Home | History | Annotate | Line # | Download | only in netinet
      1 /*	$NetBSD: ip_reass.c,v 1.23 2022/05/31 08:43:16 andvar Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1988, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
     32  */
     33 
     34 /*
     35  * IP reassembly.
     36  *
     37  * Additive-Increase/Multiplicative-Decrease (AIMD) strategy for IP
     38  * reassembly queue buffer management.
     39  *
     40  * We keep a count of total IP fragments (NB: not fragmented packets),
     41  * awaiting reassembly (ip_nfrags) and a limit (ip_maxfrags) on fragments.
     42  * If ip_nfrags exceeds ip_maxfrags the limit, we drop half the total
     43  * fragments in reassembly queues.  This AIMD policy avoids repeatedly
     44  * deleting single packets under heavy fragmentation load (e.g., from lossy
     45  * NFS peers).
     46  */
     47 
     48 #include <sys/cdefs.h>
     49 __KERNEL_RCSID(0, "$NetBSD: ip_reass.c,v 1.23 2022/05/31 08:43:16 andvar Exp $");
     50 
     51 #include <sys/param.h>
     52 #include <sys/types.h>
     53 
     54 #include <sys/malloc.h>
     55 #include <sys/mbuf.h>
     56 #include <sys/mutex.h>
     57 #include <sys/pool.h>
     58 #include <sys/queue.h>
     59 #include <sys/sysctl.h>
     60 #include <sys/systm.h>
     61 
     62 #include <net/if.h>
     63 
     64 #include <netinet/in.h>
     65 #include <netinet/in_systm.h>
     66 #include <netinet/ip.h>
     67 #include <netinet/in_pcb.h>
     68 #include <netinet/ip_var.h>
     69 #include <netinet/ip_private.h>
     70 #include <netinet/in_var.h>
     71 
     72 /*
     73  * IP reassembly queue structures.  Each fragment being reassembled is
     74  * attached to one of these structures.  They are timed out after TTL
     75  * drops to 0, and may also be reclaimed if memory becomes tight.
     76  */
     77 
     78 typedef struct ipfr_qent {
     79 	TAILQ_ENTRY(ipfr_qent)	ipqe_q;
     80 	struct ip *		ipqe_ip;
     81 	struct mbuf *		ipqe_m;
     82 	bool			ipqe_mff;
     83 	uint16_t		ipqe_off;
     84 	uint16_t		ipqe_len;
     85 } ipfr_qent_t;
     86 
     87 TAILQ_HEAD(ipfr_qent_head, ipfr_qent);
     88 
     89 typedef struct ipfr_queue {
     90 	LIST_ENTRY(ipfr_queue)	ipq_q;		/* to other reass headers */
     91 	struct ipfr_qent_head	ipq_fragq;	/* queue of fragment entries */
     92 	uint8_t			ipq_ttl;	/* time for reass q to live */
     93 	uint8_t			ipq_p;		/* protocol of this fragment */
     94 	uint16_t		ipq_id;		/* sequence id for reassembly */
     95 	struct in_addr		ipq_src;
     96 	struct in_addr		ipq_dst;
     97 	uint16_t		ipq_nfrags;	/* frags in this queue entry */
     98 	uint8_t			ipq_tos;	/* TOS of this fragment */
     99 	int			ipq_ipsec;	/* IPsec flags */
    100 } ipfr_queue_t;
    101 
    102 /*
    103  * Hash table of IP reassembly queues.
    104  */
    105 #define	IPREASS_HASH_SHIFT	6
    106 #define	IPREASS_HASH_SIZE	(1 << IPREASS_HASH_SHIFT)
    107 #define	IPREASS_HASH_MASK	(IPREASS_HASH_SIZE - 1)
    108 #define	IPREASS_HASH(x, y) \
    109 	(((((x) & 0xf) | ((((x) >> 8) & 0xf) << 4)) ^ (y)) & IPREASS_HASH_MASK)
    110 
    111 static LIST_HEAD(, ipfr_queue)	ip_frags[IPREASS_HASH_SIZE];
    112 static pool_cache_t	ipfren_cache;
    113 static kmutex_t		ipfr_lock;
    114 
    115 /* Number of packets in reassembly queue and total number of fragments. */
    116 static int		ip_nfragpackets;
    117 static int		ip_nfrags;
    118 
    119 /* Limits on packet and fragments. */
    120 static int		ip_maxfragpackets;
    121 static int		ip_maxfrags;
    122 
    123 /*
    124  * Cached copy of nmbclusters.  If nbclusters is different, recalculate
    125  * IP parameters derived from nmbclusters.
    126  */
    127 static int		ip_nmbclusters;
    128 
    129 /*
    130  * IP reassembly TTL machinery for multiplicative drop.
    131  */
    132 static u_int		fragttl_histo[IPFRAGTTL + 1];
    133 
    134 static struct sysctllog *ip_reass_sysctllog;
    135 
    136 void			sysctl_ip_reass_setup(void);
    137 static void		ip_nmbclusters_changed(void);
    138 
    139 static struct mbuf *	ip_reass(ipfr_qent_t *, ipfr_queue_t *, u_int);
    140 static u_int		ip_reass_ttl_decr(u_int ticks);
    141 static void		ip_reass_drophalf(void);
    142 static void		ip_freef(ipfr_queue_t *);
    143 
    144 /*
    145  * ip_reass_init:
    146  *
    147  *	Initialization of IP reassembly mechanism.
    148  */
    149 void
    150 ip_reass_init(void)
    151 {
    152 	int i;
    153 
    154 	ipfren_cache = pool_cache_init(sizeof(ipfr_qent_t), coherency_unit,
    155 	    0, 0, "ipfrenpl", NULL, IPL_NET, NULL, NULL, NULL);
    156 	mutex_init(&ipfr_lock, MUTEX_DEFAULT, IPL_VM);
    157 
    158 	for (i = 0; i < IPREASS_HASH_SIZE; i++) {
    159 		LIST_INIT(&ip_frags[i]);
    160 	}
    161 	ip_maxfragpackets = 200;
    162 	ip_maxfrags = 0;
    163 	ip_nmbclusters_changed();
    164 
    165 	sysctl_ip_reass_setup();
    166 }
    167 
    168 void
    169 sysctl_ip_reass_setup(void)
    170 {
    171 
    172 	sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
    173 		CTLFLAG_PERMANENT,
    174 		CTLTYPE_NODE, "inet",
    175 		SYSCTL_DESCR("PF_INET related settings"),
    176 		NULL, 0, NULL, 0,
    177 		CTL_NET, PF_INET, CTL_EOL);
    178 	sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
    179 		CTLFLAG_PERMANENT,
    180 		CTLTYPE_NODE, "ip",
    181 		SYSCTL_DESCR("IPv4 related settings"),
    182 		NULL, 0, NULL, 0,
    183 		CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
    184 
    185 	sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
    186 		CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    187 		CTLTYPE_INT, "maxfragpackets",
    188 		SYSCTL_DESCR("Maximum number of fragments to retain for "
    189 			     "possible reassembly"),
    190 		NULL, 0, &ip_maxfragpackets, 0,
    191 		CTL_NET, PF_INET, IPPROTO_IP, IPCTL_MAXFRAGPACKETS, CTL_EOL);
    192 }
    193 
    194 #define CHECK_NMBCLUSTER_PARAMS()				\
    195 do {								\
    196 	if (__predict_false(ip_nmbclusters != nmbclusters))	\
    197 		ip_nmbclusters_changed();			\
    198 } while (/*CONSTCOND*/0)
    199 
    200 /*
    201  * Compute IP limits derived from the value of nmbclusters.
    202  */
    203 static void
    204 ip_nmbclusters_changed(void)
    205 {
    206 	ip_maxfrags = nmbclusters / 4;
    207 	ip_nmbclusters = nmbclusters;
    208 }
    209 
    210 /*
    211  * ip_reass:
    212  *
    213  *	Take incoming datagram fragment and try to reassemble it into whole
    214  *	datagram.  If a chain for reassembly of this datagram already exists,
    215  *	then it is given as 'fp'; otherwise have to make a chain.
    216  */
    217 static struct mbuf *
    218 ip_reass(ipfr_qent_t *ipqe, ipfr_queue_t *fp, const u_int hash)
    219 {
    220 	struct ip *ip = ipqe->ipqe_ip;
    221 	const int hlen = ip->ip_hl << 2;
    222 	struct mbuf *m = ipqe->ipqe_m, *t;
    223 	int ipsecflags = m->m_flags & (M_DECRYPTED|M_AUTHIPHDR);
    224 	ipfr_qent_t *nq, *p, *q;
    225 	int i, next;
    226 
    227 	KASSERT(mutex_owned(&ipfr_lock));
    228 
    229 	/*
    230 	 * Presence of header sizes in mbufs would confuse code below.
    231 	 */
    232 	m->m_data += hlen;
    233 	m->m_len -= hlen;
    234 
    235 	/*
    236 	 * We are about to add a fragment; increment frag count.
    237 	 */
    238 	ip_nfrags++;
    239 
    240 	/*
    241 	 * If first fragment to arrive, create a reassembly queue.
    242 	 */
    243 	if (fp == NULL) {
    244 		/*
    245 		 * Enforce upper bound on number of fragmented packets
    246 		 * for which we attempt reassembly:  a) if maxfrag is 0,
    247 		 * never accept fragments  b) if maxfrag is -1, accept
    248 		 * all fragments without limitation.
    249 		 */
    250 		if (ip_maxfragpackets < 0) {
    251 			/* no limit */
    252 		} else if (ip_nfragpackets >= ip_maxfragpackets) {
    253 			goto dropfrag;
    254 		}
    255 		fp = malloc(sizeof(ipfr_queue_t), M_FTABLE, M_NOWAIT);
    256 		if (fp == NULL) {
    257 			goto dropfrag;
    258 		}
    259 		ip_nfragpackets++;
    260 		TAILQ_INIT(&fp->ipq_fragq);
    261 		fp->ipq_nfrags = 1;
    262 		fp->ipq_ttl = IPFRAGTTL;
    263 		fp->ipq_p = ip->ip_p;
    264 		fp->ipq_id = ip->ip_id;
    265 		fp->ipq_tos = ip->ip_tos;
    266 		fp->ipq_ipsec = ipsecflags;
    267 		fp->ipq_src = ip->ip_src;
    268 		fp->ipq_dst = ip->ip_dst;
    269 		LIST_INSERT_HEAD(&ip_frags[hash], fp, ipq_q);
    270 		p = NULL;
    271 		goto insert;
    272 	} else {
    273 		fp->ipq_nfrags++;
    274 	}
    275 
    276 	/*
    277 	 * Find a segment which begins after this one does.
    278 	 */
    279 	TAILQ_FOREACH(q, &fp->ipq_fragq, ipqe_q) {
    280 		if (q->ipqe_off > ipqe->ipqe_off)
    281 			break;
    282 	}
    283 	if (q != NULL) {
    284 		p = TAILQ_PREV(q, ipfr_qent_head, ipqe_q);
    285 	} else {
    286 		p = TAILQ_LAST(&fp->ipq_fragq, ipfr_qent_head);
    287 	}
    288 
    289 	/*
    290 	 * Look at the preceding segment.
    291 	 *
    292 	 * If it provides some of our data already, in part or entirely, trim
    293 	 * us or drop us.
    294 	 *
    295 	 * If a preceding segment exists, and was marked as the last segment,
    296 	 * drop us.
    297 	 */
    298 	if (p != NULL) {
    299 		i = p->ipqe_off + p->ipqe_len - ipqe->ipqe_off;
    300 		if (i > 0) {
    301 			if (i >= ipqe->ipqe_len) {
    302 				goto dropfrag;
    303 			}
    304 			m_adj(ipqe->ipqe_m, i);
    305 			ipqe->ipqe_off = ipqe->ipqe_off + i;
    306 			ipqe->ipqe_len = ipqe->ipqe_len - i;
    307 		}
    308 	}
    309 	if (p != NULL && !p->ipqe_mff) {
    310 		goto dropfrag;
    311 	}
    312 
    313 	/*
    314 	 * Look at the segments that follow.
    315 	 *
    316 	 * If we cover them, in part or entirely, trim them or dequeue them.
    317 	 *
    318 	 * If a following segment exists, and we are marked as the last
    319 	 * segment, drop us.
    320 	 */
    321 	while (q != NULL) {
    322 		i = ipqe->ipqe_off + ipqe->ipqe_len - q->ipqe_off;
    323 		if (i <= 0) {
    324 			break;
    325 		}
    326 		if (i < q->ipqe_len) {
    327 			q->ipqe_off = q->ipqe_off + i;
    328 			q->ipqe_len = q->ipqe_len - i;
    329 			m_adj(q->ipqe_m, i);
    330 			break;
    331 		}
    332 		nq = TAILQ_NEXT(q, ipqe_q);
    333 		m_freem(q->ipqe_m);
    334 		TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
    335 		pool_cache_put(ipfren_cache, q);
    336 		fp->ipq_nfrags--;
    337 		ip_nfrags--;
    338 		q = nq;
    339 	}
    340 	if (q != NULL && !ipqe->ipqe_mff) {
    341 		goto dropfrag;
    342 	}
    343 
    344 insert:
    345 	/*
    346 	 * Stick new segment in its place; check for complete reassembly.
    347 	 */
    348 	if (p == NULL) {
    349 		TAILQ_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
    350 	} else {
    351 		TAILQ_INSERT_AFTER(&fp->ipq_fragq, p, ipqe, ipqe_q);
    352 	}
    353 	next = 0;
    354 	TAILQ_FOREACH(q, &fp->ipq_fragq, ipqe_q) {
    355 		if (q->ipqe_off != next) {
    356 			mutex_exit(&ipfr_lock);
    357 			return NULL;
    358 		}
    359 		next += q->ipqe_len;
    360 	}
    361 	p = TAILQ_LAST(&fp->ipq_fragq, ipfr_qent_head);
    362 	if (p->ipqe_mff) {
    363 		mutex_exit(&ipfr_lock);
    364 		return NULL;
    365 	}
    366 
    367 	/*
    368 	 * Reassembly is complete.  Check for a bogus message size.
    369 	 */
    370 	q = TAILQ_FIRST(&fp->ipq_fragq);
    371 	ip = q->ipqe_ip;
    372 	if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
    373 		IP_STATINC(IP_STAT_TOOLONG);
    374 		ip_freef(fp);
    375 		mutex_exit(&ipfr_lock);
    376 		return NULL;
    377 	}
    378 	LIST_REMOVE(fp, ipq_q);
    379 	ip_nfrags -= fp->ipq_nfrags;
    380 	ip_nfragpackets--;
    381 	mutex_exit(&ipfr_lock);
    382 
    383 	/* Concatenate all fragments. */
    384 	m = q->ipqe_m;
    385 	t = m->m_next;
    386 	m->m_next = NULL;
    387 	m_cat(m, t);
    388 	nq = TAILQ_NEXT(q, ipqe_q);
    389 	pool_cache_put(ipfren_cache, q);
    390 
    391 	for (q = nq; q != NULL; q = nq) {
    392 		t = q->ipqe_m;
    393 		nq = TAILQ_NEXT(q, ipqe_q);
    394 		pool_cache_put(ipfren_cache, q);
    395 		m_remove_pkthdr(t);
    396 		m_cat(m, t);
    397 	}
    398 
    399 	/*
    400 	 * Create header for new packet by modifying header of first
    401 	 * packet.  Dequeue and discard fragment reassembly header.  Make
    402 	 * header visible.
    403 	 */
    404 	ip->ip_len = htons((ip->ip_hl << 2) + next);
    405 	ip->ip_off = htons(0);
    406 	ip->ip_src = fp->ipq_src;
    407 	ip->ip_dst = fp->ipq_dst;
    408 	free(fp, M_FTABLE);
    409 
    410 	m->m_len += (ip->ip_hl << 2);
    411 	m->m_data -= (ip->ip_hl << 2);
    412 
    413 	/* Fix up mbuf.  XXX This should be done elsewhere. */
    414 	{
    415 		KASSERT(m->m_flags & M_PKTHDR);
    416 		int plen = 0;
    417 		for (t = m; t; t = t->m_next) {
    418 			plen += t->m_len;
    419 		}
    420 		m->m_pkthdr.len = plen;
    421 		m->m_pkthdr.csum_flags = 0;
    422 	}
    423 	return m;
    424 
    425 dropfrag:
    426 	if (fp != NULL) {
    427 		fp->ipq_nfrags--;
    428 	}
    429 	ip_nfrags--;
    430 	IP_STATINC(IP_STAT_FRAGDROPPED);
    431 	mutex_exit(&ipfr_lock);
    432 
    433 	pool_cache_put(ipfren_cache, ipqe);
    434 	m_freem(m);
    435 	return NULL;
    436 }
    437 
    438 /*
    439  * ip_freef:
    440  *
    441  *	Free a fragment reassembly header and all associated datagrams.
    442  */
    443 static void
    444 ip_freef(ipfr_queue_t *fp)
    445 {
    446 	ipfr_qent_t *q;
    447 
    448 	KASSERT(mutex_owned(&ipfr_lock));
    449 
    450 	LIST_REMOVE(fp, ipq_q);
    451 	ip_nfrags -= fp->ipq_nfrags;
    452 	ip_nfragpackets--;
    453 
    454 	while ((q = TAILQ_FIRST(&fp->ipq_fragq)) != NULL) {
    455 		TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
    456 		m_freem(q->ipqe_m);
    457 		pool_cache_put(ipfren_cache, q);
    458 	}
    459 	free(fp, M_FTABLE);
    460 }
    461 
    462 /*
    463  * ip_reass_ttl_decr:
    464  *
    465  *	Decrement TTL of all reasembly queue entries by `ticks'.  Count
    466  *	number of distinct fragments (as opposed to partial, fragmented
    467  *	datagrams) in the reassembly queue.  While we traverse the entire
    468  *	reassembly queue, compute and return the median TTL over all
    469  *	fragments.
    470  */
    471 static u_int
    472 ip_reass_ttl_decr(u_int ticks)
    473 {
    474 	u_int nfrags, median, dropfraction, keepfraction;
    475 	ipfr_queue_t *fp, *nfp;
    476 	int i;
    477 
    478 	nfrags = 0;
    479 	memset(fragttl_histo, 0, sizeof(fragttl_histo));
    480 
    481 	for (i = 0; i < IPREASS_HASH_SIZE; i++) {
    482 		for (fp = LIST_FIRST(&ip_frags[i]); fp != NULL; fp = nfp) {
    483 			fp->ipq_ttl = ((fp->ipq_ttl <= ticks) ?
    484 			    0 : fp->ipq_ttl - ticks);
    485 			nfp = LIST_NEXT(fp, ipq_q);
    486 			if (fp->ipq_ttl == 0) {
    487 				IP_STATINC(IP_STAT_FRAGTIMEOUT);
    488 				ip_freef(fp);
    489 			} else {
    490 				nfrags += fp->ipq_nfrags;
    491 				fragttl_histo[fp->ipq_ttl] += fp->ipq_nfrags;
    492 			}
    493 		}
    494 	}
    495 
    496 	KASSERT(ip_nfrags == nfrags);
    497 
    498 	/* Find median (or other drop fraction) in histogram. */
    499 	dropfraction = (ip_nfrags / 2);
    500 	keepfraction = ip_nfrags - dropfraction;
    501 	for (i = IPFRAGTTL, median = 0; i >= 0; i--) {
    502 		median += fragttl_histo[i];
    503 		if (median >= keepfraction)
    504 			break;
    505 	}
    506 
    507 	/* Return TTL of median (or other fraction). */
    508 	return (u_int)i;
    509 }
    510 
    511 static void
    512 ip_reass_drophalf(void)
    513 {
    514 	u_int median_ticks;
    515 
    516 	KASSERT(mutex_owned(&ipfr_lock));
    517 
    518 	/*
    519 	 * Compute median TTL of all fragments, and count frags
    520 	 * with that TTL or lower (roughly half of all fragments).
    521 	 */
    522 	median_ticks = ip_reass_ttl_decr(0);
    523 
    524 	/* Drop half. */
    525 	median_ticks = ip_reass_ttl_decr(median_ticks);
    526 }
    527 
    528 /*
    529  * ip_reass_drain: drain off all datagram fragments.  Do not acquire
    530  * softnet_lock as can be called from hardware interrupt context.
    531  */
    532 void
    533 ip_reass_drain(void)
    534 {
    535 
    536 	/*
    537 	 * We may be called from a device's interrupt context.  If
    538 	 * the ipq is already busy, just bail out now.
    539 	 */
    540 	if (mutex_tryenter(&ipfr_lock)) {
    541 		/*
    542 		 * Drop half the total fragments now. If more mbufs are
    543 		 * needed, we will be called again soon.
    544 		 */
    545 		ip_reass_drophalf();
    546 		mutex_exit(&ipfr_lock);
    547 	}
    548 }
    549 
    550 /*
    551  * ip_reass_slowtimo:
    552  *
    553  *	If a timer expires on a reassembly queue, discard it.
    554  */
    555 void
    556 ip_reass_slowtimo(void)
    557 {
    558 	static u_int dropscanidx = 0;
    559 	u_int i, median_ttl;
    560 
    561 	mutex_enter(&ipfr_lock);
    562 
    563 	/* Age TTL of all fragments by 1 tick .*/
    564 	median_ttl = ip_reass_ttl_decr(1);
    565 
    566 	/* Make sure fragment limit is up-to-date. */
    567 	CHECK_NMBCLUSTER_PARAMS();
    568 
    569 	/* If we have too many fragments, drop the older half. */
    570 	if (ip_nfrags > ip_maxfrags) {
    571 		ip_reass_ttl_decr(median_ttl);
    572 	}
    573 
    574 	/*
    575 	 * If we are over the maximum number of fragmented packets (due to
    576 	 * the limit being lowered), drain off enough to get down to the
    577 	 * new limit.  Start draining from the reassembly hashqueue most
    578 	 * recently drained.
    579 	 */
    580 	if (ip_maxfragpackets < 0)
    581 		;
    582 	else {
    583 		int wrapped = 0;
    584 
    585 		i = dropscanidx;
    586 		while (ip_nfragpackets > ip_maxfragpackets && wrapped == 0) {
    587 			while (LIST_FIRST(&ip_frags[i]) != NULL) {
    588 				ip_freef(LIST_FIRST(&ip_frags[i]));
    589 			}
    590 			if (++i >= IPREASS_HASH_SIZE) {
    591 				i = 0;
    592 			}
    593 			/*
    594 			 * Do not scan forever even if fragment counters are
    595 			 * wrong: stop after scanning entire reassembly queue.
    596 			 */
    597 			if (i == dropscanidx) {
    598 				wrapped = 1;
    599 			}
    600 		}
    601 		dropscanidx = i;
    602 	}
    603 	mutex_exit(&ipfr_lock);
    604 }
    605 
    606 /*
    607  * ip_reass_packet: generic routine to perform IP reassembly.
    608  *
    609  * => Passed fragment should have IP_MF flag and/or offset set.
    610  * => Fragment should not have other than IP_MF flags set.
    611  *
    612  * => Returns 0 on success or error otherwise.
    613  * => On complete, m0 represents a constructed final packet.
    614  */
    615 int
    616 ip_reass_packet(struct mbuf **m0)
    617 {
    618 	struct mbuf *m = *m0;
    619 	struct ip *ip = mtod(m, struct ip *);
    620 	const int hlen = ip->ip_hl << 2;
    621 	const int len = ntohs(ip->ip_len);
    622 	int ipsecflags = m->m_flags & (M_DECRYPTED|M_AUTHIPHDR);
    623 	ipfr_queue_t *fp;
    624 	ipfr_qent_t *ipqe;
    625 	u_int hash, off, flen;
    626 	bool mff;
    627 
    628 	/*
    629 	 * Prevent TCP blind data attacks by not allowing non-initial
    630 	 * fragments to start at less than 68 bytes (minimal fragment
    631 	 * size) and making sure the first fragment is at least 68
    632 	 * bytes.
    633 	 */
    634 	off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
    635 	if ((off > 0 ? off + hlen : len) < IP_MINFRAGSIZE - 1) {
    636 		IP_STATINC(IP_STAT_BADFRAGS);
    637 		return EINVAL;
    638 	}
    639 
    640 	if (off + len > IP_MAXPACKET) {
    641 		IP_STATINC(IP_STAT_TOOLONG);
    642 		return EINVAL;
    643 	}
    644 
    645 	/*
    646 	 * Fragment length and MF flag.  Make sure that fragments have
    647 	 * a data length which is non-zero and multiple of 8 bytes.
    648 	 */
    649 	flen = ntohs(ip->ip_len) - hlen;
    650 	mff = (ip->ip_off & htons(IP_MF)) != 0;
    651 	if (mff && (flen == 0 || (flen & 0x7) != 0)) {
    652 		IP_STATINC(IP_STAT_BADFRAGS);
    653 		return EINVAL;
    654 	}
    655 
    656 	/* Look for queue of fragments of this datagram. */
    657 	mutex_enter(&ipfr_lock);
    658 	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
    659 	LIST_FOREACH(fp, &ip_frags[hash], ipq_q) {
    660 		if (ip->ip_id != fp->ipq_id)
    661 			continue;
    662 		if (!in_hosteq(ip->ip_src, fp->ipq_src))
    663 			continue;
    664 		if (!in_hosteq(ip->ip_dst, fp->ipq_dst))
    665 			continue;
    666 		if (ip->ip_p != fp->ipq_p)
    667 			continue;
    668 		break;
    669 	}
    670 
    671 	if (fp) {
    672 		/* All fragments must have the same IPsec flags. */
    673 		if (fp->ipq_ipsec != ipsecflags) {
    674 			IP_STATINC(IP_STAT_BADFRAGS);
    675 			mutex_exit(&ipfr_lock);
    676 			return EINVAL;
    677 		}
    678 
    679 		/* Make sure that TOS matches previous fragments. */
    680 		if (fp->ipq_tos != ip->ip_tos) {
    681 			IP_STATINC(IP_STAT_BADFRAGS);
    682 			mutex_exit(&ipfr_lock);
    683 			return EINVAL;
    684 		}
    685 	}
    686 
    687 	/*
    688 	 * Create new entry and attempt to reassembly.
    689 	 */
    690 	IP_STATINC(IP_STAT_FRAGMENTS);
    691 	ipqe = pool_cache_get(ipfren_cache, PR_NOWAIT);
    692 	if (ipqe == NULL) {
    693 		IP_STATINC(IP_STAT_RCVMEMDROP);
    694 		mutex_exit(&ipfr_lock);
    695 		return ENOMEM;
    696 	}
    697 	ipqe->ipqe_mff = mff;
    698 	ipqe->ipqe_m = m;
    699 	ipqe->ipqe_ip = ip;
    700 	ipqe->ipqe_off = off;
    701 	ipqe->ipqe_len = flen;
    702 
    703 	*m0 = ip_reass(ipqe, fp, hash);
    704 	if (*m0) {
    705 		/* Note that finally reassembled. */
    706 		IP_STATINC(IP_STAT_REASSEMBLED);
    707 	}
    708 	return 0;
    709 }
    710