
    813 		 * function to check, and this is not supported yet.
    814 		 */
    815 		error = encap_lock_enter();
    816 		if (error)
    817 			return error;
    818 		vifp->v_encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4,
    819 		    vif_encapcheck, &vif_encapsw, vifp);
    820 		encap_lock_exit();
    821 		if (!vifp->v_encap_cookie)
    822 			return EINVAL;
    823 
    824 		/* Create a fake encapsulation interface. */
    825 		ifp = malloc(sizeof(*ifp), M_MRTABLE, M_WAITOK|M_ZERO);
    826 		snprintf(ifp->if_xname, sizeof(ifp->if_xname),
    827 			 "mdecap%d", vifcp->vifc_vifi);
    828 
    829 		/* Prepare cached route entry. */
    830 		memset(&vifp->v_route, 0, sizeof(vifp->v_route));
    831 #ifdef PIM
    832 	} else if (vifcp->vifc_flags & VIFF_REGISTER) {
    833 		ifp = &multicast_register_if;
    834 		if (mrtdebug)
    835 			log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
    836 			    (void *)ifp);
    837 		if (reg_vif_num == VIFI_INVALID) {
    838 			memset(ifp, 0, sizeof(*ifp));
    839 			snprintf(ifp->if_xname, sizeof(ifp->if_xname),
    840 				 "register_vif");
    841 			ifp->if_flags = IFF_LOOPBACK;
    842 			memset(&vifp->v_route, 0, sizeof(vifp->v_route));
    843 			reg_vif_num = vifcp->vifc_vifi;
    844 		}
    845 #endif
    846 	} else {
    847 		/* Make sure the interface supports multicast. */
    848 		if ((ifp->if_flags & IFF_MULTICAST) == 0)
    849 			return EOPNOTSUPP;
    850 
    851 		/* Enable promiscuous reception of all IP multicasts. */
    852 		sockaddr_in_init(&sin, &zeroin_addr, 0);
    853 		error = if_mcast_op(ifp, SIOCADDMULTI, sintosa(&sin));
    854 		if (error)
    855 			return error;
    856 	}
    857 
    858 	s = splsoftnet();
    859 
    860 	/* Define parameters for the tbf structure. */
    861 	vifp->tbf_q = NULL;
    862 	vifp->tbf_t = &vifp->tbf_q;
    863 	microtime(&vifp->tbf_last_pkt_t);
    864 	vifp->tbf_n_tok = 0;
    865 	vifp->tbf_q_len = 0;
    866 	vifp->tbf_max_q_len = MAXQSIZE;
    867 
    868 	vifp->v_flags = vifcp->vifc_flags;
    869 	vifp->v_threshold = vifcp->vifc_threshold;
    870 	/* scaling up here allows division by 1024 in critical code */
    871 	vifp->v_rate_limit = vifcp->vifc_rate_limit * 1024 / 1000;
    872 	vifp->v_lcl_addr = vifcp->vifc_lcl_addr;
    873 	vifp->v_rmt_addr = vifcp->vifc_rmt_addr;
    874 	vifp->v_ifp = ifp;
    875 	/* Initialize per vif pkt counters. */
    876 	vifp->v_pkt_in = 0;
    877 	vifp->v_pkt_out = 0;
    878 	vifp->v_bytes_in = 0;
    879 	vifp->v_bytes_out = 0;
    880 
    881 	callout_init(&vifp->v_repq_ch, 0);
    882 
    883 	splx(s);
    884 
    885 	/* Adjust numvifs up if the vifi is higher than numvifs. */
    886 	if (numvifs <= vifcp->vifc_vifi)
    887 		numvifs = vifcp->vifc_vifi + 1;
    888 
    889 	if (mrtdebug)
    890 		log(LOG_DEBUG, "add_vif #%d, lcladdr %x, %s %x, thresh %x, rate %d\n",
    891 		    vifcp->vifc_vifi,
    892 		    ntohl(vifcp->vifc_lcl_addr.s_addr),
    893 		    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
    894 		    ntohl(vifcp->vifc_rmt_addr.s_addr),
    895 		    vifcp->vifc_threshold,
    896 		    vifcp->vifc_rate_limit);
    897 
    898 	return 0;
    899 }
    900 
    901 void
    902 reset_vif(struct vif *vifp)
    903 {
    904 	struct mbuf *m, *n;
    905 	struct ifnet *ifp;
    906 	struct sockaddr_in sin;
    907 
    908 	callout_stop(&vifp->v_repq_ch);
    909 
    910 	/* detach this vif from decapsulator dispatch table */
    911 	encap_lock_enter();
    912 	encap_detach(vifp->v_encap_cookie);
    913 	encap_lock_exit();
    914 	vifp->v_encap_cookie = NULL;
    915 
    916 	/*
    917 	 * Free packets queued at the interface
    918 	 */
    919 	for (m = vifp->tbf_q; m != NULL; m = n) {
    920 		n = m->m_nextpkt;
    921 		m_freem(m);
    922 	}
    923 
    924 	if (vifp->v_flags & VIFF_TUNNEL)
    925 		free(vifp->v_ifp, M_MRTABLE);
    926 	else if (vifp->v_flags & VIFF_REGISTER) {
    927 #ifdef PIM
    928 		reg_vif_num = VIFI_INVALID;
    929 #endif
    930 	} else {
    931 		sockaddr_in_init(&sin, &zeroin_addr, 0);
    932 		ifp = vifp->v_ifp;
    933 		if_mcast_op(ifp, SIOCDELMULTI, sintosa(&sin));
    934 	}
    935 	memset((void *)vifp, 0, sizeof(*vifp));
    936 }
    937 
    938 /*
    939  * Delete a vif from the vif table
    940  */
    941 static int
    942 del_vif(vifi_t *vifip)
    943 {
    944 	struct vif *vifp;
    945 	vifi_t vifi;
    946 	int s;
    947 
    948 	if (*vifip >= numvifs)
    949 		return EINVAL;
    950 
    951 	vifp = &viftable[*vifip];
    952 	if (in_nullhost(vifp->v_lcl_addr))
    953 		return EADDRNOTAVAIL;
    954 
    955 	s = splsoftnet();
    956 
    957 	reset_vif(vifp);
    958 
    959 	/* Adjust numvifs down */
    960 	for (vifi = numvifs; vifi > 0; vifi--)
    961 		if (!in_nullhost(viftable[vifi - 1].v_lcl_addr))
    962 			break;
    963 	numvifs = vifi;
    964 
    965 	splx(s);
    966 
    967 	if (mrtdebug)
    968 		log(LOG_DEBUG, "del_vif %d, numvifs %d\n", *vifip, numvifs);
    969 
    970 	return 0;
    971 }
    972 
    973 /*
    974  * update an mfc entry without resetting counters and S,G addresses.
    975  */
    976 static void
    977 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
    978 {
    979 	int i;
    980 
    981 	rt->mfc_parent = mfccp->mfcc_parent;
    982 	for (i = 0; i < numvifs; i++) {
    983 		rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
    984 		rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
    985 			MRT_MFC_FLAGS_ALL;
    986 	}
    987 	/* set the RP address */
    988 	if (mrt_api_config & MRT_MFC_RP)
    989 		rt->mfc_rp = mfccp->mfcc_rp;
    990 	else
    991 		rt->mfc_rp = zeroin_addr;
    992 }
    993 
    994 /*
    995  * fully initialize an mfc entry from the parameter.
    996  */
    997 static void
    998 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
    999 {
   1000 	rt->mfc_origin     = mfccp->mfcc_origin;
   1001 	rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
   1002 
   1003 	update_mfc_params(rt, mfccp);
   1004 
   1005 	/* initialize pkt counters per src-grp */
   1006 	rt->mfc_pkt_cnt    = 0;
   1007 	rt->mfc_byte_cnt   = 0;
   1008 	rt->mfc_wrong_if   = 0;
   1009 	timerclear(&rt->mfc_last_assert);
   1010 }
   1011 
   1012 static void
   1013 expire_mfc(struct mfc *rt)
   1014 {
   1015 	struct rtdetq *rte, *nrte;
   1016 
   1017 	free_bw_list(rt->mfc_bw_meter);
   1018 
   1019 	for (rte = rt->mfc_stall; rte != NULL; rte = nrte) {
   1020 		nrte = rte->next;
   1021 		m_freem(rte->m);
   1022 		free(rte, M_MRTABLE);
   1023 	}
   1024 
   1025 	LIST_REMOVE(rt, mfc_hash);
   1026 	free(rt, M_MRTABLE);
   1027 }
   1028 
   1029 /*
   1030  * Add an mfc entry
   1031  */
   1032 static int
   1033 add_mfc(struct sockopt *sopt)
   1034 {
   1035 	struct mfcctl2 mfcctl2;
   1036 	struct mfcctl2 *mfccp;
   1037 	struct mfc *rt;
   1038 	u_int32_t hash = 0;
   1039 	struct rtdetq *rte, *nrte;
   1040 	u_short nstl;
   1041 	int s;
   1042 	int error;
   1043 
   1044 	/*
   1045 	 * select data size depending on API version.
   1046 	 */
   1047 	mfccp = &mfcctl2;
   1048 	memset(&mfcctl2, 0, sizeof(mfcctl2));
   1049 
   1050 	if (mrt_api_config & MRT_API_FLAGS_ALL)
   1051 		error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl2));
   1052 	else
   1053 		error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl));
   1054 
   1055 	if (error)
   1056 		return error;
   1057 
   1058 	s = splsoftnet();
   1059 	rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
   1060 
   1061 	/* If an entry already exists, just update the fields */
   1062 	if (rt) {
   1063 		if (mrtdebug & DEBUG_MFC)
   1064 			log(LOG_DEBUG, "add_mfc update o %x g %x p %x\n",
   1065 			    ntohl(mfccp->mfcc_origin.s_addr),
   1066 			    ntohl(mfccp->mfcc_mcastgrp.s_addr),
   1067 			    mfccp->mfcc_parent);
   1068 
   1069 		update_mfc_params(rt, mfccp);
   1070 
   1071 		splx(s);
   1072 		return 0;
   1073 	}
   1074 
   1075 	/*
   1076 	 * Find the entry for which the upcall was made and update
   1077 	 */
   1078 	nstl = 0;
   1079 	hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
   1080 	LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
   1081 		if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
   1082 		    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
   1083 		    rt->mfc_stall != NULL) {
   1084 			if (nstl++)
   1085 				log(LOG_ERR, "add_mfc %s o %x g %x p %x dbx %p\n",
   1086 				    "multiple kernel entries",
   1087 				    ntohl(mfccp->mfcc_origin.s_addr),
   1088 				    ntohl(mfccp->mfcc_mcastgrp.s_addr),
   1089 				    mfccp->mfcc_parent, rt->mfc_stall);
   1090 
   1091 			if (mrtdebug & DEBUG_MFC)
   1092 				log(LOG_DEBUG, "add_mfc o %x g %x p %x dbg %p\n",
   1093 				    ntohl(mfccp->mfcc_origin.s_addr),
   1094 				    ntohl(mfccp->mfcc_mcastgrp.s_addr),
   1095 				    mfccp->mfcc_parent, rt->mfc_stall);
   1096 
   1097 			rte = rt->mfc_stall;
   1098 			init_mfc_params(rt, mfccp);
   1099 			rt->mfc_stall = NULL;
   1100 
   1101 			rt->mfc_expire = 0; /* Don't clean this guy up */
   1102 			nexpire[hash]--;
   1103 
   1104 			/* free packets Qed at the end of this entry */
   1105 			for (; rte != NULL; rte = nrte) {
   1106 				nrte = rte->next;
   1107 				if (rte->ifp) {
   1108 					ip_mdq(rte->m, rte->ifp, rt);
   1109 				}
   1110 				m_freem(rte->m);
   1111 #ifdef UPCALL_TIMING
   1112 				collate(&rte->t);
   1113 #endif /* UPCALL_TIMING */
   1114 				free(rte, M_MRTABLE);
   1115 			}
   1116 		}
   1117 	}
   1118 
   1119 	/*
   1120 	 * It is possible that an entry is being inserted without an upcall
   1121 	 */
   1122 	if (nstl == 0) {
   1123 		/*
   1124 		 * No mfc; make a new one
   1125 		 */
   1126 		if (mrtdebug & DEBUG_MFC)
   1127 			log(LOG_DEBUG, "add_mfc no upcall o %x g %x p %x\n",
   1128 			    ntohl(mfccp->mfcc_origin.s_addr),
   1129 			    ntohl(mfccp->mfcc_mcastgrp.s_addr),
   1130 			    mfccp->mfcc_parent);
   1131 
   1132 		LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
   1133 			if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
   1134 			    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) {
   1135 				init_mfc_params(rt, mfccp);
   1136 				if (rt->mfc_expire)
   1137 					nexpire[hash]--;
   1138 				rt->mfc_expire = 0;
   1139 				break; /* XXX */
   1140 			}
   1141 		}
   1142 		if (rt == NULL) {	/* no upcall, so make a new entry */
   1143 			rt = malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
   1144 			if (rt == NULL) {
   1145 				splx(s);
   1146 				return ENOBUFS;
   1147 			}
   1148 
   1149 			init_mfc_params(rt, mfccp);
   1150 			rt->mfc_expire	= 0;
   1151 			rt->mfc_stall	= NULL;
   1152 			rt->mfc_bw_meter = NULL;
   1153 
   1154 			/* insert new entry at head of hash chain */
   1155 			LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
   1156 		}
   1157 	}
   1158 
   1159 	splx(s);
   1160 	return 0;
   1161 }
   1162 
   1163 #ifdef UPCALL_TIMING
   1164 /*
   1165  * collect delay statistics on the upcalls
   1166  */
   1167 static void
   1168 collate(struct timeval *t)
   1169 {
   1170 	u_int32_t d;
   1171 	struct timeval tp;
   1172 	u_int32_t delta;
   1173 
   1174 	microtime(&tp);
   1175 
   1176 	if (timercmp(t, &tp, <)) {
   1177 		TV_DELTA(tp, *t, delta);
   1178 
   1179 		d = delta >> 10;
   1180 		if (d > 50)
   1181 			d = 50;
   1182 
   1183 		++upcall_data[d];
   1184 	}
   1185 }
   1186 #endif /* UPCALL_TIMING */
   1187 
   1188 /*
   1189  * Delete an mfc entry
   1190  */
   1191 static int
   1192 del_mfc(struct sockopt *sopt)
   1193 {
   1194 	struct mfcctl2 mfcctl2;
   1195 	struct mfcctl2 *mfccp;
   1196 	struct mfc *rt;
   1197 	int s;
   1198 	int error;
   1199 
   1200 	/*
   1201 	 * XXX: for deleting MFC entries the information in entries
   1202 	 * of size "struct mfcctl" is sufficient.
   1203 	 */
   1204 
   1205 	mfccp = &mfcctl2;
   1206 	memset(&mfcctl2, 0, sizeof(mfcctl2));
   1207 
   1208 	error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl));
   1209 	if (error) {
   1210 		/* Try with the size of mfcctl2. */
   1211 		error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl2));
   1212 		if (error)
   1213 			return error;
   1214 	}
   1215 
   1216 	if (mrtdebug & DEBUG_MFC)
   1217 		log(LOG_DEBUG, "del_mfc origin %x mcastgrp %x\n",
   1218 		    ntohl(mfccp->mfcc_origin.s_addr),
   1219 		    ntohl(mfccp->mfcc_mcastgrp.s_addr));
   1220 
   1221 	s = splsoftnet();
   1222 
   1223 	rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
   1224 	if (rt == NULL) {
   1225 		splx(s);
   1226 		return EADDRNOTAVAIL;
   1227 	}
   1228 
   1229 	/*
   1230 	 * free the bw_meter entries
   1231 	 */
   1232 	free_bw_list(rt->mfc_bw_meter);
   1233 	rt->mfc_bw_meter = NULL;
   1234 
   1235 	LIST_REMOVE(rt, mfc_hash);
   1236 	free(rt, M_MRTABLE);
   1237 
   1238 	splx(s);
   1239 	return 0;
   1240 }
   1241 
   1242 static int
   1243 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
   1244 {
   1245 	if (s) {
   1246 		if (sbappendaddr(&s->so_rcv, sintosa(src), mm, NULL) != 0) {
   1247 			sorwakeup(s);
   1248 			return 0;
   1249 		}
   1250 		soroverflow(s);
   1251 	}
   1252 	m_freem(mm);
   1253 	return -1;
   1254 }
   1255 
   1256 /*
   1257  * IP multicast forwarding function. This function assumes that the packet
   1258  * pointed to by "ip" has arrived on (or is about to be sent to) the interface
   1259  * pointed to by "ifp", and the packet is to be relayed to other networks
   1260  * that have members of the packet's destination IP multicast group.
   1261  *
   1262  * The packet is returned unscathed to the caller, unless it is
   1263  * erroneous, in which case a non-zero return value tells the caller to
   1264  * discard it.
   1265  */
   1266 
   1267 #define IP_HDR_LEN  20	/* # bytes of fixed IP header (excluding options) */
   1268 #define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
   1269 
   1270 int
   1271 ip_mforward(struct mbuf *m, struct ifnet *ifp)
   1272 {
   1273 	int rc;
   1274 	/*
   1275 	 * save csum_flags to uphold the
   1276 	 * "unscathed" guarantee.
   1277 	 * ip_output() relies on that and
   1278 	 * without it we send out
   1279 	 * multicast packets with an invalid
   1280 	 * checksum
   1281 	 *
   1282 	 * see PR kern/55779
   1283 	 */
   1284 	int csum_flags = m->m_pkthdr.csum_flags;
   1285 
   1286 	/*
   1287 	 * Temporarily clear any in-bound checksum flags for this packet.
   1288 	 */
   1289 	m->m_pkthdr.csum_flags = 0;
   1290 
   1291 	rc = ip_mforward_real(m, ifp);
   1292 
   1293 	m->m_pkthdr.csum_flags = csum_flags;
   1294 
   1295 	return rc;
   1296 }
   1297 
   1298 static int
   1299 ip_mforward_real(struct mbuf *m, struct ifnet *ifp)
   1300 {
   1301 	struct ip *ip = mtod(m, struct ip *);
   1302 	struct mfc *rt;
   1303 	static int srctun = 0;
   1304 	struct mbuf *mm;
   1305 	struct sockaddr_in sin;
   1306 	int s;
   1307 	vifi_t vifi;
   1308 
   1309 	if (mrtdebug & DEBUG_FORWARD)
   1310 		log(LOG_DEBUG, "ip_mforward: src %x, dst %x, ifp %p\n",
   1311 		    ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), ifp);
   1312 
   1313 	/*
   1314 	 * XXX XXX: Why do we check [1] against IPOPT_LSRR? Because we
   1315 	 * expect [0] to be IPOPT_NOP, maybe? In all cases that doesn't
   1316 	 * make a lot of sense, a forged packet can just put two IPOPT_NOPs
   1317 	 * followed by one IPOPT_LSRR, and bypass the check.
   1318 	 */
   1319 	if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 ||
   1320 	    ((u_char *)(ip + 1))[1] != IPOPT_LSRR) {
   1321 		/*
   1322 		 * Packet arrived via a physical interface or
   1323 		 * an encapsulated tunnel or a register_vif.
   1324 		 */
   1325 	} else {
   1326 		/*
   1327 		 * Packet arrived through a source-route tunnel.
   1328 		 * Source-route tunnels are no longer supported.
   1329 		 */
   1330 		if ((srctun++ % 1000) == 0)
   1331 			log(LOG_ERR,
   1332 			    "ip_mforward: received source-routed packet from %x\n",
   1333 			    ntohl(ip->ip_src.s_addr));
   1334 		return EOPNOTSUPP;
   1335 	}
   1336 
   1337 	/*
   1338 	 * Don't forward a packet with time-to-live of zero or one,
   1339 	 * or a packet destined to a local-only group.
   1340 	 */
   1341 	if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ip->ip_dst.s_addr))
   1342 		return 0;
   1343 
   1344 	/*
   1345 	 * Determine forwarding vifs from the forwarding cache table
   1346 	 */
   1347 	s = splsoftnet();
   1348 	++mrtstat.mrts_mfc_lookups;
   1349 	rt = mfc_find(&ip->ip_src, &ip->ip_dst);
   1350 
   1351 	/* Entry exists, so forward if necessary */
   1352 	if (rt != NULL) {
   1353 		splx(s);
   1354 		return ip_mdq(m, ifp, rt);
   1355 	} else {
   1356 		/*
   1357 		 * If we don't have a route for packet's origin, make a copy
   1358 		 * of the packet and send message to routing daemon.
   1359 		 */
   1360 
   1361 		struct mbuf *mb0;
   1362 		struct rtdetq *rte;
   1363 		u_int32_t hash;
   1364 		const int hlen = ip->ip_hl << 2;
   1365 #ifdef UPCALL_TIMING
   1366 		struct timeval tp;
   1367 		microtime(&tp);
   1368 #endif
   1369 
   1370 		++mrtstat.mrts_mfc_misses;
   1371 
   1372 		mrtstat.mrts_no_route++;
   1373 		if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
   1374 			log(LOG_DEBUG, "ip_mforward: no rte s %x g %x\n",
   1375 			    ntohl(ip->ip_src.s_addr),
   1376 			    ntohl(ip->ip_dst.s_addr));
   1377 
   1378 		/*
   1379 		 * Allocate mbufs early so that we don't do extra work if we are
   1380 		 * just going to fail anyway.  Make sure to pullup the header so
   1381 		 * that other people can't step on it.
   1382 		 */
   1383 		rte = malloc(sizeof(*rte), M_MRTABLE, M_NOWAIT);
   1384 		if (rte == NULL) {
   1385 			splx(s);
   1386 			return ENOBUFS;
   1387 		}
   1388 		mb0 = m_copypacket(m, M_DONTWAIT);
   1389 		M_PULLUP(mb0, hlen);
   1390 		if (mb0 == NULL) {
   1391 			free(rte, M_MRTABLE);
   1392 			splx(s);
   1393 			return ENOBUFS;
   1394 		}
   1395 
   1396 		/* is there an upcall waiting for this flow? */
   1397 		hash = MFCHASH(ip->ip_src, ip->ip_dst);
   1398 		LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
   1399 			if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
   1400 			    in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
   1401 			    rt->mfc_stall != NULL)
   1402 				break;
   1403 		}
   1404 
   1405 		if (rt == NULL) {
   1406 			int i;
   1407 			struct igmpmsg *im;
   1408 
   1409 			/*
   1410 			 * Locate the vifi for the incoming interface for
   1411 			 * this packet.
   1412 			 * If none found, drop packet.
   1413 			 */
   1414 			for (vifi = 0; vifi < numvifs &&
   1415 				 viftable[vifi].v_ifp != ifp; vifi++)
   1416 				;
   1417 			if (vifi >= numvifs) /* vif not found, drop packet */
   1418 				goto non_fatal;
   1419 
   1420 			/* no upcall, so make a new entry */
   1421 			rt = malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
   1422 			if (rt == NULL)
   1423 				goto fail;
   1424 
   1425 			/*
   1426 			 * Make a copy of the header to send to the user level
   1427 			 * process
   1428 			 */
   1429 			mm = m_copym(m, 0, hlen, M_DONTWAIT);
   1430 			M_PULLUP(mm, hlen);
   1431 			if (mm == NULL)
   1432 				goto fail1;
   1433 
   1434 			/*
   1435 			 * Send message to routing daemon to install
   1436 			 * a route into the kernel table
   1437 			 */
   1438 
   1439 			im = mtod(mm, struct igmpmsg *);
   1440 			im->im_msgtype = IGMPMSG_NOCACHE;
   1441 			im->im_mbz = 0;
   1442 			im->im_vif = vifi;
   1443 
   1444 			mrtstat.mrts_upcalls++;
   1445 
   1446 			sockaddr_in_init(&sin, &ip->ip_src, 0);
   1447 			if (socket_send(ip_mrouter, mm, &sin) < 0) {
   1448 				log(LOG_WARNING,
   1449 				    "ip_mforward: ip_mrouter socket queue full\n");
   1450 				++mrtstat.mrts_upq_sockfull;
   1451 			fail1:
   1452 				free(rt, M_MRTABLE);
   1453 			fail:
   1454 				free(rte, M_MRTABLE);
   1455 				m_freem(mb0);
   1456 				splx(s);
   1457 				return ENOBUFS;
   1458 			}
   1459 
   1460 			/* insert new entry at head of hash chain */
   1461 			rt->mfc_origin = ip->ip_src;
   1462 			rt->mfc_mcastgrp = ip->ip_dst;
   1463 			rt->mfc_pkt_cnt = 0;
   1464 			rt->mfc_byte_cnt = 0;
   1465 			rt->mfc_wrong_if = 0;
   1466 			rt->mfc_expire = UPCALL_EXPIRE;
   1467 			nexpire[hash]++;
   1468 			for (i = 0; i < numvifs; i++) {
   1469 				rt->mfc_ttls[i] = 0;
   1470 				rt->mfc_flags[i] = 0;
   1471 			}
   1472 			rt->mfc_parent = -1;
   1473 
   1474 			/* clear the RP address */
   1475 			rt->mfc_rp = zeroin_addr;
   1476 
   1477 			rt->mfc_bw_meter = NULL;
   1478 
   1479 			/* link into table */
   1480 			LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
   1481 			/* Add this entry to the end of the queue */
   1482 			rt->mfc_stall = rte;
   1483 		} else {
   1484 			/* determine if q has overflowed */
   1485 			struct rtdetq **p;
   1486 			int npkts = 0;
   1487 
   1488 			/*
   1489 			 * XXX ouch! we need to append to the list, but we
   1490 			 * only have a pointer to the front, so we have to
   1491 			 * scan the entire list every time.
   1492 			 */
   1493 			for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
   1494 				if (++npkts > MAX_UPQ) {
   1495 					mrtstat.mrts_upq_ovflw++;
   1496 				non_fatal:
   1497 					free(rte, M_MRTABLE);
   1498 					m_freem(mb0);
   1499 					splx(s);
   1500 					return 0;
   1501 				}
   1502 
   1503 			/* Add this entry to the end of the queue */
   1504 			*p = rte;
   1505 		}
   1506 
   1507 		rte->next = NULL;
   1508 		rte->m = mb0;
   1509 		rte->ifp = ifp;
   1510 #ifdef UPCALL_TIMING
   1511 		rte->t = tp;
   1512 #endif
   1513 
   1514 		splx(s);
   1515 
   1516 		return 0;
   1517 	}
   1518 }
   1519 
   1520 /*ARGSUSED*/
   1521 static void
   1522 expire_upcalls(void *v)
   1523 {
   1524 	int i;
   1525 
   1526 	/* XXX NOMPSAFE still need softnet_lock */
   1527 	mutex_enter(softnet_lock);
   1528 	KERNEL_LOCK(1, NULL);
   1529 
   1530 	for (i = 0; i < MFCTBLSIZ; i++) {
   1531 		struct mfc *rt, *nrt;
   1532 
   1533 		if (nexpire[i] == 0)
   1534 			continue;
   1535 
   1536 		for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
   1537 			nrt = LIST_NEXT(rt, mfc_hash);
   1538 
   1539 			if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
   1540 				continue;
   1541 			nexpire[i]--;
   1542 
   1543 			/*
   1544 			 * free the bw_meter entries
   1545 			 */
   1546 			while (rt->mfc_bw_meter != NULL) {
   1547 				struct bw_meter *x = rt->mfc_bw_meter;
   1548 
   1549 				rt->mfc_bw_meter = x->bm_mfc_next;
   1550 				kmem_intr_free(x, sizeof(*x));
   1551 			}
   1552 
   1553 			++mrtstat.mrts_cache_cleanups;
   1554 			if (mrtdebug & DEBUG_EXPIRE)
   1555 				log(LOG_DEBUG,
   1556 				    "expire_upcalls: expiring (%x %x)\n",
   1557 				    ntohl(rt->mfc_origin.s_addr),
   1558 				    ntohl(rt->mfc_mcastgrp.s_addr));
   1559 
   1560 			expire_mfc(rt);
   1561 		}
   1562 	}
   1563 
   1564 	callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT,
   1565 	    expire_upcalls, NULL);
   1566 
   1567 	KERNEL_UNLOCK_ONE(NULL);
   1568 	mutex_exit(softnet_lock);
   1569 }
   1570 
   1571 /*
   1572  * Macro to send packet on vif.
   1573  */
   1574 #define MC_SEND(ip, vifp, m) do {					\
   1575 	if ((vifp)->v_flags & VIFF_TUNNEL)				\
   1576 		encap_send((ip), (vifp), (m));				\
   1577 	else								\
   1578 		phyint_send((ip), (vifp), (m));				\
   1579 } while (/*CONSTCOND*/ 0)
   1580 
   1581 /*
   1582  * Packet forwarding routine once entry in the cache is made
   1583  */
   1584 static int
   1585 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt)
   1586 {
   1587 	struct ip *ip = mtod(m, struct ip *);
   1588 	vifi_t vifi;
   1589 	struct vif *vifp;
   1590 	struct sockaddr_in sin;
   1591 	const int plen = ntohs(ip->ip_len) - (ip->ip_hl << 2);
   1592 
   1593 	/*
   1594 	 * Don't forward if it didn't arrive from the parent vif for its origin.
   1595 	 */
   1596 	vifi = rt->mfc_parent;
   1597 	if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
   1598 		/* came in the wrong interface */
   1599 		if (mrtdebug & DEBUG_FORWARD)
   1600 			log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
   1601 			    ifp, vifi,
   1602 			    vifi >= numvifs ? 0 : viftable[vifi].v_ifp);
   1603 		++mrtstat.mrts_wrong_if;
   1604 		++rt->mfc_wrong_if;
   1605 
   1606 		/*
   1607 		 * If we are doing PIM assert processing, send a message
   1608 		 * to the routing daemon.
   1609 		 *
   1610 		 * XXX: A PIM-SM router needs the WRONGVIF detection so it
   1611 		 * can complete the SPT switch, regardless of the type
   1612 		 * of the iif (broadcast media, GRE tunnel, etc).
   1613 		 */
   1614 		if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
   1615 			struct timeval now;
   1616 			u_int32_t delta;
   1617 
   1618 #ifdef PIM
   1619 			if (ifp == &multicast_register_if)
   1620 				pimstat.pims_rcv_registers_wrongiif++;
   1621 #endif
   1622 
   1623 			/* Get vifi for the incoming packet */
   1624 			for (vifi = 0;
   1625 			     vifi < numvifs && viftable[vifi].v_ifp != ifp;
   1626 			     vifi++)
   1627 			    ;
   1628 			if (vifi >= numvifs) {
   1629 				/* The iif is not found: ignore the packet. */
   1630 				return 0;
   1631 			}
   1632 
   1633 			if (rt->mfc_flags[vifi] &
   1634 			    MRT_MFC_FLAGS_DISABLE_WRONGVIF) {
   1635 				/* WRONGVIF disabled: ignore the packet */
   1636 				return 0;
   1637 			}
   1638 
   1639 			microtime(&now);
   1640 
   1641 			TV_DELTA(rt->mfc_last_assert, now, delta);
   1642 
   1643 			if (delta > ASSERT_MSG_TIME) {
   1644 				struct igmpmsg *im;
   1645 				const int hlen = ip->ip_hl << 2;
   1646 				struct mbuf *mm =
   1647 				    m_copym(m, 0, hlen, M_DONTWAIT);
   1648 
   1649 				M_PULLUP(mm, hlen);
   1650 				if (mm == NULL)
   1651 					return ENOBUFS;
   1652 
   1653 				rt->mfc_last_assert = now;
   1654 
   1655 				im = mtod(mm, struct igmpmsg *);
   1656 				im->im_msgtype	= IGMPMSG_WRONGVIF;
   1657 				im->im_mbz	= 0;
   1658 				im->im_vif	= vifi;
   1659 
   1660 				mrtstat.mrts_upcalls++;
   1661 
   1662 				sockaddr_in_init(&sin, &im->im_src, 0);
   1663 				if (socket_send(ip_mrouter, mm, &sin) < 0) {
   1664 					log(LOG_WARNING,
   1665 					    "ip_mforward: ip_mrouter socket queue full\n");
   1666 					++mrtstat.mrts_upq_sockfull;
   1667 					return ENOBUFS;
   1668 				}
   1669 			}
   1670 		}
   1671 		return 0;
   1672 	}
   1673 
   1674 	/* If I sourced this packet, it counts as output, else it was input. */
   1675 	if (in_hosteq(ip->ip_src, viftable[vifi].v_lcl_addr)) {
   1676 		viftable[vifi].v_pkt_out++;
   1677 		viftable[vifi].v_bytes_out += plen;
   1678 	} else {
   1679 		viftable[vifi].v_pkt_in++;
   1680 		viftable[vifi].v_bytes_in += plen;
   1681 	}
   1682 	rt->mfc_pkt_cnt++;
   1683 	rt->mfc_byte_cnt += plen;
   1684 
   1685 	/*
   1686 	 * For each vif, decide if a copy of the packet should be forwarded.
   1687 	 * Forward if:
   1688 	 *  - the ttl exceeds the vif's threshold
   1689 	 *  - there are group members downstream on interface
   1690 	 */
   1691 	for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++) {
   1692 		if ((rt->mfc_ttls[vifi] > 0) &&
   1693 			(ip->ip_ttl > rt->mfc_ttls[vifi])) {
   1694 			vifp->v_pkt_out++;
   1695 			vifp->v_bytes_out += plen;
   1696 #ifdef PIM
   1697 			if (vifp->v_flags & VIFF_REGISTER)
   1698 				pim_register_send(ip, vifp, m, rt);
   1699 			else
   1700 #endif
   1701 			MC_SEND(ip, vifp, m);
   1702 		}
   1703 	}
   1704 
   1705 	/*
   1706 	 * Perform upcall-related bw measuring.
   1707 	 */
   1708 	if (rt->mfc_bw_meter != NULL) {
   1709 		struct bw_meter *x;
   1710 		struct timeval now;
   1711 
   1712 		microtime(&now);
   1713 		for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
   1714 			bw_meter_receive_packet(x, plen, &now);
   1715 	}
   1716 
   1717 	return 0;
   1718 }
   1719 
   1720 static void
   1721 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
   1722 {
   1723 	struct mbuf *mb_copy;
   1724 	const int hlen = ip->ip_hl << 2;
   1725 
   1726 	/*
   1727 	 * Make a new reference to the packet; make sure that
   1728 	 * the IP header is actually copied, not just referenced,
   1729 	 * so that ip_output() only scribbles on the copy.
   1730 	 */
   1731 	mb_copy = m_copypacket(m, M_DONTWAIT);
   1732 	M_PULLUP(mb_copy, hlen);
   1733 	if (mb_copy == NULL)
   1734 		return;
   1735 
   1736 	if (vifp->v_rate_limit <= 0)
   1737 		tbf_send_packet(vifp, mb_copy);
   1738 	else
   1739 		tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *),
   1740 		    ntohs(ip->ip_len));
   1741 }
   1742 
   1743 static void
   1744 encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
   1745 {
   1746 	struct mbuf *mb_copy;
   1747 	struct ip *ip_copy;
   1748 	int i, len = ntohs(ip->ip_len) + sizeof(multicast_encap_iphdr);
   1749 
   1750 	/* Take care of delayed checksums */
   1751 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1752 		in_undefer_cksum_tcpudp(m);
   1753 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
   1754 	}
   1755 
   1756 	/*
   1757 	 * copy the old packet & pullup its IP header into the
   1758 	 * new mbuf so we can modify it.  Try to fill the new
   1759 	 * mbuf since if we don't the ethernet driver will.
   1760 	 */
   1761 	MGETHDR(mb_copy, M_DONTWAIT, MT_DATA);
   1762 	if (mb_copy == NULL)
   1763 		return;
   1764 	mb_copy->m_data += max_linkhdr;
   1765 	mb_copy->m_pkthdr.len = len;
   1766 	mb_copy->m_len = sizeof(multicast_encap_iphdr);
   1767 
   1768 	if ((mb_copy->m_next = m_copypacket(m, M_DONTWAIT)) == NULL) {
   1769 		m_freem(mb_copy);
   1770 		return;
   1771 	}
   1772 	i = MHLEN - max_linkhdr;
   1773 	if (i > len)
   1774 		i = len;
   1775 	mb_copy = m_pullup(mb_copy, i);
   1776 	if (mb_copy == NULL)
   1777 		return;
   1778 
   1779 	/*
   1780 	 * fill in the encapsulating IP header.
   1781 	 */
   1782 	ip_copy = mtod(mb_copy, struct ip *);
   1783 	*ip_copy = multicast_encap_iphdr;
   1784 	if (len < IP_MINFRAGSIZE)
   1785 		ip_copy->ip_id = 0;
   1786 	else
   1787 		ip_copy->ip_id = ip_newid();
   1788 	ip_copy->ip_len = htons(len);
   1789 	ip_copy->ip_src = vifp->v_lcl_addr;
   1790 	ip_copy->ip_dst = vifp->v_rmt_addr;
   1791 
   1792 	/*
   1793 	 * turn the encapsulated IP header back into a valid one.
   1794 	 */
   1795 	ip = (struct ip *)((char *)ip_copy + sizeof(multicast_encap_iphdr));
   1796 	--ip->ip_ttl;
   1797 	ip->ip_sum = 0;
   1798 	mb_copy->m_data += sizeof(multicast_encap_iphdr);
   1799 	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
   1800 	mb_copy->m_data -= sizeof(multicast_encap_iphdr);
   1801 
   1802 	if (vifp->v_rate_limit <= 0)
   1803 		tbf_send_packet(vifp, mb_copy);
   1804 	else
   1805 		tbf_control(vifp, mb_copy, ip, ntohs(ip_copy->ip_len));
   1806 }
   1807 
   1808 /*
   1809  * De-encapsulate a packet and feed it back through ip input.
   1810  */
   1811 static void
   1812 vif_input(struct mbuf *m, int off, int proto, void *eparg)
   1813 {
   1814 	struct vif *vifp = eparg;
   1815 
   1816 	KASSERT(vifp != NULL);
   1817 
   1818 	if (proto != ENCAP_PROTO) {
   1819 		m_freem(m);
   1820 		mrtstat.mrts_bad_tunnel++;
   1821 		return;
   1822 	}
   1823 
   1824 	m_adj(m, off);
   1825 	m_set_rcvif(m, vifp->v_ifp);
   1826 
   1827 	if (__predict_false(!pktq_enqueue(ip_pktq, m, 0))) {
   1828 		m_freem(m);
   1829 	}
   1830 }
   1831 
   1832 /*
   1833  * Check if the packet should be received on the vif denoted by arg.
   1834  * (The encap selection code will call this once per vif since each is
   1835  * registered separately.)
   1836  */
   1837 static int
   1838 vif_encapcheck(struct mbuf *m, int off, int proto, void *arg)
   1839 {
   1840 	struct vif *vifp;
   1841 	struct ip ip;
   1842 
   1843 #ifdef DIAGNOSTIC
   1844 	if (!arg || proto != IPPROTO_IPV4)
   1845 		panic("unexpected arg in vif_encapcheck");
   1846 #endif
   1847 
   1848 	/*
   1849 	 * Accept the packet only if the inner header is multicast
   1850 	 * and the outer header matches a tunnel-mode vif.  Order
   1851 	 * checks in the hope that common non-matching packets will be
   1852 	 * rejected quickly.  Assume that unicast IPv4 traffic in a
   1853 	 * parallel tunnel (e.g. gif(4)) is unlikely.
   1854 	 */
   1855 
   1856 	/* Obtain the outer IP header and the vif pointer. */
   1857 	m_copydata(m, 0, sizeof(ip), (void *)&ip);
   1858 	vifp = (struct vif *)arg;
   1859 
   1860 	/*
   1861 	 * The outer source must match the vif's remote peer address.
   1862 	 * For a multicast router with several tunnels, this is the
   1863 	 * only check that will fail on packets in other tunnels,
   1864 	 * assuming the local address is the same.
   1865 	 */
   1866 	if (!in_hosteq(vifp->v_rmt_addr, ip.ip_src))
   1867 		return 0;
   1868 
   1869 	/* The outer destination must match the vif's local address. */
   1870 	if (!in_hosteq(vifp->v_lcl_addr, ip.ip_dst))
   1871 		return 0;
   1872 
   1873 	/* The vif must be of tunnel type. */
   1874 	if ((vifp->v_flags & VIFF_TUNNEL) == 0)
   1875 		return 0;
   1876 
   1877 	/* Check that the inner destination is multicast. */
   1878 	if (off + sizeof(ip) > m->m_pkthdr.len)
   1879 		return 0;
   1880 	m_copydata(m, off, sizeof(ip), (void *)&ip);
   1881 	if (!IN_MULTICAST(ip.ip_dst.s_addr))
   1882 		return 0;
   1883 
   1884 	/*
   1885 	 * We have checked that both the outer src and dst addresses
   1886 	 * match the vif, and that the inner destination is multicast
   1887 	 * (224/5).  By claiming more than 64, we intend to
   1888 	 * preferentially take packets that also match a parallel
   1889 	 * gif(4).
   1890 	 */
   1891 	return 32 + 32 + 5;
   1892 }
   1893 
   1894 /*
   1895  * Token bucket filter module
   1896  */
   1897 static void
   1898 tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_int32_t len)
   1899 {
   1900 
   1901 	if (len > MAX_BKT_SIZE) {
   1902 		/* drop if packet is too large */
   1903 		mrtstat.mrts_pkt2large++;
   1904 		m_freem(m);
   1905 		return;
   1906 	}
   1907 
   1908 	tbf_update_tokens(vifp);
   1909 
   1910 	/*
   1911 	 * If there are enough tokens, and the queue is empty, send this packet
   1912 	 * out immediately.  Otherwise, try to insert it on this vif's queue.
   1913 	 */
   1914 	if (vifp->tbf_q_len == 0) {
   1915 		if (len <= vifp->tbf_n_tok) {
   1916 			vifp->tbf_n_tok -= len;
   1917 			tbf_send_packet(vifp, m);
   1918 		} else {
   1919 			/* queue packet and timeout till later */
   1920 			tbf_queue(vifp, m);
   1921 			callout_reset(&vifp->v_repq_ch, TBF_REPROCESS,
   1922 			    tbf_reprocess_q, vifp);
   1923 		}
   1924 	} else {
   1925 		if (vifp->tbf_q_len >= vifp->tbf_max_q_len &&
   1926 		    !tbf_dq_sel(vifp, ip)) {
   1927 			/* queue full, and couldn't make room */
   1928 			mrtstat.mrts_q_overflow++;
   1929 			m_freem(m);
   1930 		} else {
   1931 			/* queue length low enough, or made room */
   1932 			tbf_queue(vifp, m);
   1933 			tbf_process_q(vifp);
   1934 		}
   1935 	}
   1936 }
   1937 
   1938 /*
   1939  * adds a packet to the queue at the interface
   1940  */
   1941 static void
   1942 tbf_queue(struct vif *vifp, struct mbuf *m)
   1943 {
   1944 	int s = splsoftnet();
   1945 
   1946 	/* insert at tail */
   1947 	*vifp->tbf_t = m;
   1948 	vifp->tbf_t = &m->m_nextpkt;
   1949 	vifp->tbf_q_len++;
   1950 
   1951 	splx(s);
   1952 }
   1953 
   1954 /*
   1955  * processes the queue at the interface
   1956  */
   1957 static void
   1958 tbf_process_q(struct vif *vifp)
   1959 {
   1960 	struct mbuf *m;
   1961 	int len;
   1962 	int s = splsoftnet();
   1963 
   1964 	/*
   1965 	 * Loop through the queue at the interface and send as many packets
   1966 	 * as possible.
   1967 	 */
   1968 	for (m = vifp->tbf_q; m != NULL; m = vifp->tbf_q) {
   1969 		len = ntohs(mtod(m, struct ip *)->ip_len);
   1970 
   1971 		/* determine if the packet can be sent */
   1972 		if (len <= vifp->tbf_n_tok) {
   1973 			/* if so,
   1974 			 * reduce no of tokens, dequeue the packet,
   1975 			 * send the packet.
   1976 			 */
   1977 			if ((vifp->tbf_q = m->m_nextpkt) == NULL)
   1978 				vifp->tbf_t = &vifp->tbf_q;
   1979 			--vifp->tbf_q_len;
   1980 
   1981 			m->m_nextpkt = NULL;
   1982 			vifp->tbf_n_tok -= len;
   1983 			tbf_send_packet(vifp, m);
   1984 		} else
   1985 			break;
   1986 	}
   1987 	splx(s);
   1988 }
   1989 
   1990 static void
   1991 tbf_reprocess_q(void *arg)
   1992 {
   1993 	struct vif *vifp = arg;
   1994 
   1995 	if (ip_mrouter == NULL)
   1996 		return;
   1997 
   1998 	tbf_update_tokens(vifp);
   1999 	tbf_process_q(vifp);
   2000 
   2001 	if (vifp->tbf_q_len != 0)
   2002 		callout_reset(&vifp->v_repq_ch, TBF_REPROCESS,
   2003 		    tbf_reprocess_q, vifp);
   2004 }
   2005 
   2006 /* function that will selectively discard a member of the queue
   2007  * based on the precedence value and the priority
   2008  */
   2009 static int
   2010 tbf_dq_sel(struct vif *vifp, struct ip *ip)
   2011 {
   2012 	u_int p;
   2013 	struct mbuf **mp, *m;
   2014 	int s = splsoftnet();
   2015 
   2016 	p = priority(vifp, ip);
   2017 
   2018 	for (mp = &vifp->tbf_q, m = *mp;
   2019 	    m != NULL;
   2020 	    mp = &m->m_nextpkt, m = *mp) {
   2021 		if (p > priority(vifp, mtod(m, struct ip *))) {
   2022 			if ((*mp = m->m_nextpkt) == NULL)
   2023 				vifp->tbf_t = mp;
   2024 			--vifp->tbf_q_len;
   2025 
   2026 			m_freem(m);
   2027 			mrtstat.mrts_drop_sel++;
   2028 			splx(s);
   2029 			return 1;
   2030 		}
   2031 	}
   2032 	splx(s);
   2033 	return 0;
   2034 }
   2035 
   2036 static void
   2037 tbf_send_packet(struct vif *vifp, struct mbuf *m)
   2038 {
   2039 	int error;
   2040 	int s = splsoftnet();
   2041 
   2042 	if (vifp->v_flags & VIFF_TUNNEL) {
   2043 		/* If tunnel options */
   2044 		ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, NULL, NULL);
   2045 	} else {
   2046 		/* if physical interface option, extract the options and then send */
   2047 		struct ip_moptions imo;
   2048 
   2049 		imo.imo_multicast_if_index = if_get_index(vifp->v_ifp);
   2050 		imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1;
   2051 		imo.imo_multicast_loop = 1;
   2052 
   2053 		error = ip_output(m, NULL, NULL, IP_FORWARDING|IP_MULTICASTOPTS,
   2054 		    &imo, NULL);
   2055 
   2056 		if (mrtdebug & DEBUG_XMIT)
   2057 			log(LOG_DEBUG, "phyint_send on vif %ld err %d\n",
   2058 			    (long)(vifp - viftable), error);
   2059 	}
   2060 	splx(s);
   2061 }
   2062 
   2063 /* determine the current time and then
   2064  * the elapsed time (between the last time and time now)
   2065  * in milliseconds & update the no. of tokens in the bucket
   2066  */
   2067 static void
   2068 tbf_update_tokens(struct vif *vifp)
   2069 {
   2070 	struct timeval tp;
   2071 	u_int32_t tm;
   2072 	int s = splsoftnet();
   2073 
   2074 	microtime(&tp);
   2075 
   2076 	TV_DELTA(tp, vifp->tbf_last_pkt_t, tm);
   2077 
   2078 	/*
   2079 	 * This formula is actually
   2080 	 * "time in seconds" * "bytes/second".
   2081 	 *
   2082 	 * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
   2083 	 *
   2084 	 * The (1000/1024) was introduced in add_vif to optimize
   2085 	 * this divide into a shift.
   2086 	 */
   2087 	vifp->tbf_n_tok += tm * vifp->v_rate_limit / 8192;
   2088 	vifp->tbf_last_pkt_t = tp;
   2089 
   2090 	if (vifp->tbf_n_tok > MAX_BKT_SIZE)
   2091 		vifp->tbf_n_tok = MAX_BKT_SIZE;
   2092 
   2093 	splx(s);
   2094 }
   2095 
   2096 static int
   2097 priority(struct vif *vifp, struct ip *ip)
   2098 {
   2099 	int prio = 50;	/* the lowest priority -- default case */
   2100 
   2101 	/* temporary hack; may add general packet classifier some day */
   2102 
   2103 	/*
   2104 	 * XXX XXX: We're reading the UDP header, but we didn't ensure
   2105 	 * it was present in the packet.
   2106 	 */
   2107 
   2108 	/*
   2109 	 * The UDP port space is divided up into four priority ranges:
   2110 	 * [0, 16384)     : unclassified - lowest priority
   2111 	 * [16384, 32768) : audio - highest priority
   2112 	 * [32768, 49152) : whiteboard - medium priority
   2113 	 * [49152, 65536) : video - low priority
   2114 	 */
   2115 	if (ip->ip_p == IPPROTO_UDP) {
   2116 		struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
   2117 
   2118 		switch (ntohs(udp->uh_dport) & 0xc000) {
   2119 		case 0x4000:
   2120 			prio = 70;
   2121 			break;
   2122 		case 0x8000:
   2123 			prio = 60;
   2124 			break;
   2125 		case 0xc000:
   2126 			prio = 55;
   2127 			break;
   2128 		}
   2129 
   2130 		if (tbfdebug > 1)
   2131 			log(LOG_DEBUG, "port %x prio %d\n",
   2132 			    ntohs(udp->uh_dport), prio);
   2133 	}
   2134 
   2135 	return prio;
   2136 }
   2137 
   2138 /*
   2139  * Code for bandwidth monitors
   2140  */
   2141 
   2142 /*
   2143  * Define common interface for timeval-related methods
   2144  */
   2145 #define	BW_TIMEVALCMP(tvp, uvp, cmp) timercmp((tvp), (uvp), cmp)
   2146 #define	BW_TIMEVALDECR(vvp, uvp) timersub((vvp), (uvp), (vvp))
   2147 #define	BW_TIMEVALADD(vvp, uvp) timeradd((vvp), (uvp), (vvp))
   2148 
   2149 static uint32_t
   2150 compute_bw_meter_flags(struct bw_upcall *req)
   2151 {
   2152 	uint32_t flags = 0;
   2153 
   2154 	if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
   2155 		flags |= BW_METER_UNIT_PACKETS;
   2156 	if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
   2157 		flags |= BW_METER_UNIT_BYTES;
   2158 	if (req->bu_flags & BW_UPCALL_GEQ)
   2159 		flags |= BW_METER_GEQ;
   2160 	if (req->bu_flags & BW_UPCALL_LEQ)
   2161 		flags |= BW_METER_LEQ;
   2162 
   2163 	return flags;
   2164 }
   2165 
   2166 /*
   2167  * Add a bw_meter entry
   2168  */
   2169 static int
   2170 add_bw_upcall(struct bw_upcall *req)
   2171 {
   2172 	int s;
   2173 	struct mfc *mfc;
   2174 	struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
   2175 		BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
   2176 	struct timeval now;
   2177 	struct bw_meter *x;
   2178 	uint32_t flags;
   2179 
   2180 	if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
   2181 		return EOPNOTSUPP;
   2182 
   2183 	/* Test if the flags are valid */
   2184 	if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
   2185 		return EINVAL;
   2186 	if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
   2187 		return EINVAL;
   2188 	if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
   2189 	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
   2190 		return EINVAL;
   2191 
   2192 	/* Test if the threshold time interval is valid */
   2193 	if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
   2194 		return EINVAL;
   2195 
   2196 	flags = compute_bw_meter_flags(req);
   2197 
   2198 	/*
   2199 	 * Find if we have already same bw_meter entry
   2200 	 */
   2201 	s = splsoftnet();
   2202 	mfc = mfc_find(&req->bu_src, &req->bu_dst);
   2203 	if (mfc == NULL) {
   2204 		splx(s);
   2205 		return EADDRNOTAVAIL;
   2206 	}
   2207 	for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
   2208 		if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
   2209 		    &req->bu_threshold.b_time, ==)) &&
   2210 		    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
   2211 		    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
   2212 		    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
   2213 			splx(s);
   2214 			return 0;		/* XXX Already installed */
   2215 		}
   2216 	}
   2217 
   2218 	/* Allocate the new bw_meter entry */
   2219 	x = kmem_intr_alloc(sizeof(*x), KM_NOSLEEP);
   2220 	if (x == NULL) {
   2221 		splx(s);
   2222 		return ENOBUFS;
   2223 	}
   2224 
   2225 	/* Set the new bw_meter entry */
   2226 	x->bm_threshold.b_time = req->bu_threshold.b_time;
   2227 	microtime(&now);
   2228 	x->bm_start_time = now;
   2229 	x->bm_threshold.b_packets = req->bu_threshold.b_packets;
   2230 	x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
   2231 	x->bm_measured.b_packets = 0;
   2232 	x->bm_measured.b_bytes = 0;
   2233 	x->bm_flags = flags;
   2234 	x->bm_time_next = NULL;
   2235 	x->bm_time_hash = BW_METER_BUCKETS;
   2236 
   2237 	/* Add the new bw_meter entry to the front of entries for this MFC */
   2238 	x->bm_mfc = mfc;
   2239 	x->bm_mfc_next = mfc->mfc_bw_meter;
   2240 	mfc->mfc_bw_meter = x;
   2241 	schedule_bw_meter(x, &now);
   2242 	splx(s);
   2243 
   2244 	return 0;
   2245 }
   2246 
   2247 static void
   2248 free_bw_list(struct bw_meter *list)
   2249 {
   2250 	while (list != NULL) {
   2251 		struct bw_meter *x = list;
   2252 
   2253 		list = list->bm_mfc_next;
   2254 		unschedule_bw_meter(x);
   2255 		kmem_intr_free(x, sizeof(*x));
   2256 	}
   2257 }
   2258 
   2259 /*
   2260  * Delete one or multiple bw_meter entries
   2261  */
   2262 static int
   2263 del_bw_upcall(struct bw_upcall *req)
   2264 {
   2265 	int s;
   2266 	struct mfc *mfc;
   2267 	struct bw_meter *x;
   2268 
   2269 	if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
   2270 		return EOPNOTSUPP;
   2271 
   2272 	s = splsoftnet();
   2273 	/* Find the corresponding MFC entry */
   2274 	mfc = mfc_find(&req->bu_src, &req->bu_dst);
   2275 	if (mfc == NULL) {
   2276 		splx(s);
   2277 		return EADDRNOTAVAIL;
   2278 	} else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
   2279 		/*
   2280 		 * Delete all bw_meter entries for this mfc
   2281 		 */
   2282 		struct bw_meter *list;
   2283 
   2284 		list = mfc->mfc_bw_meter;
   2285 		mfc->mfc_bw_meter = NULL;
   2286 		free_bw_list(list);
   2287 		splx(s);
   2288 		return 0;
   2289 	} else {			/* Delete a single bw_meter entry */
   2290 		struct bw_meter *prev;
   2291 		uint32_t flags = 0;
   2292 
   2293 		flags = compute_bw_meter_flags(req);
   2294 
   2295 		/* Find the bw_meter entry to delete */
   2296 		for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
   2297 		     prev = x, x = x->bm_mfc_next) {
   2298 			if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
   2299 			    &req->bu_threshold.b_time, ==)) &&
   2300 			    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
   2301 			    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
   2302 			    (x->bm_flags & BW_METER_USER_FLAGS) == flags)
   2303 				break;
   2304 		}
   2305 		if (x != NULL) { /* Delete entry from the list for this MFC */
   2306 			if (prev != NULL)
   2307 				prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
   2308 			else
   2309 				x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
   2310 
   2311 			unschedule_bw_meter(x);
   2312 			splx(s);
   2313 			/* Free the bw_meter entry */
   2314 			kmem_intr_free(x, sizeof(*x));
   2315 			return 0;
   2316 		} else {
   2317 			splx(s);
   2318 			return EINVAL;
   2319 		}
   2320 	}
   2321 	/* NOTREACHED */
   2322 }
   2323 
   2324 /*
   2325  * Perform bandwidth measurement processing that may result in an upcall
   2326  */
   2327 static void
   2328 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
   2329 {
   2330 	struct timeval delta;
   2331 
   2332 	delta = *nowp;
   2333 	BW_TIMEVALDECR(&delta, &x->bm_start_time);
   2334 
   2335 	if (x->bm_flags & BW_METER_GEQ) {
   2336 		/*
   2337 		 * Processing for ">=" type of bw_meter entry
   2338 		 */
   2339 		if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
   2340 			/* Reset the bw_meter entry */
   2341 			x->bm_start_time = *nowp;
   2342 			x->bm_measured.b_packets = 0;
   2343 			x->bm_measured.b_bytes = 0;
   2344 			x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
   2345 		}
   2346 
   2347 		/* Record that a packet is received */
   2348 		x->bm_measured.b_packets++;
   2349 		x->bm_measured.b_bytes += plen;
   2350 
   2351 		/*
   2352 		 * Test if we should deliver an upcall
   2353 		 */
   2354 		if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
   2355 			if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
   2356 				 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
   2357 				((x->bm_flags & BW_METER_UNIT_BYTES) &&
   2358 				 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
   2359 				/* Prepare an upcall for delivery */
   2360 				bw_meter_prepare_upcall(x, nowp);
   2361 				x->bm_flags |= BW_METER_UPCALL_DELIVERED;
   2362 			}
   2363 		}
   2364 	} else if (x->bm_flags & BW_METER_LEQ) {
   2365 		/*
   2366 		 * Processing for "<=" type of bw_meter entry
   2367 		 */
   2368 		if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
   2369 			/*
   2370 			 * We are behind time with the multicast forwarding table
   2371 			 * scanning for "<=" type of bw_meter entries, so test now
   2372 			 * if we should deliver an upcall.
   2373 			 */
   2374 			if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
   2375 				 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
   2376 				((x->bm_flags & BW_METER_UNIT_BYTES) &&
   2377 				 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
   2378 				/* Prepare an upcall for delivery */
   2379 				bw_meter_prepare_upcall(x, nowp);
   2380 			}
   2381 			/* Reschedule the bw_meter entry */
   2382 			unschedule_bw_meter(x);
   2383 			schedule_bw_meter(x, nowp);
   2384 		}
   2385 
   2386 		/* Record that a packet is received */
   2387 		x->bm_measured.b_packets++;
   2388 		x->bm_measured.b_bytes += plen;
   2389 
   2390 		/*
   2391 		 * Test if we should restart the measuring interval
   2392 		 */
   2393 		if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
   2394 		     x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
   2395 		    (x->bm_flags & BW_METER_UNIT_BYTES &&
   2396 		     x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
   2397 			/* Don't restart the measuring interval */
   2398 		} else {
   2399 			/* Do restart the measuring interval */
   2400 			/*
   2401 			 * XXX: note that we don't unschedule and schedule, because this
   2402 			 * might be too much overhead per packet. Instead, when we process
   2403 			 * all entries for a given timer hash bin, we check whether it is
   2404 			 * really a timeout. If not, we reschedule at that time.
   2405 			 */
   2406 			x->bm_start_time = *nowp;
   2407 			x->bm_measured.b_packets = 0;
   2408 			x->bm_measured.b_bytes = 0;
   2409 			x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
   2410 		}
   2411 	}
   2412 }
   2413 
   2414 /*
   2415  * Prepare a bandwidth-related upcall
   2416  */
   2417 static void
   2418 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
   2419 {
   2420 	struct timeval delta;
   2421 	struct bw_upcall *u;
   2422 
   2423 	/*
   2424 	 * Compute the measured time interval
   2425 	 */
   2426 	delta = *nowp;
   2427 	BW_TIMEVALDECR(&delta, &x->bm_start_time);
   2428 
   2429 	/*
   2430 	 * If there are too many pending upcalls, deliver them now
   2431 	 */
   2432 	if (bw_upcalls_n >= BW_UPCALLS_MAX)
   2433 		bw_upcalls_send();
   2434 
   2435 	/*
   2436 	 * Set the bw_upcall entry
   2437 	 */
   2438 	u = &bw_upcalls[bw_upcalls_n++];
   2439 	u->bu_src = x->bm_mfc->mfc_origin;
   2440 	u->bu_dst = x->bm_mfc->mfc_mcastgrp;
   2441 	u->bu_threshold.b_time = x->bm_threshold.b_time;
   2442 	u->bu_threshold.b_packets = x->bm_threshold.b_packets;
   2443 	u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
   2444 	u->bu_measured.b_time = delta;
   2445 	u->bu_measured.b_packets = x->bm_measured.b_packets;
   2446 	u->bu_measured.b_bytes = x->bm_measured.b_bytes;
   2447 	u->bu_flags = 0;
   2448 	if (x->bm_flags & BW_METER_UNIT_PACKETS)
   2449 		u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
   2450 	if (x->bm_flags & BW_METER_UNIT_BYTES)
   2451 		u->bu_flags |= BW_UPCALL_UNIT_BYTES;
   2452 	if (x->bm_flags & BW_METER_GEQ)
   2453 		u->bu_flags |= BW_UPCALL_GEQ;
   2454 	if (x->bm_flags & BW_METER_LEQ)
   2455 		u->bu_flags |= BW_UPCALL_LEQ;
   2456 }
   2457 
   2458 /*
   2459  * Send the pending bandwidth-related upcalls
   2460  */
   2461 static void
   2462 bw_upcalls_send(void)
   2463 {
   2464 	struct mbuf *m;
   2465 	int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
   2466 	struct sockaddr_in k_igmpsrc = {
   2467 		.sin_len = sizeof(k_igmpsrc),
   2468 		.sin_family = AF_INET,
   2469 	};
   2470 	static struct igmpmsg igmpmsg = {
   2471 		0,		/* unused1 */
   2472 		0,		/* unused2 */
   2473 		IGMPMSG_BW_UPCALL,/* im_msgtype */
   2474 		0,		/* im_mbz */
   2475 		0,		/* im_vif */
   2476 		0,		/* unused3 */
   2477 		{ 0 },		/* im_src */
   2478 		{ 0 }		/* im_dst */
   2479 	};
   2480 
   2481 	if (bw_upcalls_n == 0)
   2482 		return;			/* No pending upcalls */
   2483 
   2484 	bw_upcalls_n = 0;
   2485 
   2486 	/*
   2487 	 * Allocate a new mbuf, initialize it with the header and
   2488 	 * the payload for the pending calls.
   2489 	 */
   2490 	MGETHDR(m, M_DONTWAIT, MT_HEADER);
   2491 	if (m == NULL) {
   2492 		log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
   2493 		return;
   2494 	}
   2495 
   2496 	m->m_len = m->m_pkthdr.len = 0;
   2497 	m_copyback(m, 0, sizeof(struct igmpmsg), (void *)&igmpmsg);
   2498 	m_copyback(m, sizeof(struct igmpmsg), len, (void *)&bw_upcalls[0]);
   2499 
   2500 	/*
   2501 	 * Send the upcalls
   2502 	 * XXX do we need to set the address in k_igmpsrc ?
   2503 	 */
   2504 	mrtstat.mrts_upcalls++;
   2505 	if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
   2506 		log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
   2507 		++mrtstat.mrts_upq_sockfull;
   2508 	}
   2509 }
   2510 
   2511 /*
   2512  * Compute the timeout hash value for the bw_meter entries
   2513  */
   2514 #define	BW_METER_TIMEHASH(bw_meter, hash)				\
   2515     do {								\
   2516 	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
   2517 	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time);	\
   2518 	(hash) = next_timeval.tv_sec;					\
   2519 	if (next_timeval.tv_usec)					\
   2520 		(hash)++; /* XXX: make sure we don't timeout early */	\
   2521 	(hash) %= BW_METER_BUCKETS;					\
   2522     } while (/*CONSTCOND*/ 0)
   2523 
   2524 /*
   2525  * Schedule a timer to process periodically bw_meter entry of type "<="
   2526  * by linking the entry in the proper hash bucket.
   2527  */
   2528 static void
   2529 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
   2530 {
   2531 	int time_hash;
   2532 
   2533 	if (!(x->bm_flags & BW_METER_LEQ))
   2534 		return;		/* XXX: we schedule timers only for "<=" entries */
   2535 
   2536 	/*
   2537 	 * Reset the bw_meter entry
   2538 	 */
   2539 	x->bm_start_time = *nowp;
   2540 	x->bm_measured.b_packets = 0;
   2541 	x->bm_measured.b_bytes = 0;
   2542 	x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
   2543 
   2544 	/*
   2545 	 * Compute the timeout hash value and insert the entry
   2546 	 */
   2547 	BW_METER_TIMEHASH(x, time_hash);
   2548 	x->bm_time_next = bw_meter_timers[time_hash];
   2549 	bw_meter_timers[time_hash] = x;
   2550 	x->bm_time_hash = time_hash;
   2551 }
   2552 
   2553 /*
   2554  * Unschedule the periodic timer that processes bw_meter entry of type "<="
   2555  * by removing the entry from the proper hash bucket.
   2556  */
   2557 static void
   2558 unschedule_bw_meter(struct bw_meter *x)
   2559 {
   2560 	int time_hash;
   2561 	struct bw_meter *prev, *tmp;
   2562 
   2563 	if (!(x->bm_flags & BW_METER_LEQ))
   2564 		return;		/* XXX: we schedule timers only for "<=" entries */
   2565 
   2566 	/*
   2567 	 * Compute the timeout hash value and delete the entry
   2568 	 */
   2569 	time_hash = x->bm_time_hash;
   2570 	if (time_hash >= BW_METER_BUCKETS)
   2571 		return;		/* Entry was not scheduled */
   2572 
   2573 	for (prev = NULL, tmp = bw_meter_timers[time_hash];
   2574 	     tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
   2575 		if (tmp == x)
   2576 			break;
   2577 
   2578 	if (tmp == NULL)
   2579 		panic("unschedule_bw_meter: bw_meter entry not found");
   2580 
   2581 	if (prev != NULL)
   2582 		prev->bm_time_next = x->bm_time_next;
   2583 	else
   2584 		bw_meter_timers[time_hash] = x->bm_time_next;
   2585 
   2586 	x->bm_time_next = NULL;
   2587 	x->bm_time_hash = BW_METER_BUCKETS;
   2588 }
   2589 
   2590 /*
   2591  * Process all "<=" type of bw_meter that should be processed now,
   2592  * and for each entry prepare an upcall if necessary. Each processed
   2593  * entry is rescheduled again for the (periodic) processing.
   2594  *
   2595  * This is run periodically (once per second normally). On each round,
   2596  * all the potentially matching entries are in the hash slot that we are
   2597  * looking at.
   2598  */
   2599 static void
   2600 bw_meter_process(void)
   2601 {
   2602 	int s;
   2603 	static uint32_t last_tv_sec;	/* last time we processed this */
   2604 
   2605 	uint32_t loops;
   2606 	int i;
   2607 	struct timeval now, process_endtime;
   2608 
   2609 	microtime(&now);
   2610 	if (last_tv_sec == now.tv_sec)
   2611 		return;		/* nothing to do */
   2612 
   2613 	loops = now.tv_sec - last_tv_sec;
   2614 	last_tv_sec = now.tv_sec;
   2615 	if (loops > BW_METER_BUCKETS)
   2616 		loops = BW_METER_BUCKETS;
   2617 
   2618 	s = splsoftnet();
   2619 	/*
   2620 	 * Process all bins of bw_meter entries from the one after the last
   2621 	 * processed to the current one. On entry, i points to the last bucket
   2622 	 * visited, so we need to increment i at the beginning of the loop.
   2623 	 */
   2624 	for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
   2625 		struct bw_meter *x, *tmp_list;
   2626 
   2627 		if (++i >= BW_METER_BUCKETS)
   2628 			i = 0;
   2629 
   2630 		/* Disconnect the list of bw_meter entries from the bin */
   2631 		tmp_list = bw_meter_timers[i];
   2632 		bw_meter_timers[i] = NULL;
   2633 
   2634 		/* Process the list of bw_meter entries */
   2635 		while (tmp_list != NULL) {
   2636 			x = tmp_list;
   2637 			tmp_list = tmp_list->bm_time_next;
   2638 
   2639 			/* Test if the time interval is over */
   2640 			process_endtime = x->bm_start_time;
   2641 			BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
   2642 			if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
   2643 				/* Not yet: reschedule, but don't reset */
   2644 				int time_hash;
   2645 
   2646 				BW_METER_TIMEHASH(x, time_hash);
   2647 				if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
   2648 					/*
   2649 					 * XXX: somehow the bin processing is a bit ahead of time.
   2650 					 * Put the entry in the next bin.
   2651 					 */
   2652 					if (++time_hash >= BW_METER_BUCKETS)
   2653 						time_hash = 0;
   2654 				}
   2655 				x->bm_time_next = bw_meter_timers[time_hash];
   2656 				bw_meter_timers[time_hash] = x;
   2657 				x->bm_time_hash = time_hash;
   2658 
   2659 				continue;
   2660 			}
   2661 
   2662 			/*
   2663 			 * Test if we should deliver an upcall
   2664 			 */
   2665 			if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
   2666 			    (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
   2667 			    ((x->bm_flags & BW_METER_UNIT_BYTES) &&
   2668 			    (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
   2669 				/* Prepare an upcall for delivery */
   2670 				bw_meter_prepare_upcall(x, &now);
   2671 			}
   2672 
   2673 			/*
   2674 			  * Reschedule for next processing
   2675 			 */
   2676 			schedule_bw_meter(x, &now);
   2677 		}
   2678 	}
   2679 
   2680 	/* Send all upcalls that are pending delivery */
   2681 	bw_upcalls_send();
   2682 
   2683 	splx(s);
   2684 }
   2685 
   2686 /*
   2687  * A periodic function for sending all upcalls that are pending delivery
   2688  */
   2689 static void
   2690 expire_bw_upcalls_send(void *unused)
   2691 {
   2692 	int s;
   2693 
   2694 	s = splsoftnet();
   2695 	bw_upcalls_send();
   2696 	splx(s);
   2697 
   2698 	callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
   2699 	    expire_bw_upcalls_send, NULL);
   2700 }
   2701 
   2702 /*
   2703  * A periodic function for periodic scanning of the multicast forwarding
   2704  * table for processing all "<=" bw_meter entries.
   2705  */
   2706 static void
   2707 expire_bw_meter_process(void *unused)
   2708 {
   2709 	if (mrt_api_config & MRT_MFC_BW_UPCALL)
   2710 		bw_meter_process();
   2711 
   2712 	callout_reset(&bw_meter_ch, BW_METER_PERIOD,
   2713 	    expire_bw_meter_process, NULL);
   2714 }
   2715 
   2716 /*
   2717  * End of bandwidth monitoring code
   2718  */
   2719 
   2720 #ifdef PIM
   2721 /*
   2722  * Send the packet up to the user daemon, or eventually do kernel encapsulation
   2723  */
   2724 static int
   2725 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m,
   2726     struct mfc *rt)
   2727 {
   2728 	struct mbuf *mb_copy, *mm;
   2729 
   2730 	if (mrtdebug & DEBUG_PIM)
   2731 		log(LOG_DEBUG, "pim_register_send: \n");
   2732 
   2733 	mb_copy = pim_register_prepare(ip, m);
   2734 	if (mb_copy == NULL)
   2735 		return ENOBUFS;
   2736 
   2737 	/*
   2738 	 * Send all the fragments. Note that the mbuf for each fragment
   2739 	 * is freed by the sending machinery.
   2740 	 */
   2741 	for (mm = mb_copy; mm; mm = mb_copy) {
   2742 		mb_copy = mm->m_nextpkt;
   2743 		mm->m_nextpkt = NULL;
   2744 		mm = m_pullup(mm, sizeof(struct ip));
   2745 		if (mm != NULL) {
   2746 			ip = mtod(mm, struct ip *);
   2747 			if ((mrt_api_config & MRT_MFC_RP) &&
   2748 			    !in_nullhost(rt->mfc_rp)) {
   2749 				pim_register_send_rp(ip, vifp, mm, rt);
   2750 			} else {
   2751 				pim_register_send_upcall(ip, vifp, mm, rt);
   2752 			}
   2753 		}
   2754 	}
   2755 
   2756 	return 0;
   2757 }
   2758 
   2759 /*
   2760  * Return a copy of the data packet that is ready for PIM Register
   2761  * encapsulation.
   2762  * XXX: Note that in the returned copy the IP header is a valid one.
   2763  */
   2764 static struct mbuf *
   2765 pim_register_prepare(struct ip *ip, struct mbuf *m)
   2766 {
   2767 	struct mbuf *mb_copy = NULL;
   2768 	int mtu;
   2769 
   2770 	/* Take care of delayed checksums */
   2771 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   2772 		in_undefer_cksum_tcpudp(m);
   2773 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
   2774 	}
   2775 
   2776 	/*
   2777 	 * Copy the old packet & pullup its IP header into the
   2778 	 * new mbuf so we can modify it.
   2779 	 */
   2780 	mb_copy = m_copypacket(m, M_DONTWAIT);
   2781 	if (mb_copy == NULL)
   2782 		return NULL;
   2783 	mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
   2784 	if (mb_copy == NULL)
   2785 		return NULL;
   2786 
   2787 	/* take care of the TTL */
   2788 	ip = mtod(mb_copy, struct ip *);
   2789 	--ip->ip_ttl;
   2790 
   2791 	/* Compute the MTU after the PIM Register encapsulation */
   2792 	mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
   2793 
   2794 	if (ntohs(ip->ip_len) <= mtu) {
   2795 		/* Turn the IP header into a valid one */
   2796 		ip->ip_sum = 0;
   2797 		ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
   2798 	} else {
   2799 		/* Fragment the packet */
   2800 		if (ip_fragment(mb_copy, NULL, mtu) != 0) {
   2801 			/* XXX: mb_copy was freed by ip_fragment() */
   2802 			return NULL;
   2803 		}
   2804 	}
   2805 	return mb_copy;
   2806 }
   2807 
   2808 /*
   2809  * Send an upcall with the data packet to the user-level process.
   2810  */
   2811 static int
   2812 pim_register_send_upcall(struct ip *ip, struct vif *vifp,
   2813     struct mbuf *mb_copy, struct mfc *rt)
   2814 {
   2815 	struct mbuf *mb_first;
   2816 	int len = ntohs(ip->ip_len);
   2817 	struct igmpmsg *im;
   2818 	struct sockaddr_in k_igmpsrc = {
   2819 		.sin_len = sizeof(k_igmpsrc),
   2820 		.sin_family = AF_INET,
   2821 	};
   2822 
   2823 	/*
   2824 	 * Add a new mbuf with an upcall header
   2825 	 */
   2826 	MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
   2827 	if (mb_first == NULL) {
   2828 		m_freem(mb_copy);
   2829 		return ENOBUFS;
   2830 	}
   2831 	mb_first->m_data += max_linkhdr;
   2832 	mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
   2833 	mb_first->m_len = sizeof(struct igmpmsg);
   2834 	mb_first->m_next = mb_copy;
   2835 
   2836 	/* Send message to routing daemon */
   2837 	im = mtod(mb_first, struct igmpmsg *);
   2838 	im->im_msgtype	= IGMPMSG_WHOLEPKT;
   2839 	im->im_mbz	= 0;
   2840 	im->im_vif	= vifp - viftable;
   2841 	im->im_src	= ip->ip_src;
   2842 	im->im_dst	= ip->ip_dst;
   2843 
   2844 	k_igmpsrc.sin_addr	= ip->ip_src;
   2845 
   2846 	mrtstat.mrts_upcalls++;
   2847 
   2848 	if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
   2849 		if (mrtdebug & DEBUG_PIM)
   2850 			log(LOG_WARNING,
   2851 			    "mcast: pim_register_send_upcall: ip_mrouter socket queue full\n");
   2852 		++mrtstat.mrts_upq_sockfull;
   2853 		return ENOBUFS;
   2854 	}
   2855 
   2856 	/* Keep statistics */
   2857 	pimstat.pims_snd_registers_msgs++;
   2858 	pimstat.pims_snd_registers_bytes += len;
   2859 
   2860 	return 0;
   2861 }
   2862 
   2863 /*
   2864  * Encapsulate the data packet in PIM Register message and send it to the RP.
   2865  */
   2866 static int
   2867 pim_register_send_rp(struct ip *ip, struct vif *vifp,
   2868     struct mbuf *mb_copy, struct mfc *rt)
   2869 {
   2870 	struct mbuf *mb_first;
   2871 	struct ip *ip_outer;
   2872 	struct pim_encap_pimhdr *pimhdr;
   2873 	int len = ntohs(ip->ip_len);
   2874 	vifi_t vifi = rt->mfc_parent;
   2875 
   2876 	if ((vifi >= numvifs) || in_nullhost(viftable[vifi].v_lcl_addr)) {
   2877 		m_freem(mb_copy);
   2878 		return EADDRNOTAVAIL;		/* The iif vif is invalid */
   2879 	}
   2880 
   2881 	/*
   2882 	 * Add a new mbuf with the encapsulating header
   2883 	 */
   2884 	MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
   2885 	if (mb_first == NULL) {
   2886 		m_freem(mb_copy);
   2887 		return ENOBUFS;
   2888 	}
   2889 	mb_first->m_data += max_linkhdr;
   2890 	mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
   2891 	mb_first->m_next = mb_copy;
   2892 
   2893 	mb_first->m_pkthdr.len = len + mb_first->m_len;
   2894 
   2895 	/*
   2896 	 * Fill in the encapsulating IP and PIM header
   2897 	 */
   2898 	ip_outer = mtod(mb_first, struct ip *);
   2899 	*ip_outer = pim_encap_iphdr;
   2900 	if (mb_first->m_pkthdr.len < IP_MINFRAGSIZE)
   2901 		ip_outer->ip_id = 0;
   2902 	else
   2903 		ip_outer->ip_id = ip_newid();
   2904 	ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) +
   2905 	    sizeof(pim_encap_pimhdr));
   2906 	ip_outer->ip_src = viftable[vifi].v_lcl_addr;
   2907 	ip_outer->ip_dst = rt->mfc_rp;
   2908 	/*
   2909 	 * Copy the inner header TOS to the outer header, and take care of the
   2910 	 * IP_DF bit.
   2911 	 */
   2912 	ip_outer->ip_tos = ip->ip_tos;
   2913 	if (ntohs(ip->ip_off) & IP_DF)
   2914 		ip_outer->ip_off |= htons(IP_DF);
   2915 	pimhdr = (struct pim_encap_pimhdr *)((char *)ip_outer
   2916 	    + sizeof(pim_encap_iphdr));
   2917 	*pimhdr = pim_encap_pimhdr;
   2918 	/* If the iif crosses a border, set the Border-bit */
   2919 	if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
   2920 		pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
   2921 
   2922 	mb_first->m_data += sizeof(pim_encap_iphdr);
   2923 	pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
   2924 	mb_first->m_data -= sizeof(pim_encap_iphdr);
   2925 
   2926 	if (vifp->v_rate_limit == 0)
   2927 		tbf_send_packet(vifp, mb_first);
   2928 	else
   2929 		tbf_control(vifp, mb_first, ip, ntohs(ip_outer->ip_len));
   2930 
   2931 	/* Keep statistics */
   2932 	pimstat.pims_snd_registers_msgs++;
   2933 	pimstat.pims_snd_registers_bytes += len;
   2934 
   2935 	return 0;
   2936 }
   2937 
   2938 /*
   2939  * PIM-SMv2 and PIM-DM messages processing.
   2940  * Receives and verifies the PIM control messages, and passes them
   2941  * up to the listening socket, using rip_input().
   2942  * The only message with special processing is the PIM_REGISTER message
   2943  * (used by PIM-SM): the PIM header is stripped off, and the inner packet
   2944  * is passed to if_simloop().
   2945  */
   2946 void
   2947 pim_input(struct mbuf *m, int off, int proto)
   2948 {
   2949 	struct ip *ip = mtod(m, struct ip *);
   2950 	struct pim *pim;
   2951 	int minlen;
   2952 	int datalen;
   2953 	int ip_tos;
   2954 	int iphlen;
   2955 
   2956 	iphlen = off;
   2957 	datalen = ntohs(ip->ip_len) - iphlen;
   2958 
   2959 	/* Keep statistics */
   2960 	pimstat.pims_rcv_total_msgs++;
   2961 	pimstat.pims_rcv_total_bytes += datalen;
   2962 
   2963 	/*
   2964 	 * Validate lengths
   2965 	 */
   2966 	if (datalen < PIM_MINLEN) {
   2967 		pimstat.pims_rcv_tooshort++;
   2968 		log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
   2969 		    datalen, (u_long)ip->ip_src.s_addr);
   2970 		m_freem(m);
   2971 		return;
   2972 	}
   2973 
   2974 	/*
   2975 	 * If the packet is at least as big as a REGISTER, go ahead
   2976 	 * and grab the PIM REGISTER header size, to avoid another
   2977 	 * possible m_pullup() later.
   2978 	 *
   2979 	 * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
   2980 	 * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
   2981 	 */
   2982 	minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
   2983 
   2984 	/*
   2985 	 * Get the IP and PIM headers in contiguous memory, and
   2986 	 * possibly the PIM REGISTER header.
   2987 	 */
   2988 	if ((m->m_flags & M_EXT || m->m_len < minlen) &&
   2989 	    (m = m_pullup(m, minlen)) == NULL) {
   2990 		log(LOG_ERR, "pim_input: m_pullup failure\n");
   2991 		return;
   2992 	}
   2993 	ip = mtod(m, struct ip *);
   2994 	ip_tos = ip->ip_tos;
   2995 
   2996 	/* adjust mbuf to point to the PIM header */
   2997 	m->m_data += iphlen;
   2998 	m->m_len  -= iphlen;
   2999 	pim = mtod(m, struct pim *);
   3000 
   3001 	/*
   3002 	 * Validate checksum. If PIM REGISTER, exclude the data packet.
   3003 	 *
   3004 	 * XXX: some older PIMv2 implementations don't make this distinction,
   3005 	 * so for compatibility reason perform the checksum over part of the
   3006 	 * message, and if error, then over the whole message.
   3007 	 */
   3008 	if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
   3009 		/* do nothing, checksum okay */
   3010 	} else if (in_cksum(m, datalen)) {
   3011 		pimstat.pims_rcv_badsum++;
   3012 		if (mrtdebug & DEBUG_PIM)
   3013 			log(LOG_DEBUG, "pim_input: invalid checksum\n");
   3014 		m_freem(m);
   3015 		return;
   3016 	}
   3017 
   3018 	/* PIM version check */
   3019 	if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
   3020 		pimstat.pims_rcv_badversion++;
   3021 		log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
   3022 		    PIM_VT_V(pim->pim_vt), PIM_VERSION);
   3023 		m_freem(m);
   3024 		return;
   3025 	}
   3026 
   3027 	/* restore mbuf back to the outer IP */
   3028 	m->m_data -= iphlen;
   3029 	m->m_len  += iphlen;
   3030 
   3031 	if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
   3032 		/*
   3033 		 * Since this is a REGISTER, we'll make a copy of the register
   3034 		 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
   3035 		 * routing daemon.
   3036 		 */
   3037 		int s;
   3038 		struct sockaddr_in dst = {
   3039 			.sin_len = sizeof(dst),
   3040 			.sin_family = AF_INET,
   3041 		};
   3042 		struct mbuf *mcp;
   3043 		struct ip *encap_ip;
   3044 		u_int32_t *reghdr;
   3045 		struct ifnet *vifp;
   3046 
   3047 		s = splsoftnet();
   3048 		if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
   3049 			splx(s);
   3050 			if (mrtdebug & DEBUG_PIM)
   3051 				log(LOG_DEBUG,
   3052 				    "pim_input: register vif not set: %d\n", reg_vif_num);
   3053 			m_freem(m);
   3054 			return;
   3055 		}
   3056 		/* XXX need refcnt? */
   3057 		vifp = viftable[reg_vif_num].v_ifp;
   3058 		splx(s);
   3059 
   3060 		/*
   3061 		 * Validate length
   3062 		 */
   3063 		if (datalen < PIM_REG_MINLEN) {
   3064 			pimstat.pims_rcv_tooshort++;
   3065 			pimstat.pims_rcv_badregisters++;
   3066 			log(LOG_ERR,
   3067 			    "pim_input: register packet size too small %d from %lx\n",
   3068 			    datalen, (u_long)ip->ip_src.s_addr);
   3069 			m_freem(m);
   3070 			return;
   3071 		}
   3072 
   3073 		reghdr = (u_int32_t *)(pim + 1);
   3074 		encap_ip = (struct ip *)(reghdr + 1);
   3075 
   3076 		if (mrtdebug & DEBUG_PIM) {
   3077 			log(LOG_DEBUG,
   3078 			    "pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
   3079 			    (u_long)ntohl(encap_ip->ip_src.s_addr),
   3080 			    (u_long)ntohl(encap_ip->ip_dst.s_addr),
   3081 			    ntohs(encap_ip->ip_len));
   3082 		}
   3083 
   3084 		/* verify the version number of the inner packet */
   3085 		if (encap_ip->ip_v != IPVERSION) {
   3086 			pimstat.pims_rcv_badregisters++;
   3087 			if (mrtdebug & DEBUG_PIM) {
   3088 				log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
   3089 				    "of the inner packet\n", encap_ip->ip_v);
   3090 			}
   3091 			m_freem(m);
   3092 			return;
   3093 		}
   3094 
   3095 		/* verify the inner packet doesn't have options */
   3096 		if (encap_ip->ip_hl != (sizeof(struct ip) >> 2)) {
   3097 			pimstat.pims_rcv_badregisters++;
   3098 			m_freem(m);
   3099 			return;
   3100 		}
   3101 
   3102 		/* verify the inner packet is destined to a mcast group */
   3103 		if (!IN_MULTICAST(encap_ip->ip_dst.s_addr)) {
   3104 			pimstat.pims_rcv_badregisters++;
   3105 			 if (mrtdebug & DEBUG_PIM)
   3106 				log(LOG_DEBUG,
   3107 				    "pim_input: inner packet of register is not "
   3108 				    "multicast %lx\n",
   3109 				    (u_long)ntohl(encap_ip->ip_dst.s_addr));
   3110 			m_freem(m);
   3111 			return;
   3112 		}
   3113 
   3114 		/* If a NULL_REGISTER, pass it to the daemon */
   3115 		if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
   3116 			goto pim_input_to_daemon;
   3117 
   3118 		/*
   3119 		 * Copy the TOS from the outer IP header to the inner IP header.
   3120 		 */
   3121 		if (encap_ip->ip_tos != ip_tos) {
   3122 			/* Outer TOS -> inner TOS */
   3123 			encap_ip->ip_tos = ip_tos;
   3124 			/* Recompute the inner header checksum. Sigh... */
   3125 
   3126 			/* adjust mbuf to point to the inner IP header */
   3127 			m->m_data += (iphlen + PIM_MINLEN);
   3128 			m->m_len  -= (iphlen + PIM_MINLEN);
   3129 
   3130 			encap_ip->ip_sum = 0;
   3131 			encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
   3132 
   3133 			/* restore mbuf to point back to the outer IP header */
   3134 			m->m_data -= (iphlen + PIM_MINLEN);
   3135 			m->m_len  += (iphlen + PIM_MINLEN);
   3136 		}
   3137 
   3138 		/*
   3139 		 * Decapsulate the inner IP packet and loopback to forward it
   3140 		 * as a normal multicast packet. Also, make a copy of the
   3141 		 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
   3142 		 * to pass to the daemon later, so it can take the appropriate
   3143 		 * actions (e.g., send back PIM_REGISTER_STOP).
   3144 		 * XXX: here m->m_data points to the outer IP header.
   3145 		 */
   3146 		mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_DONTWAIT);
   3147 		if (mcp == NULL) {
   3148 			log(LOG_ERR,
   3149 			    "pim_input: pim register: could not copy register head\n");
   3150 			m_freem(m);
   3151 			return;
   3152 		}
   3153 
   3154 		/* Keep statistics */
   3155 		/* XXX: registers_bytes include only the encap. mcast pkt */
   3156 		pimstat.pims_rcv_registers_msgs++;
   3157 		pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
   3158 
   3159 		/*
   3160 		 * forward the inner ip packet; point m_data at the inner ip.
   3161 		 */
   3162 		m_adj(m, iphlen + PIM_MINLEN);
   3163 
   3164 		if (mrtdebug & DEBUG_PIM) {
   3165 			log(LOG_DEBUG,
   3166 			    "pim_input: forwarding decapsulated register: "
   3167 			    "src %lx, dst %lx, vif %d\n",
   3168 			    (u_long)ntohl(encap_ip->ip_src.s_addr),
   3169 			    (u_long)ntohl(encap_ip->ip_dst.s_addr),
   3170 			    reg_vif_num);
   3171 		}
   3172 		/* NB: vifp was collected above; can it change on us? */
   3173 		looutput(vifp, m, (struct sockaddr *)&dst, NULL);
   3174 
   3175 		/* prepare the register head to send to the mrouting daemon */
   3176 		m = mcp;
   3177 	}
   3178 
   3179 pim_input_to_daemon:
   3180 	/*
   3181 	 * Pass the PIM message up to the daemon; if it is a Register message,
   3182 	 * pass the 'head' only up to the daemon. This includes the
   3183 	 * outer IP header, PIM header, PIM-Register header and the
   3184 	 * inner IP header.
   3185 	 * XXX: the outer IP header pkt size of a Register is not adjust to
   3186 	 * reflect the fact that the inner multicast data is truncated.
   3187 	 */
   3188 	/*
   3189 	 * Currently, pim_input() is always called holding softnet_lock
   3190 	 * by ipintr()(!NET_MPSAFE) or PR_INPUT_WRAP()(NET_MPSAFE).
   3191 	 */
   3192 	KASSERT(mutex_owned(softnet_lock));
   3193 	rip_input(m, iphlen, proto);
   3194 
   3195 	return;
   3196 }
   3197 #endif /* PIM */
   3198