1 //===-- tsan_rtl.cc -------------------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file is a part of ThreadSanitizer (TSan), a race detector. 11 // 12 // Main file (entry points) for the TSan run-time. 13 //===----------------------------------------------------------------------===// 14 15 #include "sanitizer_common/sanitizer_atomic.h" 16 #include "sanitizer_common/sanitizer_common.h" 17 #include "sanitizer_common/sanitizer_file.h" 18 #include "sanitizer_common/sanitizer_libc.h" 19 #include "sanitizer_common/sanitizer_stackdepot.h" 20 #include "sanitizer_common/sanitizer_placement_new.h" 21 #include "sanitizer_common/sanitizer_symbolizer.h" 22 #include "tsan_defs.h" 23 #include "tsan_platform.h" 24 #include "tsan_rtl.h" 25 #include "tsan_mman.h" 26 #include "tsan_suppressions.h" 27 #include "tsan_symbolize.h" 28 #include "ubsan/ubsan_init.h" 29 30 #ifdef __SSE3__ 31 // <emmintrin.h> transitively includes <stdlib.h>, 32 // and it's prohibited to include std headers into tsan runtime. 33 // So we do this dirty trick. 34 #define _MM_MALLOC_H_INCLUDED 35 #define __MM_MALLOC_H 36 #include <emmintrin.h> 37 typedef __m128i m128; 38 #endif 39 40 volatile int __tsan_resumed = 0; 41 42 extern "C" void __tsan_resume() { 43 __tsan_resumed = 1; 44 } 45 46 namespace __tsan { 47 48 #if !SANITIZER_GO && !SANITIZER_MAC 49 __attribute__((tls_model("initial-exec"))) 50 THREADLOCAL char cur_thread_placeholder[sizeof(ThreadState)] ALIGNED(64); 51 #endif 52 static char ctx_placeholder[sizeof(Context)] ALIGNED(64); 53 Context *ctx; 54 55 // Can be overriden by a front-end. 56 #ifdef TSAN_EXTERNAL_HOOKS 57 bool OnFinalize(bool failed); 58 void OnInitialize(); 59 #else 60 SANITIZER_WEAK_CXX_DEFAULT_IMPL 61 bool OnFinalize(bool failed) { 62 return failed; 63 } 64 SANITIZER_WEAK_CXX_DEFAULT_IMPL 65 void OnInitialize() {} 66 #endif 67 68 static char thread_registry_placeholder[sizeof(ThreadRegistry)]; 69 70 static ThreadContextBase *CreateThreadContext(u32 tid) { 71 // Map thread trace when context is created. 72 char name[50]; 73 internal_snprintf(name, sizeof(name), "trace %u", tid); 74 MapThreadTrace(GetThreadTrace(tid), TraceSize() * sizeof(Event), name); 75 const uptr hdr = GetThreadTraceHeader(tid); 76 internal_snprintf(name, sizeof(name), "trace header %u", tid); 77 MapThreadTrace(hdr, sizeof(Trace), name); 78 new((void*)hdr) Trace(); 79 // We are going to use only a small part of the trace with the default 80 // value of history_size. However, the constructor writes to the whole trace. 81 // Unmap the unused part. 82 uptr hdr_end = hdr + sizeof(Trace); 83 hdr_end -= sizeof(TraceHeader) * (kTraceParts - TraceParts()); 84 hdr_end = RoundUp(hdr_end, GetPageSizeCached()); 85 if (hdr_end < hdr + sizeof(Trace)) 86 UnmapOrDie((void*)hdr_end, hdr + sizeof(Trace) - hdr_end); 87 void *mem = internal_alloc(MBlockThreadContex, sizeof(ThreadContext)); 88 return new(mem) ThreadContext(tid); 89 } 90 91 #if !SANITIZER_GO 92 static const u32 kThreadQuarantineSize = 16; 93 #else 94 static const u32 kThreadQuarantineSize = 64; 95 #endif 96 97 Context::Context() 98 : initialized() 99 , report_mtx(MutexTypeReport, StatMtxReport) 100 , nreported() 101 , nmissed_expected() 102 , thread_registry(new(thread_registry_placeholder) ThreadRegistry( 103 CreateThreadContext, kMaxTid, kThreadQuarantineSize, kMaxTidReuse)) 104 , racy_mtx(MutexTypeRacy, StatMtxRacy) 105 , racy_stacks() 106 , racy_addresses() 107 , fired_suppressions_mtx(MutexTypeFired, StatMtxFired) 108 , clock_alloc("clock allocator") { 109 fired_suppressions.reserve(8); 110 } 111 112 // The objects are allocated in TLS, so one may rely on zero-initialization. 113 ThreadState::ThreadState(Context *ctx, int tid, int unique_id, u64 epoch, 114 unsigned reuse_count, 115 uptr stk_addr, uptr stk_size, 116 uptr tls_addr, uptr tls_size) 117 : fast_state(tid, epoch) 118 // Do not touch these, rely on zero initialization, 119 // they may be accessed before the ctor. 120 // , ignore_reads_and_writes() 121 // , ignore_interceptors() 122 , clock(tid, reuse_count) 123 #if !SANITIZER_GO 124 , jmp_bufs() 125 #endif 126 , tid(tid) 127 , unique_id(unique_id) 128 , stk_addr(stk_addr) 129 , stk_size(stk_size) 130 , tls_addr(tls_addr) 131 , tls_size(tls_size) 132 #if !SANITIZER_GO 133 , last_sleep_clock(tid) 134 #endif 135 { 136 } 137 138 #if !SANITIZER_GO 139 static void MemoryProfiler(Context *ctx, fd_t fd, int i) { 140 uptr n_threads; 141 uptr n_running_threads; 142 ctx->thread_registry->GetNumberOfThreads(&n_threads, &n_running_threads); 143 InternalMmapVector<char> buf(4096); 144 WriteMemoryProfile(buf.data(), buf.size(), n_threads, n_running_threads); 145 WriteToFile(fd, buf.data(), internal_strlen(buf.data())); 146 } 147 148 static void BackgroundThread(void *arg) { 149 // This is a non-initialized non-user thread, nothing to see here. 150 // We don't use ScopedIgnoreInterceptors, because we want ignores to be 151 // enabled even when the thread function exits (e.g. during pthread thread 152 // shutdown code). 153 cur_thread()->ignore_interceptors++; 154 const u64 kMs2Ns = 1000 * 1000; 155 156 fd_t mprof_fd = kInvalidFd; 157 if (flags()->profile_memory && flags()->profile_memory[0]) { 158 if (internal_strcmp(flags()->profile_memory, "stdout") == 0) { 159 mprof_fd = 1; 160 } else if (internal_strcmp(flags()->profile_memory, "stderr") == 0) { 161 mprof_fd = 2; 162 } else { 163 InternalScopedString filename(kMaxPathLength); 164 filename.append("%s.%d", flags()->profile_memory, (int)internal_getpid()); 165 fd_t fd = OpenFile(filename.data(), WrOnly); 166 if (fd == kInvalidFd) { 167 Printf("ThreadSanitizer: failed to open memory profile file '%s'\n", 168 &filename[0]); 169 } else { 170 mprof_fd = fd; 171 } 172 } 173 } 174 175 u64 last_flush = NanoTime(); 176 uptr last_rss = 0; 177 for (int i = 0; 178 atomic_load(&ctx->stop_background_thread, memory_order_relaxed) == 0; 179 i++) { 180 SleepForMillis(100); 181 u64 now = NanoTime(); 182 183 // Flush memory if requested. 184 if (flags()->flush_memory_ms > 0) { 185 if (last_flush + flags()->flush_memory_ms * kMs2Ns < now) { 186 VPrintf(1, "ThreadSanitizer: periodic memory flush\n"); 187 FlushShadowMemory(); 188 last_flush = NanoTime(); 189 } 190 } 191 // GetRSS can be expensive on huge programs, so don't do it every 100ms. 192 if (flags()->memory_limit_mb > 0) { 193 uptr rss = GetRSS(); 194 uptr limit = uptr(flags()->memory_limit_mb) << 20; 195 VPrintf(1, "ThreadSanitizer: memory flush check" 196 " RSS=%llu LAST=%llu LIMIT=%llu\n", 197 (u64)rss >> 20, (u64)last_rss >> 20, (u64)limit >> 20); 198 if (2 * rss > limit + last_rss) { 199 VPrintf(1, "ThreadSanitizer: flushing memory due to RSS\n"); 200 FlushShadowMemory(); 201 rss = GetRSS(); 202 VPrintf(1, "ThreadSanitizer: memory flushed RSS=%llu\n", (u64)rss>>20); 203 } 204 last_rss = rss; 205 } 206 207 // Write memory profile if requested. 208 if (mprof_fd != kInvalidFd) 209 MemoryProfiler(ctx, mprof_fd, i); 210 211 // Flush symbolizer cache if requested. 212 if (flags()->flush_symbolizer_ms > 0) { 213 u64 last = atomic_load(&ctx->last_symbolize_time_ns, 214 memory_order_relaxed); 215 if (last != 0 && last + flags()->flush_symbolizer_ms * kMs2Ns < now) { 216 Lock l(&ctx->report_mtx); 217 ScopedErrorReportLock l2; 218 SymbolizeFlush(); 219 atomic_store(&ctx->last_symbolize_time_ns, 0, memory_order_relaxed); 220 } 221 } 222 } 223 } 224 225 static void StartBackgroundThread() { 226 ctx->background_thread = internal_start_thread(&BackgroundThread, 0); 227 } 228 229 #ifndef __mips__ 230 static void StopBackgroundThread() { 231 atomic_store(&ctx->stop_background_thread, 1, memory_order_relaxed); 232 internal_join_thread(ctx->background_thread); 233 ctx->background_thread = 0; 234 } 235 #endif 236 #endif 237 238 void DontNeedShadowFor(uptr addr, uptr size) { 239 ReleaseMemoryPagesToOS(MemToShadow(addr), MemToShadow(addr + size)); 240 } 241 242 void MapShadow(uptr addr, uptr size) { 243 // Global data is not 64K aligned, but there are no adjacent mappings, 244 // so we can get away with unaligned mapping. 245 // CHECK_EQ(addr, addr & ~((64 << 10) - 1)); // windows wants 64K alignment 246 const uptr kPageSize = GetPageSizeCached(); 247 uptr shadow_begin = RoundDownTo((uptr)MemToShadow(addr), kPageSize); 248 uptr shadow_end = RoundUpTo((uptr)MemToShadow(addr + size), kPageSize); 249 if (!MmapFixedNoReserve(shadow_begin, shadow_end - shadow_begin, "shadow")) 250 Die(); 251 252 // Meta shadow is 2:1, so tread carefully. 253 static bool data_mapped = false; 254 static uptr mapped_meta_end = 0; 255 uptr meta_begin = (uptr)MemToMeta(addr); 256 uptr meta_end = (uptr)MemToMeta(addr + size); 257 meta_begin = RoundDownTo(meta_begin, 64 << 10); 258 meta_end = RoundUpTo(meta_end, 64 << 10); 259 if (!data_mapped) { 260 // First call maps data+bss. 261 data_mapped = true; 262 if (!MmapFixedNoReserve(meta_begin, meta_end - meta_begin, "meta shadow")) 263 Die(); 264 } else { 265 // Mapping continous heap. 266 // Windows wants 64K alignment. 267 meta_begin = RoundDownTo(meta_begin, 64 << 10); 268 meta_end = RoundUpTo(meta_end, 64 << 10); 269 if (meta_end <= mapped_meta_end) 270 return; 271 if (meta_begin < mapped_meta_end) 272 meta_begin = mapped_meta_end; 273 if (!MmapFixedNoReserve(meta_begin, meta_end - meta_begin, "meta shadow")) 274 Die(); 275 mapped_meta_end = meta_end; 276 } 277 VPrintf(2, "mapped meta shadow for (%p-%p) at (%p-%p)\n", 278 addr, addr+size, meta_begin, meta_end); 279 } 280 281 void MapThreadTrace(uptr addr, uptr size, const char *name) { 282 DPrintf("#0: Mapping trace at %p-%p(0x%zx)\n", addr, addr + size, size); 283 CHECK_GE(addr, TraceMemBeg()); 284 CHECK_LE(addr + size, TraceMemEnd()); 285 CHECK_EQ(addr, addr & ~((64 << 10) - 1)); // windows wants 64K alignment 286 if (!MmapFixedNoReserve(addr, size, name)) { 287 Printf("FATAL: ThreadSanitizer can not mmap thread trace (%p/%p)\n", 288 addr, size); 289 Die(); 290 } 291 } 292 293 static void CheckShadowMapping() { 294 uptr beg, end; 295 for (int i = 0; GetUserRegion(i, &beg, &end); i++) { 296 // Skip cases for empty regions (heap definition for architectures that 297 // do not use 64-bit allocator). 298 if (beg == end) 299 continue; 300 VPrintf(3, "checking shadow region %p-%p\n", beg, end); 301 uptr prev = 0; 302 for (uptr p0 = beg; p0 <= end; p0 += (end - beg) / 4) { 303 for (int x = -(int)kShadowCell; x <= (int)kShadowCell; x += kShadowCell) { 304 const uptr p = RoundDown(p0 + x, kShadowCell); 305 if (p < beg || p >= end) 306 continue; 307 const uptr s = MemToShadow(p); 308 const uptr m = (uptr)MemToMeta(p); 309 VPrintf(3, " checking pointer %p: shadow=%p meta=%p\n", p, s, m); 310 CHECK(IsAppMem(p)); 311 CHECK(IsShadowMem(s)); 312 CHECK_EQ(p, ShadowToMem(s)); 313 CHECK(IsMetaMem(m)); 314 if (prev) { 315 // Ensure that shadow and meta mappings are linear within a single 316 // user range. Lots of code that processes memory ranges assumes it. 317 const uptr prev_s = MemToShadow(prev); 318 const uptr prev_m = (uptr)MemToMeta(prev); 319 CHECK_EQ(s - prev_s, (p - prev) * kShadowMultiplier); 320 CHECK_EQ((m - prev_m) / kMetaShadowSize, 321 (p - prev) / kMetaShadowCell); 322 } 323 prev = p; 324 } 325 } 326 } 327 } 328 329 #if !SANITIZER_GO 330 static void OnStackUnwind(const SignalContext &sig, const void *, 331 BufferedStackTrace *stack) { 332 uptr top = 0; 333 uptr bottom = 0; 334 bool fast = common_flags()->fast_unwind_on_fatal; 335 if (fast) GetThreadStackTopAndBottom(false, &top, &bottom); 336 stack->Unwind(kStackTraceMax, sig.pc, sig.bp, sig.context, top, bottom, fast); 337 } 338 339 static void TsanOnDeadlySignal(int signo, void *siginfo, void *context) { 340 HandleDeadlySignal(siginfo, context, GetTid(), &OnStackUnwind, nullptr); 341 } 342 #endif 343 344 void Initialize(ThreadState *thr) { 345 // Thread safe because done before all threads exist. 346 static bool is_initialized = false; 347 if (is_initialized) 348 return; 349 is_initialized = true; 350 // We are not ready to handle interceptors yet. 351 ScopedIgnoreInterceptors ignore; 352 SanitizerToolName = "ThreadSanitizer"; 353 // Install tool-specific callbacks in sanitizer_common. 354 SetCheckFailedCallback(TsanCheckFailed); 355 356 ctx = new(ctx_placeholder) Context; 357 const char *options = GetEnv(SANITIZER_GO ? "GORACE" : "TSAN_OPTIONS"); 358 CacheBinaryName(); 359 CheckASLR(); 360 InitializeFlags(&ctx->flags, options); 361 AvoidCVE_2016_2143(); 362 __sanitizer::InitializePlatformEarly(); 363 __tsan::InitializePlatformEarly(); 364 365 #if !SANITIZER_GO 366 // Re-exec ourselves if we need to set additional env or command line args. 367 MaybeReexec(); 368 369 InitializeAllocator(); 370 ReplaceSystemMalloc(); 371 #endif 372 if (common_flags()->detect_deadlocks) 373 ctx->dd = DDetector::Create(flags()); 374 Processor *proc = ProcCreate(); 375 ProcWire(proc, thr); 376 InitializeInterceptors(); 377 CheckShadowMapping(); 378 InitializePlatform(); 379 InitializeMutex(); 380 InitializeDynamicAnnotations(); 381 #if !SANITIZER_GO 382 InitializeShadowMemory(); 383 InitializeAllocatorLate(); 384 InstallDeadlySignalHandlers(TsanOnDeadlySignal); 385 #endif 386 // Setup correct file descriptor for error reports. 387 __sanitizer_set_report_path(common_flags()->log_path); 388 InitializeSuppressions(); 389 #if !SANITIZER_GO 390 InitializeLibIgnore(); 391 Symbolizer::GetOrInit()->AddHooks(EnterSymbolizer, ExitSymbolizer); 392 #endif 393 394 VPrintf(1, "***** Running under ThreadSanitizer v2 (pid %d) *****\n", 395 (int)internal_getpid()); 396 397 // Initialize thread 0. 398 int tid = ThreadCreate(thr, 0, 0, true); 399 CHECK_EQ(tid, 0); 400 ThreadStart(thr, tid, GetTid(), /*workerthread*/ false); 401 #if TSAN_CONTAINS_UBSAN 402 __ubsan::InitAsPlugin(); 403 #endif 404 ctx->initialized = true; 405 406 #if !SANITIZER_GO 407 Symbolizer::LateInitialize(); 408 #endif 409 410 if (flags()->stop_on_start) { 411 Printf("ThreadSanitizer is suspended at startup (pid %d)." 412 " Call __tsan_resume().\n", 413 (int)internal_getpid()); 414 while (__tsan_resumed == 0) {} 415 } 416 417 OnInitialize(); 418 } 419 420 void MaybeSpawnBackgroundThread() { 421 // On MIPS, TSan initialization is run before 422 // __pthread_initialize_minimal_internal() is finished, so we can not spawn 423 // new threads. 424 #if !SANITIZER_GO && !defined(__mips__) 425 static atomic_uint32_t bg_thread = {}; 426 if (atomic_load(&bg_thread, memory_order_relaxed) == 0 && 427 atomic_exchange(&bg_thread, 1, memory_order_relaxed) == 0) { 428 StartBackgroundThread(); 429 SetSandboxingCallback(StopBackgroundThread); 430 } 431 #endif 432 } 433 434 435 int Finalize(ThreadState *thr) { 436 bool failed = false; 437 438 if (common_flags()->print_module_map == 1) PrintModuleMap(); 439 440 if (flags()->atexit_sleep_ms > 0 && ThreadCount(thr) > 1) 441 SleepForMillis(flags()->atexit_sleep_ms); 442 443 // Wait for pending reports. 444 ctx->report_mtx.Lock(); 445 { ScopedErrorReportLock l; } 446 ctx->report_mtx.Unlock(); 447 448 #if !SANITIZER_GO 449 if (Verbosity()) AllocatorPrintStats(); 450 #endif 451 452 ThreadFinalize(thr); 453 454 if (ctx->nreported) { 455 failed = true; 456 #if !SANITIZER_GO 457 Printf("ThreadSanitizer: reported %d warnings\n", ctx->nreported); 458 #else 459 Printf("Found %d data race(s)\n", ctx->nreported); 460 #endif 461 } 462 463 if (ctx->nmissed_expected) { 464 failed = true; 465 Printf("ThreadSanitizer: missed %d expected races\n", 466 ctx->nmissed_expected); 467 } 468 469 if (common_flags()->print_suppressions) 470 PrintMatchedSuppressions(); 471 #if !SANITIZER_GO 472 if (flags()->print_benign) 473 PrintMatchedBenignRaces(); 474 #endif 475 476 failed = OnFinalize(failed); 477 478 #if TSAN_COLLECT_STATS 479 StatAggregate(ctx->stat, thr->stat); 480 StatOutput(ctx->stat); 481 #endif 482 483 return failed ? common_flags()->exitcode : 0; 484 } 485 486 #if !SANITIZER_GO 487 void ForkBefore(ThreadState *thr, uptr pc) { 488 ctx->thread_registry->Lock(); 489 ctx->report_mtx.Lock(); 490 } 491 492 void ForkParentAfter(ThreadState *thr, uptr pc) { 493 ctx->report_mtx.Unlock(); 494 ctx->thread_registry->Unlock(); 495 } 496 497 void ForkChildAfter(ThreadState *thr, uptr pc) { 498 ctx->report_mtx.Unlock(); 499 ctx->thread_registry->Unlock(); 500 501 uptr nthread = 0; 502 ctx->thread_registry->GetNumberOfThreads(0, 0, &nthread /* alive threads */); 503 VPrintf(1, "ThreadSanitizer: forked new process with pid %d," 504 " parent had %d threads\n", (int)internal_getpid(), (int)nthread); 505 if (nthread == 1) { 506 StartBackgroundThread(); 507 } else { 508 // We've just forked a multi-threaded process. We cannot reasonably function 509 // after that (some mutexes may be locked before fork). So just enable 510 // ignores for everything in the hope that we will exec soon. 511 ctx->after_multithreaded_fork = true; 512 thr->ignore_interceptors++; 513 ThreadIgnoreBegin(thr, pc); 514 ThreadIgnoreSyncBegin(thr, pc); 515 } 516 } 517 #endif 518 519 #if SANITIZER_GO 520 NOINLINE 521 void GrowShadowStack(ThreadState *thr) { 522 const int sz = thr->shadow_stack_end - thr->shadow_stack; 523 const int newsz = 2 * sz; 524 uptr *newstack = (uptr*)internal_alloc(MBlockShadowStack, 525 newsz * sizeof(uptr)); 526 internal_memcpy(newstack, thr->shadow_stack, sz * sizeof(uptr)); 527 internal_free(thr->shadow_stack); 528 thr->shadow_stack = newstack; 529 thr->shadow_stack_pos = newstack + sz; 530 thr->shadow_stack_end = newstack + newsz; 531 } 532 #endif 533 534 u32 CurrentStackId(ThreadState *thr, uptr pc) { 535 if (!thr->is_inited) // May happen during bootstrap. 536 return 0; 537 if (pc != 0) { 538 #if !SANITIZER_GO 539 DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end); 540 #else 541 if (thr->shadow_stack_pos == thr->shadow_stack_end) 542 GrowShadowStack(thr); 543 #endif 544 thr->shadow_stack_pos[0] = pc; 545 thr->shadow_stack_pos++; 546 } 547 u32 id = StackDepotPut( 548 StackTrace(thr->shadow_stack, thr->shadow_stack_pos - thr->shadow_stack)); 549 if (pc != 0) 550 thr->shadow_stack_pos--; 551 return id; 552 } 553 554 void TraceSwitch(ThreadState *thr) { 555 #if !SANITIZER_GO 556 if (ctx->after_multithreaded_fork) 557 return; 558 #endif 559 thr->nomalloc++; 560 Trace *thr_trace = ThreadTrace(thr->tid); 561 Lock l(&thr_trace->mtx); 562 unsigned trace = (thr->fast_state.epoch() / kTracePartSize) % TraceParts(); 563 TraceHeader *hdr = &thr_trace->headers[trace]; 564 hdr->epoch0 = thr->fast_state.epoch(); 565 ObtainCurrentStack(thr, 0, &hdr->stack0); 566 hdr->mset0 = thr->mset; 567 thr->nomalloc--; 568 } 569 570 Trace *ThreadTrace(int tid) { 571 return (Trace*)GetThreadTraceHeader(tid); 572 } 573 574 uptr TraceTopPC(ThreadState *thr) { 575 Event *events = (Event*)GetThreadTrace(thr->tid); 576 uptr pc = events[thr->fast_state.GetTracePos()]; 577 return pc; 578 } 579 580 uptr TraceSize() { 581 return (uptr)(1ull << (kTracePartSizeBits + flags()->history_size + 1)); 582 } 583 584 uptr TraceParts() { 585 return TraceSize() / kTracePartSize; 586 } 587 588 #if !SANITIZER_GO 589 extern "C" void __tsan_trace_switch() { 590 TraceSwitch(cur_thread()); 591 } 592 593 extern "C" void __tsan_report_race() { 594 ReportRace(cur_thread()); 595 } 596 #endif 597 598 ALWAYS_INLINE 599 Shadow LoadShadow(u64 *p) { 600 u64 raw = atomic_load((atomic_uint64_t*)p, memory_order_relaxed); 601 return Shadow(raw); 602 } 603 604 ALWAYS_INLINE 605 void StoreShadow(u64 *sp, u64 s) { 606 atomic_store((atomic_uint64_t*)sp, s, memory_order_relaxed); 607 } 608 609 ALWAYS_INLINE 610 void StoreIfNotYetStored(u64 *sp, u64 *s) { 611 StoreShadow(sp, *s); 612 *s = 0; 613 } 614 615 ALWAYS_INLINE 616 void HandleRace(ThreadState *thr, u64 *shadow_mem, 617 Shadow cur, Shadow old) { 618 thr->racy_state[0] = cur.raw(); 619 thr->racy_state[1] = old.raw(); 620 thr->racy_shadow_addr = shadow_mem; 621 #if !SANITIZER_GO 622 HACKY_CALL(__tsan_report_race); 623 #else 624 ReportRace(thr); 625 #endif 626 } 627 628 static inline bool HappensBefore(Shadow old, ThreadState *thr) { 629 return thr->clock.get(old.TidWithIgnore()) >= old.epoch(); 630 } 631 632 ALWAYS_INLINE 633 void MemoryAccessImpl1(ThreadState *thr, uptr addr, 634 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic, 635 u64 *shadow_mem, Shadow cur) { 636 StatInc(thr, StatMop); 637 StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead); 638 StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog)); 639 640 // This potentially can live in an MMX/SSE scratch register. 641 // The required intrinsics are: 642 // __m128i _mm_move_epi64(__m128i*); 643 // _mm_storel_epi64(u64*, __m128i); 644 u64 store_word = cur.raw(); 645 646 // scan all the shadow values and dispatch to 4 categories: 647 // same, replace, candidate and race (see comments below). 648 // we consider only 3 cases regarding access sizes: 649 // equal, intersect and not intersect. initially I considered 650 // larger and smaller as well, it allowed to replace some 651 // 'candidates' with 'same' or 'replace', but I think 652 // it's just not worth it (performance- and complexity-wise). 653 654 Shadow old(0); 655 656 // It release mode we manually unroll the loop, 657 // because empirically gcc generates better code this way. 658 // However, we can't afford unrolling in debug mode, because the function 659 // consumes almost 4K of stack. Gtest gives only 4K of stack to death test 660 // threads, which is not enough for the unrolled loop. 661 #if SANITIZER_DEBUG 662 for (int idx = 0; idx < 4; idx++) { 663 #include "tsan_update_shadow_word_inl.h" 664 } 665 #else 666 int idx = 0; 667 #include "tsan_update_shadow_word_inl.h" 668 idx = 1; 669 #include "tsan_update_shadow_word_inl.h" 670 idx = 2; 671 #include "tsan_update_shadow_word_inl.h" 672 idx = 3; 673 #include "tsan_update_shadow_word_inl.h" 674 #endif 675 676 // we did not find any races and had already stored 677 // the current access info, so we are done 678 if (LIKELY(store_word == 0)) 679 return; 680 // choose a random candidate slot and replace it 681 StoreShadow(shadow_mem + (cur.epoch() % kShadowCnt), store_word); 682 StatInc(thr, StatShadowReplace); 683 return; 684 RACE: 685 HandleRace(thr, shadow_mem, cur, old); 686 return; 687 } 688 689 void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr, 690 int size, bool kAccessIsWrite, bool kIsAtomic) { 691 while (size) { 692 int size1 = 1; 693 int kAccessSizeLog = kSizeLog1; 694 if (size >= 8 && (addr & ~7) == ((addr + 7) & ~7)) { 695 size1 = 8; 696 kAccessSizeLog = kSizeLog8; 697 } else if (size >= 4 && (addr & ~7) == ((addr + 3) & ~7)) { 698 size1 = 4; 699 kAccessSizeLog = kSizeLog4; 700 } else if (size >= 2 && (addr & ~7) == ((addr + 1) & ~7)) { 701 size1 = 2; 702 kAccessSizeLog = kSizeLog2; 703 } 704 MemoryAccess(thr, pc, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic); 705 addr += size1; 706 size -= size1; 707 } 708 } 709 710 ALWAYS_INLINE 711 bool ContainsSameAccessSlow(u64 *s, u64 a, u64 sync_epoch, bool is_write) { 712 Shadow cur(a); 713 for (uptr i = 0; i < kShadowCnt; i++) { 714 Shadow old(LoadShadow(&s[i])); 715 if (Shadow::Addr0AndSizeAreEqual(cur, old) && 716 old.TidWithIgnore() == cur.TidWithIgnore() && 717 old.epoch() > sync_epoch && 718 old.IsAtomic() == cur.IsAtomic() && 719 old.IsRead() <= cur.IsRead()) 720 return true; 721 } 722 return false; 723 } 724 725 #if defined(__SSE3__) 726 #define SHUF(v0, v1, i0, i1, i2, i3) _mm_castps_si128(_mm_shuffle_ps( \ 727 _mm_castsi128_ps(v0), _mm_castsi128_ps(v1), \ 728 (i0)*1 + (i1)*4 + (i2)*16 + (i3)*64)) 729 ALWAYS_INLINE 730 bool ContainsSameAccessFast(u64 *s, u64 a, u64 sync_epoch, bool is_write) { 731 // This is an optimized version of ContainsSameAccessSlow. 732 // load current access into access[0:63] 733 const m128 access = _mm_cvtsi64_si128(a); 734 // duplicate high part of access in addr0: 735 // addr0[0:31] = access[32:63] 736 // addr0[32:63] = access[32:63] 737 // addr0[64:95] = access[32:63] 738 // addr0[96:127] = access[32:63] 739 const m128 addr0 = SHUF(access, access, 1, 1, 1, 1); 740 // load 4 shadow slots 741 const m128 shadow0 = _mm_load_si128((__m128i*)s); 742 const m128 shadow1 = _mm_load_si128((__m128i*)s + 1); 743 // load high parts of 4 shadow slots into addr_vect: 744 // addr_vect[0:31] = shadow0[32:63] 745 // addr_vect[32:63] = shadow0[96:127] 746 // addr_vect[64:95] = shadow1[32:63] 747 // addr_vect[96:127] = shadow1[96:127] 748 m128 addr_vect = SHUF(shadow0, shadow1, 1, 3, 1, 3); 749 if (!is_write) { 750 // set IsRead bit in addr_vect 751 const m128 rw_mask1 = _mm_cvtsi64_si128(1<<15); 752 const m128 rw_mask = SHUF(rw_mask1, rw_mask1, 0, 0, 0, 0); 753 addr_vect = _mm_or_si128(addr_vect, rw_mask); 754 } 755 // addr0 == addr_vect? 756 const m128 addr_res = _mm_cmpeq_epi32(addr0, addr_vect); 757 // epoch1[0:63] = sync_epoch 758 const m128 epoch1 = _mm_cvtsi64_si128(sync_epoch); 759 // epoch[0:31] = sync_epoch[0:31] 760 // epoch[32:63] = sync_epoch[0:31] 761 // epoch[64:95] = sync_epoch[0:31] 762 // epoch[96:127] = sync_epoch[0:31] 763 const m128 epoch = SHUF(epoch1, epoch1, 0, 0, 0, 0); 764 // load low parts of shadow cell epochs into epoch_vect: 765 // epoch_vect[0:31] = shadow0[0:31] 766 // epoch_vect[32:63] = shadow0[64:95] 767 // epoch_vect[64:95] = shadow1[0:31] 768 // epoch_vect[96:127] = shadow1[64:95] 769 const m128 epoch_vect = SHUF(shadow0, shadow1, 0, 2, 0, 2); 770 // epoch_vect >= sync_epoch? 771 const m128 epoch_res = _mm_cmpgt_epi32(epoch_vect, epoch); 772 // addr_res & epoch_res 773 const m128 res = _mm_and_si128(addr_res, epoch_res); 774 // mask[0] = res[7] 775 // mask[1] = res[15] 776 // ... 777 // mask[15] = res[127] 778 const int mask = _mm_movemask_epi8(res); 779 return mask != 0; 780 } 781 #endif 782 783 ALWAYS_INLINE 784 bool ContainsSameAccess(u64 *s, u64 a, u64 sync_epoch, bool is_write) { 785 #if defined(__SSE3__) 786 bool res = ContainsSameAccessFast(s, a, sync_epoch, is_write); 787 // NOTE: this check can fail if the shadow is concurrently mutated 788 // by other threads. But it still can be useful if you modify 789 // ContainsSameAccessFast and want to ensure that it's not completely broken. 790 // DCHECK_EQ(res, ContainsSameAccessSlow(s, a, sync_epoch, is_write)); 791 return res; 792 #else 793 return ContainsSameAccessSlow(s, a, sync_epoch, is_write); 794 #endif 795 } 796 797 ALWAYS_INLINE USED 798 void MemoryAccess(ThreadState *thr, uptr pc, uptr addr, 799 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic) { 800 u64 *shadow_mem = (u64*)MemToShadow(addr); 801 DPrintf2("#%d: MemoryAccess: @%p %p size=%d" 802 " is_write=%d shadow_mem=%p {%zx, %zx, %zx, %zx}\n", 803 (int)thr->fast_state.tid(), (void*)pc, (void*)addr, 804 (int)(1 << kAccessSizeLog), kAccessIsWrite, shadow_mem, 805 (uptr)shadow_mem[0], (uptr)shadow_mem[1], 806 (uptr)shadow_mem[2], (uptr)shadow_mem[3]); 807 #if SANITIZER_DEBUG 808 if (!IsAppMem(addr)) { 809 Printf("Access to non app mem %zx\n", addr); 810 DCHECK(IsAppMem(addr)); 811 } 812 if (!IsShadowMem((uptr)shadow_mem)) { 813 Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr); 814 DCHECK(IsShadowMem((uptr)shadow_mem)); 815 } 816 #endif 817 818 if (!SANITIZER_GO && *shadow_mem == kShadowRodata) { 819 // Access to .rodata section, no races here. 820 // Measurements show that it can be 10-20% of all memory accesses. 821 StatInc(thr, StatMop); 822 StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead); 823 StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog)); 824 StatInc(thr, StatMopRodata); 825 return; 826 } 827 828 FastState fast_state = thr->fast_state; 829 if (fast_state.GetIgnoreBit()) { 830 StatInc(thr, StatMop); 831 StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead); 832 StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog)); 833 StatInc(thr, StatMopIgnored); 834 return; 835 } 836 837 Shadow cur(fast_state); 838 cur.SetAddr0AndSizeLog(addr & 7, kAccessSizeLog); 839 cur.SetWrite(kAccessIsWrite); 840 cur.SetAtomic(kIsAtomic); 841 842 if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(), 843 thr->fast_synch_epoch, kAccessIsWrite))) { 844 StatInc(thr, StatMop); 845 StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead); 846 StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog)); 847 StatInc(thr, StatMopSame); 848 return; 849 } 850 851 if (kCollectHistory) { 852 fast_state.IncrementEpoch(); 853 thr->fast_state = fast_state; 854 TraceAddEvent(thr, fast_state, EventTypeMop, pc); 855 cur.IncrementEpoch(); 856 } 857 858 MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic, 859 shadow_mem, cur); 860 } 861 862 // Called by MemoryAccessRange in tsan_rtl_thread.cc 863 ALWAYS_INLINE USED 864 void MemoryAccessImpl(ThreadState *thr, uptr addr, 865 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic, 866 u64 *shadow_mem, Shadow cur) { 867 if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(), 868 thr->fast_synch_epoch, kAccessIsWrite))) { 869 StatInc(thr, StatMop); 870 StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead); 871 StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog)); 872 StatInc(thr, StatMopSame); 873 return; 874 } 875 876 MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic, 877 shadow_mem, cur); 878 } 879 880 static void MemoryRangeSet(ThreadState *thr, uptr pc, uptr addr, uptr size, 881 u64 val) { 882 (void)thr; 883 (void)pc; 884 if (size == 0) 885 return; 886 // FIXME: fix me. 887 uptr offset = addr % kShadowCell; 888 if (offset) { 889 offset = kShadowCell - offset; 890 if (size <= offset) 891 return; 892 addr += offset; 893 size -= offset; 894 } 895 DCHECK_EQ(addr % 8, 0); 896 // If a user passes some insane arguments (memset(0)), 897 // let it just crash as usual. 898 if (!IsAppMem(addr) || !IsAppMem(addr + size - 1)) 899 return; 900 // Don't want to touch lots of shadow memory. 901 // If a program maps 10MB stack, there is no need reset the whole range. 902 size = (size + (kShadowCell - 1)) & ~(kShadowCell - 1); 903 // UnmapOrDie/MmapFixedNoReserve does not work on Windows. 904 if (SANITIZER_WINDOWS || size < common_flags()->clear_shadow_mmap_threshold) { 905 u64 *p = (u64*)MemToShadow(addr); 906 CHECK(IsShadowMem((uptr)p)); 907 CHECK(IsShadowMem((uptr)(p + size * kShadowCnt / kShadowCell - 1))); 908 // FIXME: may overwrite a part outside the region 909 for (uptr i = 0; i < size / kShadowCell * kShadowCnt;) { 910 p[i++] = val; 911 for (uptr j = 1; j < kShadowCnt; j++) 912 p[i++] = 0; 913 } 914 } else { 915 // The region is big, reset only beginning and end. 916 const uptr kPageSize = GetPageSizeCached(); 917 u64 *begin = (u64*)MemToShadow(addr); 918 u64 *end = begin + size / kShadowCell * kShadowCnt; 919 u64 *p = begin; 920 // Set at least first kPageSize/2 to page boundary. 921 while ((p < begin + kPageSize / kShadowSize / 2) || ((uptr)p % kPageSize)) { 922 *p++ = val; 923 for (uptr j = 1; j < kShadowCnt; j++) 924 *p++ = 0; 925 } 926 // Reset middle part. 927 u64 *p1 = p; 928 p = RoundDown(end, kPageSize); 929 UnmapOrDie((void*)p1, (uptr)p - (uptr)p1); 930 if (!MmapFixedNoReserve((uptr)p1, (uptr)p - (uptr)p1)) 931 Die(); 932 // Set the ending. 933 while (p < end) { 934 *p++ = val; 935 for (uptr j = 1; j < kShadowCnt; j++) 936 *p++ = 0; 937 } 938 } 939 } 940 941 void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size) { 942 MemoryRangeSet(thr, pc, addr, size, 0); 943 } 944 945 void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size) { 946 // Processing more than 1k (4k of shadow) is expensive, 947 // can cause excessive memory consumption (user does not necessary touch 948 // the whole range) and most likely unnecessary. 949 if (size > 1024) 950 size = 1024; 951 CHECK_EQ(thr->is_freeing, false); 952 thr->is_freeing = true; 953 MemoryAccessRange(thr, pc, addr, size, true); 954 thr->is_freeing = false; 955 if (kCollectHistory) { 956 thr->fast_state.IncrementEpoch(); 957 TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc); 958 } 959 Shadow s(thr->fast_state); 960 s.ClearIgnoreBit(); 961 s.MarkAsFreed(); 962 s.SetWrite(true); 963 s.SetAddr0AndSizeLog(0, 3); 964 MemoryRangeSet(thr, pc, addr, size, s.raw()); 965 } 966 967 void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size) { 968 if (kCollectHistory) { 969 thr->fast_state.IncrementEpoch(); 970 TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc); 971 } 972 Shadow s(thr->fast_state); 973 s.ClearIgnoreBit(); 974 s.SetWrite(true); 975 s.SetAddr0AndSizeLog(0, 3); 976 MemoryRangeSet(thr, pc, addr, size, s.raw()); 977 } 978 979 ALWAYS_INLINE USED 980 void FuncEntry(ThreadState *thr, uptr pc) { 981 StatInc(thr, StatFuncEnter); 982 DPrintf2("#%d: FuncEntry %p\n", (int)thr->fast_state.tid(), (void*)pc); 983 if (kCollectHistory) { 984 thr->fast_state.IncrementEpoch(); 985 TraceAddEvent(thr, thr->fast_state, EventTypeFuncEnter, pc); 986 } 987 988 // Shadow stack maintenance can be replaced with 989 // stack unwinding during trace switch (which presumably must be faster). 990 DCHECK_GE(thr->shadow_stack_pos, thr->shadow_stack); 991 #if !SANITIZER_GO 992 DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end); 993 #else 994 if (thr->shadow_stack_pos == thr->shadow_stack_end) 995 GrowShadowStack(thr); 996 #endif 997 thr->shadow_stack_pos[0] = pc; 998 thr->shadow_stack_pos++; 999 } 1000 1001 ALWAYS_INLINE USED 1002 void FuncExit(ThreadState *thr) { 1003 StatInc(thr, StatFuncExit); 1004 DPrintf2("#%d: FuncExit\n", (int)thr->fast_state.tid()); 1005 if (kCollectHistory) { 1006 thr->fast_state.IncrementEpoch(); 1007 TraceAddEvent(thr, thr->fast_state, EventTypeFuncExit, 0); 1008 } 1009 1010 DCHECK_GT(thr->shadow_stack_pos, thr->shadow_stack); 1011 #if !SANITIZER_GO 1012 DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end); 1013 #endif 1014 thr->shadow_stack_pos--; 1015 } 1016 1017 void ThreadIgnoreBegin(ThreadState *thr, uptr pc, bool save_stack) { 1018 DPrintf("#%d: ThreadIgnoreBegin\n", thr->tid); 1019 thr->ignore_reads_and_writes++; 1020 CHECK_GT(thr->ignore_reads_and_writes, 0); 1021 thr->fast_state.SetIgnoreBit(); 1022 #if !SANITIZER_GO 1023 if (save_stack && !ctx->after_multithreaded_fork) 1024 thr->mop_ignore_set.Add(CurrentStackId(thr, pc)); 1025 #endif 1026 } 1027 1028 void ThreadIgnoreEnd(ThreadState *thr, uptr pc) { 1029 DPrintf("#%d: ThreadIgnoreEnd\n", thr->tid); 1030 CHECK_GT(thr->ignore_reads_and_writes, 0); 1031 thr->ignore_reads_and_writes--; 1032 if (thr->ignore_reads_and_writes == 0) { 1033 thr->fast_state.ClearIgnoreBit(); 1034 #if !SANITIZER_GO 1035 thr->mop_ignore_set.Reset(); 1036 #endif 1037 } 1038 } 1039 1040 #if !SANITIZER_GO 1041 extern "C" SANITIZER_INTERFACE_ATTRIBUTE 1042 uptr __tsan_testonly_shadow_stack_current_size() { 1043 ThreadState *thr = cur_thread(); 1044 return thr->shadow_stack_pos - thr->shadow_stack; 1045 } 1046 #endif 1047 1048 void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc, bool save_stack) { 1049 DPrintf("#%d: ThreadIgnoreSyncBegin\n", thr->tid); 1050 thr->ignore_sync++; 1051 CHECK_GT(thr->ignore_sync, 0); 1052 #if !SANITIZER_GO 1053 if (save_stack && !ctx->after_multithreaded_fork) 1054 thr->sync_ignore_set.Add(CurrentStackId(thr, pc)); 1055 #endif 1056 } 1057 1058 void ThreadIgnoreSyncEnd(ThreadState *thr, uptr pc) { 1059 DPrintf("#%d: ThreadIgnoreSyncEnd\n", thr->tid); 1060 CHECK_GT(thr->ignore_sync, 0); 1061 thr->ignore_sync--; 1062 #if !SANITIZER_GO 1063 if (thr->ignore_sync == 0) 1064 thr->sync_ignore_set.Reset(); 1065 #endif 1066 } 1067 1068 bool MD5Hash::operator==(const MD5Hash &other) const { 1069 return hash[0] == other.hash[0] && hash[1] == other.hash[1]; 1070 } 1071 1072 #if SANITIZER_DEBUG 1073 void build_consistency_debug() {} 1074 #else 1075 void build_consistency_release() {} 1076 #endif 1077 1078 #if TSAN_COLLECT_STATS 1079 void build_consistency_stats() {} 1080 #else 1081 void build_consistency_nostats() {} 1082 #endif 1083 1084 } // namespace __tsan 1085 1086 #if !SANITIZER_GO 1087 // Must be included in this file to make sure everything is inlined. 1088 #include "tsan_interface_inl.h" 1089 #endif 1090