Home | History | Annotate | Line # | Download | only in rtl
      1 //===-- tsan_rtl.cc -------------------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file is a part of ThreadSanitizer (TSan), a race detector.
     11 //
     12 // Main file (entry points) for the TSan run-time.
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "sanitizer_common/sanitizer_atomic.h"
     16 #include "sanitizer_common/sanitizer_common.h"
     17 #include "sanitizer_common/sanitizer_file.h"
     18 #include "sanitizer_common/sanitizer_libc.h"
     19 #include "sanitizer_common/sanitizer_stackdepot.h"
     20 #include "sanitizer_common/sanitizer_placement_new.h"
     21 #include "sanitizer_common/sanitizer_symbolizer.h"
     22 #include "tsan_defs.h"
     23 #include "tsan_platform.h"
     24 #include "tsan_rtl.h"
     25 #include "tsan_mman.h"
     26 #include "tsan_suppressions.h"
     27 #include "tsan_symbolize.h"
     28 #include "ubsan/ubsan_init.h"
     29 
     30 #ifdef __SSE3__
     31 // <emmintrin.h> transitively includes <stdlib.h>,
     32 // and it's prohibited to include std headers into tsan runtime.
     33 // So we do this dirty trick.
     34 #define _MM_MALLOC_H_INCLUDED
     35 #define __MM_MALLOC_H
     36 #include <emmintrin.h>
     37 typedef __m128i m128;
     38 #endif
     39 
     40 volatile int __tsan_resumed = 0;
     41 
     42 extern "C" void __tsan_resume() {
     43   __tsan_resumed = 1;
     44 }
     45 
     46 namespace __tsan {
     47 
     48 #if !SANITIZER_GO && !SANITIZER_MAC
     49 __attribute__((tls_model("initial-exec")))
     50 THREADLOCAL char cur_thread_placeholder[sizeof(ThreadState)] ALIGNED(64);
     51 #endif
     52 static char ctx_placeholder[sizeof(Context)] ALIGNED(64);
     53 Context *ctx;
     54 
     55 // Can be overriden by a front-end.
     56 #ifdef TSAN_EXTERNAL_HOOKS
     57 bool OnFinalize(bool failed);
     58 void OnInitialize();
     59 #else
     60 SANITIZER_WEAK_CXX_DEFAULT_IMPL
     61 bool OnFinalize(bool failed) {
     62   return failed;
     63 }
     64 SANITIZER_WEAK_CXX_DEFAULT_IMPL
     65 void OnInitialize() {}
     66 #endif
     67 
     68 static char thread_registry_placeholder[sizeof(ThreadRegistry)];
     69 
     70 static ThreadContextBase *CreateThreadContext(u32 tid) {
     71   // Map thread trace when context is created.
     72   char name[50];
     73   internal_snprintf(name, sizeof(name), "trace %u", tid);
     74   MapThreadTrace(GetThreadTrace(tid), TraceSize() * sizeof(Event), name);
     75   const uptr hdr = GetThreadTraceHeader(tid);
     76   internal_snprintf(name, sizeof(name), "trace header %u", tid);
     77   MapThreadTrace(hdr, sizeof(Trace), name);
     78   new((void*)hdr) Trace();
     79   // We are going to use only a small part of the trace with the default
     80   // value of history_size. However, the constructor writes to the whole trace.
     81   // Unmap the unused part.
     82   uptr hdr_end = hdr + sizeof(Trace);
     83   hdr_end -= sizeof(TraceHeader) * (kTraceParts - TraceParts());
     84   hdr_end = RoundUp(hdr_end, GetPageSizeCached());
     85   if (hdr_end < hdr + sizeof(Trace))
     86     UnmapOrDie((void*)hdr_end, hdr + sizeof(Trace) - hdr_end);
     87   void *mem = internal_alloc(MBlockThreadContex, sizeof(ThreadContext));
     88   return new(mem) ThreadContext(tid);
     89 }
     90 
     91 #if !SANITIZER_GO
     92 static const u32 kThreadQuarantineSize = 16;
     93 #else
     94 static const u32 kThreadQuarantineSize = 64;
     95 #endif
     96 
     97 Context::Context()
     98   : initialized()
     99   , report_mtx(MutexTypeReport, StatMtxReport)
    100   , nreported()
    101   , nmissed_expected()
    102   , thread_registry(new(thread_registry_placeholder) ThreadRegistry(
    103       CreateThreadContext, kMaxTid, kThreadQuarantineSize, kMaxTidReuse))
    104   , racy_mtx(MutexTypeRacy, StatMtxRacy)
    105   , racy_stacks()
    106   , racy_addresses()
    107   , fired_suppressions_mtx(MutexTypeFired, StatMtxFired)
    108   , clock_alloc("clock allocator") {
    109   fired_suppressions.reserve(8);
    110 }
    111 
    112 // The objects are allocated in TLS, so one may rely on zero-initialization.
    113 ThreadState::ThreadState(Context *ctx, int tid, int unique_id, u64 epoch,
    114                          unsigned reuse_count,
    115                          uptr stk_addr, uptr stk_size,
    116                          uptr tls_addr, uptr tls_size)
    117   : fast_state(tid, epoch)
    118   // Do not touch these, rely on zero initialization,
    119   // they may be accessed before the ctor.
    120   // , ignore_reads_and_writes()
    121   // , ignore_interceptors()
    122   , clock(tid, reuse_count)
    123 #if !SANITIZER_GO
    124   , jmp_bufs()
    125 #endif
    126   , tid(tid)
    127   , unique_id(unique_id)
    128   , stk_addr(stk_addr)
    129   , stk_size(stk_size)
    130   , tls_addr(tls_addr)
    131   , tls_size(tls_size)
    132 #if !SANITIZER_GO
    133   , last_sleep_clock(tid)
    134 #endif
    135 {
    136 }
    137 
    138 #if !SANITIZER_GO
    139 static void MemoryProfiler(Context *ctx, fd_t fd, int i) {
    140   uptr n_threads;
    141   uptr n_running_threads;
    142   ctx->thread_registry->GetNumberOfThreads(&n_threads, &n_running_threads);
    143   InternalMmapVector<char> buf(4096);
    144   WriteMemoryProfile(buf.data(), buf.size(), n_threads, n_running_threads);
    145   WriteToFile(fd, buf.data(), internal_strlen(buf.data()));
    146 }
    147 
    148 static void BackgroundThread(void *arg) {
    149   // This is a non-initialized non-user thread, nothing to see here.
    150   // We don't use ScopedIgnoreInterceptors, because we want ignores to be
    151   // enabled even when the thread function exits (e.g. during pthread thread
    152   // shutdown code).
    153   cur_thread()->ignore_interceptors++;
    154   const u64 kMs2Ns = 1000 * 1000;
    155 
    156   fd_t mprof_fd = kInvalidFd;
    157   if (flags()->profile_memory && flags()->profile_memory[0]) {
    158     if (internal_strcmp(flags()->profile_memory, "stdout") == 0) {
    159       mprof_fd = 1;
    160     } else if (internal_strcmp(flags()->profile_memory, "stderr") == 0) {
    161       mprof_fd = 2;
    162     } else {
    163       InternalScopedString filename(kMaxPathLength);
    164       filename.append("%s.%d", flags()->profile_memory, (int)internal_getpid());
    165       fd_t fd = OpenFile(filename.data(), WrOnly);
    166       if (fd == kInvalidFd) {
    167         Printf("ThreadSanitizer: failed to open memory profile file '%s'\n",
    168             &filename[0]);
    169       } else {
    170         mprof_fd = fd;
    171       }
    172     }
    173   }
    174 
    175   u64 last_flush = NanoTime();
    176   uptr last_rss = 0;
    177   for (int i = 0;
    178       atomic_load(&ctx->stop_background_thread, memory_order_relaxed) == 0;
    179       i++) {
    180     SleepForMillis(100);
    181     u64 now = NanoTime();
    182 
    183     // Flush memory if requested.
    184     if (flags()->flush_memory_ms > 0) {
    185       if (last_flush + flags()->flush_memory_ms * kMs2Ns < now) {
    186         VPrintf(1, "ThreadSanitizer: periodic memory flush\n");
    187         FlushShadowMemory();
    188         last_flush = NanoTime();
    189       }
    190     }
    191     // GetRSS can be expensive on huge programs, so don't do it every 100ms.
    192     if (flags()->memory_limit_mb > 0) {
    193       uptr rss = GetRSS();
    194       uptr limit = uptr(flags()->memory_limit_mb) << 20;
    195       VPrintf(1, "ThreadSanitizer: memory flush check"
    196                  " RSS=%llu LAST=%llu LIMIT=%llu\n",
    197               (u64)rss >> 20, (u64)last_rss >> 20, (u64)limit >> 20);
    198       if (2 * rss > limit + last_rss) {
    199         VPrintf(1, "ThreadSanitizer: flushing memory due to RSS\n");
    200         FlushShadowMemory();
    201         rss = GetRSS();
    202         VPrintf(1, "ThreadSanitizer: memory flushed RSS=%llu\n", (u64)rss>>20);
    203       }
    204       last_rss = rss;
    205     }
    206 
    207     // Write memory profile if requested.
    208     if (mprof_fd != kInvalidFd)
    209       MemoryProfiler(ctx, mprof_fd, i);
    210 
    211     // Flush symbolizer cache if requested.
    212     if (flags()->flush_symbolizer_ms > 0) {
    213       u64 last = atomic_load(&ctx->last_symbolize_time_ns,
    214                              memory_order_relaxed);
    215       if (last != 0 && last + flags()->flush_symbolizer_ms * kMs2Ns < now) {
    216         Lock l(&ctx->report_mtx);
    217         ScopedErrorReportLock l2;
    218         SymbolizeFlush();
    219         atomic_store(&ctx->last_symbolize_time_ns, 0, memory_order_relaxed);
    220       }
    221     }
    222   }
    223 }
    224 
    225 static void StartBackgroundThread() {
    226   ctx->background_thread = internal_start_thread(&BackgroundThread, 0);
    227 }
    228 
    229 #ifndef __mips__
    230 static void StopBackgroundThread() {
    231   atomic_store(&ctx->stop_background_thread, 1, memory_order_relaxed);
    232   internal_join_thread(ctx->background_thread);
    233   ctx->background_thread = 0;
    234 }
    235 #endif
    236 #endif
    237 
    238 void DontNeedShadowFor(uptr addr, uptr size) {
    239   ReleaseMemoryPagesToOS(MemToShadow(addr), MemToShadow(addr + size));
    240 }
    241 
    242 void MapShadow(uptr addr, uptr size) {
    243   // Global data is not 64K aligned, but there are no adjacent mappings,
    244   // so we can get away with unaligned mapping.
    245   // CHECK_EQ(addr, addr & ~((64 << 10) - 1));  // windows wants 64K alignment
    246   const uptr kPageSize = GetPageSizeCached();
    247   uptr shadow_begin = RoundDownTo((uptr)MemToShadow(addr), kPageSize);
    248   uptr shadow_end = RoundUpTo((uptr)MemToShadow(addr + size), kPageSize);
    249   if (!MmapFixedNoReserve(shadow_begin, shadow_end - shadow_begin, "shadow"))
    250     Die();
    251 
    252   // Meta shadow is 2:1, so tread carefully.
    253   static bool data_mapped = false;
    254   static uptr mapped_meta_end = 0;
    255   uptr meta_begin = (uptr)MemToMeta(addr);
    256   uptr meta_end = (uptr)MemToMeta(addr + size);
    257   meta_begin = RoundDownTo(meta_begin, 64 << 10);
    258   meta_end = RoundUpTo(meta_end, 64 << 10);
    259   if (!data_mapped) {
    260     // First call maps data+bss.
    261     data_mapped = true;
    262     if (!MmapFixedNoReserve(meta_begin, meta_end - meta_begin, "meta shadow"))
    263       Die();
    264   } else {
    265     // Mapping continous heap.
    266     // Windows wants 64K alignment.
    267     meta_begin = RoundDownTo(meta_begin, 64 << 10);
    268     meta_end = RoundUpTo(meta_end, 64 << 10);
    269     if (meta_end <= mapped_meta_end)
    270       return;
    271     if (meta_begin < mapped_meta_end)
    272       meta_begin = mapped_meta_end;
    273     if (!MmapFixedNoReserve(meta_begin, meta_end - meta_begin, "meta shadow"))
    274       Die();
    275     mapped_meta_end = meta_end;
    276   }
    277   VPrintf(2, "mapped meta shadow for (%p-%p) at (%p-%p)\n",
    278       addr, addr+size, meta_begin, meta_end);
    279 }
    280 
    281 void MapThreadTrace(uptr addr, uptr size, const char *name) {
    282   DPrintf("#0: Mapping trace at %p-%p(0x%zx)\n", addr, addr + size, size);
    283   CHECK_GE(addr, TraceMemBeg());
    284   CHECK_LE(addr + size, TraceMemEnd());
    285   CHECK_EQ(addr, addr & ~((64 << 10) - 1));  // windows wants 64K alignment
    286   if (!MmapFixedNoReserve(addr, size, name)) {
    287     Printf("FATAL: ThreadSanitizer can not mmap thread trace (%p/%p)\n",
    288         addr, size);
    289     Die();
    290   }
    291 }
    292 
    293 static void CheckShadowMapping() {
    294   uptr beg, end;
    295   for (int i = 0; GetUserRegion(i, &beg, &end); i++) {
    296     // Skip cases for empty regions (heap definition for architectures that
    297     // do not use 64-bit allocator).
    298     if (beg == end)
    299       continue;
    300     VPrintf(3, "checking shadow region %p-%p\n", beg, end);
    301     uptr prev = 0;
    302     for (uptr p0 = beg; p0 <= end; p0 += (end - beg) / 4) {
    303       for (int x = -(int)kShadowCell; x <= (int)kShadowCell; x += kShadowCell) {
    304         const uptr p = RoundDown(p0 + x, kShadowCell);
    305         if (p < beg || p >= end)
    306           continue;
    307         const uptr s = MemToShadow(p);
    308         const uptr m = (uptr)MemToMeta(p);
    309         VPrintf(3, "  checking pointer %p: shadow=%p meta=%p\n", p, s, m);
    310         CHECK(IsAppMem(p));
    311         CHECK(IsShadowMem(s));
    312         CHECK_EQ(p, ShadowToMem(s));
    313         CHECK(IsMetaMem(m));
    314         if (prev) {
    315           // Ensure that shadow and meta mappings are linear within a single
    316           // user range. Lots of code that processes memory ranges assumes it.
    317           const uptr prev_s = MemToShadow(prev);
    318           const uptr prev_m = (uptr)MemToMeta(prev);
    319           CHECK_EQ(s - prev_s, (p - prev) * kShadowMultiplier);
    320           CHECK_EQ((m - prev_m) / kMetaShadowSize,
    321                    (p - prev) / kMetaShadowCell);
    322         }
    323         prev = p;
    324       }
    325     }
    326   }
    327 }
    328 
    329 #if !SANITIZER_GO
    330 static void OnStackUnwind(const SignalContext &sig, const void *,
    331                           BufferedStackTrace *stack) {
    332   uptr top = 0;
    333   uptr bottom = 0;
    334   bool fast = common_flags()->fast_unwind_on_fatal;
    335   if (fast) GetThreadStackTopAndBottom(false, &top, &bottom);
    336   stack->Unwind(kStackTraceMax, sig.pc, sig.bp, sig.context, top, bottom, fast);
    337 }
    338 
    339 static void TsanOnDeadlySignal(int signo, void *siginfo, void *context) {
    340   HandleDeadlySignal(siginfo, context, GetTid(), &OnStackUnwind, nullptr);
    341 }
    342 #endif
    343 
    344 void Initialize(ThreadState *thr) {
    345   // Thread safe because done before all threads exist.
    346   static bool is_initialized = false;
    347   if (is_initialized)
    348     return;
    349   is_initialized = true;
    350   // We are not ready to handle interceptors yet.
    351   ScopedIgnoreInterceptors ignore;
    352   SanitizerToolName = "ThreadSanitizer";
    353   // Install tool-specific callbacks in sanitizer_common.
    354   SetCheckFailedCallback(TsanCheckFailed);
    355 
    356   ctx = new(ctx_placeholder) Context;
    357   const char *options = GetEnv(SANITIZER_GO ? "GORACE" : "TSAN_OPTIONS");
    358   CacheBinaryName();
    359   CheckASLR();
    360   InitializeFlags(&ctx->flags, options);
    361   AvoidCVE_2016_2143();
    362   __sanitizer::InitializePlatformEarly();
    363   __tsan::InitializePlatformEarly();
    364 
    365 #if !SANITIZER_GO
    366   // Re-exec ourselves if we need to set additional env or command line args.
    367   MaybeReexec();
    368 
    369   InitializeAllocator();
    370   ReplaceSystemMalloc();
    371 #endif
    372   if (common_flags()->detect_deadlocks)
    373     ctx->dd = DDetector::Create(flags());
    374   Processor *proc = ProcCreate();
    375   ProcWire(proc, thr);
    376   InitializeInterceptors();
    377   CheckShadowMapping();
    378   InitializePlatform();
    379   InitializeMutex();
    380   InitializeDynamicAnnotations();
    381 #if !SANITIZER_GO
    382   InitializeShadowMemory();
    383   InitializeAllocatorLate();
    384   InstallDeadlySignalHandlers(TsanOnDeadlySignal);
    385 #endif
    386   // Setup correct file descriptor for error reports.
    387   __sanitizer_set_report_path(common_flags()->log_path);
    388   InitializeSuppressions();
    389 #if !SANITIZER_GO
    390   InitializeLibIgnore();
    391   Symbolizer::GetOrInit()->AddHooks(EnterSymbolizer, ExitSymbolizer);
    392 #endif
    393 
    394   VPrintf(1, "***** Running under ThreadSanitizer v2 (pid %d) *****\n",
    395           (int)internal_getpid());
    396 
    397   // Initialize thread 0.
    398   int tid = ThreadCreate(thr, 0, 0, true);
    399   CHECK_EQ(tid, 0);
    400   ThreadStart(thr, tid, GetTid(), /*workerthread*/ false);
    401 #if TSAN_CONTAINS_UBSAN
    402   __ubsan::InitAsPlugin();
    403 #endif
    404   ctx->initialized = true;
    405 
    406 #if !SANITIZER_GO
    407   Symbolizer::LateInitialize();
    408 #endif
    409 
    410   if (flags()->stop_on_start) {
    411     Printf("ThreadSanitizer is suspended at startup (pid %d)."
    412            " Call __tsan_resume().\n",
    413            (int)internal_getpid());
    414     while (__tsan_resumed == 0) {}
    415   }
    416 
    417   OnInitialize();
    418 }
    419 
    420 void MaybeSpawnBackgroundThread() {
    421   // On MIPS, TSan initialization is run before
    422   // __pthread_initialize_minimal_internal() is finished, so we can not spawn
    423   // new threads.
    424 #if !SANITIZER_GO && !defined(__mips__)
    425   static atomic_uint32_t bg_thread = {};
    426   if (atomic_load(&bg_thread, memory_order_relaxed) == 0 &&
    427       atomic_exchange(&bg_thread, 1, memory_order_relaxed) == 0) {
    428     StartBackgroundThread();
    429     SetSandboxingCallback(StopBackgroundThread);
    430   }
    431 #endif
    432 }
    433 
    434 
    435 int Finalize(ThreadState *thr) {
    436   bool failed = false;
    437 
    438   if (common_flags()->print_module_map == 1) PrintModuleMap();
    439 
    440   if (flags()->atexit_sleep_ms > 0 && ThreadCount(thr) > 1)
    441     SleepForMillis(flags()->atexit_sleep_ms);
    442 
    443   // Wait for pending reports.
    444   ctx->report_mtx.Lock();
    445   { ScopedErrorReportLock l; }
    446   ctx->report_mtx.Unlock();
    447 
    448 #if !SANITIZER_GO
    449   if (Verbosity()) AllocatorPrintStats();
    450 #endif
    451 
    452   ThreadFinalize(thr);
    453 
    454   if (ctx->nreported) {
    455     failed = true;
    456 #if !SANITIZER_GO
    457     Printf("ThreadSanitizer: reported %d warnings\n", ctx->nreported);
    458 #else
    459     Printf("Found %d data race(s)\n", ctx->nreported);
    460 #endif
    461   }
    462 
    463   if (ctx->nmissed_expected) {
    464     failed = true;
    465     Printf("ThreadSanitizer: missed %d expected races\n",
    466         ctx->nmissed_expected);
    467   }
    468 
    469   if (common_flags()->print_suppressions)
    470     PrintMatchedSuppressions();
    471 #if !SANITIZER_GO
    472   if (flags()->print_benign)
    473     PrintMatchedBenignRaces();
    474 #endif
    475 
    476   failed = OnFinalize(failed);
    477 
    478 #if TSAN_COLLECT_STATS
    479   StatAggregate(ctx->stat, thr->stat);
    480   StatOutput(ctx->stat);
    481 #endif
    482 
    483   return failed ? common_flags()->exitcode : 0;
    484 }
    485 
    486 #if !SANITIZER_GO
    487 void ForkBefore(ThreadState *thr, uptr pc) {
    488   ctx->thread_registry->Lock();
    489   ctx->report_mtx.Lock();
    490 }
    491 
    492 void ForkParentAfter(ThreadState *thr, uptr pc) {
    493   ctx->report_mtx.Unlock();
    494   ctx->thread_registry->Unlock();
    495 }
    496 
    497 void ForkChildAfter(ThreadState *thr, uptr pc) {
    498   ctx->report_mtx.Unlock();
    499   ctx->thread_registry->Unlock();
    500 
    501   uptr nthread = 0;
    502   ctx->thread_registry->GetNumberOfThreads(0, 0, &nthread /* alive threads */);
    503   VPrintf(1, "ThreadSanitizer: forked new process with pid %d,"
    504       " parent had %d threads\n", (int)internal_getpid(), (int)nthread);
    505   if (nthread == 1) {
    506     StartBackgroundThread();
    507   } else {
    508     // We've just forked a multi-threaded process. We cannot reasonably function
    509     // after that (some mutexes may be locked before fork). So just enable
    510     // ignores for everything in the hope that we will exec soon.
    511     ctx->after_multithreaded_fork = true;
    512     thr->ignore_interceptors++;
    513     ThreadIgnoreBegin(thr, pc);
    514     ThreadIgnoreSyncBegin(thr, pc);
    515   }
    516 }
    517 #endif
    518 
    519 #if SANITIZER_GO
    520 NOINLINE
    521 void GrowShadowStack(ThreadState *thr) {
    522   const int sz = thr->shadow_stack_end - thr->shadow_stack;
    523   const int newsz = 2 * sz;
    524   uptr *newstack = (uptr*)internal_alloc(MBlockShadowStack,
    525       newsz * sizeof(uptr));
    526   internal_memcpy(newstack, thr->shadow_stack, sz * sizeof(uptr));
    527   internal_free(thr->shadow_stack);
    528   thr->shadow_stack = newstack;
    529   thr->shadow_stack_pos = newstack + sz;
    530   thr->shadow_stack_end = newstack + newsz;
    531 }
    532 #endif
    533 
    534 u32 CurrentStackId(ThreadState *thr, uptr pc) {
    535   if (!thr->is_inited)  // May happen during bootstrap.
    536     return 0;
    537   if (pc != 0) {
    538 #if !SANITIZER_GO
    539     DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
    540 #else
    541     if (thr->shadow_stack_pos == thr->shadow_stack_end)
    542       GrowShadowStack(thr);
    543 #endif
    544     thr->shadow_stack_pos[0] = pc;
    545     thr->shadow_stack_pos++;
    546   }
    547   u32 id = StackDepotPut(
    548       StackTrace(thr->shadow_stack, thr->shadow_stack_pos - thr->shadow_stack));
    549   if (pc != 0)
    550     thr->shadow_stack_pos--;
    551   return id;
    552 }
    553 
    554 void TraceSwitch(ThreadState *thr) {
    555 #if !SANITIZER_GO
    556   if (ctx->after_multithreaded_fork)
    557     return;
    558 #endif
    559   thr->nomalloc++;
    560   Trace *thr_trace = ThreadTrace(thr->tid);
    561   Lock l(&thr_trace->mtx);
    562   unsigned trace = (thr->fast_state.epoch() / kTracePartSize) % TraceParts();
    563   TraceHeader *hdr = &thr_trace->headers[trace];
    564   hdr->epoch0 = thr->fast_state.epoch();
    565   ObtainCurrentStack(thr, 0, &hdr->stack0);
    566   hdr->mset0 = thr->mset;
    567   thr->nomalloc--;
    568 }
    569 
    570 Trace *ThreadTrace(int tid) {
    571   return (Trace*)GetThreadTraceHeader(tid);
    572 }
    573 
    574 uptr TraceTopPC(ThreadState *thr) {
    575   Event *events = (Event*)GetThreadTrace(thr->tid);
    576   uptr pc = events[thr->fast_state.GetTracePos()];
    577   return pc;
    578 }
    579 
    580 uptr TraceSize() {
    581   return (uptr)(1ull << (kTracePartSizeBits + flags()->history_size + 1));
    582 }
    583 
    584 uptr TraceParts() {
    585   return TraceSize() / kTracePartSize;
    586 }
    587 
    588 #if !SANITIZER_GO
    589 extern "C" void __tsan_trace_switch() {
    590   TraceSwitch(cur_thread());
    591 }
    592 
    593 extern "C" void __tsan_report_race() {
    594   ReportRace(cur_thread());
    595 }
    596 #endif
    597 
    598 ALWAYS_INLINE
    599 Shadow LoadShadow(u64 *p) {
    600   u64 raw = atomic_load((atomic_uint64_t*)p, memory_order_relaxed);
    601   return Shadow(raw);
    602 }
    603 
    604 ALWAYS_INLINE
    605 void StoreShadow(u64 *sp, u64 s) {
    606   atomic_store((atomic_uint64_t*)sp, s, memory_order_relaxed);
    607 }
    608 
    609 ALWAYS_INLINE
    610 void StoreIfNotYetStored(u64 *sp, u64 *s) {
    611   StoreShadow(sp, *s);
    612   *s = 0;
    613 }
    614 
    615 ALWAYS_INLINE
    616 void HandleRace(ThreadState *thr, u64 *shadow_mem,
    617                               Shadow cur, Shadow old) {
    618   thr->racy_state[0] = cur.raw();
    619   thr->racy_state[1] = old.raw();
    620   thr->racy_shadow_addr = shadow_mem;
    621 #if !SANITIZER_GO
    622   HACKY_CALL(__tsan_report_race);
    623 #else
    624   ReportRace(thr);
    625 #endif
    626 }
    627 
    628 static inline bool HappensBefore(Shadow old, ThreadState *thr) {
    629   return thr->clock.get(old.TidWithIgnore()) >= old.epoch();
    630 }
    631 
    632 ALWAYS_INLINE
    633 void MemoryAccessImpl1(ThreadState *thr, uptr addr,
    634     int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
    635     u64 *shadow_mem, Shadow cur) {
    636   StatInc(thr, StatMop);
    637   StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
    638   StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
    639 
    640   // This potentially can live in an MMX/SSE scratch register.
    641   // The required intrinsics are:
    642   // __m128i _mm_move_epi64(__m128i*);
    643   // _mm_storel_epi64(u64*, __m128i);
    644   u64 store_word = cur.raw();
    645 
    646   // scan all the shadow values and dispatch to 4 categories:
    647   // same, replace, candidate and race (see comments below).
    648   // we consider only 3 cases regarding access sizes:
    649   // equal, intersect and not intersect. initially I considered
    650   // larger and smaller as well, it allowed to replace some
    651   // 'candidates' with 'same' or 'replace', but I think
    652   // it's just not worth it (performance- and complexity-wise).
    653 
    654   Shadow old(0);
    655 
    656   // It release mode we manually unroll the loop,
    657   // because empirically gcc generates better code this way.
    658   // However, we can't afford unrolling in debug mode, because the function
    659   // consumes almost 4K of stack. Gtest gives only 4K of stack to death test
    660   // threads, which is not enough for the unrolled loop.
    661 #if SANITIZER_DEBUG
    662   for (int idx = 0; idx < 4; idx++) {
    663 #include "tsan_update_shadow_word_inl.h"
    664   }
    665 #else
    666   int idx = 0;
    667 #include "tsan_update_shadow_word_inl.h"
    668   idx = 1;
    669 #include "tsan_update_shadow_word_inl.h"
    670   idx = 2;
    671 #include "tsan_update_shadow_word_inl.h"
    672   idx = 3;
    673 #include "tsan_update_shadow_word_inl.h"
    674 #endif
    675 
    676   // we did not find any races and had already stored
    677   // the current access info, so we are done
    678   if (LIKELY(store_word == 0))
    679     return;
    680   // choose a random candidate slot and replace it
    681   StoreShadow(shadow_mem + (cur.epoch() % kShadowCnt), store_word);
    682   StatInc(thr, StatShadowReplace);
    683   return;
    684  RACE:
    685   HandleRace(thr, shadow_mem, cur, old);
    686   return;
    687 }
    688 
    689 void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr,
    690     int size, bool kAccessIsWrite, bool kIsAtomic) {
    691   while (size) {
    692     int size1 = 1;
    693     int kAccessSizeLog = kSizeLog1;
    694     if (size >= 8 && (addr & ~7) == ((addr + 7) & ~7)) {
    695       size1 = 8;
    696       kAccessSizeLog = kSizeLog8;
    697     } else if (size >= 4 && (addr & ~7) == ((addr + 3) & ~7)) {
    698       size1 = 4;
    699       kAccessSizeLog = kSizeLog4;
    700     } else if (size >= 2 && (addr & ~7) == ((addr + 1) & ~7)) {
    701       size1 = 2;
    702       kAccessSizeLog = kSizeLog2;
    703     }
    704     MemoryAccess(thr, pc, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic);
    705     addr += size1;
    706     size -= size1;
    707   }
    708 }
    709 
    710 ALWAYS_INLINE
    711 bool ContainsSameAccessSlow(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
    712   Shadow cur(a);
    713   for (uptr i = 0; i < kShadowCnt; i++) {
    714     Shadow old(LoadShadow(&s[i]));
    715     if (Shadow::Addr0AndSizeAreEqual(cur, old) &&
    716         old.TidWithIgnore() == cur.TidWithIgnore() &&
    717         old.epoch() > sync_epoch &&
    718         old.IsAtomic() == cur.IsAtomic() &&
    719         old.IsRead() <= cur.IsRead())
    720       return true;
    721   }
    722   return false;
    723 }
    724 
    725 #if defined(__SSE3__)
    726 #define SHUF(v0, v1, i0, i1, i2, i3) _mm_castps_si128(_mm_shuffle_ps( \
    727     _mm_castsi128_ps(v0), _mm_castsi128_ps(v1), \
    728     (i0)*1 + (i1)*4 + (i2)*16 + (i3)*64))
    729 ALWAYS_INLINE
    730 bool ContainsSameAccessFast(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
    731   // This is an optimized version of ContainsSameAccessSlow.
    732   // load current access into access[0:63]
    733   const m128 access     = _mm_cvtsi64_si128(a);
    734   // duplicate high part of access in addr0:
    735   // addr0[0:31]        = access[32:63]
    736   // addr0[32:63]       = access[32:63]
    737   // addr0[64:95]       = access[32:63]
    738   // addr0[96:127]      = access[32:63]
    739   const m128 addr0      = SHUF(access, access, 1, 1, 1, 1);
    740   // load 4 shadow slots
    741   const m128 shadow0    = _mm_load_si128((__m128i*)s);
    742   const m128 shadow1    = _mm_load_si128((__m128i*)s + 1);
    743   // load high parts of 4 shadow slots into addr_vect:
    744   // addr_vect[0:31]    = shadow0[32:63]
    745   // addr_vect[32:63]   = shadow0[96:127]
    746   // addr_vect[64:95]   = shadow1[32:63]
    747   // addr_vect[96:127]  = shadow1[96:127]
    748   m128 addr_vect        = SHUF(shadow0, shadow1, 1, 3, 1, 3);
    749   if (!is_write) {
    750     // set IsRead bit in addr_vect
    751     const m128 rw_mask1 = _mm_cvtsi64_si128(1<<15);
    752     const m128 rw_mask  = SHUF(rw_mask1, rw_mask1, 0, 0, 0, 0);
    753     addr_vect           = _mm_or_si128(addr_vect, rw_mask);
    754   }
    755   // addr0 == addr_vect?
    756   const m128 addr_res   = _mm_cmpeq_epi32(addr0, addr_vect);
    757   // epoch1[0:63]       = sync_epoch
    758   const m128 epoch1     = _mm_cvtsi64_si128(sync_epoch);
    759   // epoch[0:31]        = sync_epoch[0:31]
    760   // epoch[32:63]       = sync_epoch[0:31]
    761   // epoch[64:95]       = sync_epoch[0:31]
    762   // epoch[96:127]      = sync_epoch[0:31]
    763   const m128 epoch      = SHUF(epoch1, epoch1, 0, 0, 0, 0);
    764   // load low parts of shadow cell epochs into epoch_vect:
    765   // epoch_vect[0:31]   = shadow0[0:31]
    766   // epoch_vect[32:63]  = shadow0[64:95]
    767   // epoch_vect[64:95]  = shadow1[0:31]
    768   // epoch_vect[96:127] = shadow1[64:95]
    769   const m128 epoch_vect = SHUF(shadow0, shadow1, 0, 2, 0, 2);
    770   // epoch_vect >= sync_epoch?
    771   const m128 epoch_res  = _mm_cmpgt_epi32(epoch_vect, epoch);
    772   // addr_res & epoch_res
    773   const m128 res        = _mm_and_si128(addr_res, epoch_res);
    774   // mask[0] = res[7]
    775   // mask[1] = res[15]
    776   // ...
    777   // mask[15] = res[127]
    778   const int mask        = _mm_movemask_epi8(res);
    779   return mask != 0;
    780 }
    781 #endif
    782 
    783 ALWAYS_INLINE
    784 bool ContainsSameAccess(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
    785 #if defined(__SSE3__)
    786   bool res = ContainsSameAccessFast(s, a, sync_epoch, is_write);
    787   // NOTE: this check can fail if the shadow is concurrently mutated
    788   // by other threads. But it still can be useful if you modify
    789   // ContainsSameAccessFast and want to ensure that it's not completely broken.
    790   // DCHECK_EQ(res, ContainsSameAccessSlow(s, a, sync_epoch, is_write));
    791   return res;
    792 #else
    793   return ContainsSameAccessSlow(s, a, sync_epoch, is_write);
    794 #endif
    795 }
    796 
    797 ALWAYS_INLINE USED
    798 void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
    799     int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic) {
    800   u64 *shadow_mem = (u64*)MemToShadow(addr);
    801   DPrintf2("#%d: MemoryAccess: @%p %p size=%d"
    802       " is_write=%d shadow_mem=%p {%zx, %zx, %zx, %zx}\n",
    803       (int)thr->fast_state.tid(), (void*)pc, (void*)addr,
    804       (int)(1 << kAccessSizeLog), kAccessIsWrite, shadow_mem,
    805       (uptr)shadow_mem[0], (uptr)shadow_mem[1],
    806       (uptr)shadow_mem[2], (uptr)shadow_mem[3]);
    807 #if SANITIZER_DEBUG
    808   if (!IsAppMem(addr)) {
    809     Printf("Access to non app mem %zx\n", addr);
    810     DCHECK(IsAppMem(addr));
    811   }
    812   if (!IsShadowMem((uptr)shadow_mem)) {
    813     Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr);
    814     DCHECK(IsShadowMem((uptr)shadow_mem));
    815   }
    816 #endif
    817 
    818   if (!SANITIZER_GO && *shadow_mem == kShadowRodata) {
    819     // Access to .rodata section, no races here.
    820     // Measurements show that it can be 10-20% of all memory accesses.
    821     StatInc(thr, StatMop);
    822     StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
    823     StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
    824     StatInc(thr, StatMopRodata);
    825     return;
    826   }
    827 
    828   FastState fast_state = thr->fast_state;
    829   if (fast_state.GetIgnoreBit()) {
    830     StatInc(thr, StatMop);
    831     StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
    832     StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
    833     StatInc(thr, StatMopIgnored);
    834     return;
    835   }
    836 
    837   Shadow cur(fast_state);
    838   cur.SetAddr0AndSizeLog(addr & 7, kAccessSizeLog);
    839   cur.SetWrite(kAccessIsWrite);
    840   cur.SetAtomic(kIsAtomic);
    841 
    842   if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(),
    843       thr->fast_synch_epoch, kAccessIsWrite))) {
    844     StatInc(thr, StatMop);
    845     StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
    846     StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
    847     StatInc(thr, StatMopSame);
    848     return;
    849   }
    850 
    851   if (kCollectHistory) {
    852     fast_state.IncrementEpoch();
    853     thr->fast_state = fast_state;
    854     TraceAddEvent(thr, fast_state, EventTypeMop, pc);
    855     cur.IncrementEpoch();
    856   }
    857 
    858   MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic,
    859       shadow_mem, cur);
    860 }
    861 
    862 // Called by MemoryAccessRange in tsan_rtl_thread.cc
    863 ALWAYS_INLINE USED
    864 void MemoryAccessImpl(ThreadState *thr, uptr addr,
    865     int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
    866     u64 *shadow_mem, Shadow cur) {
    867   if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(),
    868       thr->fast_synch_epoch, kAccessIsWrite))) {
    869     StatInc(thr, StatMop);
    870     StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
    871     StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
    872     StatInc(thr, StatMopSame);
    873     return;
    874   }
    875 
    876   MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic,
    877       shadow_mem, cur);
    878 }
    879 
    880 static void MemoryRangeSet(ThreadState *thr, uptr pc, uptr addr, uptr size,
    881                            u64 val) {
    882   (void)thr;
    883   (void)pc;
    884   if (size == 0)
    885     return;
    886   // FIXME: fix me.
    887   uptr offset = addr % kShadowCell;
    888   if (offset) {
    889     offset = kShadowCell - offset;
    890     if (size <= offset)
    891       return;
    892     addr += offset;
    893     size -= offset;
    894   }
    895   DCHECK_EQ(addr % 8, 0);
    896   // If a user passes some insane arguments (memset(0)),
    897   // let it just crash as usual.
    898   if (!IsAppMem(addr) || !IsAppMem(addr + size - 1))
    899     return;
    900   // Don't want to touch lots of shadow memory.
    901   // If a program maps 10MB stack, there is no need reset the whole range.
    902   size = (size + (kShadowCell - 1)) & ~(kShadowCell - 1);
    903   // UnmapOrDie/MmapFixedNoReserve does not work on Windows.
    904   if (SANITIZER_WINDOWS || size < common_flags()->clear_shadow_mmap_threshold) {
    905     u64 *p = (u64*)MemToShadow(addr);
    906     CHECK(IsShadowMem((uptr)p));
    907     CHECK(IsShadowMem((uptr)(p + size * kShadowCnt / kShadowCell - 1)));
    908     // FIXME: may overwrite a part outside the region
    909     for (uptr i = 0; i < size / kShadowCell * kShadowCnt;) {
    910       p[i++] = val;
    911       for (uptr j = 1; j < kShadowCnt; j++)
    912         p[i++] = 0;
    913     }
    914   } else {
    915     // The region is big, reset only beginning and end.
    916     const uptr kPageSize = GetPageSizeCached();
    917     u64 *begin = (u64*)MemToShadow(addr);
    918     u64 *end = begin + size / kShadowCell * kShadowCnt;
    919     u64 *p = begin;
    920     // Set at least first kPageSize/2 to page boundary.
    921     while ((p < begin + kPageSize / kShadowSize / 2) || ((uptr)p % kPageSize)) {
    922       *p++ = val;
    923       for (uptr j = 1; j < kShadowCnt; j++)
    924         *p++ = 0;
    925     }
    926     // Reset middle part.
    927     u64 *p1 = p;
    928     p = RoundDown(end, kPageSize);
    929     UnmapOrDie((void*)p1, (uptr)p - (uptr)p1);
    930     if (!MmapFixedNoReserve((uptr)p1, (uptr)p - (uptr)p1))
    931       Die();
    932     // Set the ending.
    933     while (p < end) {
    934       *p++ = val;
    935       for (uptr j = 1; j < kShadowCnt; j++)
    936         *p++ = 0;
    937     }
    938   }
    939 }
    940 
    941 void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size) {
    942   MemoryRangeSet(thr, pc, addr, size, 0);
    943 }
    944 
    945 void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size) {
    946   // Processing more than 1k (4k of shadow) is expensive,
    947   // can cause excessive memory consumption (user does not necessary touch
    948   // the whole range) and most likely unnecessary.
    949   if (size > 1024)
    950     size = 1024;
    951   CHECK_EQ(thr->is_freeing, false);
    952   thr->is_freeing = true;
    953   MemoryAccessRange(thr, pc, addr, size, true);
    954   thr->is_freeing = false;
    955   if (kCollectHistory) {
    956     thr->fast_state.IncrementEpoch();
    957     TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc);
    958   }
    959   Shadow s(thr->fast_state);
    960   s.ClearIgnoreBit();
    961   s.MarkAsFreed();
    962   s.SetWrite(true);
    963   s.SetAddr0AndSizeLog(0, 3);
    964   MemoryRangeSet(thr, pc, addr, size, s.raw());
    965 }
    966 
    967 void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size) {
    968   if (kCollectHistory) {
    969     thr->fast_state.IncrementEpoch();
    970     TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc);
    971   }
    972   Shadow s(thr->fast_state);
    973   s.ClearIgnoreBit();
    974   s.SetWrite(true);
    975   s.SetAddr0AndSizeLog(0, 3);
    976   MemoryRangeSet(thr, pc, addr, size, s.raw());
    977 }
    978 
    979 ALWAYS_INLINE USED
    980 void FuncEntry(ThreadState *thr, uptr pc) {
    981   StatInc(thr, StatFuncEnter);
    982   DPrintf2("#%d: FuncEntry %p\n", (int)thr->fast_state.tid(), (void*)pc);
    983   if (kCollectHistory) {
    984     thr->fast_state.IncrementEpoch();
    985     TraceAddEvent(thr, thr->fast_state, EventTypeFuncEnter, pc);
    986   }
    987 
    988   // Shadow stack maintenance can be replaced with
    989   // stack unwinding during trace switch (which presumably must be faster).
    990   DCHECK_GE(thr->shadow_stack_pos, thr->shadow_stack);
    991 #if !SANITIZER_GO
    992   DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
    993 #else
    994   if (thr->shadow_stack_pos == thr->shadow_stack_end)
    995     GrowShadowStack(thr);
    996 #endif
    997   thr->shadow_stack_pos[0] = pc;
    998   thr->shadow_stack_pos++;
    999 }
   1000 
   1001 ALWAYS_INLINE USED
   1002 void FuncExit(ThreadState *thr) {
   1003   StatInc(thr, StatFuncExit);
   1004   DPrintf2("#%d: FuncExit\n", (int)thr->fast_state.tid());
   1005   if (kCollectHistory) {
   1006     thr->fast_state.IncrementEpoch();
   1007     TraceAddEvent(thr, thr->fast_state, EventTypeFuncExit, 0);
   1008   }
   1009 
   1010   DCHECK_GT(thr->shadow_stack_pos, thr->shadow_stack);
   1011 #if !SANITIZER_GO
   1012   DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
   1013 #endif
   1014   thr->shadow_stack_pos--;
   1015 }
   1016 
   1017 void ThreadIgnoreBegin(ThreadState *thr, uptr pc, bool save_stack) {
   1018   DPrintf("#%d: ThreadIgnoreBegin\n", thr->tid);
   1019   thr->ignore_reads_and_writes++;
   1020   CHECK_GT(thr->ignore_reads_and_writes, 0);
   1021   thr->fast_state.SetIgnoreBit();
   1022 #if !SANITIZER_GO
   1023   if (save_stack && !ctx->after_multithreaded_fork)
   1024     thr->mop_ignore_set.Add(CurrentStackId(thr, pc));
   1025 #endif
   1026 }
   1027 
   1028 void ThreadIgnoreEnd(ThreadState *thr, uptr pc) {
   1029   DPrintf("#%d: ThreadIgnoreEnd\n", thr->tid);
   1030   CHECK_GT(thr->ignore_reads_and_writes, 0);
   1031   thr->ignore_reads_and_writes--;
   1032   if (thr->ignore_reads_and_writes == 0) {
   1033     thr->fast_state.ClearIgnoreBit();
   1034 #if !SANITIZER_GO
   1035     thr->mop_ignore_set.Reset();
   1036 #endif
   1037   }
   1038 }
   1039 
   1040 #if !SANITIZER_GO
   1041 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
   1042 uptr __tsan_testonly_shadow_stack_current_size() {
   1043   ThreadState *thr = cur_thread();
   1044   return thr->shadow_stack_pos - thr->shadow_stack;
   1045 }
   1046 #endif
   1047 
   1048 void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc, bool save_stack) {
   1049   DPrintf("#%d: ThreadIgnoreSyncBegin\n", thr->tid);
   1050   thr->ignore_sync++;
   1051   CHECK_GT(thr->ignore_sync, 0);
   1052 #if !SANITIZER_GO
   1053   if (save_stack && !ctx->after_multithreaded_fork)
   1054     thr->sync_ignore_set.Add(CurrentStackId(thr, pc));
   1055 #endif
   1056 }
   1057 
   1058 void ThreadIgnoreSyncEnd(ThreadState *thr, uptr pc) {
   1059   DPrintf("#%d: ThreadIgnoreSyncEnd\n", thr->tid);
   1060   CHECK_GT(thr->ignore_sync, 0);
   1061   thr->ignore_sync--;
   1062 #if !SANITIZER_GO
   1063   if (thr->ignore_sync == 0)
   1064     thr->sync_ignore_set.Reset();
   1065 #endif
   1066 }
   1067 
   1068 bool MD5Hash::operator==(const MD5Hash &other) const {
   1069   return hash[0] == other.hash[0] && hash[1] == other.hash[1];
   1070 }
   1071 
   1072 #if SANITIZER_DEBUG
   1073 void build_consistency_debug() {}
   1074 #else
   1075 void build_consistency_release() {}
   1076 #endif
   1077 
   1078 #if TSAN_COLLECT_STATS
   1079 void build_consistency_stats() {}
   1080 #else
   1081 void build_consistency_nostats() {}
   1082 #endif
   1083 
   1084 }  // namespace __tsan
   1085 
   1086 #if !SANITIZER_GO
   1087 // Must be included in this file to make sure everything is inlined.
   1088 #include "tsan_interface_inl.h"
   1089 #endif
   1090