Home | History | Annotate | Line # | Download | only in lfs
      1 /*	$NetBSD: lfs_subr.c,v 1.110 2026/01/05 05:02:47 perseant Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Konrad E. Schroder <perseant (at) hhhh.org>.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 /*
     32  * Copyright (c) 1991, 1993
     33  *	The Regents of the University of California.  All rights reserved.
     34  *
     35  * Redistribution and use in source and binary forms, with or without
     36  * modification, are permitted provided that the following conditions
     37  * are met:
     38  * 1. Redistributions of source code must retain the above copyright
     39  *    notice, this list of conditions and the following disclaimer.
     40  * 2. Redistributions in binary form must reproduce the above copyright
     41  *    notice, this list of conditions and the following disclaimer in the
     42  *    documentation and/or other materials provided with the distribution.
     43  * 3. Neither the name of the University nor the names of its contributors
     44  *    may be used to endorse or promote products derived from this software
     45  *    without specific prior written permission.
     46  *
     47  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     48  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     49  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     50  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     51  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     52  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     53  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     54  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     55  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     56  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     57  * SUCH DAMAGE.
     58  *
     59  *	@(#)lfs_subr.c	8.4 (Berkeley) 5/8/95
     60  */
     61 
     62 #include <sys/cdefs.h>
     63 __KERNEL_RCSID(0, "$NetBSD: lfs_subr.c,v 1.110 2026/01/05 05:02:47 perseant Exp $");
     64 
     65 #include <sys/param.h>
     66 #include <sys/systm.h>
     67 #include <sys/namei.h>
     68 #include <sys/vnode.h>
     69 #include <sys/buf.h>
     70 #include <sys/mount.h>
     71 #include <sys/malloc.h>
     72 #include <sys/proc.h>
     73 #include <sys/kauth.h>
     74 
     75 #include <ufs/lfs/ulfs_inode.h>
     76 #include <ufs/lfs/lfs.h>
     77 #include <ufs/lfs/lfs_accessors.h>
     78 #include <ufs/lfs/lfs_kernel.h>
     79 #include <ufs/lfs/lfs_extern.h>
     80 
     81 #ifdef DEBUG
     82 const char *lfs_res_names[LFS_NB_COUNT] = {
     83 	"summary",
     84 	"superblock",
     85 	"file block",
     86 	"cluster",
     87 	"clean",
     88 	"blkiov",
     89 };
     90 #endif
     91 
     92 int lfs_res_qty[LFS_NB_COUNT] = {
     93 	LFS_N_SUMMARIES,
     94 	LFS_N_SBLOCKS,
     95 	LFS_N_IBLOCKS,
     96 	LFS_N_CLUSTERS,
     97 	LFS_N_CLEAN,
     98 	LFS_N_BLKIOV,
     99 };
    100 
    101 void
    102 lfs_setup_resblks(struct lfs *fs)
    103 {
    104 	int i, j;
    105 	int maxbpp;
    106 
    107 	ASSERT_NO_SEGLOCK(fs);
    108 	fs->lfs_resblk = malloc(LFS_N_TOTAL * sizeof(res_t), M_SEGMENT,
    109 				M_WAITOK);
    110 	for (i = 0; i < LFS_N_TOTAL; i++) {
    111 		fs->lfs_resblk[i].inuse = 0;
    112 		fs->lfs_resblk[i].p = NULL;
    113 	}
    114 	for (i = 0; i < LFS_RESHASH_WIDTH; i++)
    115 		LIST_INIT(fs->lfs_reshash + i);
    116 
    117 	/*
    118 	 * These types of allocations can be larger than a page,
    119 	 * so we can't use the pool subsystem for them.
    120 	 */
    121 	for (i = 0, j = 0; j < LFS_N_SUMMARIES; j++, i++)
    122 		fs->lfs_resblk[i].size = lfs_sb_getsumsize(fs);
    123 	for (j = 0; j < LFS_N_SBLOCKS; j++, i++)
    124 		fs->lfs_resblk[i].size = LFS_SBPAD;
    125 	for (j = 0; j < LFS_N_IBLOCKS; j++, i++)
    126 		fs->lfs_resblk[i].size = lfs_sb_getbsize(fs);
    127 	for (j = 0; j < LFS_N_CLUSTERS; j++, i++)
    128 		fs->lfs_resblk[i].size = MAXPHYS;
    129 	for (j = 0; j < LFS_N_CLEAN; j++, i++)
    130 		fs->lfs_resblk[i].size = MAXPHYS;
    131 	for (j = 0; j < LFS_N_BLKIOV; j++, i++)
    132 		fs->lfs_resblk[i].size = LFS_MARKV_MAXBLKCNT * sizeof(BLOCK_INFO);
    133 
    134 	for (i = 0; i < LFS_N_TOTAL; i++) {
    135 		fs->lfs_resblk[i].p = malloc(fs->lfs_resblk[i].size,
    136 					     M_SEGMENT, M_WAITOK);
    137 	}
    138 
    139 	/*
    140 	 * Initialize pools for small types (XXX is BPP small?)
    141 	 */
    142 	pool_init(&fs->lfs_clpool, sizeof(struct lfs_cluster), 0, 0, 0,
    143 		"lfsclpl", &pool_allocator_nointr, IPL_NONE);
    144 	pool_init(&fs->lfs_segpool, sizeof(struct segment), 0, 0, 0,
    145 		"lfssegpool", &pool_allocator_nointr, IPL_NONE);
    146 	/* XXX: should this int32 be 32/64? */
    147 	maxbpp = ((lfs_sb_getsumsize(fs) - SEGSUM_SIZE(fs)) / sizeof(int32_t) + 2);
    148 	maxbpp = MIN(maxbpp, lfs_segsize(fs) / lfs_sb_getfsize(fs) + 2);
    149 	pool_init(&fs->lfs_bpppool, maxbpp * sizeof(struct buf *), 0, 0, 0,
    150 		"lfsbpppl", &pool_allocator_nointr, IPL_NONE);
    151 }
    152 
    153 void
    154 lfs_free_resblks(struct lfs *fs)
    155 {
    156 	int i;
    157 
    158 	pool_destroy(&fs->lfs_bpppool);
    159 	pool_destroy(&fs->lfs_segpool);
    160 	pool_destroy(&fs->lfs_clpool);
    161 
    162 	mutex_enter(&lfs_lock);
    163 	for (i = 0; i < LFS_N_TOTAL; i++) {
    164 		while (fs->lfs_resblk[i].inuse)
    165 			mtsleep(&fs->lfs_resblk, PRIBIO + 1, "lfs_free", 0,
    166 				&lfs_lock);
    167 		if (fs->lfs_resblk[i].p != NULL)
    168 			free(fs->lfs_resblk[i].p, M_SEGMENT);
    169 	}
    170 	free(fs->lfs_resblk, M_SEGMENT);
    171 	mutex_exit(&lfs_lock);
    172 }
    173 
    174 static unsigned int
    175 lfs_mhash(void *vp)
    176 {
    177 	return (unsigned int)(((unsigned long)vp) >> 2) % LFS_RESHASH_WIDTH;
    178 }
    179 
    180 /*
    181  * Return memory of the given size for the given purpose, or use one of a
    182  * number of spare last-resort buffers, if malloc returns NULL.
    183  */
    184 void *
    185 lfs_malloc(struct lfs *fs, size_t size, int type)
    186 {
    187 	struct lfs_res_blk *re;
    188 	void *r;
    189 	int i, start;
    190 	unsigned int h;
    191 
    192 	ASSERT_MAYBE_SEGLOCK(fs);
    193 	r = NULL;
    194 
    195 	/* If no mem allocated for this type, it just waits */
    196 	if (lfs_res_qty[type] == 0) {
    197 		r = malloc(size, M_SEGMENT, M_WAITOK);
    198 		return r;
    199 	}
    200 
    201 	/* Otherwise try a quick malloc, and if it works, great */
    202 	if ((r = malloc(size, M_SEGMENT, M_NOWAIT)) != NULL) {
    203 		return r;
    204 	}
    205 
    206 	/*
    207 	 * If malloc returned NULL, we are forced to use one of our
    208 	 * reserve blocks.  We have on hand at least one summary block,
    209 	 * at least one cluster block, at least one superblock,
    210 	 * and several indirect blocks.
    211 	 */
    212 
    213 	mutex_enter(&lfs_lock);
    214 	/* skip over blocks of other types */
    215 	for (i = 0, start = 0; i < type; i++)
    216 		start += lfs_res_qty[i];
    217 	while (r == NULL) {
    218 		for (i = 0; i < lfs_res_qty[type]; i++) {
    219 			if (fs->lfs_resblk[start + i].inuse == 0) {
    220 				re = fs->lfs_resblk + start + i;
    221 				re->inuse = 1;
    222 				r = re->p;
    223 				KASSERT(re->size >= size);
    224 				h = lfs_mhash(r);
    225 				LIST_INSERT_HEAD(&fs->lfs_reshash[h], re, res);
    226 				mutex_exit(&lfs_lock);
    227 				return r;
    228 			}
    229 		}
    230 		DLOG((DLOG_MALLOC, "sleeping on %s (%d)\n",
    231 		      lfs_res_names[type], lfs_res_qty[type]));
    232 		mtsleep(&fs->lfs_resblk, PVM, "lfs_malloc", 0,
    233 			&lfs_lock);
    234 		DLOG((DLOG_MALLOC, "done sleeping on %s\n",
    235 		      lfs_res_names[type]));
    236 	}
    237 	/* NOTREACHED */
    238 	mutex_exit(&lfs_lock);
    239 	return r;
    240 }
    241 
    242 void
    243 lfs_free(struct lfs *fs, void *p, int type)
    244 {
    245 	unsigned int h;
    246 	res_t *re;
    247 
    248 	ASSERT_MAYBE_SEGLOCK(fs);
    249 	h = lfs_mhash(p);
    250 	mutex_enter(&lfs_lock);
    251 	LIST_FOREACH(re, &fs->lfs_reshash[h], res) {
    252 		if (re->p == p) {
    253 			KASSERT(re->inuse == 1);
    254 			LIST_REMOVE(re, res);
    255 			re->inuse = 0;
    256 			wakeup(&fs->lfs_resblk);
    257 			mutex_exit(&lfs_lock);
    258 			return;
    259 		}
    260 	}
    261 
    262 #ifdef notyet /* XXX this assert fires */
    263 	for (int i = 0; i < LFS_N_TOTAL; i++) {
    264 		KDASSERTMSG(fs->lfs_resblk[i].p == p,
    265 		    "lfs_free: inconsistent reserved block");
    266 	}
    267 #endif
    268 
    269 	mutex_exit(&lfs_lock);
    270 
    271 	/*
    272 	 * If we didn't find it, free it.
    273 	 */
    274 	free(p, M_SEGMENT);
    275 }
    276 
    277 /*
    278  * Fragment lock.  This is a reader/writer lock controlling, primarily,
    279  * the expansion of file fragments.
    280  */
    281 void
    282 lfs_fraglock_enter(struct lfs *fs, int enter_exit)
    283 {
    284 	lfs_prelock(fs, 0);
    285 }
    286 
    287 bool
    288 lfs_fraglock_held(struct lfs *fs, int read_write)
    289 {
    290 	return lfs_prelock_held(fs);
    291 }
    292 
    293 void
    294 lfs_fraglock_exit(struct lfs *fs)
    295 {
    296 	lfs_preunlock(fs);
    297 }
    298 
    299 /*
    300  * lfs_seglock --
    301  *	Single thread the segment writer.
    302  */
    303 int
    304 lfs_seglock(struct lfs *fs, unsigned long flags)
    305 {
    306 	struct segment *sp;
    307 	int error;
    308 
    309 	error = lfs_prelock(fs, flags);
    310 	if (error)
    311 		return error;
    312 
    313 	if (fs->lfs_seglock) {
    314 		++fs->lfs_seglock;
    315 		fs->lfs_sp->seg_flags |= flags;
    316 		return 0;
    317 	}
    318 
    319 	fs->lfs_seglock = 1;
    320 	fs->lfs_cleanind = 0;
    321 
    322 	LFS_ENTER_LOG("seglock", __FILE__, __LINE__, 0, flags, curproc->p_pid);
    323 
    324 	sp = fs->lfs_sp = pool_get(&fs->lfs_segpool, PR_WAITOK);
    325 	sp->bpp = pool_get(&fs->lfs_bpppool, PR_WAITOK);
    326 	sp->seg_flags = flags;
    327 	sp->vp = NULL;
    328 	sp->seg_iocount = 0;
    329 	sp->bytes_written = 0;
    330 	sp->gatherblock_loopcount = 0;
    331 	(void) lfs_initseg(fs, 0);
    332 
    333 	/*
    334 	 * Keep a cumulative count of the outstanding I/O operations.  If the
    335 	 * disk drive catches up with us it could go to zero before we finish,
    336 	 * so we artificially increment it by one until we've scheduled all of
    337 	 * the writes we intend to do.
    338 	 */
    339 	mutex_enter(&lfs_lock);
    340 	++fs->lfs_iocount;
    341 	fs->lfs_startseg = lfs_sb_getcurseg(fs);
    342 	mutex_exit(&lfs_lock);
    343 	return 0;
    344 }
    345 
    346 /*
    347  * Create a marker inode.
    348  */
    349 struct inode *
    350 lfs_create_marker(void)
    351 {
    352 	struct inode *marker;
    353 
    354 	marker = pool_get(&lfs_inode_pool, PR_WAITOK);
    355 	memset(marker, 0, sizeof(*marker));
    356 	marker->inode_ext.lfs = pool_get(&lfs_inoext_pool, PR_WAITOK);
    357 	memset(marker->inode_ext.lfs, 0, sizeof(*marker->inode_ext.lfs));
    358 	marker->i_state |= IN_MARKER;
    359 
    360 	return marker;
    361 }
    362 
    363 void
    364 lfs_destroy_marker(struct inode *marker)
    365 {
    366 	pool_put(&lfs_inoext_pool, marker->inode_ext.lfs);
    367 	pool_put(&lfs_inode_pool, marker);
    368 }
    369 
    370 static void lfs_unmark_dirop(struct lfs *);
    371 
    372 static void
    373 lfs_unmark_dirop(struct lfs *fs)
    374 {
    375 	struct inode *ip, *marker;
    376 	struct vnode *vp;
    377 	int doit;
    378 
    379 	KASSERT(fs != NULL);
    380 	ASSERT_NO_SEGLOCK(fs);
    381 	mutex_enter(&lfs_lock);
    382 	doit = !(fs->lfs_flags & LFS_UNDIROP);
    383 	if (doit)
    384 		fs->lfs_flags |= LFS_UNDIROP;
    385 	mutex_exit(&lfs_lock);
    386 
    387 	if (!doit)
    388 		return;
    389 
    390 	marker = lfs_create_marker();
    391 
    392 	mutex_enter(&lfs_lock);
    393 	TAILQ_INSERT_HEAD(&fs->lfs_dchainhd, marker, i_lfs_dchain);
    394 	while ((ip = TAILQ_NEXT(marker, i_lfs_dchain)) != NULL) {
    395 		TAILQ_REMOVE(&fs->lfs_dchainhd, marker, i_lfs_dchain);
    396 		TAILQ_INSERT_AFTER(&fs->lfs_dchainhd, ip, marker,
    397 		    i_lfs_dchain);
    398 		if (ip->i_state & IN_MARKER)
    399 			continue;
    400 		vp = ITOV(ip);
    401 		if ((ip->i_state & (IN_ADIROP | IN_CDIROP)) == IN_CDIROP) {
    402 			--lfs_dirvcount;
    403 			--fs->lfs_dirvcount;
    404 			vp->v_uflag &= ~VU_DIROP;
    405 			TAILQ_REMOVE(&fs->lfs_dchainhd, ip, i_lfs_dchain);
    406 			wakeup(&lfs_dirvcount);
    407 			fs->lfs_unlockvp = vp;
    408 			mutex_exit(&lfs_lock);
    409 			vrele(vp);
    410 			mutex_enter(&lfs_lock);
    411 			fs->lfs_unlockvp = NULL;
    412 			ip->i_state &= ~IN_CDIROP;
    413 		}
    414 	}
    415 	TAILQ_REMOVE(&fs->lfs_dchainhd, marker, i_lfs_dchain);
    416 	fs->lfs_flags &= ~LFS_UNDIROP;
    417 	wakeup(&fs->lfs_flags);
    418 	mutex_exit(&lfs_lock);
    419 
    420 	lfs_destroy_marker(marker);
    421 }
    422 
    423 static void
    424 lfs_auto_segclean(struct lfs *fs)
    425 {
    426 	int i, waited, changed;
    427 	SEGUSE *sup;
    428 	struct buf *bp;
    429 
    430 	ASSERT_SEGLOCK(fs);
    431 	/*
    432 	 * Now that we've swapped lfs_activesb, but while we still
    433 	 * hold the segment lock, run through the segment list promoting
    434 	 * empty segments.
    435 	 * XXX - do we really need to do them all at once?
    436 	 */
    437 	waited = 0;
    438 	for (i = 0; i < lfs_sb_getnseg(fs); i++) {
    439 		changed = 0;
    440 		LFS_SEGENTRY(sup, fs, i, bp);
    441 		if (sup->su_nbytes == 0) {
    442 			switch (sup->su_flags & (SEGUSE_ACTIVE
    443 						 | SEGUSE_DIRTY
    444 						 | SEGUSE_EMPTY
    445 						 | SEGUSE_READY)) {
    446 			case SEGUSE_DIRTY:
    447 				sup->su_flags |= SEGUSE_EMPTY;
    448 				++changed;
    449 				break;
    450 
    451 			case SEGUSE_DIRTY | SEGUSE_EMPTY:
    452 				sup->su_flags |= SEGUSE_READY;
    453 				++changed;
    454 				break;
    455 
    456 			case SEGUSE_DIRTY | SEGUSE_EMPTY | SEGUSE_READY:
    457 				/* Make sure the sb is written */
    458 				mutex_enter(&lfs_lock);
    459 				while (waited == 0 && fs->lfs_sbactive)
    460 					mtsleep(&fs->lfs_sbactive, PRIBIO+1,
    461 						"lfs asb", 0, &lfs_lock);
    462 				mutex_exit(&lfs_lock);
    463 				waited = 1;
    464 
    465 				lfs_markclean(fs, i, sup, NOCRED, curlwp);
    466 				++changed;
    467 				break;
    468 
    469 			default:
    470 				break;
    471 			}
    472 		}
    473 		if (changed)
    474 			LFS_WRITESEGENTRY(sup, fs, i, bp);
    475 		else
    476 			brelse(bp, 0);
    477 	}
    478 }
    479 
    480 bool
    481 lfs_seglock_held(struct lfs *fs)
    482 {
    483 	return lfs_prelock_held(fs) && fs->lfs_seglock != 0;
    484 }
    485 
    486 /*
    487  * lfs_segunlock --
    488  *	Single thread the segment writer.
    489  */
    490 void
    491 lfs_segunlock(struct lfs *fs)
    492 {
    493 	struct segment *sp;
    494 	unsigned long sync, ckp;
    495 	struct buf *bp;
    496 	int do_unmark_dirop = 0;
    497 
    498 	sp = fs->lfs_sp;
    499 
    500 	if (!LFS_SEGLOCK_HELD(fs))
    501 		panic("lfs seglock not held");
    502 
    503 	if (fs->lfs_seglock == 1) {
    504 		if ((sp->seg_flags & SEGM_CLEAN) == 0)
    505 			do_unmark_dirop = 1;
    506 		sync = sp->seg_flags & SEGM_SYNC;
    507 		ckp = sp->seg_flags & SEGM_CKP;
    508 
    509 		/* We should have a segment summary, and nothing else */
    510 		KASSERT(sp->cbpp == sp->bpp + 1);
    511 
    512 		/* Free allocated segment summary */
    513 		lfs_sb_suboffset(fs, lfs_btofsb(fs, lfs_sb_getsumsize(fs)));
    514 		bp = *sp->bpp;
    515 		lfs_freebuf(fs, bp);
    516 
    517 		pool_put(&fs->lfs_bpppool, sp->bpp);
    518 		sp->bpp = NULL;
    519 
    520 		/*
    521 		 * If we're not sync, we're done with sp, get rid of it.
    522 		 * Otherwise, we keep a local copy around but free
    523 		 * fs->lfs_sp so another process can use it (we have to
    524 		 * wait but they don't have to wait for us).
    525 		 */
    526 		if (!sync)
    527 			pool_put(&fs->lfs_segpool, sp);
    528 		fs->lfs_sp = NULL;
    529 
    530 		/*
    531 		 * If the I/O count is non-zero, sleep until it reaches zero.
    532 		 * At the moment, the user's process hangs around so we can
    533 		 * sleep.
    534 		 */
    535 		mutex_enter(&lfs_lock);
    536 		if (--fs->lfs_iocount <= 1)
    537 			wakeup(&fs->lfs_iocount);
    538 		mutex_exit(&lfs_lock);
    539 
    540 		/*
    541 		 * If we're not checkpointing, we don't have to block
    542 		 * other processes to wait for a synchronous write
    543 		 * to complete.
    544 		 */
    545 		if (!ckp) {
    546 			LFS_ENTER_LOG("segunlock_std", __FILE__, __LINE__, 0, 0, curproc->p_pid);
    547 
    548 			--fs->lfs_seglock;
    549 		}
    550 		/*
    551 		 * We let checkpoints happen asynchronously.  That means
    552 		 * that during recovery, we have to roll forward between
    553 		 * the two segments described by the first and second
    554 		 * superblocks to make sure that the checkpoint described
    555 		 * by a superblock completed.
    556 		 */
    557 		mutex_enter(&lfs_lock);
    558 		while (ckp && sync && fs->lfs_iocount) {
    559 			(void)mtsleep(&fs->lfs_iocount, PRIBIO + 1,
    560 				      "lfs_iocount", 0, &lfs_lock);
    561 			DLOG((DLOG_SEG, "sleeping on iocount %x == %d\n", fs, fs->lfs_iocount));
    562 		}
    563 		while (sync && sp->seg_iocount) {
    564 			(void)mtsleep(&sp->seg_iocount, PRIBIO + 1,
    565 				     "seg_iocount", 0, &lfs_lock);
    566 			DLOG((DLOG_SEG, "sleeping on iocount %x == %d\n", sp, sp->seg_iocount));
    567 		}
    568 		mutex_exit(&lfs_lock);
    569 		if (sync)
    570 			pool_put(&fs->lfs_segpool, sp);
    571 
    572 		if (ckp) {
    573 			fs->lfs_nactive = 0;
    574 			/* If we *know* everything's on disk, write both sbs */
    575 			/* XXX should wait for this one	 */
    576 			if (sync)
    577 				lfs_writesuper(fs, lfs_sb_getsboff(fs, fs->lfs_activesb));
    578 			lfs_writesuper(fs, lfs_sb_getsboff(fs, 1 - fs->lfs_activesb));
    579 			if (!(fs->lfs_ivnode->v_mount->mnt_iflag &
    580 			      (IMNT_UNMOUNT | IMNT_WANTRDONLY))) {
    581 				lfs_auto_segclean(fs);
    582 				/* If sync, we can clean the remainder too */
    583 				if (sync)
    584 					lfs_auto_segclean(fs);
    585 			}
    586 			fs->lfs_activesb = 1 - fs->lfs_activesb;
    587 
    588 			LFS_ENTER_LOG("segunlock_ckp", __FILE__, __LINE__, 0, 0, curproc->p_pid);
    589 
    590 			--fs->lfs_seglock;
    591 		}
    592 		if (do_unmark_dirop)
    593 			lfs_unmark_dirop(fs);
    594 	} else {
    595 		--fs->lfs_seglock;
    596 		KASSERT(fs->lfs_seglock != 0);
    597 	}
    598 
    599 	lfs_preunlock(fs);
    600 }
    601 
    602 /*
    603  * Single thread the cleaner.
    604  */
    605 int
    606 lfs_cleanerlock(struct lfs *fs)
    607 {
    608 	int error;
    609 
    610 	mutex_enter(&lfs_lock);
    611 	while (fs->lfs_cleanlock) {
    612 		printf("cleanlock=%p, waiting\n", fs->lfs_cleanlock);
    613 		error = cv_wait_sig(&fs->lfs_cleanercv, &lfs_lock);
    614 		if (error)
    615 			break;
    616 	}
    617 	if (error == 0)
    618 		fs->lfs_cleanlock = curlwp;
    619 	mutex_exit(&lfs_lock);
    620 
    621 	return error;
    622 }
    623 
    624 /*
    625  * Check whether we hold the cleaner lock.
    626  */
    627 int
    628 lfs_cleanerlock_held(struct lfs *fs)
    629 {
    630 	int retval = 0;
    631 
    632 	mutex_enter(&lfs_lock);
    633 	retval = (fs->lfs_cleanlock == curlwp);
    634 	mutex_exit(&lfs_lock);
    635 
    636 	return retval;
    637 }
    638 
    639 /*
    640  * Single thread the cleaner.
    641  */
    642 void
    643 lfs_cleanerunlock(struct lfs *fs)
    644 {
    645 	struct inode *ip;
    646 
    647 	/* Clear out the cleaning list */
    648 	while ((ip = TAILQ_FIRST(&fs->lfs_cleanhd)) != NULL)
    649 		lfs_clrclean(fs, ITOV(ip));
    650 
    651 	mutex_enter(&lfs_lock);
    652 	fs->lfs_cleanlock = NULL;
    653 	cv_broadcast(&fs->lfs_cleanercv);
    654 	mutex_exit(&lfs_lock);
    655 }
    656 
    657 /*
    658  * Preventative / prerequisite lock.
    659  * This is the "lock" part of the segment lock,
    660  * though it can also be taken independently to
    661  * prevent segment writing.
    662  */
    663 int
    664 lfs_prelock(struct lfs *fs, unsigned long flags)
    665 {
    666 	int error;
    667 
    668 	mutex_enter(&lfs_lock);
    669 
    670 	error = 0;
    671 	if (fs->lfs_prelock) {
    672 		if (fs->lfs_prelocklwp == curlwp) {
    673 			/* Locked by us already */
    674 			++fs->lfs_prelock;
    675 			goto out;
    676 		} else if (flags & SEGM_PAGEDAEMON) {
    677 			/* Pagedaemon cannot wait */
    678 			error = EWOULDBLOCK;
    679 			goto out;
    680 		} else {
    681 			/* Wait for lock */
    682 			while (fs->lfs_prelock) {
    683 				cv_wait(&fs->lfs_prelockcv, &lfs_lock);
    684 			}
    685 		}
    686 	}
    687 
    688 	/* Acquire lock */
    689 	fs->lfs_prelock = 1;
    690 	fs->lfs_prelocklwp = curlwp;
    691  out:
    692 	mutex_exit(&lfs_lock);
    693 
    694 	return error;
    695 }
    696 
    697 bool
    698 lfs_prelock_held(struct lfs *fs)
    699 {
    700 	bool held;
    701 	bool waslocked;
    702 
    703 	waslocked = mutex_owned(&lfs_lock);
    704 	if (!waslocked)
    705 		mutex_enter(&lfs_lock);
    706 
    707 	held = (fs->lfs_prelock && fs->lfs_prelocklwp == curlwp);
    708 
    709 	if (!waslocked)
    710 		mutex_exit(&lfs_lock);
    711 
    712 	return held;
    713 }
    714 
    715 void
    716 lfs_preunlock(struct lfs *fs)
    717 {
    718 	mutex_enter(&lfs_lock);
    719 	if (--fs->lfs_prelock == 0) {
    720 		fs->lfs_prelocklwp = NULL;
    721 		cv_broadcast(&fs->lfs_prelockcv);
    722 	}
    723 	mutex_exit(&lfs_lock);
    724 }
    725 
    726 /*
    727  * Drain dirops and start writer.
    728  *
    729  * No simple_locks are held when we enter and none are held when we return.
    730  */
    731 void
    732 lfs_writer_enter(struct lfs *fs, const char *wmesg)
    733 {
    734 	int error __diagused;
    735 
    736 	ASSERT_NO_SEGLOCK(fs);
    737 	mutex_enter(&lfs_lock);
    738 
    739 	/* disallow dirops during flush */
    740 	fs->lfs_writer++;
    741 
    742 	while (fs->lfs_dirops > 0) {
    743 		++fs->lfs_diropwait;
    744 		error = mtsleep(&fs->lfs_writer, PRIBIO+1, wmesg, 0,
    745 				&lfs_lock);
    746 		KASSERT(error == 0);
    747 		--fs->lfs_diropwait;
    748 	}
    749 
    750 	mutex_exit(&lfs_lock);
    751 }
    752 
    753 int
    754 lfs_writer_tryenter(struct lfs *fs)
    755 {
    756 	int writer_set;
    757 
    758 	ASSERT_MAYBE_SEGLOCK(fs);
    759 	mutex_enter(&lfs_lock);
    760 	writer_set = (fs->lfs_dirops == 0);
    761 	if (writer_set)
    762 		fs->lfs_writer++;
    763 	mutex_exit(&lfs_lock);
    764 
    765 	return writer_set;
    766 }
    767 
    768 void
    769 lfs_writer_leave(struct lfs *fs)
    770 {
    771 	bool dowakeup;
    772 
    773 	ASSERT_MAYBE_SEGLOCK(fs);
    774 	mutex_enter(&lfs_lock);
    775 	dowakeup = !(--fs->lfs_writer);
    776 	if (dowakeup)
    777 		cv_broadcast(&fs->lfs_diropscv);
    778 	mutex_exit(&lfs_lock);
    779 }
    780 
    781 /*
    782  * Unlock, wait for the cleaner, then relock to where we were before.
    783  * To be used only at a fairly high level, to address a paucity of free
    784  * segments propagated back from lfs_gop_write().
    785  */
    786 void
    787 lfs_segunlock_relock(struct lfs *fs)
    788 {
    789 	int n = fs->lfs_seglock;
    790 	u_int16_t seg_flags;
    791 	CLEANERINFO *cip;
    792 	struct buf *bp;
    793 
    794 	if (n == 0)
    795 		return;
    796 
    797 	/* Write anything we've already gathered to disk */
    798 	lfs_writeseg(fs, fs->lfs_sp);
    799 
    800 	/* Tell cleaner */
    801 	mutex_enter(&lfs_lock);
    802 	fs->lfs_flags |= LFS_MUSTCLEAN;
    803 	mutex_exit(&lfs_lock);
    804 	LFS_CLEANERINFO(cip, fs, bp);
    805 	lfs_ci_setflags(fs, cip,
    806 			lfs_ci_getflags(fs, cip) | LFS_CLEANER_MUST_CLEAN);
    807 	LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
    808 
    809 	/* Save segment flags for later */
    810 	seg_flags = fs->lfs_sp->seg_flags;
    811 
    812 	while(fs->lfs_seglock)
    813 		lfs_segunlock(fs);
    814 
    815 	/* Wait for the cleaner */
    816 	lfs_wakeup_cleaner(fs);
    817 	mutex_enter(&lfs_lock);
    818 	while (LFS_STARVED_FOR_SEGS(fs))
    819 		mtsleep(&fs->lfs_availsleep, PRIBIO, "relock", 0,
    820 			&lfs_lock);
    821 	mutex_exit(&lfs_lock);
    822 
    823 	/* Put the segment lock back the way it was. */
    824 	while(n--)
    825 		lfs_seglock(fs, seg_flags);
    826 
    827 	/* Cleaner can relax now */
    828 	mutex_enter(&lfs_lock);
    829 	fs->lfs_flags &= ~LFS_MUSTCLEAN;
    830 	mutex_exit(&lfs_lock);
    831 	LFS_CLEANERINFO(cip, fs, bp);
    832 	lfs_ci_setflags(fs, cip,
    833 			lfs_ci_getflags(fs, cip) & ~LFS_CLEANER_MUST_CLEAN);
    834 	LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
    835 
    836 	return;
    837 }
    838 
    839 /*
    840  * Wake up the cleaner, provided that nowrap is not set.
    841  */
    842 void
    843 lfs_wakeup_cleaner(struct lfs *fs)
    844 {
    845 	if (fs->lfs_nowrap > 0)
    846 		return;
    847 
    848 	cv_broadcast(&fs->lfs_nextsegsleep);
    849 	cv_broadcast(&lfs_allclean_wakeup);
    850 }
    851 
    852 /*
    853  * If it wasn't already on the cleaning list,
    854  * add it and take a reference.  We will clear
    855  * the list before dropping the seglock.
    856  */
    857 void
    858 lfs_setclean(struct lfs *fs, struct vnode *vp)
    859 {
    860 	struct inode *ip;
    861 
    862 	KASSERT(lfs_cleanerlock_held(fs));
    863 
    864 	vref(vp);
    865 
    866 	ip = VTOI(vp);
    867 	mutex_enter(&lfs_lock);
    868 	if (ip->i_state & IN_CLEANING) {
    869 		mutex_exit(&lfs_lock);
    870 		vrele(vp);
    871 		return;
    872 	}
    873 
    874 	TAILQ_INSERT_HEAD(&fs->lfs_cleanhd, ip, i_lfs_clean);
    875 	LFS_SET_UINO(VTOI(vp), IN_CLEANING);
    876 	mutex_exit(&lfs_lock);
    877 }
    878 
    879 /*
    880  * Remove a vnode from the cleaning list,
    881  * clear IN_CLEANING and drop the reference.
    882  * Find any invalid buffers on the vnode and
    883  * toss them.
    884  */
    885 void
    886 lfs_clrclean(struct lfs *fs, struct vnode *vp)
    887 {
    888 	struct inode *ip;
    889 
    890 	KASSERT(lfs_cleanerlock_held(fs));
    891 
    892 	ip = VTOI(vp);
    893 	mutex_enter(&lfs_lock);
    894 	if (!(ip->i_state & IN_CLEANING)) {
    895 		mutex_exit(&lfs_lock);
    896 		return;
    897 	}
    898 	mutex_exit(&lfs_lock);
    899 
    900 	if (vp->v_type == VREG && vp != fs->lfs_ivnode)
    901 		lfs_ungather(fs, NULL, vp, lfs_match_data);
    902 
    903 	mutex_enter(&lfs_lock);
    904 	TAILQ_REMOVE(&fs->lfs_cleanhd, ip, i_lfs_clean);
    905 	LFS_CLR_UINO(VTOI(vp), IN_CLEANING);
    906 	mutex_exit(&lfs_lock);
    907 	vrele(vp);
    908 }
    909 
    910 /*
    911  * Remove the specified flag from all segments.
    912  */
    913 void
    914 lfs_seguse_clrflag_all(struct lfs *fs, uint32_t flag)
    915 {
    916 	SEGUSE *sup;
    917 	struct buf *bp;
    918 	int i;
    919 
    920 	for (i = 0; i < lfs_sb_getnseg(fs); i++) {
    921 		LFS_SEGENTRY(sup, fs, i, bp);
    922 		if (sup->su_flags & flag) {
    923 			sup->su_flags &= ~flag;
    924 			LFS_WRITESEGENTRY(sup, fs, i, bp);
    925 		} else
    926 			brelse(bp, 0);
    927 	}
    928 }
    929 
    930