Home | History | Annotate | Line # | Download | only in amdkfd
      1 /*	$NetBSD: kfd_device.c,v 1.3 2021/12/18 23:44:59 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright 2014 Advanced Micro Devices, Inc.
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the "Software"),
      8  * to deal in the Software without restriction, including without limitation
      9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     10  * and/or sell copies of the Software, and to permit persons to whom the
     11  * Software is furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice shall be included in
     14  * all copies or substantial portions of the Software.
     15  *
     16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
     20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
     21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
     22  * OTHER DEALINGS IN THE SOFTWARE.
     23  */
     24 
     25 #include <sys/cdefs.h>
     26 __KERNEL_RCSID(0, "$NetBSD: kfd_device.c,v 1.3 2021/12/18 23:44:59 riastradh Exp $");
     27 
     28 #include <linux/bsearch.h>
     29 #include <linux/pci.h>
     30 #include <linux/slab.h>
     31 #include "kfd_priv.h"
     32 #include "kfd_device_queue_manager.h"
     33 #include "kfd_pm4_headers_vi.h"
     34 #include "cwsr_trap_handler.h"
     35 #include "kfd_iommu.h"
     36 #include "amdgpu_amdkfd.h"
     37 
     38 #define MQD_SIZE_ALIGNED 768
     39 
     40 /*
     41  * kfd_locked is used to lock the kfd driver during suspend or reset
     42  * once locked, kfd driver will stop any further GPU execution.
     43  * create process (open) will return -EAGAIN.
     44  */
     45 static atomic_t kfd_locked = ATOMIC_INIT(0);
     46 
     47 #ifdef CONFIG_DRM_AMDGPU_CIK
     48 extern const struct kfd2kgd_calls gfx_v7_kfd2kgd;
     49 #endif
     50 extern const struct kfd2kgd_calls gfx_v8_kfd2kgd;
     51 extern const struct kfd2kgd_calls gfx_v9_kfd2kgd;
     52 extern const struct kfd2kgd_calls arcturus_kfd2kgd;
     53 extern const struct kfd2kgd_calls gfx_v10_kfd2kgd;
     54 
     55 static const struct kfd2kgd_calls *kfd2kgd_funcs[] = {
     56 #ifdef KFD_SUPPORT_IOMMU_V2
     57 #ifdef CONFIG_DRM_AMDGPU_CIK
     58 	[CHIP_KAVERI] = &gfx_v7_kfd2kgd,
     59 #endif
     60 	[CHIP_CARRIZO] = &gfx_v8_kfd2kgd,
     61 	[CHIP_RAVEN] = &gfx_v9_kfd2kgd,
     62 #endif
     63 #ifdef CONFIG_DRM_AMDGPU_CIK
     64 	[CHIP_HAWAII] = &gfx_v7_kfd2kgd,
     65 #endif
     66 	[CHIP_TONGA] = &gfx_v8_kfd2kgd,
     67 	[CHIP_FIJI] = &gfx_v8_kfd2kgd,
     68 	[CHIP_POLARIS10] = &gfx_v8_kfd2kgd,
     69 	[CHIP_POLARIS11] = &gfx_v8_kfd2kgd,
     70 	[CHIP_POLARIS12] = &gfx_v8_kfd2kgd,
     71 	[CHIP_VEGAM] = &gfx_v8_kfd2kgd,
     72 	[CHIP_VEGA10] = &gfx_v9_kfd2kgd,
     73 	[CHIP_VEGA12] = &gfx_v9_kfd2kgd,
     74 	[CHIP_VEGA20] = &gfx_v9_kfd2kgd,
     75 	[CHIP_RENOIR] = &gfx_v9_kfd2kgd,
     76 	[CHIP_ARCTURUS] = &arcturus_kfd2kgd,
     77 	[CHIP_NAVI10] = &gfx_v10_kfd2kgd,
     78 	[CHIP_NAVI12] = &gfx_v10_kfd2kgd,
     79 	[CHIP_NAVI14] = &gfx_v10_kfd2kgd,
     80 };
     81 
     82 #ifdef KFD_SUPPORT_IOMMU_V2
     83 static const struct kfd_device_info kaveri_device_info = {
     84 	.asic_family = CHIP_KAVERI,
     85 	.asic_name = "kaveri",
     86 	.max_pasid_bits = 16,
     87 	/* max num of queues for KV.TODO should be a dynamic value */
     88 	.max_no_of_hqd	= 24,
     89 	.doorbell_size  = 4,
     90 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
     91 	.event_interrupt_class = &event_interrupt_class_cik,
     92 	.num_of_watch_points = 4,
     93 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
     94 	.supports_cwsr = false,
     95 	.needs_iommu_device = true,
     96 	.needs_pci_atomics = false,
     97 	.num_sdma_engines = 2,
     98 	.num_xgmi_sdma_engines = 0,
     99 	.num_sdma_queues_per_engine = 2,
    100 };
    101 
    102 static const struct kfd_device_info carrizo_device_info = {
    103 	.asic_family = CHIP_CARRIZO,
    104 	.asic_name = "carrizo",
    105 	.max_pasid_bits = 16,
    106 	/* max num of queues for CZ.TODO should be a dynamic value */
    107 	.max_no_of_hqd	= 24,
    108 	.doorbell_size  = 4,
    109 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
    110 	.event_interrupt_class = &event_interrupt_class_cik,
    111 	.num_of_watch_points = 4,
    112 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
    113 	.supports_cwsr = true,
    114 	.needs_iommu_device = true,
    115 	.needs_pci_atomics = false,
    116 	.num_sdma_engines = 2,
    117 	.num_xgmi_sdma_engines = 0,
    118 	.num_sdma_queues_per_engine = 2,
    119 };
    120 
    121 static const struct kfd_device_info raven_device_info = {
    122 	.asic_family = CHIP_RAVEN,
    123 	.asic_name = "raven",
    124 	.max_pasid_bits = 16,
    125 	.max_no_of_hqd  = 24,
    126 	.doorbell_size  = 8,
    127 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
    128 	.event_interrupt_class = &event_interrupt_class_v9,
    129 	.num_of_watch_points = 4,
    130 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
    131 	.supports_cwsr = true,
    132 	.needs_iommu_device = true,
    133 	.needs_pci_atomics = true,
    134 	.num_sdma_engines = 1,
    135 	.num_xgmi_sdma_engines = 0,
    136 	.num_sdma_queues_per_engine = 2,
    137 };
    138 #endif
    139 
    140 static const struct kfd_device_info hawaii_device_info = {
    141 	.asic_family = CHIP_HAWAII,
    142 	.asic_name = "hawaii",
    143 	.max_pasid_bits = 16,
    144 	/* max num of queues for KV.TODO should be a dynamic value */
    145 	.max_no_of_hqd	= 24,
    146 	.doorbell_size  = 4,
    147 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
    148 	.event_interrupt_class = &event_interrupt_class_cik,
    149 	.num_of_watch_points = 4,
    150 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
    151 	.supports_cwsr = false,
    152 	.needs_iommu_device = false,
    153 	.needs_pci_atomics = false,
    154 	.num_sdma_engines = 2,
    155 	.num_xgmi_sdma_engines = 0,
    156 	.num_sdma_queues_per_engine = 2,
    157 };
    158 
    159 static const struct kfd_device_info tonga_device_info = {
    160 	.asic_family = CHIP_TONGA,
    161 	.asic_name = "tonga",
    162 	.max_pasid_bits = 16,
    163 	.max_no_of_hqd  = 24,
    164 	.doorbell_size  = 4,
    165 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
    166 	.event_interrupt_class = &event_interrupt_class_cik,
    167 	.num_of_watch_points = 4,
    168 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
    169 	.supports_cwsr = false,
    170 	.needs_iommu_device = false,
    171 	.needs_pci_atomics = true,
    172 	.num_sdma_engines = 2,
    173 	.num_xgmi_sdma_engines = 0,
    174 	.num_sdma_queues_per_engine = 2,
    175 };
    176 
    177 static const struct kfd_device_info fiji_device_info = {
    178 	.asic_family = CHIP_FIJI,
    179 	.asic_name = "fiji",
    180 	.max_pasid_bits = 16,
    181 	.max_no_of_hqd  = 24,
    182 	.doorbell_size  = 4,
    183 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
    184 	.event_interrupt_class = &event_interrupt_class_cik,
    185 	.num_of_watch_points = 4,
    186 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
    187 	.supports_cwsr = true,
    188 	.needs_iommu_device = false,
    189 	.needs_pci_atomics = true,
    190 	.num_sdma_engines = 2,
    191 	.num_xgmi_sdma_engines = 0,
    192 	.num_sdma_queues_per_engine = 2,
    193 };
    194 
    195 static const struct kfd_device_info fiji_vf_device_info = {
    196 	.asic_family = CHIP_FIJI,
    197 	.asic_name = "fiji",
    198 	.max_pasid_bits = 16,
    199 	.max_no_of_hqd  = 24,
    200 	.doorbell_size  = 4,
    201 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
    202 	.event_interrupt_class = &event_interrupt_class_cik,
    203 	.num_of_watch_points = 4,
    204 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
    205 	.supports_cwsr = true,
    206 	.needs_iommu_device = false,
    207 	.needs_pci_atomics = false,
    208 	.num_sdma_engines = 2,
    209 	.num_xgmi_sdma_engines = 0,
    210 	.num_sdma_queues_per_engine = 2,
    211 };
    212 
    213 
    214 static const struct kfd_device_info polaris10_device_info = {
    215 	.asic_family = CHIP_POLARIS10,
    216 	.asic_name = "polaris10",
    217 	.max_pasid_bits = 16,
    218 	.max_no_of_hqd  = 24,
    219 	.doorbell_size  = 4,
    220 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
    221 	.event_interrupt_class = &event_interrupt_class_cik,
    222 	.num_of_watch_points = 4,
    223 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
    224 	.supports_cwsr = true,
    225 	.needs_iommu_device = false,
    226 	.needs_pci_atomics = true,
    227 	.num_sdma_engines = 2,
    228 	.num_xgmi_sdma_engines = 0,
    229 	.num_sdma_queues_per_engine = 2,
    230 };
    231 
    232 static const struct kfd_device_info polaris10_vf_device_info = {
    233 	.asic_family = CHIP_POLARIS10,
    234 	.asic_name = "polaris10",
    235 	.max_pasid_bits = 16,
    236 	.max_no_of_hqd  = 24,
    237 	.doorbell_size  = 4,
    238 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
    239 	.event_interrupt_class = &event_interrupt_class_cik,
    240 	.num_of_watch_points = 4,
    241 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
    242 	.supports_cwsr = true,
    243 	.needs_iommu_device = false,
    244 	.needs_pci_atomics = false,
    245 	.num_sdma_engines = 2,
    246 	.num_xgmi_sdma_engines = 0,
    247 	.num_sdma_queues_per_engine = 2,
    248 };
    249 
    250 static const struct kfd_device_info polaris11_device_info = {
    251 	.asic_family = CHIP_POLARIS11,
    252 	.asic_name = "polaris11",
    253 	.max_pasid_bits = 16,
    254 	.max_no_of_hqd  = 24,
    255 	.doorbell_size  = 4,
    256 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
    257 	.event_interrupt_class = &event_interrupt_class_cik,
    258 	.num_of_watch_points = 4,
    259 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
    260 	.supports_cwsr = true,
    261 	.needs_iommu_device = false,
    262 	.needs_pci_atomics = true,
    263 	.num_sdma_engines = 2,
    264 	.num_xgmi_sdma_engines = 0,
    265 	.num_sdma_queues_per_engine = 2,
    266 };
    267 
    268 static const struct kfd_device_info polaris12_device_info = {
    269 	.asic_family = CHIP_POLARIS12,
    270 	.asic_name = "polaris12",
    271 	.max_pasid_bits = 16,
    272 	.max_no_of_hqd  = 24,
    273 	.doorbell_size  = 4,
    274 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
    275 	.event_interrupt_class = &event_interrupt_class_cik,
    276 	.num_of_watch_points = 4,
    277 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
    278 	.supports_cwsr = true,
    279 	.needs_iommu_device = false,
    280 	.needs_pci_atomics = true,
    281 	.num_sdma_engines = 2,
    282 	.num_xgmi_sdma_engines = 0,
    283 	.num_sdma_queues_per_engine = 2,
    284 };
    285 
    286 static const struct kfd_device_info vegam_device_info = {
    287 	.asic_family = CHIP_VEGAM,
    288 	.asic_name = "vegam",
    289 	.max_pasid_bits = 16,
    290 	.max_no_of_hqd  = 24,
    291 	.doorbell_size  = 4,
    292 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
    293 	.event_interrupt_class = &event_interrupt_class_cik,
    294 	.num_of_watch_points = 4,
    295 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
    296 	.supports_cwsr = true,
    297 	.needs_iommu_device = false,
    298 	.needs_pci_atomics = true,
    299 	.num_sdma_engines = 2,
    300 	.num_xgmi_sdma_engines = 0,
    301 	.num_sdma_queues_per_engine = 2,
    302 };
    303 
    304 static const struct kfd_device_info vega10_device_info = {
    305 	.asic_family = CHIP_VEGA10,
    306 	.asic_name = "vega10",
    307 	.max_pasid_bits = 16,
    308 	.max_no_of_hqd  = 24,
    309 	.doorbell_size  = 8,
    310 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
    311 	.event_interrupt_class = &event_interrupt_class_v9,
    312 	.num_of_watch_points = 4,
    313 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
    314 	.supports_cwsr = true,
    315 	.needs_iommu_device = false,
    316 	.needs_pci_atomics = false,
    317 	.num_sdma_engines = 2,
    318 	.num_xgmi_sdma_engines = 0,
    319 	.num_sdma_queues_per_engine = 2,
    320 };
    321 
    322 static const struct kfd_device_info vega10_vf_device_info = {
    323 	.asic_family = CHIP_VEGA10,
    324 	.asic_name = "vega10",
    325 	.max_pasid_bits = 16,
    326 	.max_no_of_hqd  = 24,
    327 	.doorbell_size  = 8,
    328 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
    329 	.event_interrupt_class = &event_interrupt_class_v9,
    330 	.num_of_watch_points = 4,
    331 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
    332 	.supports_cwsr = true,
    333 	.needs_iommu_device = false,
    334 	.needs_pci_atomics = false,
    335 	.num_sdma_engines = 2,
    336 	.num_xgmi_sdma_engines = 0,
    337 	.num_sdma_queues_per_engine = 2,
    338 };
    339 
    340 static const struct kfd_device_info vega12_device_info = {
    341 	.asic_family = CHIP_VEGA12,
    342 	.asic_name = "vega12",
    343 	.max_pasid_bits = 16,
    344 	.max_no_of_hqd  = 24,
    345 	.doorbell_size  = 8,
    346 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
    347 	.event_interrupt_class = &event_interrupt_class_v9,
    348 	.num_of_watch_points = 4,
    349 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
    350 	.supports_cwsr = true,
    351 	.needs_iommu_device = false,
    352 	.needs_pci_atomics = false,
    353 	.num_sdma_engines = 2,
    354 	.num_xgmi_sdma_engines = 0,
    355 	.num_sdma_queues_per_engine = 2,
    356 };
    357 
    358 static const struct kfd_device_info vega20_device_info = {
    359 	.asic_family = CHIP_VEGA20,
    360 	.asic_name = "vega20",
    361 	.max_pasid_bits = 16,
    362 	.max_no_of_hqd	= 24,
    363 	.doorbell_size	= 8,
    364 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
    365 	.event_interrupt_class = &event_interrupt_class_v9,
    366 	.num_of_watch_points = 4,
    367 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
    368 	.supports_cwsr = true,
    369 	.needs_iommu_device = false,
    370 	.needs_pci_atomics = false,
    371 	.num_sdma_engines = 2,
    372 	.num_xgmi_sdma_engines = 0,
    373 	.num_sdma_queues_per_engine = 8,
    374 };
    375 
    376 static const struct kfd_device_info arcturus_device_info = {
    377 	.asic_family = CHIP_ARCTURUS,
    378 	.asic_name = "arcturus",
    379 	.max_pasid_bits = 16,
    380 	.max_no_of_hqd	= 24,
    381 	.doorbell_size	= 8,
    382 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
    383 	.event_interrupt_class = &event_interrupt_class_v9,
    384 	.num_of_watch_points = 4,
    385 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
    386 	.supports_cwsr = true,
    387 	.needs_iommu_device = false,
    388 	.needs_pci_atomics = false,
    389 	.num_sdma_engines = 2,
    390 	.num_xgmi_sdma_engines = 6,
    391 	.num_sdma_queues_per_engine = 8,
    392 };
    393 
    394 static const struct kfd_device_info renoir_device_info = {
    395 	.asic_family = CHIP_RENOIR,
    396 	.asic_name = "renoir",
    397 	.max_pasid_bits = 16,
    398 	.max_no_of_hqd  = 24,
    399 	.doorbell_size  = 8,
    400 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
    401 	.event_interrupt_class = &event_interrupt_class_v9,
    402 	.num_of_watch_points = 4,
    403 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
    404 	.supports_cwsr = true,
    405 	.needs_iommu_device = false,
    406 	.needs_pci_atomics = false,
    407 	.num_sdma_engines = 1,
    408 	.num_xgmi_sdma_engines = 0,
    409 	.num_sdma_queues_per_engine = 2,
    410 };
    411 
    412 static const struct kfd_device_info navi10_device_info = {
    413 	.asic_family = CHIP_NAVI10,
    414 	.asic_name = "navi10",
    415 	.max_pasid_bits = 16,
    416 	.max_no_of_hqd  = 24,
    417 	.doorbell_size  = 8,
    418 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
    419 	.event_interrupt_class = &event_interrupt_class_v9,
    420 	.num_of_watch_points = 4,
    421 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
    422 	.needs_iommu_device = false,
    423 	.supports_cwsr = true,
    424 	.needs_pci_atomics = false,
    425 	.num_sdma_engines = 2,
    426 	.num_xgmi_sdma_engines = 0,
    427 	.num_sdma_queues_per_engine = 8,
    428 };
    429 
    430 static const struct kfd_device_info navi12_device_info = {
    431 	.asic_family = CHIP_NAVI12,
    432 	.asic_name = "navi12",
    433 	.max_pasid_bits = 16,
    434 	.max_no_of_hqd  = 24,
    435 	.doorbell_size  = 8,
    436 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
    437 	.event_interrupt_class = &event_interrupt_class_v9,
    438 	.num_of_watch_points = 4,
    439 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
    440 	.needs_iommu_device = false,
    441 	.supports_cwsr = true,
    442 	.needs_pci_atomics = false,
    443 	.num_sdma_engines = 2,
    444 	.num_xgmi_sdma_engines = 0,
    445 	.num_sdma_queues_per_engine = 8,
    446 };
    447 
    448 static const struct kfd_device_info navi14_device_info = {
    449 	.asic_family = CHIP_NAVI14,
    450 	.asic_name = "navi14",
    451 	.max_pasid_bits = 16,
    452 	.max_no_of_hqd  = 24,
    453 	.doorbell_size  = 8,
    454 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
    455 	.event_interrupt_class = &event_interrupt_class_v9,
    456 	.num_of_watch_points = 4,
    457 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
    458 	.needs_iommu_device = false,
    459 	.supports_cwsr = true,
    460 	.needs_pci_atomics = false,
    461 	.num_sdma_engines = 2,
    462 	.num_xgmi_sdma_engines = 0,
    463 	.num_sdma_queues_per_engine = 8,
    464 };
    465 
    466 /* For each entry, [0] is regular and [1] is virtualisation device. */
    467 static const struct kfd_device_info *kfd_supported_devices[][2] = {
    468 #ifdef KFD_SUPPORT_IOMMU_V2
    469 	[CHIP_KAVERI] = {&kaveri_device_info, NULL},
    470 	[CHIP_CARRIZO] = {&carrizo_device_info, NULL},
    471 	[CHIP_RAVEN] = {&raven_device_info, NULL},
    472 #endif
    473 	[CHIP_HAWAII] = {&hawaii_device_info, NULL},
    474 	[CHIP_TONGA] = {&tonga_device_info, NULL},
    475 	[CHIP_FIJI] = {&fiji_device_info, &fiji_vf_device_info},
    476 	[CHIP_POLARIS10] = {&polaris10_device_info, &polaris10_vf_device_info},
    477 	[CHIP_POLARIS11] = {&polaris11_device_info, NULL},
    478 	[CHIP_POLARIS12] = {&polaris12_device_info, NULL},
    479 	[CHIP_VEGAM] = {&vegam_device_info, NULL},
    480 	[CHIP_VEGA10] = {&vega10_device_info, &vega10_vf_device_info},
    481 	[CHIP_VEGA12] = {&vega12_device_info, NULL},
    482 	[CHIP_VEGA20] = {&vega20_device_info, NULL},
    483 	[CHIP_RENOIR] = {&renoir_device_info, NULL},
    484 	[CHIP_ARCTURUS] = {&arcturus_device_info, &arcturus_device_info},
    485 	[CHIP_NAVI10] = {&navi10_device_info, NULL},
    486 	[CHIP_NAVI12] = {&navi12_device_info, &navi12_device_info},
    487 	[CHIP_NAVI14] = {&navi14_device_info, NULL},
    488 };
    489 
    490 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
    491 				unsigned int chunk_size);
    492 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
    493 
    494 static int kfd_resume(struct kfd_dev *kfd);
    495 
    496 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
    497 	struct pci_dev *pdev, unsigned int asic_type, bool vf)
    498 {
    499 	struct kfd_dev *kfd;
    500 	const struct kfd_device_info *device_info;
    501 	const struct kfd2kgd_calls *f2g;
    502 
    503 	if (asic_type >= sizeof(kfd_supported_devices) / (sizeof(void *) * 2)
    504 		|| asic_type >= sizeof(kfd2kgd_funcs) / sizeof(void *)) {
    505 		dev_err(kfd_device, "asic_type %d out of range\n", asic_type);
    506 		return NULL; /* asic_type out of range */
    507 	}
    508 
    509 	device_info = kfd_supported_devices[asic_type][vf];
    510 	f2g = kfd2kgd_funcs[asic_type];
    511 
    512 	if (!device_info || !f2g) {
    513 		dev_err(kfd_device, "%s %s not supported in kfd\n",
    514 			amdgpu_asic_name[asic_type], vf ? "VF" : "");
    515 		return NULL;
    516 	}
    517 
    518 	kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
    519 	if (!kfd)
    520 		return NULL;
    521 
    522 	/* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
    523 	 * 32 and 64-bit requests are possible and must be
    524 	 * supported.
    525 	 */
    526 	kfd->pci_atomic_requested = amdgpu_amdkfd_have_atomics_support(kgd);
    527 	if (device_info->needs_pci_atomics &&
    528 	    !kfd->pci_atomic_requested) {
    529 		dev_info(kfd_device,
    530 			 "skipped device %x:%x, PCI rejects atomics\n",
    531 			 pdev->vendor, pdev->device);
    532 		kfree(kfd);
    533 		return NULL;
    534 	}
    535 
    536 	kfd->kgd = kgd;
    537 	kfd->device_info = device_info;
    538 	kfd->pdev = pdev;
    539 	kfd->init_complete = false;
    540 	kfd->kfd2kgd = f2g;
    541 	atomic_set(&kfd->compute_profile, 0);
    542 
    543 	mutex_init(&kfd->doorbell_mutex);
    544 	memset(&kfd->doorbell_available_index, 0,
    545 		sizeof(kfd->doorbell_available_index));
    546 
    547 	atomic_set(&kfd->sram_ecc_flag, 0);
    548 
    549 	return kfd;
    550 }
    551 
    552 static void kfd_cwsr_init(struct kfd_dev *kfd)
    553 {
    554 	if (cwsr_enable && kfd->device_info->supports_cwsr) {
    555 		if (kfd->device_info->asic_family < CHIP_VEGA10) {
    556 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE);
    557 			kfd->cwsr_isa = cwsr_trap_gfx8_hex;
    558 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
    559 		} else if (kfd->device_info->asic_family == CHIP_ARCTURUS) {
    560 			BUILD_BUG_ON(sizeof(cwsr_trap_arcturus_hex) > PAGE_SIZE);
    561 			kfd->cwsr_isa = cwsr_trap_arcturus_hex;
    562 			kfd->cwsr_isa_size = sizeof(cwsr_trap_arcturus_hex);
    563 		} else if (kfd->device_info->asic_family < CHIP_NAVI10) {
    564 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE);
    565 			kfd->cwsr_isa = cwsr_trap_gfx9_hex;
    566 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
    567 		} else {
    568 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex) > PAGE_SIZE);
    569 			kfd->cwsr_isa = cwsr_trap_gfx10_hex;
    570 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex);
    571 		}
    572 
    573 		kfd->cwsr_enabled = true;
    574 	}
    575 }
    576 
    577 bool kgd2kfd_device_init(struct kfd_dev *kfd,
    578 			 struct drm_device *ddev,
    579 			 const struct kgd2kfd_shared_resources *gpu_resources)
    580 {
    581 	unsigned int size;
    582 
    583 	kfd->ddev = ddev;
    584 	kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
    585 			KGD_ENGINE_MEC1);
    586 	kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
    587 			KGD_ENGINE_SDMA1);
    588 	kfd->shared_resources = *gpu_resources;
    589 
    590 	kfd->vm_info.first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
    591 	kfd->vm_info.last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
    592 	kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd
    593 			- kfd->vm_info.first_vmid_kfd + 1;
    594 
    595 	/* Verify module parameters regarding mapped process number*/
    596 	if ((hws_max_conc_proc < 0)
    597 			|| (hws_max_conc_proc > kfd->vm_info.vmid_num_kfd)) {
    598 		dev_err(kfd_device,
    599 			"hws_max_conc_proc %d must be between 0 and %d, use %d instead\n",
    600 			hws_max_conc_proc, kfd->vm_info.vmid_num_kfd,
    601 			kfd->vm_info.vmid_num_kfd);
    602 		kfd->max_proc_per_quantum = kfd->vm_info.vmid_num_kfd;
    603 	} else
    604 		kfd->max_proc_per_quantum = hws_max_conc_proc;
    605 
    606 	/* Allocate global GWS that is shared by all KFD processes */
    607 	if (hws_gws_support && amdgpu_amdkfd_alloc_gws(kfd->kgd,
    608 			amdgpu_amdkfd_get_num_gws(kfd->kgd), &kfd->gws)) {
    609 		dev_err(kfd_device, "Could not allocate %d gws\n",
    610 			amdgpu_amdkfd_get_num_gws(kfd->kgd));
    611 		goto out;
    612 	}
    613 	/* calculate max size of mqds needed for queues */
    614 	size = max_num_of_queues_per_device *
    615 			kfd->device_info->mqd_size_aligned;
    616 
    617 	/*
    618 	 * calculate max size of runlist packet.
    619 	 * There can be only 2 packets at once
    620 	 */
    621 	size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_mes_map_process) +
    622 		max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
    623 		+ sizeof(struct pm4_mes_runlist)) * 2;
    624 
    625 	/* Add size of HIQ & DIQ */
    626 	size += KFD_KERNEL_QUEUE_SIZE * 2;
    627 
    628 	/* add another 512KB for all other allocations on gart (HPD, fences) */
    629 	size += 512 * 1024;
    630 
    631 	if (amdgpu_amdkfd_alloc_gtt_mem(
    632 			kfd->kgd, size, &kfd->gtt_mem,
    633 			&kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
    634 			false)) {
    635 		dev_err(kfd_device, "Could not allocate %d bytes\n", size);
    636 		goto alloc_gtt_mem_failure;
    637 	}
    638 
    639 	dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
    640 
    641 	/* Initialize GTT sa with 512 byte chunk size */
    642 	if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
    643 		dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
    644 		goto kfd_gtt_sa_init_error;
    645 	}
    646 
    647 	if (kfd_doorbell_init(kfd)) {
    648 		dev_err(kfd_device,
    649 			"Error initializing doorbell aperture\n");
    650 		goto kfd_doorbell_error;
    651 	}
    652 
    653 	if (kfd->kfd2kgd->get_hive_id)
    654 		kfd->hive_id = kfd->kfd2kgd->get_hive_id(kfd->kgd);
    655 
    656 	if (kfd_interrupt_init(kfd)) {
    657 		dev_err(kfd_device, "Error initializing interrupts\n");
    658 		goto kfd_interrupt_error;
    659 	}
    660 
    661 	kfd->dqm = device_queue_manager_init(kfd);
    662 	if (!kfd->dqm) {
    663 		dev_err(kfd_device, "Error initializing queue manager\n");
    664 		goto device_queue_manager_error;
    665 	}
    666 
    667 	if (kfd_iommu_device_init(kfd)) {
    668 		dev_err(kfd_device, "Error initializing iommuv2\n");
    669 		goto device_iommu_error;
    670 	}
    671 
    672 	kfd_cwsr_init(kfd);
    673 
    674 	if (kfd_resume(kfd))
    675 		goto kfd_resume_error;
    676 
    677 	kfd->dbgmgr = NULL;
    678 
    679 	if (kfd_topology_add_device(kfd)) {
    680 		dev_err(kfd_device, "Error adding device to topology\n");
    681 		goto kfd_topology_add_device_error;
    682 	}
    683 
    684 	kfd->init_complete = true;
    685 	dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor,
    686 		 kfd->pdev->device);
    687 
    688 	pr_debug("Starting kfd with the following scheduling policy %d\n",
    689 		kfd->dqm->sched_policy);
    690 
    691 	goto out;
    692 
    693 kfd_topology_add_device_error:
    694 kfd_resume_error:
    695 device_iommu_error:
    696 	device_queue_manager_uninit(kfd->dqm);
    697 device_queue_manager_error:
    698 	kfd_interrupt_exit(kfd);
    699 kfd_interrupt_error:
    700 	kfd_doorbell_fini(kfd);
    701 kfd_doorbell_error:
    702 	kfd_gtt_sa_fini(kfd);
    703 kfd_gtt_sa_init_error:
    704 	amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
    705 alloc_gtt_mem_failure:
    706 	if (hws_gws_support)
    707 		amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
    708 	dev_err(kfd_device,
    709 		"device %x:%x NOT added due to errors\n",
    710 		kfd->pdev->vendor, kfd->pdev->device);
    711 out:
    712 	return kfd->init_complete;
    713 }
    714 
    715 void kgd2kfd_device_exit(struct kfd_dev *kfd)
    716 {
    717 	if (kfd->init_complete) {
    718 		kgd2kfd_suspend(kfd);
    719 		device_queue_manager_uninit(kfd->dqm);
    720 		kfd_interrupt_exit(kfd);
    721 		kfd_topology_remove_device(kfd);
    722 		kfd_doorbell_fini(kfd);
    723 		kfd_gtt_sa_fini(kfd);
    724 		amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
    725 		if (hws_gws_support)
    726 			amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
    727 	}
    728 
    729 	kfree(kfd);
    730 }
    731 
    732 int kgd2kfd_pre_reset(struct kfd_dev *kfd)
    733 {
    734 	if (!kfd->init_complete)
    735 		return 0;
    736 
    737 	kfd->dqm->ops.pre_reset(kfd->dqm);
    738 
    739 	kgd2kfd_suspend(kfd);
    740 
    741 	kfd_signal_reset_event(kfd);
    742 	return 0;
    743 }
    744 
    745 /*
    746  * Fix me. KFD won't be able to resume existing process for now.
    747  * We will keep all existing process in a evicted state and
    748  * wait the process to be terminated.
    749  */
    750 
    751 int kgd2kfd_post_reset(struct kfd_dev *kfd)
    752 {
    753 	int ret;
    754 
    755 	if (!kfd->init_complete)
    756 		return 0;
    757 
    758 	ret = kfd_resume(kfd);
    759 	if (ret)
    760 		return ret;
    761 	atomic_dec(&kfd_locked);
    762 
    763 	atomic_set(&kfd->sram_ecc_flag, 0);
    764 
    765 	return 0;
    766 }
    767 
    768 bool kfd_is_locked(void)
    769 {
    770 	return  (atomic_read(&kfd_locked) > 0);
    771 }
    772 
    773 void kgd2kfd_suspend(struct kfd_dev *kfd)
    774 {
    775 	if (!kfd->init_complete)
    776 		return;
    777 
    778 	/* For first KFD device suspend all the KFD processes */
    779 	if (atomic_inc_return(&kfd_locked) == 1)
    780 		kfd_suspend_all_processes();
    781 
    782 	kfd->dqm->ops.stop(kfd->dqm);
    783 
    784 	kfd_iommu_suspend(kfd);
    785 }
    786 
    787 int kgd2kfd_resume(struct kfd_dev *kfd)
    788 {
    789 	int ret, count;
    790 
    791 	if (!kfd->init_complete)
    792 		return 0;
    793 
    794 	ret = kfd_resume(kfd);
    795 	if (ret)
    796 		return ret;
    797 
    798 	count = atomic_dec_return(&kfd_locked);
    799 	WARN_ONCE(count < 0, "KFD suspend / resume ref. error");
    800 	if (count == 0)
    801 		ret = kfd_resume_all_processes();
    802 
    803 	return ret;
    804 }
    805 
    806 static int kfd_resume(struct kfd_dev *kfd)
    807 {
    808 	int err = 0;
    809 
    810 	err = kfd_iommu_resume(kfd);
    811 	if (err) {
    812 		dev_err(kfd_device,
    813 			"Failed to resume IOMMU for device %x:%x\n",
    814 			kfd->pdev->vendor, kfd->pdev->device);
    815 		return err;
    816 	}
    817 
    818 	err = kfd->dqm->ops.start(kfd->dqm);
    819 	if (err) {
    820 		dev_err(kfd_device,
    821 			"Error starting queue manager for device %x:%x\n",
    822 			kfd->pdev->vendor, kfd->pdev->device);
    823 		goto dqm_start_error;
    824 	}
    825 
    826 	return err;
    827 
    828 dqm_start_error:
    829 	kfd_iommu_suspend(kfd);
    830 	return err;
    831 }
    832 
    833 static inline void kfd_queue_work(struct workqueue_struct *wq,
    834 				  struct work_struct *work)
    835 {
    836 	int cpu, new_cpu;
    837 
    838 	cpu = new_cpu = smp_processor_id();
    839 	do {
    840 		new_cpu = cpumask_next(new_cpu, cpu_online_mask) % nr_cpu_ids;
    841 		if (cpu_to_node(new_cpu) == numa_node_id())
    842 			break;
    843 	} while (cpu != new_cpu);
    844 
    845 	queue_work_on(new_cpu, wq, work);
    846 }
    847 
    848 /* This is called directly from KGD at ISR. */
    849 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
    850 {
    851 	uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE];
    852 	bool is_patched = false;
    853 	unsigned long flags;
    854 
    855 	if (!kfd->init_complete)
    856 		return;
    857 
    858 	if (kfd->device_info->ih_ring_entry_size > sizeof(patched_ihre)) {
    859 		dev_err_once(kfd_device, "Ring entry too small\n");
    860 		return;
    861 	}
    862 
    863 	spin_lock_irqsave(&kfd->interrupt_lock, flags);
    864 
    865 	if (kfd->interrupts_active
    866 	    && interrupt_is_wanted(kfd, ih_ring_entry,
    867 				   patched_ihre, &is_patched)
    868 	    && enqueue_ih_ring_entry(kfd,
    869 				     is_patched ? patched_ihre : ih_ring_entry))
    870 		kfd_queue_work(kfd->ih_wq, &kfd->interrupt_work);
    871 
    872 	spin_unlock_irqrestore(&kfd->interrupt_lock, flags);
    873 }
    874 
    875 int kgd2kfd_quiesce_mm(struct mm_struct *mm)
    876 {
    877 	struct kfd_process *p;
    878 	int r;
    879 
    880 	/* Because we are called from arbitrary context (workqueue) as opposed
    881 	 * to process context, kfd_process could attempt to exit while we are
    882 	 * running so the lookup function increments the process ref count.
    883 	 */
    884 	p = kfd_lookup_process_by_mm(mm);
    885 	if (!p)
    886 		return -ESRCH;
    887 
    888 	r = kfd_process_evict_queues(p);
    889 
    890 	kfd_unref_process(p);
    891 	return r;
    892 }
    893 
    894 int kgd2kfd_resume_mm(struct mm_struct *mm)
    895 {
    896 	struct kfd_process *p;
    897 	int r;
    898 
    899 	/* Because we are called from arbitrary context (workqueue) as opposed
    900 	 * to process context, kfd_process could attempt to exit while we are
    901 	 * running so the lookup function increments the process ref count.
    902 	 */
    903 	p = kfd_lookup_process_by_mm(mm);
    904 	if (!p)
    905 		return -ESRCH;
    906 
    907 	r = kfd_process_restore_queues(p);
    908 
    909 	kfd_unref_process(p);
    910 	return r;
    911 }
    912 
    913 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
    914  *   prepare for safe eviction of KFD BOs that belong to the specified
    915  *   process.
    916  *
    917  * @mm: mm_struct that identifies the specified KFD process
    918  * @fence: eviction fence attached to KFD process BOs
    919  *
    920  */
    921 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
    922 					       struct dma_fence *fence)
    923 {
    924 	struct kfd_process *p;
    925 	unsigned long active_time;
    926 	unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
    927 
    928 	if (!fence)
    929 		return -EINVAL;
    930 
    931 	if (dma_fence_is_signaled(fence))
    932 		return 0;
    933 
    934 	p = kfd_lookup_process_by_mm(mm);
    935 	if (!p)
    936 		return -ENODEV;
    937 
    938 	if (fence->seqno == p->last_eviction_seqno)
    939 		goto out;
    940 
    941 	p->last_eviction_seqno = fence->seqno;
    942 
    943 	/* Avoid KFD process starvation. Wait for at least
    944 	 * PROCESS_ACTIVE_TIME_MS before evicting the process again
    945 	 */
    946 	active_time = get_jiffies_64() - p->last_restore_timestamp;
    947 	if (delay_jiffies > active_time)
    948 		delay_jiffies -= active_time;
    949 	else
    950 		delay_jiffies = 0;
    951 
    952 	/* During process initialization eviction_work.dwork is initialized
    953 	 * to kfd_evict_bo_worker
    954 	 */
    955 	schedule_delayed_work(&p->eviction_work, delay_jiffies);
    956 out:
    957 	kfd_unref_process(p);
    958 	return 0;
    959 }
    960 
    961 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
    962 				unsigned int chunk_size)
    963 {
    964 	unsigned int num_of_longs;
    965 
    966 	if (WARN_ON(buf_size < chunk_size))
    967 		return -EINVAL;
    968 	if (WARN_ON(buf_size == 0))
    969 		return -EINVAL;
    970 	if (WARN_ON(chunk_size == 0))
    971 		return -EINVAL;
    972 
    973 	kfd->gtt_sa_chunk_size = chunk_size;
    974 	kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
    975 
    976 	num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) /
    977 		BITS_PER_LONG;
    978 
    979 	kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL);
    980 
    981 	if (!kfd->gtt_sa_bitmap)
    982 		return -ENOMEM;
    983 
    984 	pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
    985 			kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
    986 
    987 	mutex_init(&kfd->gtt_sa_lock);
    988 
    989 	return 0;
    990 
    991 }
    992 
    993 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
    994 {
    995 	mutex_destroy(&kfd->gtt_sa_lock);
    996 	kfree(kfd->gtt_sa_bitmap);
    997 }
    998 
    999 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
   1000 						unsigned int bit_num,
   1001 						unsigned int chunk_size)
   1002 {
   1003 	return start_addr + bit_num * chunk_size;
   1004 }
   1005 
   1006 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
   1007 						unsigned int bit_num,
   1008 						unsigned int chunk_size)
   1009 {
   1010 	return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
   1011 }
   1012 
   1013 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
   1014 			struct kfd_mem_obj **mem_obj)
   1015 {
   1016 	unsigned int found, start_search, cur_size;
   1017 
   1018 	if (size == 0)
   1019 		return -EINVAL;
   1020 
   1021 	if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
   1022 		return -ENOMEM;
   1023 
   1024 	*mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
   1025 	if (!(*mem_obj))
   1026 		return -ENOMEM;
   1027 
   1028 	pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
   1029 
   1030 	start_search = 0;
   1031 
   1032 	mutex_lock(&kfd->gtt_sa_lock);
   1033 
   1034 kfd_gtt_restart_search:
   1035 	/* Find the first chunk that is free */
   1036 	found = find_next_zero_bit(kfd->gtt_sa_bitmap,
   1037 					kfd->gtt_sa_num_of_chunks,
   1038 					start_search);
   1039 
   1040 	pr_debug("Found = %d\n", found);
   1041 
   1042 	/* If there wasn't any free chunk, bail out */
   1043 	if (found == kfd->gtt_sa_num_of_chunks)
   1044 		goto kfd_gtt_no_free_chunk;
   1045 
   1046 	/* Update fields of mem_obj */
   1047 	(*mem_obj)->range_start = found;
   1048 	(*mem_obj)->range_end = found;
   1049 	(*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
   1050 					kfd->gtt_start_gpu_addr,
   1051 					found,
   1052 					kfd->gtt_sa_chunk_size);
   1053 	(*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
   1054 					kfd->gtt_start_cpu_ptr,
   1055 					found,
   1056 					kfd->gtt_sa_chunk_size);
   1057 
   1058 	pr_debug("gpu_addr = %p, cpu_addr = %p\n",
   1059 			(uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
   1060 
   1061 	/* If we need only one chunk, mark it as allocated and get out */
   1062 	if (size <= kfd->gtt_sa_chunk_size) {
   1063 		pr_debug("Single bit\n");
   1064 		set_bit(found, kfd->gtt_sa_bitmap);
   1065 		goto kfd_gtt_out;
   1066 	}
   1067 
   1068 	/* Otherwise, try to see if we have enough contiguous chunks */
   1069 	cur_size = size - kfd->gtt_sa_chunk_size;
   1070 	do {
   1071 		(*mem_obj)->range_end =
   1072 			find_next_zero_bit(kfd->gtt_sa_bitmap,
   1073 					kfd->gtt_sa_num_of_chunks, ++found);
   1074 		/*
   1075 		 * If next free chunk is not contiguous than we need to
   1076 		 * restart our search from the last free chunk we found (which
   1077 		 * wasn't contiguous to the previous ones
   1078 		 */
   1079 		if ((*mem_obj)->range_end != found) {
   1080 			start_search = found;
   1081 			goto kfd_gtt_restart_search;
   1082 		}
   1083 
   1084 		/*
   1085 		 * If we reached end of buffer, bail out with error
   1086 		 */
   1087 		if (found == kfd->gtt_sa_num_of_chunks)
   1088 			goto kfd_gtt_no_free_chunk;
   1089 
   1090 		/* Check if we don't need another chunk */
   1091 		if (cur_size <= kfd->gtt_sa_chunk_size)
   1092 			cur_size = 0;
   1093 		else
   1094 			cur_size -= kfd->gtt_sa_chunk_size;
   1095 
   1096 	} while (cur_size > 0);
   1097 
   1098 	pr_debug("range_start = %d, range_end = %d\n",
   1099 		(*mem_obj)->range_start, (*mem_obj)->range_end);
   1100 
   1101 	/* Mark the chunks as allocated */
   1102 	for (found = (*mem_obj)->range_start;
   1103 		found <= (*mem_obj)->range_end;
   1104 		found++)
   1105 		set_bit(found, kfd->gtt_sa_bitmap);
   1106 
   1107 kfd_gtt_out:
   1108 	mutex_unlock(&kfd->gtt_sa_lock);
   1109 	return 0;
   1110 
   1111 kfd_gtt_no_free_chunk:
   1112 	pr_debug("Allocation failed with mem_obj = %p\n", mem_obj);
   1113 	mutex_unlock(&kfd->gtt_sa_lock);
   1114 	kfree(mem_obj);
   1115 	return -ENOMEM;
   1116 }
   1117 
   1118 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
   1119 {
   1120 	unsigned int bit;
   1121 
   1122 	/* Act like kfree when trying to free a NULL object */
   1123 	if (!mem_obj)
   1124 		return 0;
   1125 
   1126 	pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
   1127 			mem_obj, mem_obj->range_start, mem_obj->range_end);
   1128 
   1129 	mutex_lock(&kfd->gtt_sa_lock);
   1130 
   1131 	/* Mark the chunks as free */
   1132 	for (bit = mem_obj->range_start;
   1133 		bit <= mem_obj->range_end;
   1134 		bit++)
   1135 		clear_bit(bit, kfd->gtt_sa_bitmap);
   1136 
   1137 	mutex_unlock(&kfd->gtt_sa_lock);
   1138 
   1139 	kfree(mem_obj);
   1140 	return 0;
   1141 }
   1142 
   1143 void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd)
   1144 {
   1145 	if (kfd)
   1146 		atomic_inc(&kfd->sram_ecc_flag);
   1147 }
   1148 
   1149 void kfd_inc_compute_active(struct kfd_dev *kfd)
   1150 {
   1151 	if (atomic_inc_return(&kfd->compute_profile) == 1)
   1152 		amdgpu_amdkfd_set_compute_idle(kfd->kgd, false);
   1153 }
   1154 
   1155 void kfd_dec_compute_active(struct kfd_dev *kfd)
   1156 {
   1157 	int count = atomic_dec_return(&kfd->compute_profile);
   1158 
   1159 	if (count == 0)
   1160 		amdgpu_amdkfd_set_compute_idle(kfd->kgd, true);
   1161 	WARN_ONCE(count < 0, "Compute profile ref. count error");
   1162 }
   1163 
   1164 #if defined(CONFIG_DEBUG_FS)
   1165 
   1166 /* This function will send a package to HIQ to hang the HWS
   1167  * which will trigger a GPU reset and bring the HWS back to normal state
   1168  */
   1169 int kfd_debugfs_hang_hws(struct kfd_dev *dev)
   1170 {
   1171 	int r = 0;
   1172 
   1173 	if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
   1174 		pr_err("HWS is not enabled");
   1175 		return -EINVAL;
   1176 	}
   1177 
   1178 	r = pm_debugfs_hang_hws(&dev->dqm->packets);
   1179 	if (!r)
   1180 		r = dqm_debugfs_execute_queues(dev->dqm);
   1181 
   1182 	return r;
   1183 }
   1184 
   1185 #endif
   1186