Home | History | Annotate | Line # | Download | only in primes
      1 /*	$NetBSD: spsp.c,v 1.2 2018/02/03 15:40:29 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2014 Colin Percival
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  */
     28 
     29 #include <sys/cdefs.h>
     30 #ifndef lint
     31 __COPYRIGHT("@(#) Copyright (c) 1989, 1993\
     32  The Regents of the University of California.  All rights reserved.");
     33 #endif /* not lint */
     34 
     35 #ifndef lint
     36 #if 0
     37 static char sccsid[] = "@(#)primes.c    8.5 (Berkeley) 5/10/95";
     38 #else
     39 __RCSID("$NetBSD: spsp.c,v 1.2 2018/02/03 15:40:29 christos Exp $");
     40 #endif
     41 #endif /* not lint */
     42 
     43 #include <assert.h>
     44 #include <stddef.h>
     45 #include <stdint.h>
     46 
     47 #include "primes.h"
     48 
     49 /* Return a * b % n, where 0 <= n. */
     50 static uint64_t
     51 mulmod(uint64_t a, uint64_t b, uint64_t n)
     52 {
     53 	uint64_t x = 0;
     54 	uint64_t an = a % n;
     55 
     56 	while (b != 0) {
     57 		if (b & 1) {
     58 			x += an;
     59 			if ((x < an) || (x >= n))
     60 				x -= n;
     61 		}
     62 		if (an + an < an)
     63 			an = an + an - n;
     64 		else if (an + an >= n)
     65 			an = an + an - n;
     66 		else
     67 			an = an + an;
     68 
     69 		b >>= 1;
     70 	}
     71 
     72 	return (x);
     73 }
     74 
     75 /* Return a^r % n, where 0 < n. */
     76 static uint64_t
     77 powmod(uint64_t a, uint64_t r, uint64_t n)
     78 {
     79 	uint64_t x = 1;
     80 
     81 	while (r != 0) {
     82 		if (r & 1)
     83 			x = mulmod(a, x, n);
     84 		a = mulmod(a, a, n);
     85 		r >>= 1;
     86 	}
     87 
     88 	return (x);
     89 }
     90 
     91 /* Return non-zero if n is a strong pseudoprime to base p. */
     92 static int
     93 spsp(uint64_t n, uint64_t p)
     94 {
     95 	uint64_t x;
     96 	uint64_t r = n - 1;
     97 	int k = 0;
     98 
     99 	/* Compute n - 1 = 2^k * r. */
    100 	while ((r & 1) == 0) {
    101 		k++;
    102 		r >>= 1;
    103 	}
    104 
    105 	/* Compute x = p^r mod n.  If x = 1, n is a p-spsp. */
    106 	x = powmod(p, r, n);
    107 	if (x == 1)
    108 		return (1);
    109 
    110 	/* Compute x^(2^i) for 0 <= i < n.  If any are -1, n is a p-spsp. */
    111 	while (k > 0) {
    112 		if (x == n - 1)
    113 			return (1);
    114 		x = powmod(x, 2, n);
    115 		k--;
    116 	}
    117 
    118 	/* Not a p-spsp. */
    119 	return (0);
    120 }
    121 
    122 /* Test for primality using strong pseudoprime tests. */
    123 int
    124 isprime(uint64_t _n)
    125 {
    126 	uint64_t n = _n;
    127 
    128 	/*
    129 	 * Values from:
    130 	 * C. Pomerance, J.L. Selfridge, and S.S. Wagstaff, Jr.,
    131 	 * The pseudoprimes to 25 * 10^9, Math. Comp. 35(151):1003-1026, 1980.
    132 	 */
    133 
    134 	/* No SPSPs to base 2 less than 2047. */
    135 	if (!spsp(n, 2))
    136 		return (0);
    137 	if (n < 2047ULL)
    138 		return (1);
    139 
    140 	/* No SPSPs to bases 2,3 less than 1373653. */
    141 	if (!spsp(n, 3))
    142 		return (0);
    143 	if (n < 1373653ULL)
    144 		return (1);
    145 
    146 	/* No SPSPs to bases 2,3,5 less than 25326001. */
    147 	if (!spsp(n, 5))
    148 		return (0);
    149 	if (n < 25326001ULL)
    150 		return (1);
    151 
    152 	/* No SPSPs to bases 2,3,5,7 less than 3215031751. */
    153 	if (!spsp(n, 7))
    154 		return (0);
    155 	if (n < 3215031751ULL)
    156 		return (1);
    157 
    158 	/*
    159 	 * Values from:
    160 	 * G. Jaeschke, On strong pseudoprimes to several bases,
    161 	 * Math. Comp. 61(204):915-926, 1993.
    162 	 */
    163 
    164 	/* No SPSPs to bases 2,3,5,7,11 less than 2152302898747. */
    165 	if (!spsp(n, 11))
    166 		return (0);
    167 	if (n < 2152302898747ULL)
    168 		return (1);
    169 
    170 	/* No SPSPs to bases 2,3,5,7,11,13 less than 3474749660383. */
    171 	if (!spsp(n, 13))
    172 		return (0);
    173 	if (n < 3474749660383ULL)
    174 		return (1);
    175 
    176 	/* No SPSPs to bases 2,3,5,7,11,13,17 less than 341550071728321. */
    177 	if (!spsp(n, 17))
    178 		return (0);
    179 	if (n < 341550071728321ULL)
    180 		return (1);
    181 
    182 	/* No SPSPs to bases 2,3,5,7,11,13,17,19 less than 341550071728321. */
    183 	if (!spsp(n, 19))
    184 		return (0);
    185 	if (n < 341550071728321ULL)
    186 		return (1);
    187 
    188 	/*
    189 	 * Value from:
    190 	 * Y. Jiang and Y. Deng, Strong pseudoprimes to the first eight prime
    191 	 * bases, Math. Comp. 83(290):2915-2924, 2014.
    192 	 */
    193 
    194 	/* No SPSPs to bases 2..23 less than 3825123056546413051. */
    195 	if (!spsp(n, 23))
    196 		return (0);
    197 	if (n < 3825123056546413051)
    198 		return (1);
    199 	/*
    200 	 * Value from:
    201 	 * J. Sorenson and J. Webster, Strong pseudoprimes to twelve prime
    202 	 * bases, Math. Comp. 86(304):985-1003, 2017.
    203 	 */
    204 
    205        /* No SPSPs to bases 2..37 less than 318665857834031151167461. */
    206        if (!spsp(n, 29))
    207                return (0);
    208        if (!spsp(n, 31))
    209                return (0);
    210        if (!spsp(n, 37))
    211                return (0);
    212 
    213        /* All 64-bit values are less than 318665857834031151167461. */
    214        return (1);
    215 }
    216