Home | History | Annotate | Line # | Download | only in pci
      1 /*	$NetBSD: if_bge.c,v 1.398 2025/05/26 08:27:04 bouyer Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Wind River Systems
      5  * Copyright (c) 1997, 1998, 1999, 2001
      6  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by Bill Paul.
     19  * 4. Neither the name of the author nor the names of any co-contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     33  * THE POSSIBILITY OF SUCH DAMAGE.
     34  *
     35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
     36  */
     37 
     38 /*
     39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
     40  *
     41  * NetBSD version by:
     42  *
     43  *	Frank van der Linden <fvdl (at) wasabisystems.com>
     44  *	Jason Thorpe <thorpej (at) wasabisystems.com>
     45  *	Jonathan Stone <jonathan (at) dsg.stanford.edu>
     46  *
     47  * Originally written for FreeBSD by Bill Paul <wpaul (at) windriver.com>
     48  * Senior Engineer, Wind River Systems
     49  */
     50 
     51 /*
     52  * The Broadcom BCM5700 is based on technology originally developed by
     53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
     54  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
     55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
     56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
     57  * frames, highly configurable RX filtering, and 16 RX and TX queues
     58  * (which, along with RX filter rules, can be used for QOS applications).
     59  * Other features, such as TCP segmentation, may be available as part
     60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
     61  * firmware images can be stored in hardware and need not be compiled
     62  * into the driver.
     63  *
     64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
     65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
     66  *
     67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
     68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
     69  * does not support external SSRAM.
     70  *
     71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
     72  * brand name, which is functionally similar but lacks PCI-X support.
     73  *
     74  * Without external SSRAM, you can only have at most 4 TX rings,
     75  * and the use of the mini RX ring is disabled. This seems to imply
     76  * that these features are simply not available on the BCM5701. As a
     77  * result, this driver does not implement any support for the mini RX
     78  * ring.
     79  */
     80 
     81 #include <sys/cdefs.h>
     82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.398 2025/05/26 08:27:04 bouyer Exp $");
     83 
     84 #include <sys/param.h>
     85 #include <sys/types.h>
     86 
     87 #include <sys/callout.h>
     88 #include <sys/device.h>
     89 #include <sys/kernel.h>
     90 #include <sys/kmem.h>
     91 #include <sys/mbuf.h>
     92 #include <sys/rndsource.h>
     93 #include <sys/socket.h>
     94 #include <sys/sockio.h>
     95 #include <sys/sysctl.h>
     96 #include <sys/systm.h>
     97 
     98 #include <net/if.h>
     99 #include <net/if_dl.h>
    100 #include <net/if_media.h>
    101 #include <net/if_ether.h>
    102 #include <net/bpf.h>
    103 
    104 /* Headers for TCP Segmentation Offload (TSO) */
    105 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
    106 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
    107 #include <netinet/ip.h>			/* for struct ip */
    108 #include <netinet/tcp.h>		/* for struct tcphdr */
    109 
    110 #include <dev/pci/pcireg.h>
    111 #include <dev/pci/pcivar.h>
    112 #include <dev/pci/pcidevs.h>
    113 
    114 #include <dev/mii/mii.h>
    115 #include <dev/mii/miivar.h>
    116 #include <dev/mii/miidevs.h>
    117 #include <dev/mii/brgphyreg.h>
    118 
    119 #include <dev/pci/if_bgereg.h>
    120 #include <dev/pci/if_bgevar.h>
    121 
    122 #include <prop/proplib.h>
    123 
    124 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
    125 
    126 
    127 /*
    128  * Tunable thresholds for rx-side bge interrupt mitigation.
    129  */
    130 
    131 /*
    132  * The pairs of values below were obtained from empirical measurement
    133  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
    134  * interrupt for every N packets received, where N is, approximately,
    135  * the second value (rx_max_bds) in each pair.  The values are chosen
    136  * such that moving from one pair to the succeeding pair was observed
    137  * to roughly halve interrupt rate under sustained input packet load.
    138  * The values were empirically chosen to avoid overflowing internal
    139  * limits on the  bcm5700: increasing rx_ticks much beyond 600
    140  * results in internal wrapping and higher interrupt rates.
    141  * The limit of 46 frames was chosen to match NFS workloads.
    142  *
    143  * These values also work well on bcm5701, bcm5704C, and (less
    144  * tested) bcm5703.  On other chipsets, (including the Altima chip
    145  * family), the larger values may overflow internal chip limits,
    146  * leading to increasing interrupt rates rather than lower interrupt
    147  * rates.
    148  *
    149  * Applications using heavy interrupt mitigation (interrupting every
    150  * 32 or 46 frames) in both directions may need to increase the TCP
    151  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
    152  * full link bandwidth, due to ACKs and window updates lingering
    153  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
    154  */
    155 static const struct bge_load_rx_thresh {
    156 	int rx_ticks;
    157 	int rx_max_bds; }
    158 bge_rx_threshes[] = {
    159 	{ 16,	1 },	/* rx_max_bds = 1 disables interrupt mitigation */
    160 	{ 32,	2 },
    161 	{ 50,	4 },
    162 	{ 100,	8 },
    163 	{ 192, 16 },
    164 	{ 416, 32 },
    165 	{ 598, 46 }
    166 };
    167 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
    168 
    169 /* XXX patchable; should be sysctl'able */
    170 static int bge_auto_thresh = 1;
    171 static int bge_rx_thresh_lvl;
    172 
    173 static int bge_rxthresh_nodenum;
    174 
    175 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
    176 
    177 static uint32_t bge_chipid(const struct pci_attach_args *);
    178 static int bge_can_use_msi(struct bge_softc *);
    179 static int bge_probe(device_t, cfdata_t, void *);
    180 static void bge_attach(device_t, device_t, void *);
    181 static int bge_detach(device_t, int);
    182 static void bge_release_resources(struct bge_softc *);
    183 
    184 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
    185 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
    186 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
    187 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
    188 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
    189 
    190 static void bge_txeof(struct bge_softc *);
    191 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
    192 static void bge_rxeof(struct bge_softc *);
    193 
    194 static void bge_asf_driver_up (struct bge_softc *);
    195 static void bge_tick(void *);
    196 static void bge_stats_update(struct bge_softc *);
    197 static void bge_stats_update_regs(struct bge_softc *);
    198 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
    199 
    200 static int bge_intr(void *);
    201 static void bge_start(struct ifnet *);
    202 static void bge_start_locked(struct ifnet *);
    203 static int bge_ifflags_cb(struct ethercom *);
    204 static int bge_ioctl(struct ifnet *, u_long, void *);
    205 static int bge_init(struct ifnet *);
    206 static void bge_stop(struct ifnet *, int);
    207 static bool bge_watchdog_tick(struct ifnet *);
    208 static int bge_ifmedia_upd(struct ifnet *);
    209 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    210 static void bge_handle_reset_work(struct work *, void *);
    211 
    212 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
    213 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
    214 
    215 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
    216 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
    217 static void bge_setmulti(struct bge_softc *);
    218 
    219 static void bge_handle_events(struct bge_softc *);
    220 static int bge_alloc_jumbo_mem(struct bge_softc *);
    221 static void bge_free_jumbo_mem(struct bge_softc *);
    222 static void *bge_jalloc(struct bge_softc *);
    223 static void bge_jfree(struct mbuf *, void *, size_t, void *);
    224 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
    225 static int bge_init_rx_ring_jumbo(struct bge_softc *);
    226 static void bge_free_rx_ring_jumbo(struct bge_softc *);
    227 
    228 static int bge_newbuf_std(struct bge_softc *, int);
    229 static int bge_init_rx_ring_std(struct bge_softc *);
    230 static void bge_fill_rx_ring_std(struct bge_softc *);
    231 static void bge_free_rx_ring_std(struct bge_softc *m);
    232 
    233 static void bge_free_tx_ring(struct bge_softc *m, bool);
    234 static int bge_init_tx_ring(struct bge_softc *);
    235 
    236 static int bge_chipinit(struct bge_softc *);
    237 static int bge_blockinit(struct bge_softc *);
    238 static int bge_phy_addr(struct bge_softc *);
    239 static uint32_t bge_readmem_ind(struct bge_softc *, int);
    240 static void bge_writemem_ind(struct bge_softc *, int, int);
    241 static void bge_writembx(struct bge_softc *, int, int);
    242 static void bge_writembx_flush(struct bge_softc *, int, int);
    243 static void bge_writemem_direct(struct bge_softc *, int, int);
    244 static void bge_writereg_ind(struct bge_softc *, int, int);
    245 static void bge_set_max_readrq(struct bge_softc *);
    246 
    247 static int bge_miibus_readreg(device_t, int, int, uint16_t *);
    248 static int bge_miibus_writereg(device_t, int, int, uint16_t);
    249 static void bge_miibus_statchg(struct ifnet *);
    250 
    251 #define BGE_RESET_SHUTDOWN	0
    252 #define	BGE_RESET_START		1
    253 #define	BGE_RESET_SUSPEND	2
    254 static void bge_sig_post_reset(struct bge_softc *, int);
    255 static void bge_sig_legacy(struct bge_softc *, int);
    256 static void bge_sig_pre_reset(struct bge_softc *, int);
    257 static void bge_wait_for_event_ack(struct bge_softc *);
    258 static void bge_stop_fw(struct bge_softc *);
    259 static int bge_reset(struct bge_softc *);
    260 static void bge_link_upd(struct bge_softc *);
    261 static void bge_sysctl_init(struct bge_softc *);
    262 static int bge_sysctl_verify(SYSCTLFN_PROTO);
    263 
    264 static void bge_ape_lock_init(struct bge_softc *);
    265 static void bge_ape_read_fw_ver(struct bge_softc *);
    266 static int bge_ape_lock(struct bge_softc *, int);
    267 static void bge_ape_unlock(struct bge_softc *, int);
    268 static void bge_ape_send_event(struct bge_softc *, uint32_t);
    269 static void bge_ape_driver_state_change(struct bge_softc *, int);
    270 
    271 #ifdef BGE_DEBUG
    272 #define DPRINTF(x)	if (bgedebug) printf x
    273 #define DPRINTFN(n, x)	if (bgedebug >= (n)) printf x
    274 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
    275 int	bgedebug = 0;
    276 int	bge_tso_debug = 0;
    277 void	bge_debug_info(struct bge_softc *);
    278 #else
    279 #define DPRINTF(x)
    280 #define DPRINTFN(n, x)
    281 #define BGE_TSO_PRINTF(x)
    282 #endif
    283 
    284 #ifdef BGE_EVENT_COUNTERS
    285 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
    286 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
    287 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
    288 #else
    289 #define	BGE_EVCNT_INCR(ev)	/* nothing */
    290 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
    291 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
    292 #endif
    293 
    294 #define VIDDID(a, b) PCI_VENDOR_ ## a, PCI_PRODUCT_ ## a ## _ ## b
    295 /*
    296  * The BCM5700 documentation seems to indicate that the hardware still has the
    297  * Alteon vendor ID burned into it, though it should always be overridden by
    298  * the value in the EEPROM.  We'll check for it anyway.
    299  */
    300 static const struct bge_product {
    301 	pci_vendor_id_t		bp_vendor;
    302 	pci_product_id_t	bp_product;
    303 	const char		*bp_name;
    304 } bge_products[] = {
    305 	{ VIDDID(ALTEON,   BCM5700),	"Broadcom BCM5700 Gigabit" },
    306 	{ VIDDID(ALTEON,   BCM5701),	"Broadcom BCM5701 Gigabit" },
    307 	{ VIDDID(ALTIMA,   AC1000),	"Altima AC1000 Gigabit" },
    308 	{ VIDDID(ALTIMA,   AC1001),	"Altima AC1001 Gigabit" },
    309 	{ VIDDID(ALTIMA,   AC1003),	"Altima AC1003 Gigabit" },
    310 	{ VIDDID(ALTIMA,   AC9100),	"Altima AC9100 Gigabit" },
    311 	{ VIDDID(APPLE,	   BCM5701),	"APPLE BCM5701 Gigabit" },
    312 	{ VIDDID(BROADCOM, BCM5700),	"Broadcom BCM5700 Gigabit" },
    313 	{ VIDDID(BROADCOM, BCM5701),	"Broadcom BCM5701 Gigabit" },
    314 	{ VIDDID(BROADCOM, BCM5702),	"Broadcom BCM5702 Gigabit" },
    315 	{ VIDDID(BROADCOM, BCM5702FE),	"Broadcom BCM5702FE Fast" },
    316 	{ VIDDID(BROADCOM, BCM5702X),	"Broadcom BCM5702X Gigabit" },
    317 	{ VIDDID(BROADCOM, BCM5703),	"Broadcom BCM5703 Gigabit" },
    318 	{ VIDDID(BROADCOM, BCM5703X),	"Broadcom BCM5703X Gigabit" },
    319 	{ VIDDID(BROADCOM, BCM5703_ALT),"Broadcom BCM5703 Gigabit" },
    320 	{ VIDDID(BROADCOM, BCM5704C),	"Broadcom BCM5704C Dual Gigabit" },
    321 	{ VIDDID(BROADCOM, BCM5704S),	"Broadcom BCM5704S Dual Gigabit" },
    322 	{ VIDDID(BROADCOM, BCM5704S_ALT),"Broadcom BCM5704S Dual Gigabit" },
    323 	{ VIDDID(BROADCOM, BCM5705),	"Broadcom BCM5705 Gigabit" },
    324 	{ VIDDID(BROADCOM, BCM5705F),	"Broadcom BCM5705F Gigabit" },
    325 	{ VIDDID(BROADCOM, BCM5705K),	"Broadcom BCM5705K Gigabit" },
    326 	{ VIDDID(BROADCOM, BCM5705M),	"Broadcom BCM5705M Gigabit" },
    327 	{ VIDDID(BROADCOM, BCM5705M_ALT),"Broadcom BCM5705M Gigabit" },
    328 	{ VIDDID(BROADCOM, BCM5714),	"Broadcom BCM5714 Gigabit" },
    329 	{ VIDDID(BROADCOM, BCM5714S),	"Broadcom BCM5714S Gigabit" },
    330 	{ VIDDID(BROADCOM, BCM5715),	"Broadcom BCM5715 Gigabit" },
    331 	{ VIDDID(BROADCOM, BCM5715S),	"Broadcom BCM5715S Gigabit" },
    332 	{ VIDDID(BROADCOM, BCM5717),	"Broadcom BCM5717 Gigabit" },
    333 	{ VIDDID(BROADCOM, BCM5717C),	"Broadcom BCM5717 Gigabit" },
    334 	{ VIDDID(BROADCOM, BCM5718),	"Broadcom BCM5718 Gigabit" },
    335 	{ VIDDID(BROADCOM, BCM5719),	"Broadcom BCM5719 Gigabit" },
    336 	{ VIDDID(BROADCOM, BCM5720),	"Broadcom BCM5720 Gigabit" },
    337 	{ VIDDID(BROADCOM, BCM5721),	"Broadcom BCM5721 Gigabit" },
    338 	{ VIDDID(BROADCOM, BCM5722),	"Broadcom BCM5722 Gigabit" },
    339 	{ VIDDID(BROADCOM, BCM5723),	"Broadcom BCM5723 Gigabit" },
    340 	{ VIDDID(BROADCOM, BCM5725),	"Broadcom BCM5725 Gigabit" },
    341 	{ VIDDID(BROADCOM, BCM5727),	"Broadcom BCM5727 Gigabit" },
    342 	{ VIDDID(BROADCOM, BCM5750),	"Broadcom BCM5750 Gigabit" },
    343 	{ VIDDID(BROADCOM, BCM5751),	"Broadcom BCM5751 Gigabit" },
    344 	{ VIDDID(BROADCOM, BCM5751F),	"Broadcom BCM5751F Gigabit" },
    345 	{ VIDDID(BROADCOM, BCM5751M),	"Broadcom BCM5751M Gigabit" },
    346 	{ VIDDID(BROADCOM, BCM5752),	"Broadcom BCM5752 Gigabit" },
    347 	{ VIDDID(BROADCOM, BCM5752M),	"Broadcom BCM5752M Gigabit" },
    348 	{ VIDDID(BROADCOM, BCM5753),	"Broadcom BCM5753 Gigabit" },
    349 	{ VIDDID(BROADCOM, BCM5753F),	"Broadcom BCM5753F Gigabit" },
    350 	{ VIDDID(BROADCOM, BCM5753M),	"Broadcom BCM5753M Gigabit" },
    351 	{ VIDDID(BROADCOM, BCM5754),	"Broadcom BCM5754 Gigabit" },
    352 	{ VIDDID(BROADCOM, BCM5754M),	"Broadcom BCM5754M Gigabit" },
    353 	{ VIDDID(BROADCOM, BCM5755),	"Broadcom BCM5755 Gigabit" },
    354 	{ VIDDID(BROADCOM, BCM5755M),	"Broadcom BCM5755M Gigabit" },
    355 	{ VIDDID(BROADCOM, BCM5756),	"Broadcom BCM5756 Gigabit" },
    356 	{ VIDDID(BROADCOM, BCM5761),	"Broadcom BCM5761 Gigabit" },
    357 	{ VIDDID(BROADCOM, BCM5761E),	"Broadcom BCM5761E Gigabit" },
    358 	{ VIDDID(BROADCOM, BCM5761S),	"Broadcom BCM5761S Gigabit" },
    359 	{ VIDDID(BROADCOM, BCM5761SE),	"Broadcom BCM5761SE Gigabit" },
    360 	{ VIDDID(BROADCOM, BCM5762),	"Broadcom BCM5762 Gigabit" },
    361 	{ VIDDID(BROADCOM, BCM5764),	"Broadcom BCM5764 Gigabit" },
    362 	{ VIDDID(BROADCOM, BCM5780),	"Broadcom BCM5780 Gigabit" },
    363 	{ VIDDID(BROADCOM, BCM5780S),	"Broadcom BCM5780S Gigabit" },
    364 	{ VIDDID(BROADCOM, BCM5781),	"Broadcom BCM5781 Gigabit" },
    365 	{ VIDDID(BROADCOM, BCM5782),	"Broadcom BCM5782 Gigabit" },
    366 	{ VIDDID(BROADCOM, BCM5784M),	"BCM5784M NetLink 1000baseT" },
    367 	{ VIDDID(BROADCOM, BCM5785F),	"BCM5785F NetLink 10/100" },
    368 	{ VIDDID(BROADCOM, BCM5785G),	"BCM5785G NetLink 1000baseT" },
    369 	{ VIDDID(BROADCOM, BCM5786),	"Broadcom BCM5786 Gigabit" },
    370 	{ VIDDID(BROADCOM, BCM5787),	"Broadcom BCM5787 Gigabit" },
    371 	{ VIDDID(BROADCOM, BCM5787F),	"Broadcom BCM5787F 10/100" },
    372 	{ VIDDID(BROADCOM, BCM5787M),	"Broadcom BCM5787M Gigabit" },
    373 	{ VIDDID(BROADCOM, BCM5788),	"Broadcom BCM5788 Gigabit" },
    374 	{ VIDDID(BROADCOM, BCM5789),	"Broadcom BCM5789 Gigabit" },
    375 	{ VIDDID(BROADCOM, BCM5901),	"Broadcom BCM5901 Fast" },
    376 	{ VIDDID(BROADCOM, BCM5901A2),	"Broadcom BCM5901A2 Fast" },
    377 	{ VIDDID(BROADCOM, BCM5903M),	"Broadcom BCM5903M Fast" },
    378 	{ VIDDID(BROADCOM, BCM5906),	"Broadcom BCM5906 Fast" },
    379 	{ VIDDID(BROADCOM, BCM5906M),	"Broadcom BCM5906M Fast" },
    380 	{ VIDDID(BROADCOM, BCM57760),	"Broadcom BCM57760 Gigabit" },
    381 	{ VIDDID(BROADCOM, BCM57761),	"Broadcom BCM57761 Gigabit" },
    382 	{ VIDDID(BROADCOM, BCM57762),	"Broadcom BCM57762 Gigabit" },
    383 	{ VIDDID(BROADCOM, BCM57764),	"Broadcom BCM57764 Gigabit" },
    384 	{ VIDDID(BROADCOM, BCM57765),	"Broadcom BCM57765 Gigabit" },
    385 	{ VIDDID(BROADCOM, BCM57766),	"Broadcom BCM57766 Gigabit" },
    386 	{ VIDDID(BROADCOM, BCM57767),	"Broadcom BCM57767 Gigabit" },
    387 	{ VIDDID(BROADCOM, BCM57780),	"Broadcom BCM57780 Gigabit" },
    388 	{ VIDDID(BROADCOM, BCM57781),	"Broadcom BCM57781 Gigabit" },
    389 	{ VIDDID(BROADCOM, BCM57782),	"Broadcom BCM57782 Gigabit" },
    390 	{ VIDDID(BROADCOM, BCM57785),	"Broadcom BCM57785 Gigabit" },
    391 	{ VIDDID(BROADCOM, BCM57786),	"Broadcom BCM57786 Gigabit" },
    392 	{ VIDDID(BROADCOM, BCM57787),	"Broadcom BCM57787 Gigabit" },
    393 	{ VIDDID(BROADCOM, BCM57788),	"Broadcom BCM57788 Gigabit" },
    394 	{ VIDDID(BROADCOM, BCM57790),	"Broadcom BCM57790 Gigabit" },
    395 	{ VIDDID(BROADCOM, BCM57791),	"Broadcom BCM57791 Gigabit" },
    396 	{ VIDDID(BROADCOM, BCM57795),	"Broadcom BCM57795 Gigabit" },
    397 	{ VIDDID(SCHNEIDERKOCH, SK_9DX1),"SysKonnect SK-9Dx1 Gigabit" },
    398 	{ VIDDID(SCHNEIDERKOCH, SK_9MXX),"SysKonnect SK-9Mxx Gigabit" },
    399 	{ VIDDID(3COM, 3C996),		"3Com 3c996 Gigabit" },
    400 	{ VIDDID(FUJITSU4, PW008GE4),	"Fujitsu PW008GE4 Gigabit" },
    401 	{ VIDDID(FUJITSU4, PW008GE5),	"Fujitsu PW008GE5 Gigabit" },
    402 	{ VIDDID(FUJITSU4, PP250_450_LAN),"Fujitsu Primepower 250/450 Gigabit" },
    403 	{ 0, 0, NULL },
    404 };
    405 
    406 #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGEF_JUMBO_CAPABLE)
    407 #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGEF_5700_FAMILY)
    408 #define BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGEF_5705_PLUS)
    409 #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGEF_5714_FAMILY)
    410 #define BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGEF_575X_PLUS)
    411 #define BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGEF_5755_PLUS)
    412 #define BGE_IS_57765_FAMILY(sc)		((sc)->bge_flags & BGEF_57765_FAMILY)
    413 #define BGE_IS_57765_PLUS(sc)		((sc)->bge_flags & BGEF_57765_PLUS)
    414 #define BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGEF_5717_PLUS)
    415 
    416 static const struct bge_revision {
    417 	uint32_t		br_chipid;
    418 	const char		*br_name;
    419 } bge_revisions[] = {
    420 	{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
    421 	{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
    422 	{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
    423 	{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
    424 	{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
    425 	{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
    426 	{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
    427 	{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
    428 	{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
    429 	{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
    430 	{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
    431 	{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
    432 	{ BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
    433 	{ BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
    434 	{ BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
    435 	{ BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
    436 	{ BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
    437 	{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
    438 	{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
    439 	{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
    440 	{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
    441 	{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
    442 	{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
    443 	{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
    444 	{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
    445 	{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
    446 	{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
    447 	{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
    448 	{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
    449 	{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
    450 	{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
    451 	{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
    452 	{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
    453 	{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
    454 	{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
    455 	{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
    456 	{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
    457 	{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
    458 	{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
    459 	{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
    460 	{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
    461 	{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
    462 	{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
    463 	{ BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
    464 	{ BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
    465 	{ BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
    466 	{ BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
    467 	{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
    468 	{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
    469 	{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
    470 	{ BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
    471 	{ BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
    472 	{ BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
    473 	{ BGE_CHIPID_BCM5762_A0, "BCM5762 A0" },
    474 	{ BGE_CHIPID_BCM5762_B0, "BCM5762 B0" },
    475 	{ BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
    476 	{ BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
    477 	{ BGE_CHIPID_BCM5784_B0, "BCM5784 B0" },
    478 	/* 5754 and 5787 share the same ASIC ID */
    479 	{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
    480 	{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
    481 	{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
    482 	{ BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
    483 	{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
    484 	{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
    485 	{ BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
    486 	{ BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
    487 	{ BGE_CHIPID_BCM57766_A0, "BCM57766 A0" },
    488 	{ BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
    489 	{ BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
    490 
    491 	{ 0, NULL }
    492 };
    493 
    494 /*
    495  * Some defaults for major revisions, so that newer steppings
    496  * that we don't know about have a shot at working.
    497  */
    498 static const struct bge_revision bge_majorrevs[] = {
    499 	{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
    500 	{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
    501 	{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
    502 	{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
    503 	{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
    504 	{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
    505 	{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
    506 	{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
    507 	{ BGE_ASICREV_BCM5752, "unknown BCM5752" },
    508 	{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
    509 	{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
    510 	{ BGE_ASICREV_BCM5761, "unknown BCM5761" },
    511 	{ BGE_ASICREV_BCM5784, "unknown BCM5784" },
    512 	{ BGE_ASICREV_BCM5785, "unknown BCM5785" },
    513 	/* 5754 and 5787 share the same ASIC ID */
    514 	{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
    515 	{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
    516 	{ BGE_ASICREV_BCM57765, "unknown BCM57765" },
    517 	{ BGE_ASICREV_BCM57766, "unknown BCM57766" },
    518 	{ BGE_ASICREV_BCM57780, "unknown BCM57780" },
    519 	{ BGE_ASICREV_BCM5717, "unknown BCM5717" },
    520 	{ BGE_ASICREV_BCM5719, "unknown BCM5719" },
    521 	{ BGE_ASICREV_BCM5720, "unknown BCM5720" },
    522 	{ BGE_ASICREV_BCM5762, "unknown BCM5762" },
    523 
    524 	{ 0, NULL }
    525 };
    526 
    527 static int bge_allow_asf = 1;
    528 
    529 #ifndef BGE_WATCHDOG_TIMEOUT
    530 #define BGE_WATCHDOG_TIMEOUT 5
    531 #endif
    532 static int bge_watchdog_timeout = BGE_WATCHDOG_TIMEOUT;
    533 
    534 
    535 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
    536     bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
    537 
    538 static uint32_t
    539 bge_readmem_ind(struct bge_softc *sc, int off)
    540 {
    541 	pcireg_t val;
    542 
    543 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
    544 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
    545 		return 0;
    546 
    547 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    548 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
    549 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
    550 	return val;
    551 }
    552 
    553 static void
    554 bge_writemem_ind(struct bge_softc *sc, int off, int val)
    555 {
    556 
    557 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
    558 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
    559 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
    560 }
    561 
    562 /*
    563  * PCI Express only
    564  */
    565 static void
    566 bge_set_max_readrq(struct bge_softc *sc)
    567 {
    568 	pcireg_t val;
    569 
    570 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    571 	    + PCIE_DCSR);
    572 	val &= ~PCIE_DCSR_MAX_READ_REQ;
    573 	switch (sc->bge_expmrq) {
    574 	case 2048:
    575 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
    576 		break;
    577 	case 4096:
    578 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
    579 		break;
    580 	default:
    581 		panic("incorrect expmrq value(%d)", sc->bge_expmrq);
    582 		break;
    583 	}
    584 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
    585 	    + PCIE_DCSR, val);
    586 }
    587 
    588 #ifdef notdef
    589 static uint32_t
    590 bge_readreg_ind(struct bge_softc *sc, int off)
    591 {
    592 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    593 	return pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA);
    594 }
    595 #endif
    596 
    597 static void
    598 bge_writereg_ind(struct bge_softc *sc, int off, int val)
    599 {
    600 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
    601 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
    602 }
    603 
    604 static void
    605 bge_writemem_direct(struct bge_softc *sc, int off, int val)
    606 {
    607 	CSR_WRITE_4(sc, off, val);
    608 }
    609 
    610 static void
    611 bge_writembx(struct bge_softc *sc, int off, int val)
    612 {
    613 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    614 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    615 
    616 	CSR_WRITE_4(sc, off, val);
    617 }
    618 
    619 static void
    620 bge_writembx_flush(struct bge_softc *sc, int off, int val)
    621 {
    622 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
    623 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
    624 
    625 	CSR_WRITE_4_FLUSH(sc, off, val);
    626 }
    627 
    628 /*
    629  * Clear all stale locks and select the lock for this driver instance.
    630  */
    631 void
    632 bge_ape_lock_init(struct bge_softc *sc)
    633 {
    634 	struct pci_attach_args *pa = &(sc->bge_pa);
    635 	uint32_t bit, regbase;
    636 	int i;
    637 
    638 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
    639 		regbase = BGE_APE_LOCK_GRANT;
    640 	else
    641 		regbase = BGE_APE_PER_LOCK_GRANT;
    642 
    643 	/* Clear any stale locks. */
    644 	for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
    645 		switch (i) {
    646 		case BGE_APE_LOCK_PHY0:
    647 		case BGE_APE_LOCK_PHY1:
    648 		case BGE_APE_LOCK_PHY2:
    649 		case BGE_APE_LOCK_PHY3:
    650 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
    651 			break;
    652 		default:
    653 			if (pa->pa_function == 0)
    654 				bit = BGE_APE_LOCK_GRANT_DRIVER0;
    655 			else
    656 				bit = (1 << pa->pa_function);
    657 		}
    658 		APE_WRITE_4(sc, regbase + 4 * i, bit);
    659 	}
    660 
    661 	/* Select the PHY lock based on the device's function number. */
    662 	switch (pa->pa_function) {
    663 	case 0:
    664 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
    665 		break;
    666 	case 1:
    667 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
    668 		break;
    669 	case 2:
    670 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
    671 		break;
    672 	case 3:
    673 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
    674 		break;
    675 	default:
    676 		printf("%s: PHY lock not supported on function\n",
    677 		    device_xname(sc->bge_dev));
    678 		break;
    679 	}
    680 }
    681 
    682 /*
    683  * Check for APE firmware, set flags, and print version info.
    684  */
    685 void
    686 bge_ape_read_fw_ver(struct bge_softc *sc)
    687 {
    688 	const char *fwtype;
    689 	uint32_t apedata, features;
    690 
    691 	/* Check for a valid APE signature in shared memory. */
    692 	apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
    693 	if (apedata != BGE_APE_SEG_SIG_MAGIC) {
    694 		sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
    695 		return;
    696 	}
    697 
    698 	/* Check if APE firmware is running. */
    699 	apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
    700 	if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
    701 		printf("%s: APE signature found but FW status not ready! "
    702 		    "0x%08x\n", device_xname(sc->bge_dev), apedata);
    703 		return;
    704 	}
    705 
    706 	sc->bge_mfw_flags |= BGE_MFW_ON_APE;
    707 
    708 	/* Fetch the APE firmware type and version. */
    709 	apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
    710 	features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
    711 	if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
    712 		sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
    713 		fwtype = "NCSI";
    714 	} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
    715 		sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
    716 		fwtype = "DASH";
    717 	} else
    718 		fwtype = "UNKN";
    719 
    720 	/* Print the APE firmware version. */
    721 	aprint_normal_dev(sc->bge_dev, "APE firmware %s %d.%d.%d.%d\n", fwtype,
    722 	    (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
    723 	    (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
    724 	    (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
    725 	    (apedata & BGE_APE_FW_VERSION_BLDMSK));
    726 }
    727 
    728 int
    729 bge_ape_lock(struct bge_softc *sc, int locknum)
    730 {
    731 	struct pci_attach_args *pa = &(sc->bge_pa);
    732 	uint32_t bit, gnt, req, status;
    733 	int i, off;
    734 
    735 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
    736 		return 0;
    737 
    738 	/* Lock request/grant registers have different bases. */
    739 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
    740 		req = BGE_APE_LOCK_REQ;
    741 		gnt = BGE_APE_LOCK_GRANT;
    742 	} else {
    743 		req = BGE_APE_PER_LOCK_REQ;
    744 		gnt = BGE_APE_PER_LOCK_GRANT;
    745 	}
    746 
    747 	off = 4 * locknum;
    748 
    749 	switch (locknum) {
    750 	case BGE_APE_LOCK_GPIO:
    751 		/* Lock required when using GPIO. */
    752 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
    753 			return 0;
    754 		if (pa->pa_function == 0)
    755 			bit = BGE_APE_LOCK_REQ_DRIVER0;
    756 		else
    757 			bit = (1 << pa->pa_function);
    758 		break;
    759 	case BGE_APE_LOCK_GRC:
    760 		/* Lock required to reset the device. */
    761 		if (pa->pa_function == 0)
    762 			bit = BGE_APE_LOCK_REQ_DRIVER0;
    763 		else
    764 			bit = (1 << pa->pa_function);
    765 		break;
    766 	case BGE_APE_LOCK_MEM:
    767 		/* Lock required when accessing certain APE memory. */
    768 		if (pa->pa_function == 0)
    769 			bit = BGE_APE_LOCK_REQ_DRIVER0;
    770 		else
    771 			bit = (1 << pa->pa_function);
    772 		break;
    773 	case BGE_APE_LOCK_PHY0:
    774 	case BGE_APE_LOCK_PHY1:
    775 	case BGE_APE_LOCK_PHY2:
    776 	case BGE_APE_LOCK_PHY3:
    777 		/* Lock required when accessing PHYs. */
    778 		bit = BGE_APE_LOCK_REQ_DRIVER0;
    779 		break;
    780 	default:
    781 		return EINVAL;
    782 	}
    783 
    784 	/* Request a lock. */
    785 	APE_WRITE_4_FLUSH(sc, req + off, bit);
    786 
    787 	/* Wait up to 1 second to acquire lock. */
    788 	for (i = 0; i < 20000; i++) {
    789 		status = APE_READ_4(sc, gnt + off);
    790 		if (status == bit)
    791 			break;
    792 		DELAY(50);
    793 	}
    794 
    795 	/* Handle any errors. */
    796 	if (status != bit) {
    797 		printf("%s: APE lock %d request failed! "
    798 		    "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
    799 		    device_xname(sc->bge_dev),
    800 		    locknum, req + off, bit & 0xFFFF, gnt + off,
    801 		    status & 0xFFFF);
    802 		/* Revoke the lock request. */
    803 		APE_WRITE_4(sc, gnt + off, bit);
    804 		return EBUSY;
    805 	}
    806 
    807 	return 0;
    808 }
    809 
    810 void
    811 bge_ape_unlock(struct bge_softc *sc, int locknum)
    812 {
    813 	struct pci_attach_args *pa = &(sc->bge_pa);
    814 	uint32_t bit, gnt;
    815 	int off;
    816 
    817 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
    818 		return;
    819 
    820 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
    821 		gnt = BGE_APE_LOCK_GRANT;
    822 	else
    823 		gnt = BGE_APE_PER_LOCK_GRANT;
    824 
    825 	off = 4 * locknum;
    826 
    827 	switch (locknum) {
    828 	case BGE_APE_LOCK_GPIO:
    829 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
    830 			return;
    831 		if (pa->pa_function == 0)
    832 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
    833 		else
    834 			bit = (1 << pa->pa_function);
    835 		break;
    836 	case BGE_APE_LOCK_GRC:
    837 		if (pa->pa_function == 0)
    838 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
    839 		else
    840 			bit = (1 << pa->pa_function);
    841 		break;
    842 	case BGE_APE_LOCK_MEM:
    843 		if (pa->pa_function == 0)
    844 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
    845 		else
    846 			bit = (1 << pa->pa_function);
    847 		break;
    848 	case BGE_APE_LOCK_PHY0:
    849 	case BGE_APE_LOCK_PHY1:
    850 	case BGE_APE_LOCK_PHY2:
    851 	case BGE_APE_LOCK_PHY3:
    852 		bit = BGE_APE_LOCK_GRANT_DRIVER0;
    853 		break;
    854 	default:
    855 		return;
    856 	}
    857 
    858 	/* Write and flush for consecutive bge_ape_lock() */
    859 	APE_WRITE_4_FLUSH(sc, gnt + off, bit);
    860 }
    861 
    862 /*
    863  * Send an event to the APE firmware.
    864  */
    865 void
    866 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
    867 {
    868 	uint32_t apedata;
    869 	int i;
    870 
    871 	/* NCSI does not support APE events. */
    872 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
    873 		return;
    874 
    875 	/* Wait up to 1ms for APE to service previous event. */
    876 	for (i = 10; i > 0; i--) {
    877 		if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
    878 			break;
    879 		apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
    880 		if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
    881 			APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
    882 			    BGE_APE_EVENT_STATUS_EVENT_PENDING);
    883 			bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
    884 			APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
    885 			break;
    886 		}
    887 		bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
    888 		DELAY(100);
    889 	}
    890 	if (i == 0) {
    891 		printf("%s: APE event 0x%08x send timed out\n",
    892 		    device_xname(sc->bge_dev), event);
    893 	}
    894 }
    895 
    896 void
    897 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
    898 {
    899 	uint32_t apedata, event;
    900 
    901 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
    902 		return;
    903 
    904 	switch (kind) {
    905 	case BGE_RESET_START:
    906 		/* If this is the first load, clear the load counter. */
    907 		apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
    908 		if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
    909 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
    910 		else {
    911 			apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
    912 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
    913 		}
    914 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
    915 		    BGE_APE_HOST_SEG_SIG_MAGIC);
    916 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
    917 		    BGE_APE_HOST_SEG_LEN_MAGIC);
    918 
    919 		/* Add some version info if bge(4) supports it. */
    920 		APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
    921 		    BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
    922 		APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
    923 		    BGE_APE_HOST_BEHAV_NO_PHYLOCK);
    924 		APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
    925 		    BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
    926 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
    927 		    BGE_APE_HOST_DRVR_STATE_START);
    928 		event = BGE_APE_EVENT_STATUS_STATE_START;
    929 		break;
    930 	case BGE_RESET_SHUTDOWN:
    931 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
    932 		    BGE_APE_HOST_DRVR_STATE_UNLOAD);
    933 		event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
    934 		break;
    935 	case BGE_RESET_SUSPEND:
    936 		event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
    937 		break;
    938 	default:
    939 		return;
    940 	}
    941 
    942 	bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
    943 	    BGE_APE_EVENT_STATUS_STATE_CHNGE);
    944 }
    945 
    946 static uint8_t
    947 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
    948 {
    949 	uint32_t access, byte = 0;
    950 	int i;
    951 
    952 	/* Lock. */
    953 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
    954 	for (i = 0; i < 8000; i++) {
    955 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
    956 			break;
    957 		DELAY(20);
    958 	}
    959 	if (i == 8000)
    960 		return 1;
    961 
    962 	/* Enable access. */
    963 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
    964 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
    965 
    966 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
    967 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
    968 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
    969 		DELAY(10);
    970 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
    971 			DELAY(10);
    972 			break;
    973 		}
    974 	}
    975 
    976 	if (i == BGE_TIMEOUT * 10) {
    977 		aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
    978 		return 1;
    979 	}
    980 
    981 	/* Get result. */
    982 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
    983 
    984 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
    985 
    986 	/* Disable access. */
    987 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
    988 
    989 	/* Unlock. */
    990 	CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
    991 
    992 	return 0;
    993 }
    994 
    995 /*
    996  * Read a sequence of bytes from NVRAM.
    997  */
    998 static int
    999 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
   1000 {
   1001 	int error = 0, i;
   1002 	uint8_t byte = 0;
   1003 
   1004 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
   1005 		return 1;
   1006 
   1007 	for (i = 0; i < cnt; i++) {
   1008 		error = bge_nvram_getbyte(sc, off + i, &byte);
   1009 		if (error)
   1010 			break;
   1011 		*(dest + i) = byte;
   1012 	}
   1013 
   1014 	return error ? 1 : 0;
   1015 }
   1016 
   1017 /*
   1018  * Read a byte of data stored in the EEPROM at address 'addr.' The
   1019  * BCM570x supports both the traditional bitbang interface and an
   1020  * auto access interface for reading the EEPROM. We use the auto
   1021  * access method.
   1022  */
   1023 static uint8_t
   1024 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
   1025 {
   1026 	int i;
   1027 	uint32_t byte = 0;
   1028 
   1029 	/*
   1030 	 * Enable use of auto EEPROM access so we can avoid
   1031 	 * having to use the bitbang method.
   1032 	 */
   1033 	BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
   1034 
   1035 	/* Reset the EEPROM, load the clock period. */
   1036 	CSR_WRITE_4_FLUSH(sc, BGE_EE_ADDR,
   1037 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
   1038 	DELAY(20);
   1039 
   1040 	/* Issue the read EEPROM command. */
   1041 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
   1042 
   1043 	/* Wait for completion */
   1044 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
   1045 		DELAY(10);
   1046 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
   1047 			break;
   1048 	}
   1049 
   1050 	if (i == BGE_TIMEOUT * 10) {
   1051 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
   1052 		return 1;
   1053 	}
   1054 
   1055 	/* Get result. */
   1056 	byte = CSR_READ_4(sc, BGE_EE_DATA);
   1057 
   1058 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
   1059 
   1060 	return 0;
   1061 }
   1062 
   1063 /*
   1064  * Read a sequence of bytes from the EEPROM.
   1065  */
   1066 static int
   1067 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
   1068 {
   1069 	int error = 0, i;
   1070 	uint8_t byte = 0;
   1071 	char *dest = destv;
   1072 
   1073 	for (i = 0; i < cnt; i++) {
   1074 		error = bge_eeprom_getbyte(sc, off + i, &byte);
   1075 		if (error)
   1076 			break;
   1077 		*(dest + i) = byte;
   1078 	}
   1079 
   1080 	return error ? 1 : 0;
   1081 }
   1082 
   1083 static int
   1084 bge_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
   1085 {
   1086 	struct bge_softc * const sc = device_private(dev);
   1087 	uint32_t data;
   1088 	uint32_t autopoll;
   1089 	int rv = 0;
   1090 	int i;
   1091 
   1092 	KASSERT(mutex_owned(sc->sc_intr_lock));
   1093 
   1094 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
   1095 		return -1;
   1096 
   1097 	/* Reading with autopolling on may trigger PCI errors */
   1098 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
   1099 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1100 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
   1101 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1102 		DELAY(80);
   1103 	}
   1104 
   1105 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
   1106 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
   1107 
   1108 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1109 		delay(10);
   1110 		data = CSR_READ_4(sc, BGE_MI_COMM);
   1111 		if (!(data & BGE_MICOMM_BUSY)) {
   1112 			DELAY(5);
   1113 			data = CSR_READ_4(sc, BGE_MI_COMM);
   1114 			break;
   1115 		}
   1116 	}
   1117 
   1118 	if (i == BGE_TIMEOUT) {
   1119 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
   1120 		rv = ETIMEDOUT;
   1121 	} else if ((data & BGE_MICOMM_READFAIL) != 0) {
   1122 		/* XXX This error occurs on some devices while attaching. */
   1123 		aprint_debug_dev(sc->bge_dev, "PHY read I/O error\n");
   1124 		rv = EIO;
   1125 	} else
   1126 		*val = data & BGE_MICOMM_DATA;
   1127 
   1128 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1129 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   1130 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1131 		DELAY(80);
   1132 	}
   1133 
   1134 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
   1135 
   1136 	return rv;
   1137 }
   1138 
   1139 static int
   1140 bge_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
   1141 {
   1142 	struct bge_softc * const sc = device_private(dev);
   1143 	uint32_t data, autopoll;
   1144 	int rv = 0;
   1145 	int i;
   1146 
   1147 	KASSERT(mutex_owned(sc->sc_intr_lock));
   1148 
   1149 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
   1150 	    (reg == MII_GTCR || reg == BRGPHY_MII_AUXCTL))
   1151 		return 0;
   1152 
   1153 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
   1154 		return -1;
   1155 
   1156 	/* Reading with autopolling on may trigger PCI errors */
   1157 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
   1158 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1159 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
   1160 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1161 		DELAY(80);
   1162 	}
   1163 
   1164 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
   1165 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
   1166 
   1167 	for (i = 0; i < BGE_TIMEOUT; i++) {
   1168 		delay(10);
   1169 		data = CSR_READ_4(sc, BGE_MI_COMM);
   1170 		if (!(data & BGE_MICOMM_BUSY)) {
   1171 			delay(5);
   1172 			data = CSR_READ_4(sc, BGE_MI_COMM);
   1173 			break;
   1174 		}
   1175 	}
   1176 
   1177 	if (i == BGE_TIMEOUT) {
   1178 		aprint_error_dev(sc->bge_dev, "PHY write timed out\n");
   1179 		rv = ETIMEDOUT;
   1180 	} else if ((data & BGE_MICOMM_READFAIL) != 0) {
   1181 		aprint_error_dev(sc->bge_dev, "PHY write I/O error\n");
   1182 		rv = EIO;
   1183 	}
   1184 
   1185 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
   1186 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   1187 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
   1188 		delay(80);
   1189 	}
   1190 
   1191 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
   1192 
   1193 	return rv;
   1194 }
   1195 
   1196 static void
   1197 bge_miibus_statchg(struct ifnet *ifp)
   1198 {
   1199 	struct bge_softc * const sc = ifp->if_softc;
   1200 	struct mii_data *mii = &sc->bge_mii;
   1201 	uint32_t mac_mode, rx_mode, tx_mode;
   1202 
   1203 	KASSERT(mutex_owned(sc->sc_intr_lock));
   1204 
   1205 	/*
   1206 	 * Get flow control negotiation result.
   1207 	 */
   1208 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   1209 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
   1210 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   1211 
   1212 	if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   1213 	    mii->mii_media_status & IFM_ACTIVE &&
   1214 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   1215 		BGE_STS_SETBIT(sc, BGE_STS_LINK);
   1216 	else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   1217 	    (!(mii->mii_media_status & IFM_ACTIVE) ||
   1218 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   1219 		BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   1220 
   1221 	if (!BGE_STS_BIT(sc, BGE_STS_LINK))
   1222 		return;
   1223 
   1224 	/* Set the port mode (MII/GMII) to match the link speed. */
   1225 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
   1226 	    ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
   1227 	tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
   1228 	rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
   1229 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
   1230 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
   1231 		mac_mode |= BGE_PORTMODE_GMII;
   1232 	else
   1233 		mac_mode |= BGE_PORTMODE_MII;
   1234 
   1235 	tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
   1236 	rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
   1237 	if ((mii->mii_media_active & IFM_FDX) != 0) {
   1238 		if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
   1239 			tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
   1240 		if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
   1241 			rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
   1242 	} else
   1243 		mac_mode |= BGE_MACMODE_HALF_DUPLEX;
   1244 
   1245 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
   1246 	DELAY(40);
   1247 	CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
   1248 	CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
   1249 }
   1250 
   1251 /*
   1252  * Update rx threshold levels to values in a particular slot
   1253  * of the interrupt-mitigation table bge_rx_threshes.
   1254  */
   1255 static void
   1256 bge_set_thresh(struct ifnet *ifp, int lvl)
   1257 {
   1258 	struct bge_softc * const sc = ifp->if_softc;
   1259 
   1260 	/*
   1261 	 * For now, just save the new Rx-intr thresholds and record
   1262 	 * that a threshold update is pending.  Updating the hardware
   1263 	 * registers here (even at splhigh()) is observed to
   1264 	 * occasionally cause glitches where Rx-interrupts are not
   1265 	 * honoured for up to 10 seconds. jonathan (at) NetBSD.org, 2003-04-05
   1266 	 */
   1267 	mutex_enter(sc->sc_intr_lock);
   1268 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
   1269 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
   1270 	sc->bge_pending_rxintr_change = true;
   1271 	mutex_exit(sc->sc_intr_lock);
   1272 }
   1273 
   1274 
   1275 /*
   1276  * Update Rx thresholds of all bge devices
   1277  */
   1278 static void
   1279 bge_update_all_threshes(int lvl)
   1280 {
   1281 	const char * const namebuf = "bge";
   1282 	const size_t namelen = strlen(namebuf);
   1283 	struct ifnet *ifp;
   1284 
   1285 	if (lvl < 0)
   1286 		lvl = 0;
   1287 	else if (lvl >= NBGE_RX_THRESH)
   1288 		lvl = NBGE_RX_THRESH - 1;
   1289 
   1290 	/*
   1291 	 * Now search all the interfaces for this name/number
   1292 	 */
   1293 	int s = pserialize_read_enter();
   1294 	IFNET_READER_FOREACH(ifp) {
   1295 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
   1296 			continue;
   1297 		/* We got a match: update if doing auto-threshold-tuning */
   1298 		if (bge_auto_thresh)
   1299 			bge_set_thresh(ifp, lvl);
   1300 	}
   1301 	pserialize_read_exit(s);
   1302 }
   1303 
   1304 /*
   1305  * Handle events that have triggered interrupts.
   1306  */
   1307 static void
   1308 bge_handle_events(struct bge_softc *sc)
   1309 {
   1310 
   1311 	return;
   1312 }
   1313 
   1314 /*
   1315  * Memory management for jumbo frames.
   1316  */
   1317 
   1318 static int
   1319 bge_alloc_jumbo_mem(struct bge_softc *sc)
   1320 {
   1321 	char *ptr, *kva;
   1322 	int i, rseg, state, error;
   1323 	struct bge_jpool_entry *entry;
   1324 
   1325 	state = error = 0;
   1326 
   1327 	/* Grab a big chunk o' storage. */
   1328 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
   1329 	    &sc->bge_cdata.bge_rx_jumbo_seg, 1, &rseg, BUS_DMA_WAITOK)) {
   1330 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   1331 		return ENOBUFS;
   1332 	}
   1333 
   1334 	state = 1;
   1335 	if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_cdata.bge_rx_jumbo_seg,
   1336 	    rseg, BGE_JMEM, (void **)&kva, BUS_DMA_WAITOK)) {
   1337 		aprint_error_dev(sc->bge_dev,
   1338 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
   1339 		error = ENOBUFS;
   1340 		goto out;
   1341 	}
   1342 
   1343 	state = 2;
   1344 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
   1345 	    BUS_DMA_WAITOK, &sc->bge_cdata.bge_rx_jumbo_map)) {
   1346 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   1347 		error = ENOBUFS;
   1348 		goto out;
   1349 	}
   1350 
   1351 	state = 3;
   1352 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1353 	    kva, BGE_JMEM, NULL, BUS_DMA_WAITOK)) {
   1354 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
   1355 		error = ENOBUFS;
   1356 		goto out;
   1357 	}
   1358 
   1359 	state = 4;
   1360 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
   1361 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
   1362 
   1363 	SLIST_INIT(&sc->bge_jfree_listhead);
   1364 	SLIST_INIT(&sc->bge_jinuse_listhead);
   1365 
   1366 	/*
   1367 	 * Now divide it up into 9K pieces and save the addresses
   1368 	 * in an array.
   1369 	 */
   1370 	ptr = sc->bge_cdata.bge_jumbo_buf;
   1371 	for (i = 0; i < BGE_JSLOTS; i++) {
   1372 		sc->bge_cdata.bge_jslots[i] = ptr;
   1373 		ptr += BGE_JLEN;
   1374 		entry = kmem_alloc(sizeof(*entry), KM_SLEEP);
   1375 		entry->slot = i;
   1376 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
   1377 				 entry, jpool_entries);
   1378 	}
   1379 out:
   1380 	if (error != 0) {
   1381 		switch (state) {
   1382 		case 4:
   1383 			bus_dmamap_unload(sc->bge_dmatag,
   1384 			    sc->bge_cdata.bge_rx_jumbo_map);
   1385 			/* FALLTHROUGH */
   1386 		case 3:
   1387 			bus_dmamap_destroy(sc->bge_dmatag,
   1388 			    sc->bge_cdata.bge_rx_jumbo_map);
   1389 			/* FALLTHROUGH */
   1390 		case 2:
   1391 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
   1392 			/* FALLTHROUGH */
   1393 		case 1:
   1394 			bus_dmamem_free(sc->bge_dmatag,
   1395 			    &sc->bge_cdata.bge_rx_jumbo_seg, rseg);
   1396 			break;
   1397 		default:
   1398 			break;
   1399 		}
   1400 	}
   1401 
   1402 	return error;
   1403 }
   1404 
   1405 static void
   1406 bge_free_jumbo_mem(struct bge_softc *sc)
   1407 {
   1408 	struct bge_jpool_entry *entry, *tmp;
   1409 
   1410 	KASSERT(SLIST_EMPTY(&sc->bge_jinuse_listhead));
   1411 
   1412 	SLIST_FOREACH_SAFE(entry, &sc->bge_jfree_listhead, jpool_entries, tmp) {
   1413 		kmem_free(entry, sizeof(*entry));
   1414 	}
   1415 
   1416 	bus_dmamap_unload(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map);
   1417 
   1418 	bus_dmamap_destroy(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map);
   1419 
   1420 	bus_dmamem_unmap(sc->bge_dmatag, sc->bge_cdata.bge_jumbo_buf, BGE_JMEM);
   1421 
   1422 	bus_dmamem_free(sc->bge_dmatag, &sc->bge_cdata.bge_rx_jumbo_seg, 1);
   1423 }
   1424 
   1425 /*
   1426  * Allocate a jumbo buffer.
   1427  */
   1428 static void *
   1429 bge_jalloc(struct bge_softc *sc)
   1430 {
   1431 	struct bge_jpool_entry	 *entry;
   1432 
   1433 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
   1434 
   1435 	if (entry == NULL) {
   1436 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
   1437 		return NULL;
   1438 	}
   1439 
   1440 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
   1441 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
   1442 	return sc->bge_cdata.bge_jslots[entry->slot];
   1443 }
   1444 
   1445 /*
   1446  * Release a jumbo buffer.
   1447  */
   1448 static void
   1449 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
   1450 {
   1451 	struct bge_jpool_entry *entry;
   1452 	struct bge_softc * const sc = arg;
   1453 
   1454 	if (sc == NULL)
   1455 		panic("bge_jfree: can't find softc pointer!");
   1456 
   1457 	/* calculate the slot this buffer belongs to */
   1458 	int i = ((char *)buf - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
   1459 
   1460 	if (i < 0 || i >= BGE_JSLOTS)
   1461 		panic("bge_jfree: asked to free buffer that we don't manage!");
   1462 
   1463 	mutex_enter(sc->sc_intr_lock);
   1464 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
   1465 	if (entry == NULL)
   1466 		panic("bge_jfree: buffer not in use!");
   1467 	entry->slot = i;
   1468 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
   1469 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
   1470 	mutex_exit(sc->sc_intr_lock);
   1471 
   1472 	if (__predict_true(m != NULL))
   1473 		pool_cache_put(mb_cache, m);
   1474 }
   1475 
   1476 
   1477 /*
   1478  * Initialize a standard receive ring descriptor.
   1479  */
   1480 static int
   1481 bge_newbuf_std(struct bge_softc *sc, int i)
   1482 {
   1483 	const bus_dmamap_t dmamap = sc->bge_cdata.bge_rx_std_map[i];
   1484 	struct mbuf *m;
   1485 
   1486 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1487 	if (m == NULL)
   1488 		return ENOBUFS;
   1489 	MCLAIM(m, &sc->ethercom.ec_rx_mowner);
   1490 
   1491 	MCLGET(m, M_DONTWAIT);
   1492 	if (!(m->m_flags & M_EXT)) {
   1493 		m_freem(m);
   1494 		return ENOBUFS;
   1495 	}
   1496 	m->m_len = m->m_pkthdr.len = MCLBYTES;
   1497 
   1498 	if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
   1499 	    m_adj(m, ETHER_ALIGN);
   1500 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m,
   1501 	    BUS_DMA_READ | BUS_DMA_NOWAIT)) {
   1502 		m_freem(m);
   1503 		return ENOBUFS;
   1504 	}
   1505 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
   1506 	    BUS_DMASYNC_PREREAD);
   1507 	sc->bge_cdata.bge_rx_std_chain[i] = m;
   1508 
   1509 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1510 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
   1511 		i * sizeof(struct bge_rx_bd),
   1512 	    sizeof(struct bge_rx_bd),
   1513 	    BUS_DMASYNC_POSTWRITE);
   1514 
   1515 	struct bge_rx_bd * const r = &sc->bge_rdata->bge_rx_std_ring[i];
   1516 	BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
   1517 	r->bge_flags = BGE_RXBDFLAG_END;
   1518 	r->bge_len = m->m_len;
   1519 	r->bge_idx = i;
   1520 
   1521 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1522 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
   1523 		i * sizeof(struct bge_rx_bd),
   1524 	    sizeof(struct bge_rx_bd),
   1525 	    BUS_DMASYNC_PREWRITE);
   1526 
   1527 	sc->bge_std_cnt++;
   1528 
   1529 	return 0;
   1530 }
   1531 
   1532 /*
   1533  * Initialize a jumbo receive ring descriptor. This allocates
   1534  * a jumbo buffer from the pool managed internally by the driver.
   1535  */
   1536 static int
   1537 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
   1538 {
   1539 	struct mbuf *m_new = NULL;
   1540 	struct bge_rx_bd *r;
   1541 	void *buf = NULL;
   1542 
   1543 	if (m == NULL) {
   1544 
   1545 		/* Allocate the mbuf. */
   1546 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   1547 		if (m_new == NULL)
   1548 			return ENOBUFS;
   1549 		MCLAIM(m, &sc->ethercom.ec_rx_mowner);
   1550 
   1551 		/* Allocate the jumbo buffer */
   1552 		buf = bge_jalloc(sc);
   1553 		if (buf == NULL) {
   1554 			m_freem(m_new);
   1555 			aprint_error_dev(sc->bge_dev,
   1556 			    "jumbo allocation failed -- packet dropped!\n");
   1557 			return ENOBUFS;
   1558 		}
   1559 
   1560 		/* Attach the buffer to the mbuf. */
   1561 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
   1562 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
   1563 		    bge_jfree, sc);
   1564 		m_new->m_flags |= M_EXT_RW;
   1565 	} else {
   1566 		m_new = m;
   1567 		buf = m_new->m_data = m_new->m_ext.ext_buf;
   1568 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
   1569 	}
   1570 	if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
   1571 	    m_adj(m_new, ETHER_ALIGN);
   1572 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
   1573 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
   1574 	    BGE_JLEN, BUS_DMASYNC_PREREAD);
   1575 
   1576 	/* Set up the descriptor. */
   1577 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
   1578 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
   1579 	BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
   1580 	r->bge_flags = BGE_RXBDFLAG_END | BGE_RXBDFLAG_JUMBO_RING;
   1581 	r->bge_len = m_new->m_len;
   1582 	r->bge_idx = i;
   1583 
   1584 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   1585 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
   1586 		i * sizeof(struct bge_rx_bd),
   1587 	    sizeof(struct bge_rx_bd),
   1588 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
   1589 
   1590 	return 0;
   1591 }
   1592 
   1593 static int
   1594 bge_init_rx_ring_std(struct bge_softc *sc)
   1595 {
   1596 	bus_dmamap_t dmamap;
   1597 	int error = 0;
   1598 	u_int i;
   1599 
   1600 	if (sc->bge_flags & BGEF_RXRING_VALID)
   1601 		return 0;
   1602 
   1603 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
   1604 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
   1605 		    MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dmamap);
   1606 		if (error)
   1607 			goto uncreate;
   1608 
   1609 		sc->bge_cdata.bge_rx_std_map[i] = dmamap;
   1610 		memset(&sc->bge_rdata->bge_rx_std_ring[i], 0,
   1611 		    sizeof(struct bge_rx_bd));
   1612 	}
   1613 
   1614 	sc->bge_std = i - 1;
   1615 	sc->bge_std_cnt = 0;
   1616 	bge_fill_rx_ring_std(sc);
   1617 
   1618 	sc->bge_flags |= BGEF_RXRING_VALID;
   1619 
   1620 	return 0;
   1621 
   1622 uncreate:
   1623 	while (--i) {
   1624 		bus_dmamap_destroy(sc->bge_dmatag,
   1625 		    sc->bge_cdata.bge_rx_std_map[i]);
   1626 	}
   1627 	return error;
   1628 }
   1629 
   1630 static void
   1631 bge_fill_rx_ring_std(struct bge_softc *sc)
   1632 {
   1633 	int i = sc->bge_std;
   1634 	bool post = false;
   1635 
   1636 	while (sc->bge_std_cnt < BGE_STD_RX_RING_CNT) {
   1637 		BGE_INC(i, BGE_STD_RX_RING_CNT);
   1638 
   1639 		if (bge_newbuf_std(sc, i) != 0)
   1640 			break;
   1641 
   1642 		sc->bge_std = i;
   1643 		post = true;
   1644 	}
   1645 
   1646 	if (post)
   1647 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
   1648 }
   1649 
   1650 
   1651 static void
   1652 bge_free_rx_ring_std(struct bge_softc *sc)
   1653 {
   1654 
   1655 	if (!(sc->bge_flags & BGEF_RXRING_VALID))
   1656 		return;
   1657 
   1658 	for (u_int i = 0; i < BGE_STD_RX_RING_CNT; i++) {
   1659 		const bus_dmamap_t dmap = sc->bge_cdata.bge_rx_std_map[i];
   1660 		struct mbuf * const m = sc->bge_cdata.bge_rx_std_chain[i];
   1661 		if (m != NULL) {
   1662 			bus_dmamap_sync(sc->bge_dmatag, dmap, 0,
   1663 			    dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1664 			bus_dmamap_unload(sc->bge_dmatag, dmap);
   1665 			m_freem(m);
   1666 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
   1667 		}
   1668 		bus_dmamap_destroy(sc->bge_dmatag,
   1669 		    sc->bge_cdata.bge_rx_std_map[i]);
   1670 		sc->bge_cdata.bge_rx_std_map[i] = NULL;
   1671 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
   1672 		    sizeof(struct bge_rx_bd));
   1673 	}
   1674 
   1675 	sc->bge_flags &= ~BGEF_RXRING_VALID;
   1676 }
   1677 
   1678 static int
   1679 bge_init_rx_ring_jumbo(struct bge_softc *sc)
   1680 {
   1681 	int i;
   1682 	volatile struct bge_rcb *rcb;
   1683 
   1684 	if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID)
   1685 		return 0;
   1686 
   1687 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1688 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
   1689 			return ENOBUFS;
   1690 	}
   1691 
   1692 	sc->bge_jumbo = i - 1;
   1693 	sc->bge_flags |= BGEF_JUMBO_RXRING_VALID;
   1694 
   1695 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   1696 	rcb->bge_maxlen_flags = 0;
   1697 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   1698 
   1699 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   1700 
   1701 	return 0;
   1702 }
   1703 
   1704 static void
   1705 bge_free_rx_ring_jumbo(struct bge_softc *sc)
   1706 {
   1707 	int i;
   1708 
   1709 	if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID))
   1710 		return;
   1711 
   1712 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
   1713 		m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
   1714 		sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
   1715 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
   1716 		    sizeof(struct bge_rx_bd));
   1717 	}
   1718 
   1719 	sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID;
   1720 }
   1721 
   1722 static void
   1723 bge_free_tx_ring(struct bge_softc *sc, bool disable)
   1724 {
   1725 	int i;
   1726 	struct txdmamap_pool_entry *dma;
   1727 
   1728 	if (!(sc->bge_flags & BGEF_TXRING_VALID))
   1729 		return;
   1730 
   1731 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1732 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
   1733 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
   1734 			sc->bge_cdata.bge_tx_chain[i] = NULL;
   1735 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
   1736 					    link);
   1737 			sc->txdma[i] = 0;
   1738 		}
   1739 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
   1740 		    sizeof(struct bge_tx_bd));
   1741 	}
   1742 
   1743 	if (disable) {
   1744 		while ((dma = SLIST_FIRST(&sc->txdma_list))) {
   1745 			SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   1746 			bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
   1747 			if (sc->bge_dma64) {
   1748 				bus_dmamap_destroy(sc->bge_dmatag32,
   1749 				    dma->dmamap32);
   1750 			}
   1751 			kmem_free(dma, sizeof(*dma));
   1752 		}
   1753 		SLIST_INIT(&sc->txdma_list);
   1754 	}
   1755 
   1756 	sc->bge_flags &= ~BGEF_TXRING_VALID;
   1757 }
   1758 
   1759 static int
   1760 bge_init_tx_ring(struct bge_softc *sc)
   1761 {
   1762 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   1763 	int i;
   1764 	bus_dmamap_t dmamap, dmamap32;
   1765 	bus_size_t maxsegsz;
   1766 	struct txdmamap_pool_entry *dma;
   1767 
   1768 	if (sc->bge_flags & BGEF_TXRING_VALID)
   1769 		return 0;
   1770 
   1771 	sc->bge_txcnt = 0;
   1772 	sc->bge_tx_saved_considx = 0;
   1773 
   1774 	/* Initialize transmit producer index for host-memory send ring. */
   1775 	sc->bge_tx_prodidx = 0;
   1776 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1777 	/* 5700 b2 errata */
   1778 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1779 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
   1780 
   1781 	/* NIC-memory send ring not used; initialize to zero. */
   1782 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1783 	/* 5700 b2 errata */
   1784 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   1785 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
   1786 
   1787 	/* Limit DMA segment size for some chips */
   1788 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) &&
   1789 	    (ifp->if_mtu <= ETHERMTU))
   1790 		maxsegsz = 2048;
   1791 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
   1792 		maxsegsz = 4096;
   1793 	else
   1794 		maxsegsz = ETHER_MAX_LEN_JUMBO;
   1795 
   1796 	if (SLIST_FIRST(&sc->txdma_list) != NULL)
   1797 		goto alloc_done;
   1798 
   1799 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
   1800 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
   1801 		    BGE_NTXSEG, maxsegsz, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
   1802 		    &dmamap))
   1803 			return ENOBUFS;
   1804 		if (dmamap == NULL)
   1805 			panic("dmamap NULL in bge_init_tx_ring");
   1806 		if (sc->bge_dma64) {
   1807 			if (bus_dmamap_create(sc->bge_dmatag32, BGE_TXDMA_MAX,
   1808 			    BGE_NTXSEG, maxsegsz, 0,
   1809 			    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
   1810 			    &dmamap32)) {
   1811 				bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1812 				return ENOBUFS;
   1813 			}
   1814 			if (dmamap32 == NULL)
   1815 				panic("dmamap32 NULL in bge_init_tx_ring");
   1816 		} else
   1817 			dmamap32 = dmamap;
   1818 		dma = kmem_alloc(sizeof(*dma), KM_NOSLEEP);
   1819 		if (dma == NULL) {
   1820 			aprint_error_dev(sc->bge_dev,
   1821 			    "can't alloc txdmamap_pool_entry\n");
   1822 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
   1823 			if (sc->bge_dma64)
   1824 				bus_dmamap_destroy(sc->bge_dmatag32, dmamap32);
   1825 			return ENOMEM;
   1826 		}
   1827 		dma->dmamap = dmamap;
   1828 		dma->dmamap32 = dmamap32;
   1829 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   1830 	}
   1831 alloc_done:
   1832 	sc->bge_flags |= BGEF_TXRING_VALID;
   1833 
   1834 	return 0;
   1835 }
   1836 
   1837 static void
   1838 bge_setmulti(struct bge_softc *sc)
   1839 {
   1840 	struct ethercom * const ec = &sc->ethercom;
   1841 	struct ether_multi	*enm;
   1842 	struct ether_multistep	step;
   1843 	uint32_t		hashes[4] = { 0, 0, 0, 0 };
   1844 	uint32_t		h;
   1845 	int			i;
   1846 
   1847 	KASSERT(mutex_owned(sc->sc_mcast_lock));
   1848 	if (sc->bge_if_flags & IFF_PROMISC)
   1849 		goto allmulti;
   1850 
   1851 	/* Now program new ones. */
   1852 	ETHER_LOCK(ec);
   1853 	ETHER_FIRST_MULTI(step, ec, enm);
   1854 	while (enm != NULL) {
   1855 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1856 			/*
   1857 			 * We must listen to a range of multicast addresses.
   1858 			 * For now, just accept all multicasts, rather than
   1859 			 * trying to set only those filter bits needed to match
   1860 			 * the range.  (At this time, the only use of address
   1861 			 * ranges is for IP multicast routing, for which the
   1862 			 * range is big enough to require all bits set.)
   1863 			 */
   1864 			ETHER_UNLOCK(ec);
   1865 			goto allmulti;
   1866 		}
   1867 
   1868 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
   1869 
   1870 		/* Just want the 7 least-significant bits. */
   1871 		h &= 0x7f;
   1872 
   1873 		hashes[(h & 0x60) >> 5] |= 1U << (h & 0x1F);
   1874 		ETHER_NEXT_MULTI(step, enm);
   1875 	}
   1876 	ec->ec_flags &= ~ETHER_F_ALLMULTI;
   1877 	ETHER_UNLOCK(ec);
   1878 
   1879 	goto setit;
   1880 
   1881  allmulti:
   1882 	ETHER_LOCK(ec);
   1883 	ec->ec_flags |= ETHER_F_ALLMULTI;
   1884 	ETHER_UNLOCK(ec);
   1885 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
   1886 
   1887  setit:
   1888 	for (i = 0; i < 4; i++)
   1889 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
   1890 }
   1891 
   1892 static void
   1893 bge_sig_pre_reset(struct bge_softc *sc, int type)
   1894 {
   1895 
   1896 	/*
   1897 	 * Some chips don't like this so only do this if ASF is enabled
   1898 	 */
   1899 	if (sc->bge_asf_mode)
   1900 		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
   1901 
   1902 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   1903 		switch (type) {
   1904 		case BGE_RESET_START:
   1905 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1906 			    BGE_FW_DRV_STATE_START);
   1907 			break;
   1908 		case BGE_RESET_SHUTDOWN:
   1909 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1910 			    BGE_FW_DRV_STATE_UNLOAD);
   1911 			break;
   1912 		case BGE_RESET_SUSPEND:
   1913 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1914 			    BGE_FW_DRV_STATE_SUSPEND);
   1915 			break;
   1916 		}
   1917 	}
   1918 
   1919 	if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
   1920 		bge_ape_driver_state_change(sc, type);
   1921 }
   1922 
   1923 static void
   1924 bge_sig_post_reset(struct bge_softc *sc, int type)
   1925 {
   1926 
   1927 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
   1928 		switch (type) {
   1929 		case BGE_RESET_START:
   1930 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1931 			    BGE_FW_DRV_STATE_START_DONE);
   1932 			/* START DONE */
   1933 			break;
   1934 		case BGE_RESET_SHUTDOWN:
   1935 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1936 			    BGE_FW_DRV_STATE_UNLOAD_DONE);
   1937 			break;
   1938 		}
   1939 	}
   1940 
   1941 	if (type == BGE_RESET_SHUTDOWN)
   1942 		bge_ape_driver_state_change(sc, type);
   1943 }
   1944 
   1945 static void
   1946 bge_sig_legacy(struct bge_softc *sc, int type)
   1947 {
   1948 
   1949 	if (sc->bge_asf_mode) {
   1950 		switch (type) {
   1951 		case BGE_RESET_START:
   1952 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1953 			    BGE_FW_DRV_STATE_START);
   1954 			break;
   1955 		case BGE_RESET_SHUTDOWN:
   1956 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
   1957 			    BGE_FW_DRV_STATE_UNLOAD);
   1958 			break;
   1959 		}
   1960 	}
   1961 }
   1962 
   1963 static void
   1964 bge_wait_for_event_ack(struct bge_softc *sc)
   1965 {
   1966 	int i;
   1967 
   1968 	/* wait up to 2500usec */
   1969 	for (i = 0; i < 250; i++) {
   1970 		if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
   1971 			BGE_RX_CPU_DRV_EVENT))
   1972 			break;
   1973 		DELAY(10);
   1974 	}
   1975 }
   1976 
   1977 static void
   1978 bge_stop_fw(struct bge_softc *sc)
   1979 {
   1980 
   1981 	if (sc->bge_asf_mode) {
   1982 		bge_wait_for_event_ack(sc);
   1983 
   1984 		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
   1985 		CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
   1986 		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
   1987 
   1988 		bge_wait_for_event_ack(sc);
   1989 	}
   1990 }
   1991 
   1992 static int
   1993 bge_poll_fw(struct bge_softc *sc)
   1994 {
   1995 	uint32_t val;
   1996 	int i;
   1997 
   1998 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   1999 		for (i = 0; i < BGE_TIMEOUT; i++) {
   2000 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
   2001 			if (val & BGE_VCPU_STATUS_INIT_DONE)
   2002 				break;
   2003 			DELAY(100);
   2004 		}
   2005 		if (i >= BGE_TIMEOUT) {
   2006 			aprint_error_dev(sc->bge_dev, "reset timed out\n");
   2007 			return -1;
   2008 		}
   2009 	} else {
   2010 		/*
   2011 		 * Poll the value location we just wrote until
   2012 		 * we see the 1's complement of the magic number.
   2013 		 * This indicates that the firmware initialization
   2014 		 * is complete.
   2015 		 * XXX 1000ms for Flash and 10000ms for SEEPROM.
   2016 		 */
   2017 		for (i = 0; i < BGE_TIMEOUT; i++) {
   2018 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
   2019 			if (val == ~BGE_SRAM_FW_MB_MAGIC)
   2020 				break;
   2021 			DELAY(10);
   2022 		}
   2023 
   2024 		if ((i >= BGE_TIMEOUT)
   2025 		    && ((sc->bge_flags & BGEF_NO_EEPROM) == 0)) {
   2026 			aprint_error_dev(sc->bge_dev,
   2027 			    "firmware handshake timed out, val = %x\n", val);
   2028 			return -1;
   2029 		}
   2030 	}
   2031 
   2032 	if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
   2033 		/* tg3 says we have to wait extra time */
   2034 		delay(10 * 1000);
   2035 	}
   2036 
   2037 	return 0;
   2038 }
   2039 
   2040 int
   2041 bge_phy_addr(struct bge_softc *sc)
   2042 {
   2043 	struct pci_attach_args *pa = &(sc->bge_pa);
   2044 	int phy_addr = 1;
   2045 
   2046 	/*
   2047 	 * PHY address mapping for various devices.
   2048 	 *
   2049 	 *	    | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
   2050 	 * ---------+-------+-------+-------+-------+
   2051 	 * BCM57XX  |	1   |	X   |	X   |	X   |
   2052 	 * BCM5704  |	1   |	X   |	1   |	X   |
   2053 	 * BCM5717  |	1   |	8   |	2   |	9   |
   2054 	 * BCM5719  |	1   |	8   |	2   |	9   |
   2055 	 * BCM5720  |	1   |	8   |	2   |	9   |
   2056 	 *
   2057 	 *	    | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
   2058 	 * ---------+-------+-------+-------+-------+
   2059 	 * BCM57XX  |	X   |	X   |	X   |	X   |
   2060 	 * BCM5704  |	X   |	X   |	X   |	X   |
   2061 	 * BCM5717  |	X   |	X   |	X   |	X   |
   2062 	 * BCM5719  |	3   |	10  |	4   |	11  |
   2063 	 * BCM5720  |	X   |	X   |	X   |	X   |
   2064 	 *
   2065 	 * Other addresses may respond but they are not
   2066 	 * IEEE compliant PHYs and should be ignored.
   2067 	 */
   2068 	switch (BGE_ASICREV(sc->bge_chipid)) {
   2069 	case BGE_ASICREV_BCM5717:
   2070 	case BGE_ASICREV_BCM5719:
   2071 	case BGE_ASICREV_BCM5720:
   2072 		phy_addr = pa->pa_function;
   2073 		if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
   2074 			phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
   2075 			    BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
   2076 		} else {
   2077 			phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
   2078 			    BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
   2079 		}
   2080 	}
   2081 
   2082 	return phy_addr;
   2083 }
   2084 
   2085 /*
   2086  * Do endian, PCI and DMA initialization. Also check the on-board ROM
   2087  * self-test results.
   2088  */
   2089 static int
   2090 bge_chipinit(struct bge_softc *sc)
   2091 {
   2092 	uint32_t dma_rw_ctl, misc_ctl, mode_ctl, reg;
   2093 	int i;
   2094 
   2095 	/* Set endianness before we access any non-PCI registers. */
   2096 	misc_ctl = BGE_INIT;
   2097 	if (sc->bge_flags & BGEF_TAGGED_STATUS)
   2098 		misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
   2099 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   2100 	    misc_ctl);
   2101 
   2102 	/*
   2103 	 * Clear the MAC statistics block in the NIC's
   2104 	 * internal memory.
   2105 	 */
   2106 	for (i = BGE_STATS_BLOCK;
   2107 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
   2108 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   2109 
   2110 	for (i = BGE_STATUS_BLOCK;
   2111 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
   2112 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
   2113 
   2114 	/* 5717 workaround from tg3 */
   2115 	if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
   2116 		/* Save */
   2117 		mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2118 
   2119 		/* Temporary modify MODE_CTL to control TLP */
   2120 		reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2121 		CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
   2122 
   2123 		/* Control TLP */
   2124 		reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2125 		    BGE_TLP_PHYCTL1);
   2126 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
   2127 		    reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
   2128 
   2129 		/* Restore */
   2130 		CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2131 	}
   2132 
   2133 	if (BGE_IS_57765_FAMILY(sc)) {
   2134 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
   2135 			/* Save */
   2136 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2137 
   2138 			/* Temporary modify MODE_CTL to control TLP */
   2139 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2140 			CSR_WRITE_4(sc, BGE_MODE_CTL,
   2141 			    reg | BGE_MODECTL_PCIE_TLPADDR1);
   2142 
   2143 			/* Control TLP */
   2144 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2145 			    BGE_TLP_PHYCTL5);
   2146 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
   2147 			    reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
   2148 
   2149 			/* Restore */
   2150 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2151 		}
   2152 		if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
   2153 			/*
   2154 			 * For the 57766 and non Ax versions of 57765, bootcode
   2155 			 * needs to setup the PCIE Fast Training Sequence (FTS)
   2156 			 * value to prevent transmit hangs.
   2157 			 */
   2158 			reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
   2159 			CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
   2160 			    reg | BGE_CPMU_PADRNG_CTL_RDIV2);
   2161 
   2162 			/* Save */
   2163 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
   2164 
   2165 			/* Temporary modify MODE_CTL to control TLP */
   2166 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
   2167 			CSR_WRITE_4(sc, BGE_MODE_CTL,
   2168 			    reg | BGE_MODECTL_PCIE_TLPADDR0);
   2169 
   2170 			/* Control TLP */
   2171 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
   2172 			    BGE_TLP_FTSMAX);
   2173 			reg &= ~BGE_TLP_FTSMAX_MSK;
   2174 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
   2175 			    reg | BGE_TLP_FTSMAX_VAL);
   2176 
   2177 			/* Restore */
   2178 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2179 		}
   2180 
   2181 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
   2182 		reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
   2183 		reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
   2184 		CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
   2185 	}
   2186 
   2187 	/* Set up the PCI DMA control register. */
   2188 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
   2189 	if (sc->bge_flags & BGEF_PCIE) {
   2190 		/* Read watermark not used, 128 bytes for write. */
   2191 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
   2192 		    device_xname(sc->bge_dev)));
   2193 		if (sc->bge_mps >= 256)
   2194 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
   2195 		else
   2196 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   2197 	} else if (sc->bge_flags & BGEF_PCIX) {
   2198 		DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
   2199 		    device_xname(sc->bge_dev)));
   2200 		/* PCI-X bus */
   2201 		if (BGE_IS_5714_FAMILY(sc)) {
   2202 			/* 256 bytes for read and write. */
   2203 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
   2204 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
   2205 
   2206 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
   2207 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   2208 			else
   2209 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
   2210 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
   2211 			/*
   2212 			 * In the BCM5703, the DMA read watermark should
   2213 			 * be set to less than or equal to the maximum
   2214 			 * memory read byte count of the PCI-X command
   2215 			 * register.
   2216 			 */
   2217 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
   2218 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   2219 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   2220 			/* 1536 bytes for read, 384 bytes for write. */
   2221 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
   2222 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
   2223 		} else {
   2224 			/* 384 bytes for read and write. */
   2225 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
   2226 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
   2227 			    (0x0F);
   2228 		}
   2229 
   2230 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   2231 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   2232 			uint32_t tmp;
   2233 
   2234 			/* Set ONEDMA_ATONCE for hardware workaround. */
   2235 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
   2236 			if (tmp == 6 || tmp == 7)
   2237 				dma_rw_ctl |=
   2238 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
   2239 
   2240 			/* Set PCI-X DMA write workaround. */
   2241 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
   2242 		}
   2243 	} else {
   2244 		/* Conventional PCI bus: 256 bytes for read and write. */
   2245 		DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
   2246 		    device_xname(sc->bge_dev)));
   2247 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
   2248 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
   2249 
   2250 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
   2251 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
   2252 			dma_rw_ctl |= 0x0F;
   2253 	}
   2254 
   2255 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   2256 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
   2257 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
   2258 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
   2259 
   2260 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
   2261 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   2262 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
   2263 
   2264 	if (BGE_IS_57765_PLUS(sc)) {
   2265 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
   2266 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
   2267 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
   2268 
   2269 		/*
   2270 		 * Enable HW workaround for controllers that misinterpret
   2271 		 * a status tag update and leave interrupts permanently
   2272 		 * disabled.
   2273 		 */
   2274 		if (!BGE_IS_57765_FAMILY(sc) &&
   2275 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
   2276 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5762)
   2277 			dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
   2278 	}
   2279 
   2280 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
   2281 	    dma_rw_ctl);
   2282 
   2283 	/*
   2284 	 * Set up general mode register.
   2285 	 */
   2286 	mode_ctl = BGE_DMA_SWAP_OPTIONS;
   2287 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
   2288 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
   2289 		/* Retain Host-2-BMC settings written by APE firmware. */
   2290 		mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
   2291 		    (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
   2292 		    BGE_MODECTL_WORDSWAP_B2HRX_DATA |
   2293 		    BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
   2294 	}
   2295 	mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
   2296 	    BGE_MODECTL_TX_NO_PHDR_CSUM;
   2297 
   2298 	/*
   2299 	 * BCM5701 B5 have a bug causing data corruption when using
   2300 	 * 64-bit DMA reads, which can be terminated early and then
   2301 	 * completed later as 32-bit accesses, in combination with
   2302 	 * certain bridges.
   2303 	 */
   2304 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   2305 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
   2306 		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
   2307 
   2308 	/*
   2309 	 * Tell the firmware the driver is running
   2310 	 */
   2311 	if (sc->bge_asf_mode & ASF_STACKUP)
   2312 		mode_ctl |= BGE_MODECTL_STACKUP;
   2313 
   2314 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
   2315 
   2316 	/*
   2317 	 * Disable memory write invalidate.  Apparently it is not supported
   2318 	 * properly by these devices.
   2319 	 */
   2320 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
   2321 		   PCI_COMMAND_INVALIDATE_ENABLE);
   2322 
   2323 #ifdef __brokenalpha__
   2324 	/*
   2325 	 * Must insure that we do not cross an 8K (bytes) boundary
   2326 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
   2327 	 * restriction on some ALPHA platforms with early revision
   2328 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
   2329 	 */
   2330 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
   2331 #endif
   2332 
   2333 	/* Set the timer prescaler (always 66MHz) */
   2334 	CSR_WRITE_4_FLUSH(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
   2335 
   2336 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2337 		DELAY(40);	/* XXX */
   2338 
   2339 		/* Put PHY into ready state */
   2340 		BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
   2341 		DELAY(40);
   2342 	}
   2343 
   2344 	return 0;
   2345 }
   2346 
   2347 static int
   2348 bge_blockinit(struct bge_softc *sc)
   2349 {
   2350 	volatile struct bge_rcb	 *rcb;
   2351 	bus_size_t rcb_addr;
   2352 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   2353 	bge_hostaddr taddr;
   2354 	uint32_t	dmactl, rdmareg, mimode, val;
   2355 	int		i, limit;
   2356 
   2357 	/*
   2358 	 * Initialize the memory window pointer register so that
   2359 	 * we can access the first 32K of internal NIC RAM. This will
   2360 	 * allow us to set up the TX send ring RCBs and the RX return
   2361 	 * ring RCBs, plus other things which live in NIC memory.
   2362 	 */
   2363 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
   2364 
   2365 	if (!BGE_IS_5705_PLUS(sc)) {
   2366 		/* 57XX step 33 */
   2367 		/* Configure mbuf memory pool */
   2368 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
   2369 
   2370 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
   2371 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
   2372 		else
   2373 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
   2374 
   2375 		/* 57XX step 34 */
   2376 		/* Configure DMA resource pool */
   2377 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
   2378 		    BGE_DMA_DESCRIPTORS);
   2379 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
   2380 	}
   2381 
   2382 	/* 5718 step 11, 57XX step 35 */
   2383 	/*
   2384 	 * Configure mbuf pool watermarks. New broadcom docs strongly
   2385 	 * recommend these.
   2386 	 */
   2387 	if (BGE_IS_5717_PLUS(sc)) {
   2388 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   2389 		if (ifp->if_mtu > ETHERMTU) {
   2390 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
   2391 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
   2392 		} else {
   2393 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
   2394 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
   2395 		}
   2396 	} else if (BGE_IS_5705_PLUS(sc)) {
   2397 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
   2398 
   2399 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2400 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
   2401 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
   2402 		} else {
   2403 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
   2404 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   2405 		}
   2406 	} else {
   2407 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
   2408 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
   2409 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
   2410 	}
   2411 
   2412 	/* 57XX step 36 */
   2413 	/* Configure DMA resource watermarks */
   2414 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
   2415 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
   2416 
   2417 	/* 5718 step 13, 57XX step 38 */
   2418 	/* Enable buffer manager */
   2419 	val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
   2420 	/*
   2421 	 * Change the arbitration algorithm of TXMBUF read request to
   2422 	 * round-robin instead of priority based for BCM5719.  When
   2423 	 * TXFIFO is almost empty, RDMA will hold its request until
   2424 	 * TXFIFO is not almost empty.
   2425 	 */
   2426 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
   2427 		val |= BGE_BMANMODE_NO_TX_UNDERRUN;
   2428 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2429 		sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
   2430 		sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
   2431 		val |= BGE_BMANMODE_LOMBUF_ATTN;
   2432 	CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
   2433 
   2434 	/* 57XX step 39 */
   2435 	/* Poll for buffer manager start indication */
   2436 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2437 		DELAY(10);
   2438 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
   2439 			break;
   2440 	}
   2441 
   2442 	if (i == BGE_TIMEOUT * 2) {
   2443 		aprint_error_dev(sc->bge_dev,
   2444 		    "buffer manager failed to start\n");
   2445 		return ENXIO;
   2446 	}
   2447 
   2448 	/* 57XX step 40 */
   2449 	/* Enable flow-through queues */
   2450 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   2451 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   2452 
   2453 	/* Wait until queue initialization is complete */
   2454 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2455 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
   2456 			break;
   2457 		DELAY(10);
   2458 	}
   2459 
   2460 	if (i == BGE_TIMEOUT * 2) {
   2461 		aprint_error_dev(sc->bge_dev,
   2462 		    "flow-through queue init failed\n");
   2463 		return ENXIO;
   2464 	}
   2465 
   2466 	/*
   2467 	 * Summary of rings supported by the controller:
   2468 	 *
   2469 	 * Standard Receive Producer Ring
   2470 	 * - This ring is used to feed receive buffers for "standard"
   2471 	 *   sized frames (typically 1536 bytes) to the controller.
   2472 	 *
   2473 	 * Jumbo Receive Producer Ring
   2474 	 * - This ring is used to feed receive buffers for jumbo sized
   2475 	 *   frames (i.e. anything bigger than the "standard" frames)
   2476 	 *   to the controller.
   2477 	 *
   2478 	 * Mini Receive Producer Ring
   2479 	 * - This ring is used to feed receive buffers for "mini"
   2480 	 *   sized frames to the controller.
   2481 	 * - This feature required external memory for the controller
   2482 	 *   but was never used in a production system.  Should always
   2483 	 *   be disabled.
   2484 	 *
   2485 	 * Receive Return Ring
   2486 	 * - After the controller has placed an incoming frame into a
   2487 	 *   receive buffer that buffer is moved into a receive return
   2488 	 *   ring.  The driver is then responsible to passing the
   2489 	 *   buffer up to the stack.  Many versions of the controller
   2490 	 *   support multiple RR rings.
   2491 	 *
   2492 	 * Send Ring
   2493 	 * - This ring is used for outgoing frames.  Many versions of
   2494 	 *   the controller support multiple send rings.
   2495 	 */
   2496 
   2497 	/* 5718 step 15, 57XX step 41 */
   2498 	/* Initialize the standard RX ring control block */
   2499 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
   2500 	BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
   2501 	/* 5718 step 16 */
   2502 	if (BGE_IS_57765_PLUS(sc)) {
   2503 		/*
   2504 		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
   2505 		 * Bits 15-2 : Maximum RX frame size
   2506 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
   2507 		 * Bit 0     : Reserved
   2508 		 */
   2509 		rcb->bge_maxlen_flags =
   2510 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
   2511 	} else if (BGE_IS_5705_PLUS(sc)) {
   2512 		/*
   2513 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
   2514 		 * Bits 15-2 : Reserved (should be 0)
   2515 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
   2516 		 * Bit 0     : Reserved
   2517 		 */
   2518 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
   2519 	} else {
   2520 		/*
   2521 		 * Ring size is always XXX entries
   2522 		 * Bits 31-16: Maximum RX frame size
   2523 		 * Bits 15-2 : Reserved (should be 0)
   2524 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
   2525 		 * Bit 0     : Reserved
   2526 		 */
   2527 		rcb->bge_maxlen_flags =
   2528 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
   2529 	}
   2530 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2531 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2532 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2533 		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
   2534 	else
   2535 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
   2536 	/* Write the standard receive producer ring control block. */
   2537 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
   2538 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
   2539 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
   2540 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
   2541 
   2542 	/* Reset the standard receive producer ring producer index. */
   2543 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
   2544 
   2545 	/* 57XX step 42 */
   2546 	/*
   2547 	 * Initialize the jumbo RX ring control block
   2548 	 * We set the 'ring disabled' bit in the flags
   2549 	 * field until we're actually ready to start
   2550 	 * using this ring (i.e. once we set the MTU
   2551 	 * high enough to require it).
   2552 	 */
   2553 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   2554 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
   2555 		BGE_HOSTADDR(rcb->bge_hostaddr,
   2556 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
   2557 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
   2558 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
   2559 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2560 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2561 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2562 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
   2563 		else
   2564 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
   2565 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
   2566 		    rcb->bge_hostaddr.bge_addr_hi);
   2567 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
   2568 		    rcb->bge_hostaddr.bge_addr_lo);
   2569 		/* Program the jumbo receive producer ring RCB parameters. */
   2570 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
   2571 		    rcb->bge_maxlen_flags);
   2572 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
   2573 		/* Reset the jumbo receive producer ring producer index. */
   2574 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
   2575 	}
   2576 
   2577 	/* 57XX step 43 */
   2578 	/* Disable the mini receive producer ring RCB. */
   2579 	if (BGE_IS_5700_FAMILY(sc)) {
   2580 		/* Set up dummy disabled mini ring RCB */
   2581 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
   2582 		rcb->bge_maxlen_flags =
   2583 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
   2584 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
   2585 		    rcb->bge_maxlen_flags);
   2586 		/* Reset the mini receive producer ring producer index. */
   2587 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
   2588 
   2589 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   2590 		    offsetof(struct bge_ring_data, bge_info),
   2591 		    sizeof(struct bge_gib),
   2592 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2593 	}
   2594 
   2595 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
   2596 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   2597 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
   2598 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
   2599 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
   2600 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
   2601 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
   2602 	}
   2603 	/* 5718 step 14, 57XX step 44 */
   2604 	/*
   2605 	 * The BD ring replenish thresholds control how often the
   2606 	 * hardware fetches new BD's from the producer rings in host
   2607 	 * memory.  Setting the value too low on a busy system can
   2608 	 * starve the hardware and reduce the throughput.
   2609 	 *
   2610 	 * Set the BD ring replenish thresholds. The recommended
   2611 	 * values are 1/8th the number of descriptors allocated to
   2612 	 * each ring, but since we try to avoid filling the entire
   2613 	 * ring we set these to the minimal value of 8.  This needs to
   2614 	 * be done on several of the supported chip revisions anyway,
   2615 	 * to work around HW bugs.
   2616 	 */
   2617 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
   2618 	if (BGE_IS_JUMBO_CAPABLE(sc))
   2619 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
   2620 
   2621 	/* 5718 step 18 */
   2622 	if (BGE_IS_5717_PLUS(sc)) {
   2623 		CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
   2624 		CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
   2625 	}
   2626 
   2627 	/* 57XX step 45 */
   2628 	/*
   2629 	 * Disable all send rings by setting the 'ring disabled' bit
   2630 	 * in the flags field of all the TX send ring control blocks,
   2631 	 * located in NIC memory.
   2632 	 */
   2633 	if (BGE_IS_5700_FAMILY(sc)) {
   2634 		/* 5700 to 5704 had 16 send rings. */
   2635 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
   2636 	} else if (BGE_IS_5717_PLUS(sc)) {
   2637 		limit = BGE_TX_RINGS_5717_MAX;
   2638 	} else if (BGE_IS_57765_FAMILY(sc) ||
   2639 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
   2640 		limit = BGE_TX_RINGS_57765_MAX;
   2641 	} else
   2642 		limit = 1;
   2643 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2644 	for (i = 0; i < limit; i++) {
   2645 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2646 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
   2647 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2648 		rcb_addr += sizeof(struct bge_rcb);
   2649 	}
   2650 
   2651 	/* 57XX step 46 and 47 */
   2652 	/* Configure send ring RCB 0 (we use only the first ring) */
   2653 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
   2654 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
   2655 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2656 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2657 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
   2658 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   2659 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   2660 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
   2661 	else
   2662 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
   2663 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
   2664 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2665 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
   2666 
   2667 	/* 57XX step 48 */
   2668 	/*
   2669 	 * Disable all receive return rings by setting the
   2670 	 * 'ring disabled' bit in the flags field of all the receive
   2671 	 * return ring control blocks, located in NIC memory.
   2672 	 */
   2673 	if (BGE_IS_5717_PLUS(sc)) {
   2674 		/* Should be 17, use 16 until we get an SRAM map. */
   2675 		limit = 16;
   2676 	} else if (BGE_IS_5700_FAMILY(sc))
   2677 		limit = BGE_RX_RINGS_MAX;
   2678 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   2679 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762 ||
   2680 	    BGE_IS_57765_FAMILY(sc))
   2681 		limit = 4;
   2682 	else
   2683 		limit = 1;
   2684 	/* Disable all receive return rings */
   2685 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2686 	for (i = 0; i < limit; i++) {
   2687 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
   2688 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
   2689 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2690 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
   2691 			BGE_RCB_FLAG_RING_DISABLED));
   2692 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
   2693 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
   2694 		    (i * (sizeof(uint64_t))), 0);
   2695 		rcb_addr += sizeof(struct bge_rcb);
   2696 	}
   2697 
   2698 	/* 57XX step 49 */
   2699 	/*
   2700 	 * Set up receive return ring 0.  Note that the NIC address
   2701 	 * for RX return rings is 0x0.  The return rings live entirely
   2702 	 * within the host, so the nicaddr field in the RCB isn't used.
   2703 	 */
   2704 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
   2705 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
   2706 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
   2707 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
   2708 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
   2709 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
   2710 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
   2711 
   2712 	/* 5718 step 24, 57XX step 53 */
   2713 	/* Set random backoff seed for TX */
   2714 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
   2715 	    (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
   2716 		CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
   2717 		CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
   2718 	    BGE_TX_BACKOFF_SEED_MASK);
   2719 
   2720 	/* 5718 step 26, 57XX step 55 */
   2721 	/* Set inter-packet gap */
   2722 	val = 0x2620;
   2723 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
   2724 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
   2725 		val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
   2726 		    (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
   2727 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
   2728 
   2729 	/* 5718 step 27, 57XX step 56 */
   2730 	/*
   2731 	 * Specify which ring to use for packets that don't match
   2732 	 * any RX rules.
   2733 	 */
   2734 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
   2735 
   2736 	/* 5718 step 28, 57XX step 57 */
   2737 	/*
   2738 	 * Configure number of RX lists. One interrupt distribution
   2739 	 * list, sixteen active lists, one bad frames class.
   2740 	 */
   2741 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
   2742 
   2743 	/* 5718 step 29, 57XX step 58 */
   2744 	/* Initialize RX list placement stats mask. */
   2745 	if (BGE_IS_575X_PLUS(sc)) {
   2746 		val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
   2747 		val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
   2748 		CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
   2749 	} else
   2750 		CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
   2751 
   2752 	/* 5718 step 30, 57XX step 59 */
   2753 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
   2754 
   2755 	/* 5718 step 33, 57XX step 62 */
   2756 	/* Disable host coalescing until we get it set up */
   2757 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
   2758 
   2759 	/* 5718 step 34, 57XX step 63 */
   2760 	/* Poll to make sure it's shut down. */
   2761 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
   2762 		DELAY(10);
   2763 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
   2764 			break;
   2765 	}
   2766 
   2767 	if (i == BGE_TIMEOUT * 2) {
   2768 		aprint_error_dev(sc->bge_dev,
   2769 		    "host coalescing engine failed to idle\n");
   2770 		return ENXIO;
   2771 	}
   2772 
   2773 	/* 5718 step 35, 36, 37 */
   2774 	/* Set up host coalescing defaults */
   2775 	mutex_enter(sc->sc_intr_lock);
   2776 	const uint32_t rx_coal_ticks = sc->bge_rx_coal_ticks;
   2777 	const uint32_t tx_coal_ticks = sc->bge_tx_coal_ticks;
   2778 	const uint32_t rx_max_coal_bds = sc->bge_rx_max_coal_bds;
   2779 	const uint32_t tx_max_coal_bds = sc->bge_tx_max_coal_bds;
   2780 	mutex_exit(sc->sc_intr_lock);
   2781 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_coal_ticks);
   2782 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, tx_coal_ticks);
   2783 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_max_coal_bds);
   2784 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, tx_max_coal_bds);
   2785 	if (!(BGE_IS_5705_PLUS(sc))) {
   2786 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
   2787 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
   2788 	}
   2789 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
   2790 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
   2791 
   2792 	/* Set up address of statistics block */
   2793 	if (BGE_IS_5700_FAMILY(sc)) {
   2794 		BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
   2795 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
   2796 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
   2797 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
   2798 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
   2799 	}
   2800 
   2801 	/* 5718 step 38 */
   2802 	/* Set up address of status block */
   2803 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
   2804 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
   2805 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
   2806 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
   2807 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
   2808 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
   2809 
   2810 	/* Set up status block size. */
   2811 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
   2812 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
   2813 		val = BGE_STATBLKSZ_FULL;
   2814 		bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
   2815 	} else {
   2816 		val = BGE_STATBLKSZ_32BYTE;
   2817 		bzero(&sc->bge_rdata->bge_status_block, 32);
   2818 	}
   2819 
   2820 	/* 5718 step 39, 57XX step 73 */
   2821 	/* Turn on host coalescing state machine */
   2822 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
   2823 
   2824 	/* 5718 step 40, 57XX step 74 */
   2825 	/* Turn on RX BD completion state machine and enable attentions */
   2826 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
   2827 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
   2828 
   2829 	/* 5718 step 41, 57XX step 75 */
   2830 	/* Turn on RX list placement state machine */
   2831 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   2832 
   2833 	/* 57XX step 76 */
   2834 	/* Turn on RX list selector state machine. */
   2835 	if (!(BGE_IS_5705_PLUS(sc)))
   2836 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   2837 
   2838 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
   2839 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
   2840 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
   2841 	    BGE_MACMODE_FRMHDR_DMA_ENB;
   2842 
   2843 	if (sc->bge_flags & BGEF_FIBER_TBI)
   2844 		val |= BGE_PORTMODE_TBI;
   2845 	else if (sc->bge_flags & BGEF_FIBER_MII)
   2846 		val |= BGE_PORTMODE_GMII;
   2847 	else
   2848 		val |= BGE_PORTMODE_MII;
   2849 
   2850 	/* 5718 step 42 and 43, 57XX step 77 and 78 */
   2851 	/* Allow APE to send/receive frames. */
   2852 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   2853 		val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
   2854 
   2855 	/* Turn on DMA, clear stats */
   2856 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
   2857 	/* 5718 step 44 */
   2858 	DELAY(40);
   2859 
   2860 	/* 5718 step 45, 57XX step 79 */
   2861 	/* Set misc. local control, enable interrupts on attentions */
   2862 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
   2863 	if (BGE_IS_5717_PLUS(sc)) {
   2864 		CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
   2865 		/* 5718 step 46 */
   2866 		DELAY(100);
   2867 	}
   2868 
   2869 	/* 57XX step 81 */
   2870 	/* Turn on DMA completion state machine */
   2871 	if (!(BGE_IS_5705_PLUS(sc)))
   2872 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   2873 
   2874 	/* 5718 step 47, 57XX step 82 */
   2875 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
   2876 
   2877 	/* 5718 step 48 */
   2878 	/* Enable host coalescing bug fix. */
   2879 	if (BGE_IS_5755_PLUS(sc))
   2880 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
   2881 
   2882 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
   2883 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
   2884 
   2885 	/* Turn on write DMA state machine */
   2886 	CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
   2887 	/* 5718 step 49 */
   2888 	DELAY(40);
   2889 
   2890 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
   2891 
   2892 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
   2893 		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
   2894 
   2895 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2896 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   2897 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   2898 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
   2899 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
   2900 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
   2901 
   2902 	if (sc->bge_flags & BGEF_PCIE)
   2903 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
   2904 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
   2905 		if (ifp->if_mtu <= ETHERMTU)
   2906 			val |= BGE_RDMAMODE_JMB_2K_MMRR;
   2907 	}
   2908 	if (sc->bge_flags & BGEF_TSO) {
   2909 		val |= BGE_RDMAMODE_TSO4_ENABLE;
   2910 		if (BGE_IS_5717_PLUS(sc))
   2911 			val |= BGE_RDMAMODE_TSO6_ENABLE;
   2912 	}
   2913 
   2914 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
   2915 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
   2916 		val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
   2917 		    BGE_RDMAMODE_H2BNC_VLAN_DET;
   2918 		/*
   2919 		 * Allow multiple outstanding read requests from
   2920 		 * non-LSO read DMA engine.
   2921 		 */
   2922 		val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
   2923 	}
   2924 
   2925 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   2926 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   2927 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   2928 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
   2929 	    BGE_IS_57765_PLUS(sc)) {
   2930 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
   2931 			rdmareg = BGE_RDMA_RSRVCTRL_REG2;
   2932 		else
   2933 			rdmareg = BGE_RDMA_RSRVCTRL;
   2934 		dmactl = CSR_READ_4(sc, rdmareg);
   2935 		/*
   2936 		 * Adjust tx margin to prevent TX data corruption and
   2937 		 * fix internal FIFO overflow.
   2938 		 */
   2939 		if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
   2940 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
   2941 			dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
   2942 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
   2943 			    BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
   2944 			dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
   2945 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
   2946 			    BGE_RDMA_RSRVCTRL_TXMRGN_320B;
   2947 		}
   2948 		/*
   2949 		 * Enable fix for read DMA FIFO overruns.
   2950 		 * The fix is to limit the number of RX BDs
   2951 		 * the hardware would fetch at a time.
   2952 		 */
   2953 		CSR_WRITE_4(sc, rdmareg, dmactl |
   2954 		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
   2955 	}
   2956 
   2957 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
   2958 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
   2959 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
   2960 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
   2961 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
   2962 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   2963 		/*
   2964 		 * Allow 4KB burst length reads for non-LSO frames.
   2965 		 * Enable 512B burst length reads for buffer descriptors.
   2966 		 */
   2967 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
   2968 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
   2969 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
   2970 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
   2971 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
   2972 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
   2973 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
   2974 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
   2975 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
   2976 	}
   2977 	/* Turn on read DMA state machine */
   2978 	CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
   2979 	/* 5718 step 52 */
   2980 	delay(40);
   2981 
   2982 	if (sc->bge_flags & BGEF_RDMA_BUG) {
   2983 		for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
   2984 			val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
   2985 			if ((val & 0xFFFF) > BGE_FRAMELEN)
   2986 				break;
   2987 			if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
   2988 				break;
   2989 		}
   2990 		if (i != BGE_NUM_RDMA_CHANNELS / 2) {
   2991 			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
   2992 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
   2993 				val |= BGE_RDMA_TX_LENGTH_WA_5719;
   2994 			else
   2995 				val |= BGE_RDMA_TX_LENGTH_WA_5720;
   2996 			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
   2997 		}
   2998 	}
   2999 
   3000 	/* 5718 step 56, 57XX step 84 */
   3001 	/* Turn on RX data completion state machine */
   3002 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   3003 
   3004 	/* Turn on RX data and RX BD initiator state machine */
   3005 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
   3006 
   3007 	/* 57XX step 85 */
   3008 	/* Turn on Mbuf cluster free state machine */
   3009 	if (!BGE_IS_5705_PLUS(sc))
   3010 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   3011 
   3012 	/* 5718 step 57, 57XX step 86 */
   3013 	/* Turn on send data completion state machine */
   3014 	val = BGE_SDCMODE_ENABLE;
   3015 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
   3016 		val |= BGE_SDCMODE_CDELAY;
   3017 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
   3018 
   3019 	/* 5718 step 58 */
   3020 	/* Turn on send BD completion state machine */
   3021 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   3022 
   3023 	/* 57XX step 88 */
   3024 	/* Turn on RX BD initiator state machine */
   3025 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   3026 
   3027 	/* 5718 step 60, 57XX step 90 */
   3028 	/* Turn on send data initiator state machine */
   3029 	if (sc->bge_flags & BGEF_TSO) {
   3030 		/* XXX: magic value from Linux driver */
   3031 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
   3032 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
   3033 	} else
   3034 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   3035 
   3036 	/* 5718 step 61, 57XX step 91 */
   3037 	/* Turn on send BD initiator state machine */
   3038 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   3039 
   3040 	/* 5718 step 62, 57XX step 92 */
   3041 	/* Turn on send BD selector state machine */
   3042 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   3043 
   3044 	/* 5718 step 31, 57XX step 60 */
   3045 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
   3046 	/* 5718 step 32, 57XX step 61 */
   3047 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
   3048 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
   3049 
   3050 	/* ack/clear link change events */
   3051 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   3052 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   3053 	    BGE_MACSTAT_LINK_CHANGED);
   3054 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
   3055 
   3056 	/*
   3057 	 * Enable attention when the link has changed state for
   3058 	 * devices that use auto polling.
   3059 	 */
   3060 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   3061 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
   3062 	} else {
   3063 		if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
   3064 			mimode = BGE_MIMODE_500KHZ_CONST;
   3065 		else
   3066 			mimode = BGE_MIMODE_BASE;
   3067 		/* 5718 step 68. 5718 step 69 (optionally). */
   3068 		if (BGE_IS_5700_FAMILY(sc) ||
   3069 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) {
   3070 			mimode |= BGE_MIMODE_AUTOPOLL;
   3071 			BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
   3072 		}
   3073 		mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
   3074 		CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
   3075 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
   3076 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   3077 			    BGE_EVTENB_MI_INTERRUPT);
   3078 	}
   3079 
   3080 	/*
   3081 	 * Clear any pending link state attention.
   3082 	 * Otherwise some link state change events may be lost until attention
   3083 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
   3084 	 * It's not necessary on newer BCM chips - perhaps enabling link
   3085 	 * state change attentions implies clearing pending attention.
   3086 	 */
   3087 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   3088 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   3089 	    BGE_MACSTAT_LINK_CHANGED);
   3090 
   3091 	/* Enable link state change attentions. */
   3092 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
   3093 
   3094 	return 0;
   3095 }
   3096 
   3097 static const struct bge_revision *
   3098 bge_lookup_rev(uint32_t chipid)
   3099 {
   3100 	const struct bge_revision *br;
   3101 
   3102 	for (br = bge_revisions; br->br_name != NULL; br++) {
   3103 		if (br->br_chipid == chipid)
   3104 			return br;
   3105 	}
   3106 
   3107 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
   3108 		if (br->br_chipid == BGE_ASICREV(chipid))
   3109 			return br;
   3110 	}
   3111 
   3112 	return NULL;
   3113 }
   3114 
   3115 static const struct bge_product *
   3116 bge_lookup(const struct pci_attach_args *pa)
   3117 {
   3118 	const struct bge_product *bp;
   3119 
   3120 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
   3121 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
   3122 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
   3123 			return bp;
   3124 	}
   3125 
   3126 	return NULL;
   3127 }
   3128 
   3129 static uint32_t
   3130 bge_chipid(const struct pci_attach_args *pa)
   3131 {
   3132 	uint32_t id;
   3133 
   3134 	id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
   3135 		>> BGE_PCIMISCCTL_ASICREV_SHIFT;
   3136 
   3137 	if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
   3138 		switch (PCI_PRODUCT(pa->pa_id)) {
   3139 		case PCI_PRODUCT_BROADCOM_BCM5717:
   3140 		case PCI_PRODUCT_BROADCOM_BCM5718:
   3141 		case PCI_PRODUCT_BROADCOM_BCM5719:
   3142 		case PCI_PRODUCT_BROADCOM_BCM5720:
   3143 		case PCI_PRODUCT_BROADCOM_BCM5725:
   3144 		case PCI_PRODUCT_BROADCOM_BCM5727:
   3145 		case PCI_PRODUCT_BROADCOM_BCM5762:
   3146 		case PCI_PRODUCT_BROADCOM_BCM57764:
   3147 		case PCI_PRODUCT_BROADCOM_BCM57767:
   3148 		case PCI_PRODUCT_BROADCOM_BCM57787:
   3149 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3150 			    BGE_PCI_GEN2_PRODID_ASICREV);
   3151 			break;
   3152 		case PCI_PRODUCT_BROADCOM_BCM57761:
   3153 		case PCI_PRODUCT_BROADCOM_BCM57762:
   3154 		case PCI_PRODUCT_BROADCOM_BCM57765:
   3155 		case PCI_PRODUCT_BROADCOM_BCM57766:
   3156 		case PCI_PRODUCT_BROADCOM_BCM57781:
   3157 		case PCI_PRODUCT_BROADCOM_BCM57782:
   3158 		case PCI_PRODUCT_BROADCOM_BCM57785:
   3159 		case PCI_PRODUCT_BROADCOM_BCM57786:
   3160 		case PCI_PRODUCT_BROADCOM_BCM57791:
   3161 		case PCI_PRODUCT_BROADCOM_BCM57795:
   3162 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3163 			    BGE_PCI_GEN15_PRODID_ASICREV);
   3164 			break;
   3165 		default:
   3166 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
   3167 			    BGE_PCI_PRODID_ASICREV);
   3168 			break;
   3169 		}
   3170 	}
   3171 
   3172 	return id;
   3173 }
   3174 
   3175 /*
   3176  * Return true if MSI can be used with this device.
   3177  */
   3178 static int
   3179 bge_can_use_msi(struct bge_softc *sc)
   3180 {
   3181 	int can_use_msi = 0;
   3182 
   3183 	switch (BGE_ASICREV(sc->bge_chipid)) {
   3184 	case BGE_ASICREV_BCM5714_A0:
   3185 	case BGE_ASICREV_BCM5714:
   3186 		/*
   3187 		 * Apparently, MSI doesn't work when these chips are
   3188 		 * configured in single-port mode.
   3189 		 */
   3190 		break;
   3191 	case BGE_ASICREV_BCM5750:
   3192 		if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_AX &&
   3193 		    BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_BX)
   3194 			can_use_msi = 1;
   3195 		break;
   3196 	default:
   3197 		if (BGE_IS_575X_PLUS(sc))
   3198 			can_use_msi = 1;
   3199 	}
   3200 	return can_use_msi;
   3201 }
   3202 
   3203 /*
   3204  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
   3205  * against our list and return its name if we find a match. Note
   3206  * that since the Broadcom controller contains VPD support, we
   3207  * can get the device name string from the controller itself instead
   3208  * of the compiled-in string. This is a little slow, but it guarantees
   3209  * we'll always announce the right product name.
   3210  */
   3211 static int
   3212 bge_probe(device_t parent, cfdata_t match, void *aux)
   3213 {
   3214 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
   3215 
   3216 	if (bge_lookup(pa) != NULL)
   3217 		return 1;
   3218 
   3219 	return 0;
   3220 }
   3221 
   3222 static void
   3223 bge_attach(device_t parent, device_t self, void *aux)
   3224 {
   3225 	struct bge_softc * const sc = device_private(self);
   3226 	struct pci_attach_args * const pa = aux;
   3227 	prop_dictionary_t dict;
   3228 	const struct bge_product *bp;
   3229 	const struct bge_revision *br;
   3230 	pci_chipset_tag_t	pc;
   3231 	const char		*intrstr = NULL;
   3232 	uint32_t		hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5;
   3233 	uint32_t		command;
   3234 	struct ifnet		*ifp;
   3235 	struct mii_data * const mii = &sc->bge_mii;
   3236 	uint32_t		misccfg, mimode, macmode;
   3237 	void *			kva;
   3238 	u_char			eaddr[ETHER_ADDR_LEN];
   3239 	pcireg_t		memtype, subid, reg;
   3240 	bus_addr_t		memaddr;
   3241 	uint32_t		pm_ctl;
   3242 	bool			no_seeprom;
   3243 	int			capmask, trys;
   3244 	int			mii_flags;
   3245 	int			map_flags;
   3246 	char intrbuf[PCI_INTRSTR_LEN];
   3247 
   3248 	bp = bge_lookup(pa);
   3249 	KASSERT(bp != NULL);
   3250 
   3251 	sc->sc_pc = pa->pa_pc;
   3252 	sc->sc_pcitag = pa->pa_tag;
   3253 	sc->bge_dev = self;
   3254 
   3255 	sc->bge_pa = *pa;
   3256 	pc = sc->sc_pc;
   3257 	subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
   3258 
   3259 	aprint_naive(": Ethernet controller\n");
   3260 	aprint_normal(": %s Ethernet\n", bp->bp_name);
   3261 
   3262 	/*
   3263 	 * Map control/status registers.
   3264 	 */
   3265 	DPRINTFN(5, ("Map control/status regs\n"));
   3266 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   3267 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
   3268 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
   3269 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
   3270 
   3271 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
   3272 		aprint_error_dev(sc->bge_dev,
   3273 		    "failed to enable memory mapping!\n");
   3274 		return;
   3275 	}
   3276 
   3277 	DPRINTFN(5, ("pci_mem_find\n"));
   3278 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
   3279 	switch (memtype) {
   3280 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
   3281 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
   3282 #if 0
   3283 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
   3284 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
   3285 		    &memaddr, &sc->bge_bsize) == 0)
   3286 			break;
   3287 #else
   3288 		/*
   3289 		 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
   3290 		 * system get NMI on boot (PR#48451). This problem might not be
   3291 		 * the driver's bug but our PCI common part's bug. Until we
   3292 		 * find a real reason, we ignore the prefetchable bit.
   3293 		 */
   3294 		if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0,
   3295 		    memtype, &memaddr, &sc->bge_bsize, &map_flags) == 0) {
   3296 			map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
   3297 			if (bus_space_map(pa->pa_memt, memaddr, sc->bge_bsize,
   3298 			    map_flags, &sc->bge_bhandle) == 0) {
   3299 				sc->bge_btag = pa->pa_memt;
   3300 				break;
   3301 			}
   3302 		}
   3303 #endif
   3304 		/* FALLTHROUGH */
   3305 	default:
   3306 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
   3307 		return;
   3308 	}
   3309 
   3310 	sc->bge_txrx_stopping = false;
   3311 
   3312 	/* Save various chip information. */
   3313 	sc->bge_chipid = bge_chipid(pa);
   3314 	sc->bge_phy_addr = bge_phy_addr(sc);
   3315 
   3316 	if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
   3317 	    &sc->bge_pciecap, NULL) != 0) {
   3318 		/* PCIe */
   3319 		sc->bge_flags |= BGEF_PCIE;
   3320 		/* Extract supported maximum payload size. */
   3321 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   3322 		    sc->bge_pciecap + PCIE_DCAP);
   3323 		sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
   3324 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   3325 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   3326 			sc->bge_expmrq = 2048;
   3327 		else
   3328 			sc->bge_expmrq = 4096;
   3329 		bge_set_max_readrq(sc);
   3330 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785) {
   3331 		/* PCIe without PCIe cap */
   3332 		sc->bge_flags |= BGEF_PCIE;
   3333 	} else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
   3334 		BGE_PCISTATE_PCI_BUSMODE) == 0) {
   3335 		/* PCI-X */
   3336 		sc->bge_flags |= BGEF_PCIX;
   3337 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
   3338 			&sc->bge_pcixcap, NULL) == 0)
   3339 			aprint_error_dev(sc->bge_dev,
   3340 			    "unable to find PCIX capability\n");
   3341 	}
   3342 
   3343 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
   3344 		/*
   3345 		 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
   3346 		 * can clobber the chip's PCI config-space power control
   3347 		 * registers, leaving the card in D3 powersave state. We do
   3348 		 * not have memory-mapped registers in this state, so force
   3349 		 * device into D0 state before starting initialization.
   3350 		 */
   3351 		pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
   3352 		pm_ctl &= ~(PCI_PWR_D0 | PCI_PWR_D1 | PCI_PWR_D2 | PCI_PWR_D3);
   3353 		pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
   3354 		pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
   3355 		DELAY(1000);	/* 27 usec is allegedly sufficient */
   3356 	}
   3357 
   3358 	/* Save chipset family. */
   3359 	switch (BGE_ASICREV(sc->bge_chipid)) {
   3360 	case BGE_ASICREV_BCM5717:
   3361 	case BGE_ASICREV_BCM5719:
   3362 	case BGE_ASICREV_BCM5720:
   3363 		sc->bge_flags |= BGEF_5717_PLUS;
   3364 		/* FALLTHROUGH */
   3365 	case BGE_ASICREV_BCM5762:
   3366 	case BGE_ASICREV_BCM57765:
   3367 	case BGE_ASICREV_BCM57766:
   3368 		if (!BGE_IS_5717_PLUS(sc))
   3369 			sc->bge_flags |= BGEF_57765_FAMILY;
   3370 		sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS |
   3371 		    BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE;
   3372 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
   3373 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
   3374 			/*
   3375 			 * Enable work around for DMA engine miscalculation
   3376 			 * of TXMBUF available space.
   3377 			 */
   3378 			sc->bge_flags |= BGEF_RDMA_BUG;
   3379 
   3380 			if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
   3381 			    (sc->bge_chipid == BGE_CHIPID_BCM5719_A0)) {
   3382 				/* Jumbo frame on BCM5719 A0 does not work. */
   3383 				sc->bge_flags &= ~BGEF_JUMBO_CAPABLE;
   3384 			}
   3385 		}
   3386 		break;
   3387 	case BGE_ASICREV_BCM5755:
   3388 	case BGE_ASICREV_BCM5761:
   3389 	case BGE_ASICREV_BCM5784:
   3390 	case BGE_ASICREV_BCM5785:
   3391 	case BGE_ASICREV_BCM5787:
   3392 	case BGE_ASICREV_BCM57780:
   3393 		sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS;
   3394 		break;
   3395 	case BGE_ASICREV_BCM5700:
   3396 	case BGE_ASICREV_BCM5701:
   3397 	case BGE_ASICREV_BCM5703:
   3398 	case BGE_ASICREV_BCM5704:
   3399 		sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE;
   3400 		break;
   3401 	case BGE_ASICREV_BCM5714_A0:
   3402 	case BGE_ASICREV_BCM5780:
   3403 	case BGE_ASICREV_BCM5714:
   3404 		sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE;
   3405 		/* FALLTHROUGH */
   3406 	case BGE_ASICREV_BCM5750:
   3407 	case BGE_ASICREV_BCM5752:
   3408 	case BGE_ASICREV_BCM5906:
   3409 		sc->bge_flags |= BGEF_575X_PLUS;
   3410 		/* FALLTHROUGH */
   3411 	case BGE_ASICREV_BCM5705:
   3412 		sc->bge_flags |= BGEF_5705_PLUS;
   3413 		break;
   3414 	}
   3415 
   3416 	/* Identify chips with APE processor. */
   3417 	switch (BGE_ASICREV(sc->bge_chipid)) {
   3418 	case BGE_ASICREV_BCM5717:
   3419 	case BGE_ASICREV_BCM5719:
   3420 	case BGE_ASICREV_BCM5720:
   3421 	case BGE_ASICREV_BCM5761:
   3422 	case BGE_ASICREV_BCM5762:
   3423 		sc->bge_flags |= BGEF_APE;
   3424 		break;
   3425 	}
   3426 
   3427 	/*
   3428 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
   3429 	 * not actually a MAC controller bug but an issue with the embedded
   3430 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
   3431 	 */
   3432 	if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0))
   3433 		sc->bge_flags |= BGEF_40BIT_BUG;
   3434 
   3435 	/* Chips with APE need BAR2 access for APE registers/memory. */
   3436 	if ((sc->bge_flags & BGEF_APE) != 0) {
   3437 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
   3438 #if 0
   3439 		if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
   3440 			&sc->bge_apetag, &sc->bge_apehandle, NULL,
   3441 			&sc->bge_apesize)) {
   3442 			aprint_error_dev(sc->bge_dev,
   3443 			    "couldn't map BAR2 memory\n");
   3444 			return;
   3445 		}
   3446 #else
   3447 		/*
   3448 		 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
   3449 		 * system get NMI on boot (PR#48451). This problem might not be
   3450 		 * the driver's bug but our PCI common part's bug. Until we
   3451 		 * find a real reason, we ignore the prefetchable bit.
   3452 		 */
   3453 		if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2,
   3454 		    memtype, &memaddr, &sc->bge_apesize, &map_flags) != 0) {
   3455 			aprint_error_dev(sc->bge_dev,
   3456 			    "couldn't map BAR2 memory\n");
   3457 			return;
   3458 		}
   3459 
   3460 		map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
   3461 		if (bus_space_map(pa->pa_memt, memaddr,
   3462 		    sc->bge_apesize, map_flags, &sc->bge_apehandle) != 0) {
   3463 			aprint_error_dev(sc->bge_dev,
   3464 			    "couldn't map BAR2 memory\n");
   3465 			return;
   3466 		}
   3467 		sc->bge_apetag = pa->pa_memt;
   3468 #endif
   3469 
   3470 		/* Enable APE register/memory access by host driver. */
   3471 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
   3472 		reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
   3473 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
   3474 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
   3475 		pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
   3476 
   3477 		bge_ape_lock_init(sc);
   3478 		bge_ape_read_fw_ver(sc);
   3479 	}
   3480 
   3481 	/* Identify the chips that use an CPMU. */
   3482 	if (BGE_IS_5717_PLUS(sc) ||
   3483 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   3484 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   3485 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
   3486 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
   3487 		sc->bge_flags |= BGEF_CPMU_PRESENT;
   3488 
   3489 	/*
   3490 	 * When using the BCM5701 in PCI-X mode, data corruption has
   3491 	 * been observed in the first few bytes of some received packets.
   3492 	 * Aligning the packet buffer in memory eliminates the corruption.
   3493 	 * Unfortunately, this misaligns the packet payloads.  On platforms
   3494 	 * which do not support unaligned accesses, we will realign the
   3495 	 * payloads by copying the received packets.
   3496 	 */
   3497 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
   3498 	    sc->bge_flags & BGEF_PCIX)
   3499 		sc->bge_flags |= BGEF_RX_ALIGNBUG;
   3500 
   3501 	if (BGE_IS_5700_FAMILY(sc))
   3502 		sc->bge_flags |= BGEF_JUMBO_CAPABLE;
   3503 
   3504 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
   3505 	misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
   3506 
   3507 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3508 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
   3509 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
   3510 		sc->bge_flags |= BGEF_IS_5788;
   3511 
   3512 	/*
   3513 	 * Some controllers seem to require a special firmware to use
   3514 	 * TSO. But the firmware is not available to FreeBSD and Linux
   3515 	 * claims that the TSO performed by the firmware is slower than
   3516 	 * hardware based TSO. Moreover the firmware based TSO has one
   3517 	 * known bug which can't handle TSO if ethernet header + IP/TCP
   3518 	 * header is greater than 80 bytes. The workaround for the TSO
   3519 	 * bug exist but it seems it's too expensive than not using
   3520 	 * TSO at all. Some hardware also have the TSO bug so limit
   3521 	 * the TSO to the controllers that are not affected TSO issues
   3522 	 * (e.g. 5755 or higher).
   3523 	 */
   3524 	if (BGE_IS_5755_PLUS(sc)) {
   3525 		/*
   3526 		 * BCM5754 and BCM5787 shares the same ASIC id so
   3527 		 * explicit device id check is required.
   3528 		 */
   3529 		if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
   3530 		    (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
   3531 			sc->bge_flags |= BGEF_TSO;
   3532 		/* TSO on BCM5719 A0 does not work. */
   3533 		if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
   3534 		    (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
   3535 			sc->bge_flags &= ~BGEF_TSO;
   3536 	}
   3537 
   3538 	capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
   3539 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
   3540 	     (misccfg == 0x4000 || misccfg == 0x8000)) ||
   3541 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3542 	     PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   3543 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
   3544 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
   3545 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
   3546 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
   3547 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
   3548 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
   3549 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
   3550 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
   3551 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
   3552 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
   3553 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   3554 		/* These chips are 10/100 only. */
   3555 		capmask &= ~BMSR_EXTSTAT;
   3556 		sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
   3557 	}
   3558 
   3559 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   3560 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
   3561 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
   3562 		 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
   3563 		sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
   3564 
   3565 	/* Set various PHY bug flags. */
   3566 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
   3567 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
   3568 		sc->bge_phy_flags |= BGEPHYF_CRC_BUG;
   3569 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
   3570 	    BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
   3571 		sc->bge_phy_flags |= BGEPHYF_ADC_BUG;
   3572 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
   3573 		sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG;
   3574 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   3575 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
   3576 	    PCI_VENDOR(subid) == PCI_VENDOR_DELL)
   3577 		sc->bge_phy_flags |= BGEPHYF_NO_3LED;
   3578 	if (BGE_IS_5705_PLUS(sc) &&
   3579 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
   3580 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
   3581 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
   3582 	    !BGE_IS_57765_PLUS(sc)) {
   3583 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
   3584 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
   3585 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
   3586 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
   3587 			if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
   3588 			    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
   3589 				sc->bge_phy_flags |= BGEPHYF_JITTER_BUG;
   3590 			if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
   3591 				sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM;
   3592 		} else
   3593 			sc->bge_phy_flags |= BGEPHYF_BER_BUG;
   3594 	}
   3595 
   3596 	/*
   3597 	 * SEEPROM check.
   3598 	 * First check if firmware knows we do not have SEEPROM.
   3599 	 */
   3600 	if (prop_dictionary_get_bool(device_properties(self),
   3601 	    "without-seeprom", &no_seeprom) && no_seeprom)
   3602 		sc->bge_flags |= BGEF_NO_EEPROM;
   3603 
   3604 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   3605 		sc->bge_flags |= BGEF_NO_EEPROM;
   3606 
   3607 	/* Now check the 'ROM failed' bit on the RX CPU */
   3608 	else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
   3609 		sc->bge_flags |= BGEF_NO_EEPROM;
   3610 
   3611 	sc->bge_asf_mode = 0;
   3612 	/* No ASF if APE present. */
   3613 	if ((sc->bge_flags & BGEF_APE) == 0) {
   3614 		if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
   3615 			BGE_SRAM_DATA_SIG_MAGIC)) {
   3616 			if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
   3617 			    BGE_HWCFG_ASF) {
   3618 				sc->bge_asf_mode |= ASF_ENABLE;
   3619 				sc->bge_asf_mode |= ASF_STACKUP;
   3620 				if (BGE_IS_575X_PLUS(sc))
   3621 					sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
   3622 			}
   3623 		}
   3624 	}
   3625 
   3626 	int counts[PCI_INTR_TYPE_SIZE] = {
   3627 		[PCI_INTR_TYPE_INTX] = 1,
   3628 		[PCI_INTR_TYPE_MSI] = 1,
   3629 		[PCI_INTR_TYPE_MSIX] = 1,
   3630 	};
   3631 	int max_type = PCI_INTR_TYPE_MSIX;
   3632 
   3633 	if (!bge_can_use_msi(sc)) {
   3634 		/* MSI broken, allow only INTx */
   3635 		max_type = PCI_INTR_TYPE_INTX;
   3636 	}
   3637 
   3638 	if (pci_intr_alloc(pa, &sc->bge_pihp, counts, max_type) != 0) {
   3639 		aprint_error_dev(sc->bge_dev, "couldn't alloc interrupt\n");
   3640 		return;
   3641 	}
   3642 
   3643 	DPRINTFN(5, ("pci_intr_string\n"));
   3644 	intrstr = pci_intr_string(pc, sc->bge_pihp[0], intrbuf,
   3645 	    sizeof(intrbuf));
   3646 	pci_intr_setattr(pc, &sc->bge_pihp[0], PCI_INTR_MPSAFE, true);
   3647 	DPRINTFN(5, ("pci_intr_establish\n"));
   3648 	sc->bge_intrhand = pci_intr_establish_xname(pc, sc->bge_pihp[0],
   3649 	    IPL_NET, bge_intr, sc, device_xname(sc->bge_dev));
   3650 	if (sc->bge_intrhand == NULL) {
   3651 		pci_intr_release(pc, sc->bge_pihp, 1);
   3652 		sc->bge_pihp = NULL;
   3653 
   3654 		aprint_error_dev(self, "couldn't establish interrupt");
   3655 		if (intrstr != NULL)
   3656 			aprint_error(" at %s", intrstr);
   3657 		aprint_error("\n");
   3658 		return;
   3659 	}
   3660 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
   3661 
   3662 	switch (pci_intr_type(pc, sc->bge_pihp[0])) {
   3663 	case PCI_INTR_TYPE_MSIX:
   3664 	case PCI_INTR_TYPE_MSI:
   3665 		KASSERT(bge_can_use_msi(sc));
   3666 		sc->bge_flags |= BGEF_MSI;
   3667 		break;
   3668 	default:
   3669 		/* nothing to do */
   3670 		break;
   3671 	}
   3672 
   3673 	char wqname[MAXCOMLEN];
   3674 	snprintf(wqname, sizeof(wqname), "%sReset", device_xname(sc->bge_dev));
   3675 	int error = workqueue_create(&sc->sc_reset_wq, wqname,
   3676 	    bge_handle_reset_work, sc, PRI_NONE, IPL_SOFTCLOCK,
   3677 	    WQ_MPSAFE);
   3678 	if (error) {
   3679 		aprint_error_dev(sc->bge_dev,
   3680 		    "unable to create reset workqueue\n");
   3681 		return;
   3682 	}
   3683 
   3684 
   3685 	/*
   3686 	 * All controllers except BCM5700 supports tagged status but
   3687 	 * we use tagged status only for MSI case on BCM5717. Otherwise
   3688 	 * MSI on BCM5717 does not work.
   3689 	 */
   3690 	if (BGE_IS_57765_PLUS(sc) && sc->bge_flags & BGEF_MSI)
   3691 		sc->bge_flags |= BGEF_TAGGED_STATUS;
   3692 
   3693 	/*
   3694 	 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
   3695 	 * lock in bge_reset().
   3696 	 */
   3697 	CSR_WRITE_4_FLUSH(sc, BGE_EE_ADDR,
   3698 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
   3699 	delay(1000);
   3700 	BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
   3701 
   3702 	bge_stop_fw(sc);
   3703 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
   3704 	if (bge_reset(sc))
   3705 		aprint_error_dev(sc->bge_dev, "chip reset failed\n");
   3706 
   3707 	/*
   3708 	 * Read the hardware config word in the first 32k of NIC internal
   3709 	 * memory, or fall back to the config word in the EEPROM.
   3710 	 * Note: on some BCM5700 cards, this value appears to be unset.
   3711 	 */
   3712 	hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = hwcfg5 = 0;
   3713 	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
   3714 	    BGE_SRAM_DATA_SIG_MAGIC) {
   3715 		uint32_t tmp;
   3716 
   3717 		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
   3718 		tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
   3719 		    BGE_SRAM_DATA_VER_SHIFT;
   3720 		if ((0 < tmp) && (tmp < 0x100))
   3721 			hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
   3722 		if (sc->bge_flags & BGEF_PCIE)
   3723 			hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
   3724 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
   3725 			hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
   3726 		if (BGE_IS_5717_PLUS(sc))
   3727 			hwcfg5 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_5);
   3728 	} else if (!(sc->bge_flags & BGEF_NO_EEPROM)) {
   3729 		bge_read_eeprom(sc, (void *)&hwcfg,
   3730 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
   3731 		hwcfg = be32toh(hwcfg);
   3732 	}
   3733 	aprint_normal_dev(sc->bge_dev,
   3734 	    "HW config %08x, %08x, %08x, %08x %08x\n",
   3735 	    hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5);
   3736 
   3737 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
   3738 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
   3739 
   3740 	if (bge_chipinit(sc)) {
   3741 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
   3742 		bge_release_resources(sc);
   3743 		return;
   3744 	}
   3745 
   3746 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
   3747 		BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL,
   3748 		    BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUTEN1);
   3749 		DELAY(100);
   3750 	}
   3751 
   3752 	/* Set MI_MODE */
   3753 	mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
   3754 	if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
   3755 		mimode |= BGE_MIMODE_500KHZ_CONST;
   3756 	else
   3757 		mimode |= BGE_MIMODE_BASE;
   3758 	CSR_WRITE_4_FLUSH(sc, BGE_MI_MODE, mimode);
   3759 	DELAY(80);
   3760 
   3761 	/*
   3762 	 * Get station address from the EEPROM.
   3763 	 */
   3764 	if (bge_get_eaddr(sc, eaddr)) {
   3765 		aprint_error_dev(sc->bge_dev,
   3766 		    "failed to read station address\n");
   3767 		bge_release_resources(sc);
   3768 		return;
   3769 	}
   3770 
   3771 	br = bge_lookup_rev(sc->bge_chipid);
   3772 
   3773 	if (br == NULL) {
   3774 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
   3775 		    sc->bge_chipid);
   3776 	} else {
   3777 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
   3778 		    br->br_name, sc->bge_chipid);
   3779 	}
   3780 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
   3781 
   3782 	/* Allocate the general information block and ring buffers. */
   3783 	if (pci_dma64_available(pa)) {
   3784 		sc->bge_dmatag = pa->pa_dmat64;
   3785 		sc->bge_dmatag32 = pa->pa_dmat;
   3786 		sc->bge_dma64 = true;
   3787 	} else {
   3788 		sc->bge_dmatag = pa->pa_dmat;
   3789 		sc->bge_dmatag32 = pa->pa_dmat;
   3790 		sc->bge_dma64 = false;
   3791 	}
   3792 
   3793 	/* 40bit DMA workaround */
   3794 	if (sizeof(bus_addr_t) > 4) {
   3795 		if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) {
   3796 			bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */
   3797 
   3798 			if (bus_dmatag_subregion(olddmatag, 0,
   3799 			    (bus_addr_t)__MASK(40),
   3800 			    &(sc->bge_dmatag), BUS_DMA_WAITOK) != 0) {
   3801 				aprint_error_dev(self,
   3802 				    "WARNING: failed to restrict dma range,"
   3803 				    " falling back to parent bus dma range\n");
   3804 				sc->bge_dmatag = olddmatag;
   3805 			}
   3806 		}
   3807 	}
   3808 	SLIST_INIT(&sc->txdma_list);
   3809 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
   3810 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
   3811 			     PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
   3812 		&sc->bge_ring_rseg, BUS_DMA_WAITOK)) {
   3813 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
   3814 		return;
   3815 	}
   3816 	DPRINTFN(5, ("bus_dmamem_map\n"));
   3817 	if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
   3818 		sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
   3819 			   BUS_DMA_WAITOK)) {
   3820 		aprint_error_dev(sc->bge_dev,
   3821 		    "can't map DMA buffers (%zu bytes)\n",
   3822 		    sizeof(struct bge_ring_data));
   3823 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   3824 		    sc->bge_ring_rseg);
   3825 		return;
   3826 	}
   3827 	DPRINTFN(5, ("bus_dmamap_create\n"));
   3828 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
   3829 	    sizeof(struct bge_ring_data), 0,
   3830 	    BUS_DMA_WAITOK, &sc->bge_ring_map)) {
   3831 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
   3832 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   3833 				 sizeof(struct bge_ring_data));
   3834 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   3835 		    sc->bge_ring_rseg);
   3836 		return;
   3837 	}
   3838 	DPRINTFN(5, ("bus_dmamap_load\n"));
   3839 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
   3840 			    sizeof(struct bge_ring_data), NULL,
   3841 			    BUS_DMA_WAITOK)) {
   3842 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   3843 		bus_dmamem_unmap(sc->bge_dmatag, kva,
   3844 				 sizeof(struct bge_ring_data));
   3845 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   3846 		    sc->bge_ring_rseg);
   3847 		return;
   3848 	}
   3849 
   3850 	DPRINTFN(5, ("bzero\n"));
   3851 	sc->bge_rdata = (struct bge_ring_data *)kva;
   3852 
   3853 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
   3854 
   3855 	/* Try to allocate memory for jumbo buffers. */
   3856 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
   3857 		if (bge_alloc_jumbo_mem(sc)) {
   3858 			aprint_error_dev(sc->bge_dev,
   3859 			    "jumbo buffer allocation failed\n");
   3860 		} else
   3861 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
   3862 	}
   3863 
   3864 	/* Set default tuneable values. */
   3865 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
   3866 	sc->bge_rx_coal_ticks = 150;
   3867 	sc->bge_rx_max_coal_bds = 64;
   3868 	sc->bge_tx_coal_ticks = 300;
   3869 	sc->bge_tx_max_coal_bds = 400;
   3870 	if (BGE_IS_5705_PLUS(sc)) {
   3871 		sc->bge_tx_coal_ticks = (12 * 5);
   3872 		sc->bge_tx_max_coal_bds = (12 * 5);
   3873 			aprint_verbose_dev(sc->bge_dev,
   3874 			    "setting short Tx thresholds\n");
   3875 	}
   3876 
   3877 	if (BGE_IS_5717_PLUS(sc))
   3878 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   3879 	else if (BGE_IS_5705_PLUS(sc))
   3880 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
   3881 	else
   3882 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
   3883 
   3884 	sc->sc_mcast_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
   3885 	sc->sc_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
   3886 
   3887 	/* Set up ifnet structure */
   3888 	ifp = &sc->ethercom.ec_if;
   3889 	ifp->if_softc = sc;
   3890 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   3891 	ifp->if_extflags = IFEF_MPSAFE;
   3892 	ifp->if_ioctl = bge_ioctl;
   3893 	ifp->if_stop = bge_stop;
   3894 	ifp->if_start = bge_start;
   3895 	ifp->if_init = bge_init;
   3896 	IFQ_SET_MAXLEN(&ifp->if_snd, uimax(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
   3897 	IFQ_SET_READY(&ifp->if_snd);
   3898 	DPRINTFN(5, ("strcpy if_xname\n"));
   3899 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
   3900 
   3901 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
   3902 		sc->ethercom.ec_if.if_capabilities |=
   3903 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
   3904 #if 1	/* XXX TCP/UDP checksum offload breaks with pf(4) */
   3905 		sc->ethercom.ec_if.if_capabilities |=
   3906 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
   3907 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
   3908 #endif
   3909 	sc->ethercom.ec_capabilities |=
   3910 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
   3911 	sc->ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
   3912 
   3913 	if (sc->bge_flags & BGEF_TSO)
   3914 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
   3915 
   3916 	/*
   3917 	 * Do MII setup.
   3918 	 */
   3919 	DPRINTFN(5, ("mii setup\n"));
   3920 	mii->mii_ifp = ifp;
   3921 	mii->mii_readreg = bge_miibus_readreg;
   3922 	mii->mii_writereg = bge_miibus_writereg;
   3923 	mii->mii_statchg = bge_miibus_statchg;
   3924 
   3925 	/*
   3926 	 * Figure out what sort of media we have by checking the hardware
   3927 	 * config word.  Note: on some BCM5700 cards, this value appears to be
   3928 	 * unset. If that's the case, we have to rely on identifying the NIC
   3929 	 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
   3930 	 * The SysKonnect SK-9D41 is a 1000baseSX card.
   3931 	 */
   3932 	if (PCI_PRODUCT(subid) == SK_SUBSYSID_9D41 ||
   3933 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
   3934 		if (BGE_IS_5705_PLUS(sc)) {
   3935 			sc->bge_flags |= BGEF_FIBER_MII;
   3936 			sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
   3937 		} else
   3938 			sc->bge_flags |= BGEF_FIBER_TBI;
   3939 	}
   3940 
   3941 	/* Set bge_phy_flags before prop_dictionary_set_uint32() */
   3942 	if (BGE_IS_JUMBO_CAPABLE(sc))
   3943 		sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE;
   3944 
   3945 	/* set phyflags and chipid before mii_attach() */
   3946 	dict = device_properties(self);
   3947 	prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags);
   3948 	prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
   3949 
   3950 	macmode = CSR_READ_4(sc, BGE_MAC_MODE);
   3951 	macmode &= ~BGE_MACMODE_PORTMODE;
   3952 	/* Initialize ifmedia structures. */
   3953 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   3954 		CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE,
   3955 		    macmode | BGE_PORTMODE_TBI);
   3956 		DELAY(40);
   3957 
   3958 		struct ifmedia * const ifm = &sc->bge_ifmedia;
   3959 		sc->ethercom.ec_ifmedia = ifm;
   3960 
   3961 		ifmedia_init_with_lock(ifm, IFM_IMASK,
   3962 		    bge_ifmedia_upd, bge_ifmedia_sts, sc->sc_intr_lock);
   3963 		ifmedia_add(ifm, IFM_ETHER | IFM_1000_SX, 0, NULL);
   3964 		ifmedia_add(ifm, IFM_ETHER | IFM_1000_SX | IFM_FDX, 0, NULL);
   3965 		ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL);
   3966 		ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
   3967 		/* Pretend the user requested this setting */
   3968 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
   3969 	} else {
   3970 		uint16_t phyreg;
   3971 		int rv;
   3972 		/*
   3973 		 * Do transceiver setup and tell the firmware the
   3974 		 * driver is down so we can try to get access the
   3975 		 * probe if ASF is running.  Retry a couple of times
   3976 		 * if we get a conflict with the ASF firmware accessing
   3977 		 * the PHY.
   3978 		 */
   3979 		if (sc->bge_flags & BGEF_FIBER_MII)
   3980 			macmode |= BGE_PORTMODE_GMII;
   3981 		else
   3982 			macmode |= BGE_PORTMODE_MII;
   3983 		CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, macmode);
   3984 		DELAY(40);
   3985 
   3986 		/*
   3987 		 * Do transceiver setup and tell the firmware the
   3988 		 * driver is down so we can try to get access the
   3989 		 * probe if ASF is running.  Retry a couple of times
   3990 		 * if we get a conflict with the ASF firmware accessing
   3991 		 * the PHY.
   3992 		 */
   3993 		trys = 0;
   3994 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   3995 		sc->ethercom.ec_mii = mii;
   3996 		ifmedia_init_with_lock(&mii->mii_media, 0, bge_ifmedia_upd,
   3997 		    bge_ifmedia_sts, sc->sc_intr_lock);
   3998 		mii_flags = MIIF_DOPAUSE;
   3999 		if (sc->bge_flags & BGEF_FIBER_MII)
   4000 			mii_flags |= MIIF_HAVEFIBER;
   4001 again:
   4002 		bge_asf_driver_up(sc);
   4003 		mutex_enter(sc->sc_intr_lock);
   4004 		rv = bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
   4005 		    MII_BMCR, &phyreg);
   4006 		if ((rv != 0) || ((phyreg & BMCR_PDOWN) != 0)) {
   4007 			int i;
   4008 
   4009 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
   4010 			    MII_BMCR, BMCR_RESET);
   4011 			/* Wait up to 500ms for it to complete. */
   4012 			for (i = 0; i < 500; i++) {
   4013 				bge_miibus_readreg(sc->bge_dev,
   4014 				    sc->bge_phy_addr, MII_BMCR, &phyreg);
   4015 				if ((phyreg & BMCR_RESET) == 0)
   4016 					break;
   4017 				DELAY(1000);
   4018 			}
   4019 		}
   4020 		mutex_exit(sc->sc_intr_lock);
   4021 
   4022 		mii_attach(sc->bge_dev, mii, capmask, sc->bge_phy_addr,
   4023 		    MII_OFFSET_ANY, mii_flags);
   4024 
   4025 		if (LIST_EMPTY(&mii->mii_phys) && (trys++ < 4))
   4026 			goto again;
   4027 
   4028 		if (LIST_EMPTY(&mii->mii_phys)) {
   4029 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
   4030 			ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
   4031 			    0, NULL);
   4032 			ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
   4033 		} else
   4034 			ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
   4035 
   4036 		/*
   4037 		 * Now tell the firmware we are going up after probing the PHY
   4038 		 */
   4039 		if (sc->bge_asf_mode & ASF_STACKUP)
   4040 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   4041 	}
   4042 
   4043 	/*
   4044 	 * Call MI attach routine.
   4045 	 */
   4046 	DPRINTFN(5, ("if_initialize\n"));
   4047 	if_initialize(ifp);
   4048 	ifp->if_percpuq = if_percpuq_create(ifp);
   4049 	if_deferred_start_init(ifp, NULL);
   4050 	if_register(ifp);
   4051 
   4052 	DPRINTFN(5, ("ether_ifattach\n"));
   4053 	ether_ifattach(ifp, eaddr);
   4054 	ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
   4055 
   4056 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
   4057 		RND_TYPE_NET, RND_FLAG_DEFAULT);
   4058 #ifdef BGE_EVENT_COUNTERS
   4059 	/*
   4060 	 * Attach event counters.
   4061 	 */
   4062 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
   4063 	    NULL, device_xname(sc->bge_dev), "intr");
   4064 	evcnt_attach_dynamic(&sc->bge_ev_intr_spurious, EVCNT_TYPE_INTR,
   4065 	    NULL, device_xname(sc->bge_dev), "intr_spurious");
   4066 	evcnt_attach_dynamic(&sc->bge_ev_intr_spurious2, EVCNT_TYPE_INTR,
   4067 	    NULL, device_xname(sc->bge_dev), "intr_spurious2");
   4068 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
   4069 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
   4070 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
   4071 	    NULL, device_xname(sc->bge_dev), "tx_xon");
   4072 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
   4073 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
   4074 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
   4075 	    NULL, device_xname(sc->bge_dev), "rx_xon");
   4076 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
   4077 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
   4078 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
   4079 	    NULL, device_xname(sc->bge_dev), "xoffentered");
   4080 #endif /* BGE_EVENT_COUNTERS */
   4081 	DPRINTFN(5, ("callout_init\n"));
   4082 	callout_init(&sc->bge_timeout, CALLOUT_MPSAFE);
   4083 	callout_setfunc(&sc->bge_timeout, bge_tick, sc);
   4084 
   4085 	if (pmf_device_register(self, NULL, NULL))
   4086 		pmf_class_network_register(self, ifp);
   4087 	else
   4088 		aprint_error_dev(self, "couldn't establish power handler\n");
   4089 
   4090 	bge_sysctl_init(sc);
   4091 
   4092 #ifdef BGE_DEBUG
   4093 	bge_debug_info(sc);
   4094 #endif
   4095 
   4096 	sc->bge_attached = true;
   4097 }
   4098 
   4099 /*
   4100  * Stop all chip I/O so that the kernel's probe routines don't
   4101  * get confused by errant DMAs when rebooting.
   4102  */
   4103 static int
   4104 bge_detach(device_t self, int flags __unused)
   4105 {
   4106 	struct bge_softc * const sc = device_private(self);
   4107 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   4108 
   4109 	if (!sc->bge_attached)
   4110 		return 0;
   4111 
   4112 	IFNET_LOCK(ifp);
   4113 
   4114 	/* Stop the interface. Callouts are stopped in it. */
   4115 	bge_stop(ifp, 1);
   4116 	sc->bge_detaching = true;
   4117 
   4118 	IFNET_UNLOCK(ifp);
   4119 
   4120 	mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
   4121 
   4122 	ether_ifdetach(ifp);
   4123 	if_detach(ifp);
   4124 
   4125 	/* Delete all remaining media. */
   4126 	ifmedia_fini(&sc->bge_mii.mii_media);
   4127 
   4128 	bge_release_resources(sc);
   4129 
   4130 	return 0;
   4131 }
   4132 
   4133 static void
   4134 bge_release_resources(struct bge_softc *sc)
   4135 {
   4136 
   4137 	/* Detach sysctl */
   4138 	if (sc->bge_log != NULL)
   4139 		sysctl_teardown(&sc->bge_log);
   4140 
   4141 	callout_destroy(&sc->bge_timeout);
   4142 
   4143 #ifdef BGE_EVENT_COUNTERS
   4144 	/* Detach event counters. */
   4145 	evcnt_detach(&sc->bge_ev_intr);
   4146 	evcnt_detach(&sc->bge_ev_intr_spurious);
   4147 	evcnt_detach(&sc->bge_ev_intr_spurious2);
   4148 	evcnt_detach(&sc->bge_ev_tx_xoff);
   4149 	evcnt_detach(&sc->bge_ev_tx_xon);
   4150 	evcnt_detach(&sc->bge_ev_rx_xoff);
   4151 	evcnt_detach(&sc->bge_ev_rx_xon);
   4152 	evcnt_detach(&sc->bge_ev_rx_macctl);
   4153 	evcnt_detach(&sc->bge_ev_xoffentered);
   4154 #endif /* BGE_EVENT_COUNTERS */
   4155 
   4156 	/* Disestablish the interrupt handler */
   4157 	if (sc->bge_intrhand != NULL) {
   4158 		pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
   4159 		pci_intr_release(sc->sc_pc, sc->bge_pihp, 1);
   4160 		sc->bge_intrhand = NULL;
   4161 	}
   4162 
   4163 	if (sc->bge_cdata.bge_jumbo_buf != NULL)
   4164 		bge_free_jumbo_mem(sc);
   4165 
   4166 	if (sc->bge_dmatag != NULL) {
   4167 		bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
   4168 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
   4169 		bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
   4170 		    sizeof(struct bge_ring_data));
   4171 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
   4172 		    sc->bge_ring_rseg);
   4173 	}
   4174 
   4175 	/* Unmap the device registers */
   4176 	if (sc->bge_bsize != 0) {
   4177 		bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
   4178 		sc->bge_bsize = 0;
   4179 	}
   4180 
   4181 	/* Unmap the APE registers */
   4182 	if (sc->bge_apesize != 0) {
   4183 		bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
   4184 		    sc->bge_apesize);
   4185 		sc->bge_apesize = 0;
   4186 	}
   4187 	if (sc->sc_intr_lock) {
   4188 		mutex_obj_free(sc->sc_intr_lock);
   4189 		sc->sc_intr_lock = NULL;
   4190 	}
   4191 	if (sc->sc_mcast_lock) {
   4192 		mutex_obj_free(sc->sc_mcast_lock);
   4193 		sc->sc_mcast_lock = NULL;
   4194 	}
   4195 }
   4196 
   4197 static int
   4198 bge_reset(struct bge_softc *sc)
   4199 {
   4200 	uint32_t cachesize, command;
   4201 	uint32_t reset, mac_mode, mac_mode_mask;
   4202 	pcireg_t devctl, reg;
   4203 	int i, val;
   4204 	void (*write_op)(struct bge_softc *, int, int);
   4205 
   4206 	/* Make mask for BGE_MAC_MODE register. */
   4207 	mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
   4208 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   4209 		mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
   4210 	/* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
   4211 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
   4212 
   4213 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
   4214 	    (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
   4215 		if (sc->bge_flags & BGEF_PCIE)
   4216 			write_op = bge_writemem_direct;
   4217 		else
   4218 			write_op = bge_writemem_ind;
   4219 	} else
   4220 		write_op = bge_writereg_ind;
   4221 
   4222 	/* 57XX step 4 */
   4223 	/* Acquire the NVM lock */
   4224 	if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 &&
   4225 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
   4226 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
   4227 		CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
   4228 		for (i = 0; i < 8000; i++) {
   4229 			if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
   4230 			    BGE_NVRAMSWARB_GNT1)
   4231 				break;
   4232 			DELAY(20);
   4233 		}
   4234 		if (i == 8000) {
   4235 			printf("%s: NVRAM lock timedout!\n",
   4236 			    device_xname(sc->bge_dev));
   4237 		}
   4238 	}
   4239 
   4240 	/* Take APE lock when performing reset. */
   4241 	bge_ape_lock(sc, BGE_APE_LOCK_GRC);
   4242 
   4243 	/* 57XX step 3 */
   4244 	/* Save some important PCI state. */
   4245 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
   4246 	/* 5718 reset step 3 */
   4247 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   4248 
   4249 	/* 5718 reset step 5, 57XX step 5b-5d */
   4250 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   4251 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   4252 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
   4253 
   4254 	/* XXX ???: Disable fastboot on controllers that support it. */
   4255 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
   4256 	    BGE_IS_5755_PLUS(sc))
   4257 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
   4258 
   4259 	/* 5718 reset step 2, 57XX step 6 */
   4260 	/*
   4261 	 * Write the magic number to SRAM at offset 0xB50.
   4262 	 * When firmware finishes its initialization it will
   4263 	 * write ~BGE_MAGIC_NUMBER to the same location.
   4264 	 */
   4265 	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
   4266 
   4267 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
   4268 		val = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
   4269 		val = (val & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
   4270 		    | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
   4271 		CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, val);
   4272 	}
   4273 
   4274 	/* 5718 reset step 6, 57XX step 7 */
   4275 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
   4276 	/*
   4277 	 * XXX: from FreeBSD/Linux; no documentation
   4278 	 */
   4279 	if (sc->bge_flags & BGEF_PCIE) {
   4280 		if ((BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) &&
   4281 		    !BGE_IS_57765_PLUS(sc) &&
   4282 		    (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
   4283 			(BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
   4284 			/* PCI Express 1.0 system */
   4285 			CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
   4286 			    BGE_PHY_PCIE_SCRAM_MODE);
   4287 		}
   4288 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
   4289 			/*
   4290 			 * Prevent PCI Express link training
   4291 			 * during global reset.
   4292 			 */
   4293 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
   4294 			reset |= (1 << 29);
   4295 		}
   4296 	}
   4297 
   4298 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
   4299 		i = CSR_READ_4(sc, BGE_VCPU_STATUS);
   4300 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
   4301 		    i | BGE_VCPU_STATUS_DRV_RESET);
   4302 		i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
   4303 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
   4304 		    i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
   4305 	}
   4306 
   4307 	/*
   4308 	 * Set GPHY Power Down Override to leave GPHY
   4309 	 * powered up in D0 uninitialized.
   4310 	 */
   4311 	if (BGE_IS_5705_PLUS(sc) &&
   4312 	    (sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
   4313 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
   4314 
   4315 	/* Issue global reset */
   4316 	write_op(sc, BGE_MISC_CFG, reset);
   4317 
   4318 	/* 5718 reset step 7, 57XX step 8 */
   4319 	if (sc->bge_flags & BGEF_PCIE)
   4320 		delay(100*1000); /* too big */
   4321 	else
   4322 		delay(1000);
   4323 
   4324 	if (sc->bge_flags & BGEF_PCIE) {
   4325 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
   4326 			DELAY(500000);
   4327 			/* XXX: Magic Numbers */
   4328 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   4329 			    BGE_PCI_UNKNOWN0);
   4330 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   4331 			    BGE_PCI_UNKNOWN0,
   4332 			    reg | (1 << 15));
   4333 		}
   4334 		devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   4335 		    sc->bge_pciecap + PCIE_DCSR);
   4336 		/* Clear enable no snoop and disable relaxed ordering. */
   4337 		devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
   4338 		    PCIE_DCSR_ENA_NO_SNOOP);
   4339 
   4340 		/* Set PCIE max payload size to 128 for older PCIe devices */
   4341 		if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
   4342 			devctl &= ~(0x00e0);
   4343 		/* Clear device status register. Write 1b to clear */
   4344 		devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
   4345 		    | PCIE_DCSR_NFED | PCIE_DCSR_CED;
   4346 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   4347 		    sc->bge_pciecap + PCIE_DCSR, devctl);
   4348 		bge_set_max_readrq(sc);
   4349 	}
   4350 
   4351 	/* From Linux: dummy read to flush PCI posted writes */
   4352 	reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
   4353 
   4354 	/*
   4355 	 * Reset some of the PCI state that got zapped by reset
   4356 	 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
   4357 	 * set, too.
   4358 	 */
   4359 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
   4360 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
   4361 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
   4362 	val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
   4363 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
   4364 	    (sc->bge_flags & BGEF_PCIX) != 0)
   4365 		val |= BGE_PCISTATE_RETRY_SAME_DMA;
   4366 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
   4367 		val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
   4368 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
   4369 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
   4370 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
   4371 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
   4372 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
   4373 
   4374 	/* 57xx step 11: disable PCI-X Relaxed Ordering. */
   4375 	if (sc->bge_flags & BGEF_PCIX) {
   4376 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   4377 		    + PCIX_CMD);
   4378 		/* Set max memory read byte count to 2K */
   4379 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
   4380 			reg &= ~PCIX_CMD_BYTECNT_MASK;
   4381 			reg |= PCIX_CMD_BCNT_2048;
   4382 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){
   4383 			/*
   4384 			 * For 5704, set max outstanding split transaction
   4385 			 * field to 0 (0 means it supports 1 request)
   4386 			 */
   4387 			reg &= ~(PCIX_CMD_SPLTRANS_MASK
   4388 			    | PCIX_CMD_BYTECNT_MASK);
   4389 			reg |= PCIX_CMD_BCNT_2048;
   4390 		}
   4391 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
   4392 		    + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
   4393 	}
   4394 
   4395 	/* 5718 reset step 10, 57XX step 12 */
   4396 	/* Enable memory arbiter. */
   4397 	if (BGE_IS_5714_FAMILY(sc)) {
   4398 		val = CSR_READ_4(sc, BGE_MARB_MODE);
   4399 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
   4400 	} else
   4401 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   4402 
   4403 	/* XXX 5721, 5751 and 5752 */
   4404 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
   4405 		/* Step 19: */
   4406 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
   4407 		/* Step 20: */
   4408 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
   4409 	}
   4410 
   4411 	/* 5718 reset step 12, 57XX step 15 and 16 */
   4412 	/* Fix up byte swapping */
   4413 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
   4414 
   4415 	/* 5718 reset step 13, 57XX step 17 */
   4416 	/* Poll until the firmware initialization is complete */
   4417 	bge_poll_fw(sc);
   4418 
   4419 	/* 57XX step 21 */
   4420 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
   4421 		pcireg_t msidata;
   4422 
   4423 		msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
   4424 		    BGE_PCI_MSI_DATA);
   4425 		msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
   4426 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
   4427 		    msidata);
   4428 	}
   4429 
   4430 	/* 57XX step 18 */
   4431 	/* Write mac mode. */
   4432 	val = CSR_READ_4(sc, BGE_MAC_MODE);
   4433 	/* Restore mac_mode_mask's bits using mac_mode */
   4434 	val = (val & ~mac_mode_mask) | mac_mode;
   4435 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
   4436 	DELAY(40);
   4437 
   4438 	bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
   4439 
   4440 	/*
   4441 	 * The 5704 in TBI mode apparently needs some special
   4442 	 * adjustment to insure the SERDES drive level is set
   4443 	 * to 1.2V.
   4444 	 */
   4445 	if (sc->bge_flags & BGEF_FIBER_TBI &&
   4446 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   4447 		uint32_t serdescfg;
   4448 
   4449 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
   4450 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
   4451 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
   4452 	}
   4453 
   4454 	if (sc->bge_flags & BGEF_PCIE &&
   4455 	    !BGE_IS_57765_PLUS(sc) &&
   4456 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
   4457 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
   4458 		uint32_t v;
   4459 
   4460 		/* Enable PCI Express bug fix */
   4461 		v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
   4462 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
   4463 		    v | BGE_TLP_DATA_FIFO_PROTECT);
   4464 	}
   4465 
   4466 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
   4467 		BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
   4468 		    CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
   4469 
   4470 	return 0;
   4471 }
   4472 
   4473 /*
   4474  * Frame reception handling. This is called if there's a frame
   4475  * on the receive return list.
   4476  *
   4477  * Note: we have to be able to handle two possibilities here:
   4478  * 1) the frame is from the jumbo receive ring
   4479  * 2) the frame is from the standard receive ring
   4480  */
   4481 
   4482 static void
   4483 bge_rxeof(struct bge_softc *sc)
   4484 {
   4485 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   4486 	uint16_t rx_prod, rx_cons;
   4487 	int stdcnt = 0, jumbocnt = 0;
   4488 	bus_dmamap_t dmamap;
   4489 	bus_addr_t offset, toff;
   4490 	bus_size_t tlen;
   4491 	int tosync;
   4492 
   4493 	KASSERT(mutex_owned(sc->sc_intr_lock));
   4494 
   4495 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4496 	    offsetof(struct bge_ring_data, bge_status_block),
   4497 	    sizeof(struct bge_status_block),
   4498 	    BUS_DMASYNC_POSTREAD);
   4499 
   4500 	rx_cons = sc->bge_rx_saved_considx;
   4501 	rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
   4502 
   4503 	/* Nothing to do */
   4504 	if (rx_cons == rx_prod)
   4505 		return;
   4506 
   4507 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
   4508 	tosync = rx_prod - rx_cons;
   4509 
   4510 	if (tosync != 0)
   4511 		rnd_add_uint32(&sc->rnd_source, tosync);
   4512 
   4513 	toff = offset + (rx_cons * sizeof(struct bge_rx_bd));
   4514 
   4515 	if (tosync < 0) {
   4516 		tlen = (sc->bge_return_ring_cnt - rx_cons) *
   4517 		    sizeof(struct bge_rx_bd);
   4518 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4519 		    toff, tlen, BUS_DMASYNC_POSTREAD);
   4520 		tosync = rx_prod;
   4521 		toff = offset;
   4522 	}
   4523 
   4524 	if (tosync != 0) {
   4525 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4526 		    toff, tosync * sizeof(struct bge_rx_bd),
   4527 		    BUS_DMASYNC_POSTREAD);
   4528 	}
   4529 
   4530 	while (rx_cons != rx_prod) {
   4531 		struct bge_rx_bd	*cur_rx;
   4532 		uint32_t		rxidx;
   4533 		struct mbuf		*m = NULL;
   4534 
   4535 		cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
   4536 
   4537 		rxidx = cur_rx->bge_idx;
   4538 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
   4539 
   4540 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
   4541 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
   4542 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
   4543 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
   4544 			jumbocnt++;
   4545 			bus_dmamap_sync(sc->bge_dmatag,
   4546 			    sc->bge_cdata.bge_rx_jumbo_map,
   4547 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
   4548 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
   4549 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   4550 				if_statinc(ifp, if_ierrors);
   4551 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   4552 				continue;
   4553 			}
   4554 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
   4555 					     NULL) == ENOBUFS) {
   4556 				if_statinc(ifp, if_ierrors);
   4557 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
   4558 				continue;
   4559 			}
   4560 		} else {
   4561 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
   4562 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
   4563 
   4564 			stdcnt++;
   4565 			sc->bge_std_cnt--;
   4566 
   4567 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
   4568 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
   4569 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   4570 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
   4571 
   4572 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
   4573 				m_free(m);
   4574 				if_statinc(ifp, if_ierrors);
   4575 				continue;
   4576 			}
   4577 		}
   4578 
   4579 #ifndef __NO_STRICT_ALIGNMENT
   4580 		/*
   4581 		 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
   4582 		 * the Rx buffer has the layer-2 header unaligned.
   4583 		 * If our CPU requires alignment, re-align by copying.
   4584 		 */
   4585 		if (sc->bge_flags & BGEF_RX_ALIGNBUG) {
   4586 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
   4587 				cur_rx->bge_len);
   4588 			m->m_data += ETHER_ALIGN;
   4589 		}
   4590 #endif
   4591 
   4592 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
   4593 		m_set_rcvif(m, ifp);
   4594 
   4595 		bge_rxcsum(sc, cur_rx, m);
   4596 
   4597 		/*
   4598 		 * If we received a packet with a vlan tag, pass it
   4599 		 * to vlan_input() instead of ether_input().
   4600 		 */
   4601 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG)
   4602 			vlan_set_tag(m, cur_rx->bge_vlan_tag);
   4603 
   4604 		if_percpuq_enqueue(ifp->if_percpuq, m);
   4605 	}
   4606 
   4607 	sc->bge_rx_saved_considx = rx_cons;
   4608 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
   4609 	if (stdcnt)
   4610 		bge_fill_rx_ring_std(sc);
   4611 	if (jumbocnt)
   4612 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
   4613 }
   4614 
   4615 static void
   4616 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
   4617 {
   4618 
   4619 	if (BGE_IS_57765_PLUS(sc)) {
   4620 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
   4621 			if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
   4622 				m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   4623 			if ((cur_rx->bge_error_flag &
   4624 				BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
   4625 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   4626 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
   4627 				m->m_pkthdr.csum_data =
   4628 				    cur_rx->bge_tcp_udp_csum;
   4629 				m->m_pkthdr.csum_flags |=
   4630 				    (M_CSUM_TCPv4 | M_CSUM_UDPv4 |M_CSUM_DATA);
   4631 			}
   4632 		}
   4633 	} else {
   4634 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
   4635 			m->m_pkthdr.csum_flags = M_CSUM_IPv4;
   4636 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
   4637 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   4638 		/*
   4639 		 * Rx transport checksum-offload may also
   4640 		 * have bugs with packets which, when transmitted,
   4641 		 * were `runts' requiring padding.
   4642 		 */
   4643 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
   4644 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
   4645 			    m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
   4646 			m->m_pkthdr.csum_data =
   4647 			    cur_rx->bge_tcp_udp_csum;
   4648 			m->m_pkthdr.csum_flags |=
   4649 			    (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_DATA);
   4650 		}
   4651 	}
   4652 }
   4653 
   4654 static void
   4655 bge_txeof(struct bge_softc *sc)
   4656 {
   4657 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   4658 	struct bge_tx_bd *cur_tx = NULL;
   4659 	struct txdmamap_pool_entry *dma;
   4660 	bus_addr_t offset, toff;
   4661 	bus_size_t tlen;
   4662 	int tosync;
   4663 	struct mbuf *m;
   4664 
   4665 	KASSERT(mutex_owned(sc->sc_intr_lock));
   4666 
   4667 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4668 	    offsetof(struct bge_ring_data, bge_status_block),
   4669 	    sizeof(struct bge_status_block),
   4670 	    BUS_DMASYNC_POSTREAD);
   4671 
   4672 	const uint16_t hw_cons_idx =
   4673 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx;
   4674 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
   4675 	tosync = hw_cons_idx - sc->bge_tx_saved_considx;
   4676 
   4677 	if (tosync != 0)
   4678 		rnd_add_uint32(&sc->rnd_source, tosync);
   4679 
   4680 	toff = offset + (sc->bge_tx_saved_considx * sizeof(struct bge_tx_bd));
   4681 
   4682 	if (tosync < 0) {
   4683 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
   4684 		    sizeof(struct bge_tx_bd);
   4685 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4686 		    toff, tlen, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   4687 		tosync = hw_cons_idx;
   4688 		toff = offset;
   4689 	}
   4690 
   4691 	if (tosync != 0) {
   4692 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4693 		    toff, tosync * sizeof(struct bge_tx_bd),
   4694 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   4695 	}
   4696 
   4697 	/*
   4698 	 * Go through our tx ring and free mbufs for those
   4699 	 * frames that have been sent.
   4700 	 */
   4701 	while (sc->bge_tx_saved_considx != hw_cons_idx) {
   4702 		uint32_t idx = sc->bge_tx_saved_considx;
   4703 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
   4704 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
   4705 			if_statinc(ifp, if_opackets);
   4706 		m = sc->bge_cdata.bge_tx_chain[idx];
   4707 		if (m != NULL) {
   4708 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
   4709 			dma = sc->txdma[idx];
   4710 			if (dma->is_dma32) {
   4711 				bus_dmamap_sync(sc->bge_dmatag32, dma->dmamap32,
   4712 				    0, dma->dmamap32->dm_mapsize,
   4713 				    BUS_DMASYNC_POSTWRITE);
   4714 				bus_dmamap_unload(
   4715 				    sc->bge_dmatag32, dma->dmamap32);
   4716 			} else {
   4717 				bus_dmamap_sync(sc->bge_dmatag, dma->dmamap,
   4718 				    0, dma->dmamap->dm_mapsize,
   4719 				    BUS_DMASYNC_POSTWRITE);
   4720 				bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
   4721 			}
   4722 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
   4723 			sc->txdma[idx] = NULL;
   4724 
   4725 			m_freem(m);
   4726 		}
   4727 		sc->bge_txcnt--;
   4728 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
   4729 		sc->bge_tx_sending = false;
   4730 	}
   4731 }
   4732 
   4733 static int
   4734 bge_intr(void *xsc)
   4735 {
   4736 	struct bge_softc * const sc = xsc;
   4737 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   4738 	uint32_t pcistate, statusword, statustag;
   4739 	uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
   4740 
   4741 	/* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
   4742 	if (BGE_IS_5717_PLUS(sc))
   4743 		intrmask = 0;
   4744 
   4745 	mutex_enter(sc->sc_intr_lock);
   4746 	if (sc->bge_txrx_stopping) {
   4747 		mutex_exit(sc->sc_intr_lock);
   4748 		return 1;
   4749 	}
   4750 
   4751 	/*
   4752 	 * It is possible for the interrupt to arrive before
   4753 	 * the status block is updated prior to the interrupt.
   4754 	 * Reading the PCI State register will confirm whether the
   4755 	 * interrupt is ours and will flush the status block.
   4756 	 */
   4757 	pcistate = CSR_READ_4(sc, BGE_PCI_PCISTATE);
   4758 
   4759 	/* read status word from status block */
   4760 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4761 	    offsetof(struct bge_ring_data, bge_status_block),
   4762 	    sizeof(struct bge_status_block),
   4763 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   4764 	statusword = sc->bge_rdata->bge_status_block.bge_status;
   4765 	statustag = sc->bge_rdata->bge_status_block.bge_status_tag << 24;
   4766 
   4767 	if (sc->bge_flags & BGEF_TAGGED_STATUS) {
   4768 		if (sc->bge_lasttag == statustag &&
   4769 		    (~pcistate & intrmask)) {
   4770 			BGE_EVCNT_INCR(sc->bge_ev_intr_spurious);
   4771 			mutex_exit(sc->sc_intr_lock);
   4772 			return 0;
   4773 		}
   4774 		sc->bge_lasttag = statustag;
   4775 	} else {
   4776 		if (!(statusword & BGE_STATFLAG_UPDATED) &&
   4777 		    !(~pcistate & intrmask)) {
   4778 			BGE_EVCNT_INCR(sc->bge_ev_intr_spurious2);
   4779 			mutex_exit(sc->sc_intr_lock);
   4780 			return 0;
   4781 		}
   4782 		statustag = 0;
   4783 	}
   4784 	/* Ack interrupt and stop others from occurring. */
   4785 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
   4786 	BGE_EVCNT_INCR(sc->bge_ev_intr);
   4787 
   4788 	/* clear status word */
   4789 	sc->bge_rdata->bge_status_block.bge_status = 0;
   4790 
   4791 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
   4792 	    offsetof(struct bge_ring_data, bge_status_block),
   4793 	    sizeof(struct bge_status_block),
   4794 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4795 
   4796 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   4797 	    statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
   4798 	    BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
   4799 		bge_link_upd(sc);
   4800 
   4801 	/* Check RX return ring producer/consumer */
   4802 	bge_rxeof(sc);
   4803 
   4804 	/* Check TX ring producer/consumer */
   4805 	bge_txeof(sc);
   4806 
   4807 	if (sc->bge_pending_rxintr_change) {
   4808 		uint32_t rx_ticks = sc->bge_rx_coal_ticks;
   4809 		uint32_t rx_bds = sc->bge_rx_max_coal_bds;
   4810 
   4811 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
   4812 		DELAY(10);
   4813 		(void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
   4814 
   4815 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
   4816 		DELAY(10);
   4817 		(void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
   4818 
   4819 		sc->bge_pending_rxintr_change = false;
   4820 	}
   4821 	bge_handle_events(sc);
   4822 
   4823 	/* Re-enable interrupts. */
   4824 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, statustag);
   4825 
   4826 	if_schedule_deferred_start(ifp);
   4827 
   4828 	mutex_exit(sc->sc_intr_lock);
   4829 
   4830 	return 1;
   4831 }
   4832 
   4833 static void
   4834 bge_asf_driver_up(struct bge_softc *sc)
   4835 {
   4836 	if (sc->bge_asf_mode & ASF_STACKUP) {
   4837 		/* Send ASF heartbeat approx. every 2s */
   4838 		if (sc->bge_asf_count)
   4839 			sc->bge_asf_count --;
   4840 		else {
   4841 			sc->bge_asf_count = 2;
   4842 
   4843 			bge_wait_for_event_ack(sc);
   4844 
   4845 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
   4846 			    BGE_FW_CMD_DRV_ALIVE3);
   4847 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
   4848 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
   4849 			    BGE_FW_HB_TIMEOUT_SEC);
   4850 			CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
   4851 			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
   4852 			    BGE_RX_CPU_DRV_EVENT);
   4853 		}
   4854 	}
   4855 }
   4856 
   4857 static void
   4858 bge_tick(void *xsc)
   4859 {
   4860 	struct bge_softc * const sc = xsc;
   4861 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   4862 	struct mii_data * const mii = &sc->bge_mii;
   4863 
   4864 	mutex_enter(sc->sc_intr_lock);
   4865 
   4866 	if (BGE_IS_5705_PLUS(sc))
   4867 		bge_stats_update_regs(sc);
   4868 	else
   4869 		bge_stats_update(sc);
   4870 
   4871 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   4872 		/*
   4873 		 * Since in TBI mode auto-polling can't be used we should poll
   4874 		 * link status manually. Here we register pending link event
   4875 		 * and trigger interrupt.
   4876 		 */
   4877 		BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   4878 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   4879 	} else {
   4880 		/*
   4881 		 * Do not touch PHY if we have link up. This could break
   4882 		 * IPMI/ASF mode or produce extra input errors.
   4883 		 * (extra input errors was reported for bcm5701 & bcm5704).
   4884 		 */
   4885 		if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
   4886 			mii_tick(mii);
   4887 		}
   4888 	}
   4889 
   4890 	bge_asf_driver_up(sc);
   4891 
   4892 	const bool ok = bge_watchdog_tick(ifp);
   4893 	if (ok)
   4894 		callout_schedule(&sc->bge_timeout, hz);
   4895 	mutex_exit(sc->sc_intr_lock);
   4896 }
   4897 
   4898 static void
   4899 bge_stats_update_regs(struct bge_softc *sc)
   4900 {
   4901 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   4902 
   4903 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
   4904 
   4905 	if_statadd_ref(ifp, nsr, if_collisions,
   4906 	    CSR_READ_4(sc, BGE_MAC_STATS +
   4907 	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions)));
   4908 
   4909 	/*
   4910 	 * On BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0,
   4911 	 * RXLP_LOCSTAT_IFIN_DROPS includes unwanted multicast frames
   4912 	 * (silicon bug). There's no reliable workaround so just
   4913 	 * ignore the counter
   4914 	 */
   4915 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
   4916 	    sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
   4917 	    sc->bge_chipid != BGE_CHIPID_BCM5720_A0) {
   4918 		if_statadd_ref(ifp, nsr, if_ierrors,
   4919 		    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS));
   4920 	}
   4921 	if_statadd_ref(ifp, nsr, if_ierrors,
   4922 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS));
   4923 	if_statadd_ref(ifp, nsr, if_ierrors,
   4924 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS));
   4925 
   4926 	IF_STAT_PUTREF(ifp);
   4927 
   4928 	if (sc->bge_flags & BGEF_RDMA_BUG) {
   4929 		uint32_t val, ucast, mcast, bcast;
   4930 
   4931 		ucast = CSR_READ_4(sc, BGE_MAC_STATS +
   4932 		    offsetof(struct bge_mac_stats_regs, ifHCOutUcastPkts));
   4933 		mcast = CSR_READ_4(sc, BGE_MAC_STATS +
   4934 		    offsetof(struct bge_mac_stats_regs, ifHCOutMulticastPkts));
   4935 		bcast = CSR_READ_4(sc, BGE_MAC_STATS +
   4936 		    offsetof(struct bge_mac_stats_regs, ifHCOutBroadcastPkts));
   4937 
   4938 		/*
   4939 		 * If controller transmitted more than BGE_NUM_RDMA_CHANNELS
   4940 		 * frames, it's safe to disable workaround for DMA engine's
   4941 		 * miscalculation of TXMBUF space.
   4942 		 */
   4943 		if (ucast + mcast + bcast > BGE_NUM_RDMA_CHANNELS) {
   4944 			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
   4945 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
   4946 				val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
   4947 			else
   4948 				val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
   4949 			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
   4950 			sc->bge_flags &= ~BGEF_RDMA_BUG;
   4951 		}
   4952 	}
   4953 }
   4954 
   4955 static void
   4956 bge_stats_update(struct bge_softc *sc)
   4957 {
   4958 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   4959 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
   4960 
   4961 #define READ_STAT(sc, stats, stat) \
   4962 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
   4963 
   4964 	uint64_t collisions =
   4965 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
   4966 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
   4967 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
   4968 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo));
   4969 
   4970 	if_statadd(ifp, if_collisions, collisions - sc->bge_if_collisions);
   4971 	sc->bge_if_collisions = collisions;
   4972 
   4973 
   4974 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
   4975 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
   4976 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
   4977 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
   4978 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
   4979 		      READ_STAT(sc, stats,
   4980 				xoffPauseFramesReceived.bge_addr_lo));
   4981 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
   4982 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
   4983 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
   4984 		      READ_STAT(sc, stats,
   4985 				macControlFramesReceived.bge_addr_lo));
   4986 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
   4987 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
   4988 
   4989 #undef READ_STAT
   4990 }
   4991 
   4992 /*
   4993  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
   4994  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
   4995  * but when such padded frames employ the  bge IP/TCP checksum offload,
   4996  * the hardware checksum assist gives incorrect results (possibly
   4997  * from incorporating its own padding into the UDP/TCP checksum; who knows).
   4998  * If we pad such runts with zeros, the onboard checksum comes out correct.
   4999  */
   5000 static inline int
   5001 bge_cksum_pad(struct mbuf *pkt)
   5002 {
   5003 	struct mbuf *last = NULL;
   5004 	int padlen;
   5005 
   5006 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
   5007 
   5008 	/* if there's only the packet-header and we can pad there, use it. */
   5009 	if (pkt->m_pkthdr.len == pkt->m_len &&
   5010 	    M_TRAILINGSPACE(pkt) >= padlen) {
   5011 		last = pkt;
   5012 	} else {
   5013 		/*
   5014 		 * Walk packet chain to find last mbuf. We will either
   5015 		 * pad there, or append a new mbuf and pad it
   5016 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
   5017 		 */
   5018 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
   5019 			continue; /* do nothing */
   5020 		}
   5021 
   5022 		/* `last' now points to last in chain. */
   5023 		if (M_TRAILINGSPACE(last) < padlen) {
   5024 			/* Allocate new empty mbuf, pad it. Compact later. */
   5025 			struct mbuf *n;
   5026 			MGET(n, M_DONTWAIT, MT_DATA);
   5027 			if (n == NULL)
   5028 				return ENOBUFS;
   5029 			MCLAIM(n, last->m_owner);
   5030 			n->m_len = 0;
   5031 			last->m_next = n;
   5032 			last = n;
   5033 		}
   5034 	}
   5035 
   5036 	KDASSERT(!M_READONLY(last));
   5037 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
   5038 
   5039 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
   5040 	memset(mtod(last, char *) + last->m_len, 0, padlen);
   5041 	last->m_len += padlen;
   5042 	pkt->m_pkthdr.len += padlen;
   5043 	return 0;
   5044 }
   5045 
   5046 /*
   5047  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
   5048  */
   5049 static inline int
   5050 bge_compact_dma_runt(struct mbuf *pkt)
   5051 {
   5052 	struct mbuf	*m, *prev;
   5053 	int		totlen;
   5054 
   5055 	prev = NULL;
   5056 	totlen = 0;
   5057 
   5058 	for (m = pkt; m != NULL; prev = m, m = m->m_next) {
   5059 		int mlen = m->m_len;
   5060 		int shortfall = 8 - mlen ;
   5061 
   5062 		totlen += mlen;
   5063 		if (mlen == 0)
   5064 			continue;
   5065 		if (mlen >= 8)
   5066 			continue;
   5067 
   5068 		/*
   5069 		 * If we get here, mbuf data is too small for DMA engine.
   5070 		 * Try to fix by shuffling data to prev or next in chain.
   5071 		 * If that fails, do a compacting deep-copy of the whole chain.
   5072 		 */
   5073 
   5074 		/* Internal frag. If fits in prev, copy it there. */
   5075 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
   5076 			memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
   5077 			prev->m_len += mlen;
   5078 			m->m_len = 0;
   5079 			/* XXX stitch chain */
   5080 			prev->m_next = m_free(m);
   5081 			m = prev;
   5082 			continue;
   5083 		} else if (m->m_next != NULL &&
   5084 			    M_TRAILINGSPACE(m) >= shortfall &&
   5085 			    m->m_next->m_len >= (8 + shortfall)) {
   5086 		    /* m is writable and have enough data in next, pull up. */
   5087 
   5088 			memcpy(m->m_data + m->m_len, m->m_next->m_data,
   5089 			    shortfall);
   5090 			m->m_len += shortfall;
   5091 			m->m_next->m_len -= shortfall;
   5092 			m->m_next->m_data += shortfall;
   5093 		} else if (m->m_next == NULL || 1) {
   5094 			/*
   5095 			 * Got a runt at the very end of the packet.
   5096 			 * borrow data from the tail of the preceding mbuf and
   5097 			 * update its length in-place. (The original data is
   5098 			 * still valid, so we can do this even if prev is not
   5099 			 * writable.)
   5100 			 */
   5101 
   5102 			/*
   5103 			 * If we'd make prev a runt, just move all of its data.
   5104 			 */
   5105 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
   5106 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
   5107 
   5108 			if ((prev->m_len - shortfall) < 8)
   5109 				shortfall = prev->m_len;
   5110 
   5111 #ifdef notyet	/* just do the safe slow thing for now */
   5112 			if (!M_READONLY(m)) {
   5113 				if (M_LEADINGSPACE(m) < shorfall) {
   5114 					void *m_dat;
   5115 					m_dat = M_BUFADDR(m);
   5116 					memmove(m_dat, mtod(m, void*),
   5117 					    m->m_len);
   5118 					m->m_data = m_dat;
   5119 				}
   5120 			} else
   5121 #endif	/* just do the safe slow thing */
   5122 			{
   5123 				struct mbuf * n = NULL;
   5124 				int newprevlen = prev->m_len - shortfall;
   5125 
   5126 				MGET(n, M_NOWAIT, MT_DATA);
   5127 				if (n == NULL)
   5128 				   return ENOBUFS;
   5129 				MCLAIM(n, prev->m_owner);
   5130 				KASSERT(m->m_len + shortfall < MLEN
   5131 					/*,
   5132 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
   5133 
   5134 				/* first copy the data we're stealing from prev */
   5135 				memcpy(n->m_data, prev->m_data + newprevlen,
   5136 				    shortfall);
   5137 
   5138 				/* update prev->m_len accordingly */
   5139 				prev->m_len -= shortfall;
   5140 
   5141 				/* copy data from runt m */
   5142 				memcpy(n->m_data + shortfall, m->m_data,
   5143 				    m->m_len);
   5144 
   5145 				/* n holds what we stole from prev, plus m */
   5146 				n->m_len = shortfall + m->m_len;
   5147 
   5148 				/* stitch n into chain and free m */
   5149 				n->m_next = m->m_next;
   5150 				prev->m_next = n;
   5151 				/* KASSERT(m->m_next == NULL); */
   5152 				m->m_next = NULL;
   5153 				m_free(m);
   5154 				m = n;	/* for continuing loop */
   5155 			}
   5156 		}
   5157 	}
   5158 	return 0;
   5159 }
   5160 
   5161 /*
   5162  * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
   5163  * pointers to descriptors.
   5164  */
   5165 static int
   5166 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
   5167 {
   5168 	struct bge_tx_bd	*f, *prev_f;
   5169 	uint32_t		frag, cur;
   5170 	uint16_t		csum_flags = 0;
   5171 	uint16_t		txbd_tso_flags = 0;
   5172 	struct txdmamap_pool_entry *dma;
   5173 	bus_dmamap_t dmamap;
   5174 	bus_dma_tag_t dmatag;
   5175 	int			i = 0;
   5176 	int			use_tso, maxsegsize, error;
   5177 	bool			have_vtag;
   5178 	uint16_t		vtag;
   5179 	bool			remap;
   5180 
   5181 	KASSERT(mutex_owned(sc->sc_intr_lock));
   5182 
   5183 	if (m_head->m_pkthdr.csum_flags) {
   5184 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   5185 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
   5186 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4 |M_CSUM_UDPv4))
   5187 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
   5188 	}
   5189 
   5190 	/*
   5191 	 * If we were asked to do an outboard checksum, and the NIC
   5192 	 * has the bug where it sometimes adds in the Ethernet padding,
   5193 	 * explicitly pad with zeros so the cksum will be correct either way.
   5194 	 * (For now, do this for all chip versions, until newer
   5195 	 * are confirmed to not require the workaround.)
   5196 	 */
   5197 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
   5198 #ifdef notyet
   5199 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
   5200 #endif
   5201 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
   5202 		goto check_dma_bug;
   5203 
   5204 	if (bge_cksum_pad(m_head) != 0)
   5205 		return ENOBUFS;
   5206 
   5207 check_dma_bug:
   5208 	if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
   5209 		goto doit;
   5210 
   5211 	/*
   5212 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
   5213 	 * less than eight bytes.  If we encounter a teeny mbuf
   5214 	 * at the end of a chain, we can pad.  Otherwise, copy.
   5215 	 */
   5216 	if (bge_compact_dma_runt(m_head) != 0)
   5217 		return ENOBUFS;
   5218 
   5219 doit:
   5220 	dma = SLIST_FIRST(&sc->txdma_list);
   5221 	if (dma == NULL) {
   5222 		return ENOBUFS;
   5223 	}
   5224 	dmamap = dma->dmamap;
   5225 	dmatag = sc->bge_dmatag;
   5226 	dma->is_dma32 = false;
   5227 
   5228 	/*
   5229 	 * Set up any necessary TSO state before we start packing...
   5230 	 */
   5231 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
   5232 	if (!use_tso) {
   5233 		maxsegsize = 0;
   5234 	} else {	/* TSO setup */
   5235 		unsigned  mss;
   5236 		struct ether_header *eh;
   5237 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
   5238 		unsigned bge_hlen;
   5239 		struct mbuf * m0 = m_head;
   5240 		struct ip *ip;
   5241 		struct tcphdr *th;
   5242 		int iphl, hlen;
   5243 
   5244 		/*
   5245 		 * XXX It would be nice if the mbuf pkthdr had offset
   5246 		 * fields for the protocol headers.
   5247 		 */
   5248 
   5249 		eh = mtod(m0, struct ether_header *);
   5250 		switch (htons(eh->ether_type)) {
   5251 		case ETHERTYPE_IP:
   5252 			offset = ETHER_HDR_LEN;
   5253 			break;
   5254 
   5255 		case ETHERTYPE_VLAN:
   5256 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   5257 			break;
   5258 
   5259 		default:
   5260 			/*
   5261 			 * Don't support this protocol or encapsulation.
   5262 			 */
   5263 			return ENOBUFS;
   5264 		}
   5265 
   5266 		/*
   5267 		 * TCP/IP headers are in the first mbuf; we can do
   5268 		 * this the easy way.
   5269 		 */
   5270 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   5271 		hlen = iphl + offset;
   5272 		if (__predict_false(m0->m_len <
   5273 				    (hlen + sizeof(struct tcphdr)))) {
   5274 
   5275 			aprint_error_dev(sc->bge_dev,
   5276 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
   5277 			    "not handled yet\n",
   5278 			    m0->m_len, hlen+ sizeof(struct tcphdr));
   5279 #ifdef NOTYET
   5280 			/*
   5281 			 * XXX jonathan (at) NetBSD.org: untested.
   5282 			 * how to force this branch to be taken?
   5283 			 */
   5284 			BGE_EVCNT_INCR(sc->bge_ev_txtsopain);
   5285 
   5286 			m_copydata(m0, offset, sizeof(ip), &ip);
   5287 			m_copydata(m0, hlen, sizeof(th), &th);
   5288 
   5289 			ip.ip_len = 0;
   5290 
   5291 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
   5292 			    sizeof(ip.ip_len), &ip.ip_len);
   5293 
   5294 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
   5295 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
   5296 
   5297 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
   5298 			    sizeof(th.th_sum), &th.th_sum);
   5299 
   5300 			hlen += th.th_off << 2;
   5301 			iptcp_opt_words	= hlen;
   5302 #else
   5303 			/*
   5304 			 * if_wm "hard" case not yet supported, can we not
   5305 			 * mandate it out of existence?
   5306 			 */
   5307 			(void) ip; (void)th; (void) ip_tcp_hlen;
   5308 
   5309 			return ENOBUFS;
   5310 #endif
   5311 		} else {
   5312 			ip = (struct ip *) (mtod(m0, char *) + offset);
   5313 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
   5314 			ip_tcp_hlen = iphl +  (th->th_off << 2);
   5315 
   5316 			/* Total IP/TCP options, in 32-bit words */
   5317 			iptcp_opt_words = (ip_tcp_hlen
   5318 					   - sizeof(struct tcphdr)
   5319 					   - sizeof(struct ip)) >> 2;
   5320 		}
   5321 		if (BGE_IS_575X_PLUS(sc)) {
   5322 			th->th_sum = 0;
   5323 			csum_flags = 0;
   5324 		} else {
   5325 			/*
   5326 			 * XXX jonathan (at) NetBSD.org: 5705 untested.
   5327 			 * Requires TSO firmware patch for 5701/5703/5704.
   5328 			 */
   5329 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
   5330 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
   5331 		}
   5332 
   5333 		mss = m_head->m_pkthdr.segsz;
   5334 		txbd_tso_flags |=
   5335 		    BGE_TXBDFLAG_CPU_PRE_DMA |
   5336 		    BGE_TXBDFLAG_CPU_POST_DMA;
   5337 
   5338 		/*
   5339 		 * Our NIC TSO-assist assumes TSO has standard, optionless
   5340 		 * IPv4 and TCP headers, which total 40 bytes. By default,
   5341 		 * the NIC copies 40 bytes of IP/TCP header from the
   5342 		 * supplied header into the IP/TCP header portion of
   5343 		 * each post-TSO-segment. If the supplied packet has IP or
   5344 		 * TCP options, we need to tell the NIC to copy those extra
   5345 		 * bytes into each  post-TSO header, in addition to the normal
   5346 		 * 40-byte IP/TCP header (and to leave space accordingly).
   5347 		 * Unfortunately, the driver encoding of option length
   5348 		 * varies across different ASIC families.
   5349 		 */
   5350 		tcp_seg_flags = 0;
   5351 		bge_hlen = ip_tcp_hlen >> 2;
   5352 		if (BGE_IS_5717_PLUS(sc)) {
   5353 			tcp_seg_flags = (bge_hlen & 0x3) << 14;
   5354 			txbd_tso_flags |=
   5355 			    ((bge_hlen & 0xF8) << 7) | ((bge_hlen & 0x4) << 2);
   5356 		} else if (BGE_IS_5705_PLUS(sc)) {
   5357 			tcp_seg_flags = bge_hlen << 11;
   5358 		} else {
   5359 			/* XXX iptcp_opt_words or bge_hlen ? */
   5360 			txbd_tso_flags |= iptcp_opt_words << 12;
   5361 		}
   5362 		maxsegsize = mss | tcp_seg_flags;
   5363 		ip->ip_len = htons(mss + ip_tcp_hlen);
   5364 		ip->ip_sum = 0;
   5365 
   5366 	}	/* TSO setup */
   5367 
   5368 	have_vtag = vlan_has_tag(m_head);
   5369 	if (have_vtag)
   5370 		vtag = vlan_get_tag(m_head);
   5371 
   5372 	/*
   5373 	 * Start packing the mbufs in this chain into
   5374 	 * the fragment pointers. Stop when we run out
   5375 	 * of fragments or hit the end of the mbuf chain.
   5376 	 */
   5377 	remap = true;
   5378 load_again:
   5379 	error = bus_dmamap_load_mbuf(dmatag, dmamap, m_head, BUS_DMA_NOWAIT);
   5380 	if (__predict_false(error)) {
   5381 		if (error == EFBIG && remap) {
   5382 			struct mbuf *m;
   5383 			remap = false;
   5384 			m = m_defrag(m_head, M_NOWAIT);
   5385 			if (m != NULL) {
   5386 				KASSERT(m == m_head);
   5387 				goto load_again;
   5388 			}
   5389 		}
   5390 		return error;
   5391 	}
   5392 	/*
   5393 	 * Sanity check: avoid coming within 16 descriptors
   5394 	 * of the end of the ring.
   5395 	 */
   5396 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
   5397 		BGE_TSO_PRINTF(("%s: "
   5398 		    " dmamap_load_mbuf too close to ring wrap\n",
   5399 		    device_xname(sc->bge_dev)));
   5400 		goto fail_unload;
   5401 	}
   5402 
   5403 	/* Iterate over dmap-map fragments. */
   5404 	f = prev_f = NULL;
   5405 	cur = frag = *txidx;
   5406 
   5407 	for (i = 0; i < dmamap->dm_nsegs; i++) {
   5408 		f = &sc->bge_rdata->bge_tx_ring[frag];
   5409 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
   5410 			break;
   5411 
   5412 		BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
   5413 		f->bge_len = dmamap->dm_segs[i].ds_len;
   5414 		if (sizeof(bus_addr_t) > 4 && dma->is_dma32 == false && use_tso && (
   5415 		    (dmamap->dm_segs[i].ds_addr & 0xffffffff00000000) !=
   5416 		    ((dmamap->dm_segs[i].ds_addr + f->bge_len) & 0xffffffff00000000) ||
   5417 		    (prev_f != NULL &&
   5418 		     prev_f->bge_addr.bge_addr_hi != f->bge_addr.bge_addr_hi))
   5419 		   ) {
   5420 			/*
   5421 			 * watchdog timeout issue was observed with TSO,
   5422 			 * limiting DMA address space to 32bits seems to
   5423 			 * address the issue.
   5424 			 */
   5425 			bus_dmamap_unload(dmatag, dmamap);
   5426 			dmatag = sc->bge_dmatag32;
   5427 			dmamap = dma->dmamap32;
   5428 			dma->is_dma32 = true;
   5429 			remap = true;
   5430 			goto load_again;
   5431 		}
   5432 
   5433 		/*
   5434 		 * For 5751 and follow-ons, for TSO we must turn
   5435 		 * off checksum-assist flag in the tx-descr, and
   5436 		 * supply the ASIC-revision-specific encoding
   5437 		 * of TSO flags and segsize.
   5438 		 */
   5439 		if (use_tso) {
   5440 			if (BGE_IS_575X_PLUS(sc) || i == 0) {
   5441 				f->bge_rsvd = maxsegsize;
   5442 				f->bge_flags = csum_flags | txbd_tso_flags;
   5443 			} else {
   5444 				f->bge_rsvd = 0;
   5445 				f->bge_flags =
   5446 				  (csum_flags | txbd_tso_flags) & 0x0fff;
   5447 			}
   5448 		} else {
   5449 			f->bge_rsvd = 0;
   5450 			f->bge_flags = csum_flags;
   5451 		}
   5452 
   5453 		if (have_vtag) {
   5454 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
   5455 			f->bge_vlan_tag = vtag;
   5456 		} else {
   5457 			f->bge_vlan_tag = 0;
   5458 		}
   5459 		prev_f = f;
   5460 		cur = frag;
   5461 		BGE_INC(frag, BGE_TX_RING_CNT);
   5462 	}
   5463 
   5464 	if (i < dmamap->dm_nsegs) {
   5465 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
   5466 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
   5467 		goto fail_unload;
   5468 	}
   5469 
   5470 	bus_dmamap_sync(dmatag, dmamap, 0, dmamap->dm_mapsize,
   5471 	    BUS_DMASYNC_PREWRITE);
   5472 
   5473 	if (frag == sc->bge_tx_saved_considx) {
   5474 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
   5475 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
   5476 
   5477 		goto fail_unload;
   5478 	}
   5479 
   5480 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
   5481 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
   5482 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
   5483 	sc->txdma[cur] = dma;
   5484 	sc->bge_txcnt += dmamap->dm_nsegs;
   5485 
   5486 	*txidx = frag;
   5487 
   5488 	return 0;
   5489 
   5490 fail_unload:
   5491 	bus_dmamap_unload(dmatag, dmamap);
   5492 
   5493 	return ENOBUFS;
   5494 }
   5495 
   5496 
   5497 static void
   5498 bge_start(struct ifnet *ifp)
   5499 {
   5500 	struct bge_softc * const sc = ifp->if_softc;
   5501 
   5502 	mutex_enter(sc->sc_intr_lock);
   5503 	if (!sc->bge_txrx_stopping)
   5504 		bge_start_locked(ifp);
   5505 	mutex_exit(sc->sc_intr_lock);
   5506 }
   5507 
   5508 /*
   5509  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
   5510  * to the mbuf data regions directly in the transmit descriptors.
   5511  */
   5512 static void
   5513 bge_start_locked(struct ifnet *ifp)
   5514 {
   5515 	struct bge_softc * const sc = ifp->if_softc;
   5516 	struct mbuf *m_head = NULL;
   5517 	struct mbuf *m;
   5518 	uint32_t prodidx;
   5519 	int pkts = 0;
   5520 	int error;
   5521 
   5522 	KASSERT(mutex_owned(sc->sc_intr_lock));
   5523 
   5524 	prodidx = sc->bge_tx_prodidx;
   5525 
   5526 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
   5527 		IFQ_POLL(&ifp->if_snd, m_head);
   5528 		if (m_head == NULL)
   5529 			break;
   5530 
   5531 #if 0
   5532 		/*
   5533 		 * XXX
   5534 		 * safety overkill.  If this is a fragmented packet chain
   5535 		 * with delayed TCP/UDP checksums, then only encapsulate
   5536 		 * it if we have enough descriptors to handle the entire
   5537 		 * chain at once.
   5538 		 * (paranoia -- may not actually be needed)
   5539 		 */
   5540 		if (m_head->m_flags & M_FIRSTFRAG &&
   5541 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
   5542 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
   5543 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
   5544 				ifp->if_flags |= IFF_OACTIVE;
   5545 				break;
   5546 			}
   5547 		}
   5548 #endif
   5549 
   5550 		/*
   5551 		 * Pack the data into the transmit ring. If we
   5552 		 * don't have room, set the OACTIVE flag and wait
   5553 		 * for the NIC to drain the ring.
   5554 		 */
   5555 		error = bge_encap(sc, m_head, &prodidx);
   5556 		if (__predict_false(error)) {
   5557 			if (SLIST_EMPTY(&sc->txdma_list)) {
   5558 				/* just wait for the transmit ring to drain */
   5559 				break;
   5560 			}
   5561 			IFQ_DEQUEUE(&ifp->if_snd, m);
   5562 			KASSERT(m == m_head);
   5563 			m_freem(m_head);
   5564 			continue;
   5565 		}
   5566 
   5567 		/* now we are committed to transmit the packet */
   5568 		IFQ_DEQUEUE(&ifp->if_snd, m);
   5569 		KASSERT(m == m_head);
   5570 		pkts++;
   5571 
   5572 		/*
   5573 		 * If there's a BPF listener, bounce a copy of this frame
   5574 		 * to him.
   5575 		 */
   5576 		bpf_mtap(ifp, m_head, BPF_D_OUT);
   5577 	}
   5578 	if (pkts == 0)
   5579 		return;
   5580 
   5581 	/* Transmit */
   5582 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   5583 	/* 5700 b2 errata */
   5584 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
   5585 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
   5586 
   5587 	sc->bge_tx_prodidx = prodidx;
   5588 	sc->bge_tx_lastsent = time_uptime;
   5589 	sc->bge_tx_sending = true;
   5590 }
   5591 
   5592 static int
   5593 bge_init(struct ifnet *ifp)
   5594 {
   5595 	struct bge_softc * const sc = ifp->if_softc;
   5596 	const uint16_t *m;
   5597 	uint32_t mode, reg;
   5598 	int error = 0;
   5599 
   5600 	ASSERT_SLEEPABLE();
   5601 	KASSERT(IFNET_LOCKED(ifp));
   5602 	KASSERT(ifp == &sc->ethercom.ec_if);
   5603 
   5604 	if (sc->bge_detaching)
   5605 		return ENXIO;
   5606 
   5607 	/* Cancel pending I/O and flush buffers. */
   5608 	bge_stop(ifp, 0);
   5609 
   5610 	bge_stop_fw(sc);
   5611 	bge_sig_pre_reset(sc, BGE_RESET_START);
   5612 	bge_reset(sc);
   5613 	bge_sig_legacy(sc, BGE_RESET_START);
   5614 
   5615 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
   5616 		reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
   5617 		reg &= ~(BGE_CPMU_CTRL_LINK_AWARE_MODE |
   5618 		    BGE_CPMU_CTRL_LINK_IDLE_MODE);
   5619 		CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
   5620 
   5621 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
   5622 		reg &= ~BGE_CPMU_LSPD_10MB_CLK;
   5623 		reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
   5624 		CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
   5625 
   5626 		reg = CSR_READ_4(sc, BGE_CPMU_LNK_AWARE_PWRMD);
   5627 		reg &= ~BGE_CPMU_LNK_AWARE_MACCLK_MASK;
   5628 		reg |= BGE_CPMU_LNK_AWARE_MACCLK_6_25;
   5629 		CSR_WRITE_4(sc, BGE_CPMU_LNK_AWARE_PWRMD, reg);
   5630 
   5631 		reg = CSR_READ_4(sc, BGE_CPMU_HST_ACC);
   5632 		reg &= ~BGE_CPMU_HST_ACC_MACCLK_MASK;
   5633 		reg |= BGE_CPMU_HST_ACC_MACCLK_6_25;
   5634 		CSR_WRITE_4(sc, BGE_CPMU_HST_ACC, reg);
   5635 	}
   5636 
   5637 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
   5638 		pcireg_t aercap;
   5639 
   5640 		reg = CSR_READ_4(sc, BGE_PCIE_PWRMNG_THRESH);
   5641 		reg = (reg & ~BGE_PCIE_PWRMNG_L1THRESH_MASK)
   5642 		    | BGE_PCIE_PWRMNG_L1THRESH_4MS
   5643 		    | BGE_PCIE_PWRMNG_EXTASPMTMR_EN;
   5644 		CSR_WRITE_4(sc, BGE_PCIE_PWRMNG_THRESH, reg);
   5645 
   5646 		reg = CSR_READ_4(sc, BGE_PCIE_EIDLE_DELAY);
   5647 		reg = (reg & ~BGE_PCIE_EIDLE_DELAY_MASK)
   5648 		    | BGE_PCIE_EIDLE_DELAY_13CLK;
   5649 		CSR_WRITE_4(sc, BGE_PCIE_EIDLE_DELAY, reg);
   5650 
   5651 		/* Clear correctable error */
   5652 		if (pci_get_ext_capability(sc->sc_pc, sc->sc_pcitag,
   5653 		    PCI_EXTCAP_AER, &aercap, NULL) != 0)
   5654 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
   5655 			    aercap + PCI_AER_COR_STATUS, 0xffffffff);
   5656 
   5657 		reg = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
   5658 		reg = (reg & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
   5659 		    | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
   5660 		CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, reg);
   5661 	}
   5662 
   5663 	bge_sig_post_reset(sc, BGE_RESET_START);
   5664 
   5665 	bge_chipinit(sc);
   5666 
   5667 	/*
   5668 	 * Init the various state machines, ring
   5669 	 * control blocks and firmware.
   5670 	 */
   5671 	error = bge_blockinit(sc);
   5672 	if (error != 0) {
   5673 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
   5674 		    error);
   5675 		return error;
   5676 	}
   5677 
   5678 	/* 5718 step 25, 57XX step 54 */
   5679 	/* Specify MTU. */
   5680 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
   5681 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
   5682 
   5683 	/* 5718 step 23 */
   5684 	/* Load our MAC address. */
   5685 	m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
   5686 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
   5687 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI,
   5688 	    ((uint32_t)htons(m[1]) << 16) | htons(m[2]));
   5689 
   5690 	/* Enable or disable promiscuous mode as needed. */
   5691 	if (ifp->if_flags & IFF_PROMISC)
   5692 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5693 	else
   5694 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5695 
   5696 	/* Program multicast filter. */
   5697 	mutex_enter(sc->sc_mcast_lock);
   5698 	bge_setmulti(sc);
   5699 	mutex_exit(sc->sc_mcast_lock);
   5700 
   5701 	/* Init RX ring. */
   5702 	bge_init_rx_ring_std(sc);
   5703 
   5704 	/*
   5705 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
   5706 	 * memory to insure that the chip has in fact read the first
   5707 	 * entry of the ring.
   5708 	 */
   5709 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
   5710 		u_int i;
   5711 		for (i = 0; i < 10; i++) {
   5712 			DELAY(20);
   5713 			uint32_t v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
   5714 			if (v == (MCLBYTES - ETHER_ALIGN))
   5715 				break;
   5716 		}
   5717 		if (i == 10)
   5718 			aprint_error_dev(sc->bge_dev,
   5719 			    "5705 A0 chip failed to load RX ring\n");
   5720 	}
   5721 
   5722 	/* Init jumbo RX ring. */
   5723 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
   5724 		bge_init_rx_ring_jumbo(sc);
   5725 
   5726 	/* Init our RX return ring index */
   5727 	sc->bge_rx_saved_considx = 0;
   5728 
   5729 	/* Init TX ring. */
   5730 	bge_init_tx_ring(sc);
   5731 
   5732 	/* 5718 step 63, 57XX step 94 */
   5733 	/* Enable TX MAC state machine lockup fix. */
   5734 	mode = CSR_READ_4(sc, BGE_TX_MODE);
   5735 	if (BGE_IS_5755_PLUS(sc) ||
   5736 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   5737 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
   5738 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
   5739 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
   5740 		mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
   5741 		mode |= CSR_READ_4(sc, BGE_TX_MODE) &
   5742 		    (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
   5743 	}
   5744 
   5745 	/* Turn on transmitter */
   5746 	CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
   5747 	/* 5718 step 64 */
   5748 	DELAY(100);
   5749 
   5750 	/* 5718 step 65, 57XX step 95 */
   5751 	/* Turn on receiver */
   5752 	mode = CSR_READ_4(sc, BGE_RX_MODE);
   5753 	if (BGE_IS_5755_PLUS(sc))
   5754 		mode |= BGE_RXMODE_IPV6_ENABLE;
   5755 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
   5756 		mode |= BGE_RXMODE_IPV4_FRAG_FIX;
   5757 	CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
   5758 	/* 5718 step 66 */
   5759 	DELAY(10);
   5760 
   5761 	/* 5718 step 12, 57XX step 37 */
   5762 	/*
   5763 	 * XXX Documents of 5718 series and 577xx say the recommended value
   5764 	 * is 1, but tg3 set 1 only on 57765 series.
   5765 	 */
   5766 	if (BGE_IS_57765_PLUS(sc))
   5767 		reg = 1;
   5768 	else
   5769 		reg = 2;
   5770 	CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg);
   5771 
   5772 	/* Tell firmware we're alive. */
   5773 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   5774 
   5775 	/* Enable host interrupts. */
   5776 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
   5777 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   5778 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
   5779 
   5780 	mutex_enter(sc->sc_intr_lock);
   5781 	if ((error = bge_ifmedia_upd(ifp)) == 0) {
   5782 		sc->bge_txrx_stopping = false;
   5783 
   5784 		/* IFNET_LOCKED asserted above */
   5785 		ifp->if_flags |= IFF_RUNNING;
   5786 
   5787 		callout_schedule(&sc->bge_timeout, hz);
   5788 	}
   5789 	mutex_exit(sc->sc_intr_lock);
   5790 
   5791 	mutex_enter(sc->sc_mcast_lock);
   5792 	sc->bge_if_flags = ifp->if_flags;
   5793 	mutex_exit(sc->sc_mcast_lock);
   5794 
   5795 	return error;
   5796 }
   5797 
   5798 /*
   5799  * Set media options.
   5800  */
   5801 static int
   5802 bge_ifmedia_upd(struct ifnet *ifp)
   5803 {
   5804 	struct bge_softc * const sc = ifp->if_softc;
   5805 	struct mii_data * const mii = &sc->bge_mii;
   5806 	struct ifmedia * const ifm = &sc->bge_ifmedia;
   5807 	int rc;
   5808 
   5809 	KASSERT(mutex_owned(sc->sc_intr_lock));
   5810 
   5811 	/* If this is a 1000baseX NIC, enable the TBI port. */
   5812 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   5813 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
   5814 			return EINVAL;
   5815 		switch (IFM_SUBTYPE(ifm->ifm_media)) {
   5816 		case IFM_AUTO:
   5817 			/*
   5818 			 * The BCM5704 ASIC appears to have a special
   5819 			 * mechanism for programming the autoneg
   5820 			 * advertisement registers in TBI mode.
   5821 			 */
   5822 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
   5823 				uint32_t sgdig;
   5824 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
   5825 				if (sgdig & BGE_SGDIGSTS_DONE) {
   5826 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
   5827 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
   5828 					sgdig |= BGE_SGDIGCFG_AUTO |
   5829 					    BGE_SGDIGCFG_PAUSE_CAP |
   5830 					    BGE_SGDIGCFG_ASYM_PAUSE;
   5831 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
   5832 					    sgdig | BGE_SGDIGCFG_SEND);
   5833 					DELAY(5);
   5834 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
   5835 					    sgdig);
   5836 				}
   5837 			}
   5838 			break;
   5839 		case IFM_1000_SX:
   5840 			if ((ifm->ifm_media & IFM_FDX) != 0) {
   5841 				BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE,
   5842 				    BGE_MACMODE_HALF_DUPLEX);
   5843 			} else {
   5844 				BGE_SETBIT_FLUSH(sc, BGE_MAC_MODE,
   5845 				    BGE_MACMODE_HALF_DUPLEX);
   5846 			}
   5847 			DELAY(40);
   5848 			break;
   5849 		default:
   5850 			return EINVAL;
   5851 		}
   5852 		/* XXX 802.3x flow control for 1000BASE-SX */
   5853 		return 0;
   5854 	}
   5855 
   5856 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784) &&
   5857 	    (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5784_AX)) {
   5858 		uint32_t reg;
   5859 
   5860 		reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
   5861 		if ((reg & BGE_CPMU_CTRL_GPHY_10MB_RXONLY) != 0) {
   5862 			reg &= ~BGE_CPMU_CTRL_GPHY_10MB_RXONLY;
   5863 			CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
   5864 		}
   5865 	}
   5866 
   5867 	BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
   5868 	if ((rc = mii_mediachg(mii)) == ENXIO)
   5869 		return 0;
   5870 
   5871 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
   5872 		uint32_t reg;
   5873 
   5874 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_1000MB_CLK);
   5875 		if ((reg & BGE_CPMU_LSPD_1000MB_MACCLK_MASK)
   5876 		    == (BGE_CPMU_LSPD_1000MB_MACCLK_12_5)) {
   5877 			reg &= ~BGE_CPMU_LSPD_1000MB_MACCLK_MASK;
   5878 			delay(40);
   5879 			CSR_WRITE_4(sc, BGE_CPMU_LSPD_1000MB_CLK, reg);
   5880 		}
   5881 	}
   5882 
   5883 	/*
   5884 	 * Force an interrupt so that we will call bge_link_upd
   5885 	 * if needed and clear any pending link state attention.
   5886 	 * Without this we are not getting any further interrupts
   5887 	 * for link state changes and thus will not UP the link and
   5888 	 * not be able to send in bge_start. The only way to get
   5889 	 * things working was to receive a packet and get a RX intr.
   5890 	 */
   5891 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
   5892 	    sc->bge_flags & BGEF_IS_5788)
   5893 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
   5894 	else
   5895 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
   5896 
   5897 	return rc;
   5898 }
   5899 
   5900 /*
   5901  * Report current media status.
   5902  */
   5903 static void
   5904 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   5905 {
   5906 	struct bge_softc * const sc = ifp->if_softc;
   5907 	struct mii_data * const mii = &sc->bge_mii;
   5908 
   5909 	KASSERT(mutex_owned(sc->sc_intr_lock));
   5910 
   5911 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   5912 		ifmr->ifm_status = IFM_AVALID;
   5913 		ifmr->ifm_active = IFM_ETHER;
   5914 		if (CSR_READ_4(sc, BGE_MAC_STS) &
   5915 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
   5916 			ifmr->ifm_status |= IFM_ACTIVE;
   5917 		ifmr->ifm_active |= IFM_1000_SX;
   5918 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
   5919 			ifmr->ifm_active |= IFM_HDX;
   5920 		else
   5921 			ifmr->ifm_active |= IFM_FDX;
   5922 		return;
   5923 	}
   5924 
   5925 	mii_pollstat(mii);
   5926 	ifmr->ifm_status = mii->mii_media_status;
   5927 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   5928 	    sc->bge_flowflags;
   5929 }
   5930 
   5931 static int
   5932 bge_ifflags_cb(struct ethercom *ec)
   5933 {
   5934 	struct ifnet * const ifp = &ec->ec_if;
   5935 	struct bge_softc * const sc = ifp->if_softc;
   5936 	int ret = 0;
   5937 
   5938 	KASSERT(IFNET_LOCKED(ifp));
   5939 	mutex_enter(sc->sc_mcast_lock);
   5940 
   5941 	u_short change = ifp->if_flags ^ sc->bge_if_flags;
   5942 	sc->bge_if_flags = ifp->if_flags;
   5943 
   5944 	if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0) {
   5945 		ret = ENETRESET;
   5946 	} else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
   5947 		if ((ifp->if_flags & IFF_PROMISC) == 0)
   5948 			BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5949 		else
   5950 			BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
   5951 
   5952 		bge_setmulti(sc);
   5953 	}
   5954 
   5955 	mutex_exit(sc->sc_mcast_lock);
   5956 
   5957 	return ret;
   5958 }
   5959 
   5960 static int
   5961 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
   5962 {
   5963 	struct bge_softc * const sc = ifp->if_softc;
   5964 	struct ifreq * const ifr = (struct ifreq *) data;
   5965 	int error = 0;
   5966 
   5967 	switch (command) {
   5968 	case SIOCADDMULTI:
   5969 	case SIOCDELMULTI:
   5970 		break;
   5971 	default:
   5972 		KASSERT(IFNET_LOCKED(ifp));
   5973 	}
   5974 
   5975 	const int s = splnet();
   5976 
   5977 	switch (command) {
   5978 	case SIOCSIFMEDIA:
   5979 		mutex_enter(sc->sc_intr_lock);
   5980 		/* XXX Flow control is not supported for 1000BASE-SX */
   5981 		if (sc->bge_flags & BGEF_FIBER_TBI) {
   5982 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   5983 			sc->bge_flowflags = 0;
   5984 		}
   5985 
   5986 		/* Flow control requires full-duplex mode. */
   5987 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   5988 		    (ifr->ifr_media & IFM_FDX) == 0) {
   5989 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   5990 		}
   5991 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   5992 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   5993 				/* We can do both TXPAUSE and RXPAUSE. */
   5994 				ifr->ifr_media |=
   5995 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   5996 			}
   5997 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   5998 		}
   5999 		mutex_exit(sc->sc_intr_lock);
   6000 
   6001 		if (sc->bge_flags & BGEF_FIBER_TBI) {
   6002 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
   6003 			    command);
   6004 		} else {
   6005 			struct mii_data * const mii = &sc->bge_mii;
   6006 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
   6007 			    command);
   6008 		}
   6009 		break;
   6010 	default:
   6011 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   6012 			break;
   6013 
   6014 		error = 0;
   6015 
   6016 		if (command == SIOCADDMULTI || command == SIOCDELMULTI) {
   6017 			mutex_enter(sc->sc_mcast_lock);
   6018 			if (sc->bge_if_flags & IFF_RUNNING) {
   6019 				bge_setmulti(sc);
   6020 			}
   6021 			mutex_exit(sc->sc_mcast_lock);
   6022 		}
   6023 		break;
   6024 	}
   6025 
   6026 	splx(s);
   6027 
   6028 	return error;
   6029 }
   6030 
   6031 static bool
   6032 bge_watchdog_check(struct bge_softc * const sc)
   6033 {
   6034 
   6035 	KASSERT(mutex_owned(sc->sc_intr_lock));
   6036 
   6037 	if (!sc->bge_tx_sending)
   6038 		return true;
   6039 
   6040 	if (time_uptime - sc->bge_tx_lastsent <= bge_watchdog_timeout)
   6041 		return true;
   6042 
   6043 	/* If pause frames are active then don't reset the hardware. */
   6044 	if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
   6045 		const uint32_t status = CSR_READ_4(sc, BGE_RX_STS);
   6046 		if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
   6047 			/*
   6048 			 * If link partner has us in XOFF state then wait for
   6049 			 * the condition to clear.
   6050 			 */
   6051 			CSR_WRITE_4(sc, BGE_RX_STS, status);
   6052 			sc->bge_tx_lastsent = time_uptime;
   6053 			return true;
   6054 		} else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
   6055 		    (status & BGE_RXSTAT_RCVD_XON) != 0) {
   6056 			/*
   6057 			 * If link partner has us in XOFF state then wait for
   6058 			 * the condition to clear.
   6059 			 */
   6060 			CSR_WRITE_4(sc, BGE_RX_STS, status);
   6061 			sc->bge_tx_lastsent = time_uptime;
   6062 			return true;
   6063 		}
   6064 		/*
   6065 		 * Any other condition is unexpected and the controller
   6066 		 * should be reset.
   6067 		 */
   6068 	}
   6069 
   6070 	return false;
   6071 }
   6072 
   6073 static bool
   6074 bge_watchdog_tick(struct ifnet *ifp)
   6075 {
   6076 	struct bge_softc * const sc = ifp->if_softc;
   6077 
   6078 	KASSERT(mutex_owned(sc->sc_intr_lock));
   6079 
   6080 	if (!sc->sc_trigger_reset && bge_watchdog_check(sc))
   6081 		return true;
   6082 
   6083 	if (atomic_swap_uint(&sc->sc_reset_pending, 1) == 0)
   6084 		workqueue_enqueue(sc->sc_reset_wq, &sc->sc_reset_work, NULL);
   6085 
   6086 	return false;
   6087 }
   6088 
   6089 /*
   6090  * Perform an interface watchdog reset.
   6091  */
   6092 static void
   6093 bge_handle_reset_work(struct work *work, void *arg)
   6094 {
   6095 	struct bge_softc * const sc = arg;
   6096 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   6097 
   6098 	printf("%s: watchdog timeout -- resetting\n", ifp->if_xname);
   6099 
   6100 	/* Don't want ioctl operations to happen */
   6101 	IFNET_LOCK(ifp);
   6102 
   6103 	/* reset the interface. */
   6104 	bge_init(ifp);
   6105 
   6106 	IFNET_UNLOCK(ifp);
   6107 
   6108 	/*
   6109 	 * There are still some upper layer processing which call
   6110 	 * ifp->if_start(). e.g. ALTQ or one CPU system
   6111 	 */
   6112 	/* Try to get more packets going. */
   6113 	ifp->if_start(ifp);
   6114 
   6115 	atomic_store_relaxed(&sc->sc_reset_pending, 0);
   6116 }
   6117 
   6118 static void
   6119 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
   6120 {
   6121 	int i;
   6122 
   6123 	BGE_CLRBIT_FLUSH(sc, reg, bit);
   6124 
   6125 	for (i = 0; i < 1000; i++) {
   6126 		delay(100);
   6127 		if ((CSR_READ_4(sc, reg) & bit) == 0)
   6128 			return;
   6129 	}
   6130 
   6131 	/*
   6132 	 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
   6133 	 * on some environment (and once after boot?)
   6134 	 */
   6135 	if (reg != BGE_SRS_MODE)
   6136 		aprint_error_dev(sc->bge_dev,
   6137 		    "block failed to stop: reg 0x%lx, bit 0x%08x\n",
   6138 		    (u_long)reg, bit);
   6139 }
   6140 
   6141 /*
   6142  * Stop the adapter and free any mbufs allocated to the
   6143  * RX and TX lists.
   6144  */
   6145 static void
   6146 bge_stop(struct ifnet *ifp, int disable)
   6147 {
   6148 	struct bge_softc * const sc = ifp->if_softc;
   6149 
   6150 	ASSERT_SLEEPABLE();
   6151 	KASSERT(IFNET_LOCKED(ifp));
   6152 
   6153 	mutex_enter(sc->sc_intr_lock);
   6154 	sc->bge_txrx_stopping = true;
   6155 	mutex_exit(sc->sc_intr_lock);
   6156 
   6157 	callout_halt(&sc->bge_timeout, NULL);
   6158 
   6159 	/* Disable host interrupts. */
   6160 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
   6161 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
   6162 
   6163 	/*
   6164 	 * Tell firmware we're shutting down.
   6165 	 */
   6166 	bge_stop_fw(sc);
   6167 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
   6168 
   6169 	/*
   6170 	 * Disable all of the receiver blocks.
   6171 	 */
   6172 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
   6173 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
   6174 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
   6175 	if (BGE_IS_5700_FAMILY(sc))
   6176 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
   6177 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
   6178 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
   6179 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
   6180 
   6181 	/*
   6182 	 * Disable all of the transmit blocks.
   6183 	 */
   6184 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
   6185 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
   6186 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
   6187 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
   6188 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
   6189 	if (BGE_IS_5700_FAMILY(sc))
   6190 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
   6191 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
   6192 
   6193 	BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
   6194 	delay(40);
   6195 
   6196 	bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
   6197 
   6198 	/*
   6199 	 * Shut down all of the memory managers and related
   6200 	 * state machines.
   6201 	 */
   6202 	/* 5718 step 5a,5b */
   6203 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
   6204 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
   6205 	if (BGE_IS_5700_FAMILY(sc))
   6206 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
   6207 
   6208 	/* 5718 step 5c,5d */
   6209 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
   6210 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
   6211 
   6212 	if (BGE_IS_5700_FAMILY(sc)) {
   6213 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
   6214 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
   6215 	}
   6216 
   6217 	bge_reset(sc);
   6218 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
   6219 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
   6220 
   6221 	/*
   6222 	 * Keep the ASF firmware running if up.
   6223 	 */
   6224 	if (sc->bge_asf_mode & ASF_STACKUP)
   6225 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   6226 	else
   6227 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
   6228 
   6229 	/* Free the RX lists. */
   6230 	bge_free_rx_ring_std(sc);
   6231 
   6232 	/* Free jumbo RX list. */
   6233 	if (BGE_IS_JUMBO_CAPABLE(sc))
   6234 		bge_free_rx_ring_jumbo(sc);
   6235 
   6236 	/* Free TX buffers. */
   6237 	bge_free_tx_ring(sc, disable);
   6238 
   6239 	/*
   6240 	 * Isolate/power down the PHY.
   6241 	 */
   6242 	if (!(sc->bge_flags & BGEF_FIBER_TBI)) {
   6243 		mutex_enter(sc->sc_intr_lock);
   6244 		mii_down(&sc->bge_mii);
   6245 		mutex_exit(sc->sc_intr_lock);
   6246 	}
   6247 
   6248 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
   6249 
   6250 	/* Clear MAC's link state (PHY may still have link UP). */
   6251 	BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   6252 
   6253 	ifp->if_flags &= ~IFF_RUNNING;
   6254 
   6255 	mutex_enter(sc->sc_mcast_lock);
   6256 	sc->bge_if_flags = ifp->if_flags;
   6257 	mutex_exit(sc->sc_mcast_lock);
   6258 }
   6259 
   6260 static void
   6261 bge_link_upd(struct bge_softc *sc)
   6262 {
   6263 	struct ifnet * const ifp = &sc->ethercom.ec_if;
   6264 	struct mii_data * const mii = &sc->bge_mii;
   6265 	uint32_t status;
   6266 	uint16_t phyval;
   6267 	int link;
   6268 
   6269 	KASSERT(sc->sc_intr_lock);
   6270 
   6271 	/* Clear 'pending link event' flag */
   6272 	BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
   6273 
   6274 	/*
   6275 	 * Process link state changes.
   6276 	 * Grrr. The link status word in the status block does
   6277 	 * not work correctly on the BCM5700 rev AX and BX chips,
   6278 	 * according to all available information. Hence, we have
   6279 	 * to enable MII interrupts in order to properly obtain
   6280 	 * async link changes. Unfortunately, this also means that
   6281 	 * we have to read the MAC status register to detect link
   6282 	 * changes, thereby adding an additional register access to
   6283 	 * the interrupt handler.
   6284 	 */
   6285 
   6286 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
   6287 		status = CSR_READ_4(sc, BGE_MAC_STS);
   6288 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
   6289 			mii_pollstat(mii);
   6290 
   6291 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   6292 			    mii->mii_media_status & IFM_ACTIVE &&
   6293 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   6294 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   6295 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   6296 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   6297 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   6298 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   6299 
   6300 			/* Clear the interrupt */
   6301 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
   6302 			    BGE_EVTENB_MI_INTERRUPT);
   6303 			bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
   6304 			    BRGPHY_MII_ISR, &phyval);
   6305 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
   6306 			    BRGPHY_MII_IMR, BRGPHY_INTRS);
   6307 		}
   6308 		return;
   6309 	}
   6310 
   6311 	if (sc->bge_flags & BGEF_FIBER_TBI) {
   6312 		status = CSR_READ_4(sc, BGE_MAC_STS);
   6313 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
   6314 			if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
   6315 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   6316 				if (BGE_ASICREV(sc->bge_chipid)
   6317 				    == BGE_ASICREV_BCM5704) {
   6318 					BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE,
   6319 					    BGE_MACMODE_TBI_SEND_CFGS);
   6320 					DELAY(40);
   6321 				}
   6322 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
   6323 				if_link_state_change(ifp, LINK_STATE_UP);
   6324 			}
   6325 		} else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
   6326 			BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   6327 			if_link_state_change(ifp, LINK_STATE_DOWN);
   6328 		}
   6329 	} else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
   6330 		/*
   6331 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
   6332 		 * bit in status word always set. Workaround this bug by
   6333 		 * reading PHY link status directly.
   6334 		 */
   6335 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
   6336 		    BGE_STS_LINK : 0;
   6337 
   6338 		if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
   6339 			mii_pollstat(mii);
   6340 
   6341 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
   6342 			    mii->mii_media_status & IFM_ACTIVE &&
   6343 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
   6344 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
   6345 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
   6346 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
   6347 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
   6348 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
   6349 		}
   6350 	} else {
   6351 		/*
   6352 		 * For controllers that call mii_tick, we have to poll
   6353 		 * link status.
   6354 		 */
   6355 		mii_pollstat(mii);
   6356 	}
   6357 
   6358 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
   6359 		uint32_t reg, scale;
   6360 
   6361 		reg = CSR_READ_4(sc, BGE_CPMU_CLCK_STAT) &
   6362 		    BGE_CPMU_CLCK_STAT_MAC_CLCK_MASK;
   6363 		if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_62_5)
   6364 			scale = 65;
   6365 		else if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_6_25)
   6366 			scale = 6;
   6367 		else
   6368 			scale = 12;
   6369 
   6370 		reg = CSR_READ_4(sc, BGE_MISC_CFG) &
   6371 		    ~BGE_MISCCFG_TIMER_PRESCALER;
   6372 		reg |= scale << 1;
   6373 		CSR_WRITE_4(sc, BGE_MISC_CFG, reg);
   6374 	}
   6375 	/* Clear the attention */
   6376 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
   6377 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
   6378 	    BGE_MACSTAT_LINK_CHANGED);
   6379 }
   6380 
   6381 static int
   6382 bge_sysctl_verify(SYSCTLFN_ARGS)
   6383 {
   6384 	int error, t;
   6385 	struct sysctlnode node;
   6386 
   6387 	node = *rnode;
   6388 	t = *(int*)rnode->sysctl_data;
   6389 	node.sysctl_data = &t;
   6390 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   6391 	if (error || newp == NULL)
   6392 		return error;
   6393 
   6394 #if 0
   6395 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
   6396 	    node.sysctl_num, rnode->sysctl_num));
   6397 #endif
   6398 
   6399 	if (node.sysctl_num == bge_rxthresh_nodenum) {
   6400 		if (t < 0 || t >= NBGE_RX_THRESH)
   6401 			return EINVAL;
   6402 		bge_update_all_threshes(t);
   6403 	} else
   6404 		return EINVAL;
   6405 
   6406 	*(int*)rnode->sysctl_data = t;
   6407 
   6408 	return 0;
   6409 }
   6410 
   6411 /*
   6412  * Set up sysctl(3) MIB, hw.bge.*.
   6413  */
   6414 static void
   6415 bge_sysctl_init(struct bge_softc *sc)
   6416 {
   6417 	int rc, bge_root_num;
   6418 	const struct sysctlnode *node;
   6419 
   6420 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   6421 	    0, CTLTYPE_NODE, "bge",
   6422 	    SYSCTL_DESCR("BGE interface controls"),
   6423 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   6424 		goto out;
   6425 	}
   6426 
   6427 	bge_root_num = node->sysctl_num;
   6428 
   6429 	/* BGE Rx interrupt mitigation level */
   6430 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   6431 	    CTLFLAG_READWRITE,
   6432 	    CTLTYPE_INT, "rx_lvl",
   6433 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
   6434 	    bge_sysctl_verify, 0,
   6435 	    &bge_rx_thresh_lvl,
   6436 	    0, CTL_HW, bge_root_num, CTL_CREATE,
   6437 	    CTL_EOL)) != 0) {
   6438 		goto out;
   6439 	}
   6440 
   6441 	bge_rxthresh_nodenum = node->sysctl_num;
   6442 
   6443 #ifdef BGE_DEBUG
   6444 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
   6445 	    CTLFLAG_READWRITE,
   6446 	    CTLTYPE_BOOL, "trigger_reset",
   6447 	    SYSCTL_DESCR("Trigger an interface reset"),
   6448 	    NULL, 0, &sc->sc_trigger_reset, 0, CTL_CREATE,
   6449 	    CTL_EOL)) != 0) {
   6450 		goto out;
   6451 	}
   6452 #endif
   6453 	return;
   6454 
   6455 out:
   6456 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   6457 }
   6458 
   6459 #ifdef BGE_DEBUG
   6460 void
   6461 bge_debug_info(struct bge_softc *sc)
   6462 {
   6463 
   6464 	printf("Hardware Flags:\n");
   6465 	if (BGE_IS_57765_PLUS(sc))
   6466 		printf(" - 57765 Plus\n");
   6467 	if (BGE_IS_5717_PLUS(sc))
   6468 		printf(" - 5717 Plus\n");
   6469 	if (BGE_IS_5755_PLUS(sc))
   6470 		printf(" - 5755 Plus\n");
   6471 	if (BGE_IS_575X_PLUS(sc))
   6472 		printf(" - 575X Plus\n");
   6473 	if (BGE_IS_5705_PLUS(sc))
   6474 		printf(" - 5705 Plus\n");
   6475 	if (BGE_IS_5714_FAMILY(sc))
   6476 		printf(" - 5714 Family\n");
   6477 	if (BGE_IS_5700_FAMILY(sc))
   6478 		printf(" - 5700 Family\n");
   6479 	if (sc->bge_flags & BGEF_IS_5788)
   6480 		printf(" - 5788\n");
   6481 	if (sc->bge_flags & BGEF_JUMBO_CAPABLE)
   6482 		printf(" - Supports Jumbo Frames\n");
   6483 	if (sc->bge_flags & BGEF_NO_EEPROM)
   6484 		printf(" - No EEPROM\n");
   6485 	if (sc->bge_flags & BGEF_PCIX)
   6486 		printf(" - PCI-X Bus\n");
   6487 	if (sc->bge_flags & BGEF_PCIE)
   6488 		printf(" - PCI Express Bus\n");
   6489 	if (sc->bge_flags & BGEF_RX_ALIGNBUG)
   6490 		printf(" - RX Alignment Bug\n");
   6491 	if (sc->bge_flags & BGEF_APE)
   6492 		printf(" - APE\n");
   6493 	if (sc->bge_flags & BGEF_CPMU_PRESENT)
   6494 		printf(" - CPMU\n");
   6495 	if (sc->bge_flags & BGEF_TSO)
   6496 		printf(" - TSO\n");
   6497 	if (sc->bge_flags & BGEF_TAGGED_STATUS)
   6498 		printf(" - TAGGED_STATUS\n");
   6499 
   6500 	/* PHY related */
   6501 	if (sc->bge_phy_flags & BGEPHYF_NO_3LED)
   6502 		printf(" - No 3 LEDs\n");
   6503 	if (sc->bge_phy_flags & BGEPHYF_CRC_BUG)
   6504 		printf(" - CRC bug\n");
   6505 	if (sc->bge_phy_flags & BGEPHYF_ADC_BUG)
   6506 		printf(" - ADC bug\n");
   6507 	if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG)
   6508 		printf(" - 5704 A0 bug\n");
   6509 	if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG)
   6510 		printf(" - jitter bug\n");
   6511 	if (sc->bge_phy_flags & BGEPHYF_BER_BUG)
   6512 		printf(" - BER bug\n");
   6513 	if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM)
   6514 		printf(" - adjust trim\n");
   6515 	if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED)
   6516 		printf(" - no wirespeed\n");
   6517 
   6518 	/* ASF related */
   6519 	if (sc->bge_asf_mode & ASF_ENABLE)
   6520 		printf(" - ASF enable\n");
   6521 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE)
   6522 		printf(" - ASF new handshake\n");
   6523 	if (sc->bge_asf_mode & ASF_STACKUP)
   6524 		printf(" - ASF stackup\n");
   6525 }
   6526 #endif /* BGE_DEBUG */
   6527 
   6528 static int
   6529 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
   6530 {
   6531 	prop_dictionary_t dict;
   6532 	prop_data_t ea;
   6533 
   6534 	if ((sc->bge_flags & BGEF_NO_EEPROM) == 0)
   6535 		return 1;
   6536 
   6537 	dict = device_properties(sc->bge_dev);
   6538 	ea = prop_dictionary_get(dict, "mac-address");
   6539 	if (ea != NULL) {
   6540 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
   6541 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
   6542 		memcpy(ether_addr, prop_data_value(ea), ETHER_ADDR_LEN);
   6543 		return 0;
   6544 	}
   6545 
   6546 	return 1;
   6547 }
   6548 
   6549 static int
   6550 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
   6551 {
   6552 	uint32_t mac_addr;
   6553 
   6554 	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
   6555 	if ((mac_addr >> 16) == 0x484b) {
   6556 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
   6557 		ether_addr[1] = (uint8_t)mac_addr;
   6558 		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
   6559 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
   6560 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
   6561 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
   6562 		ether_addr[5] = (uint8_t)mac_addr;
   6563 		return 0;
   6564 	}
   6565 	return 1;
   6566 }
   6567 
   6568 static int
   6569 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
   6570 {
   6571 	int mac_offset = BGE_EE_MAC_OFFSET;
   6572 
   6573 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   6574 		mac_offset = BGE_EE_MAC_OFFSET_5906;
   6575 
   6576 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
   6577 	    ETHER_ADDR_LEN));
   6578 }
   6579 
   6580 static int
   6581 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
   6582 {
   6583 
   6584 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
   6585 		return 1;
   6586 
   6587 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
   6588 	   ETHER_ADDR_LEN));
   6589 }
   6590 
   6591 static int
   6592 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
   6593 {
   6594 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
   6595 		/* NOTE: Order is critical */
   6596 		bge_get_eaddr_fw,
   6597 		bge_get_eaddr_mem,
   6598 		bge_get_eaddr_nvram,
   6599 		bge_get_eaddr_eeprom,
   6600 		NULL
   6601 	};
   6602 	const bge_eaddr_fcn_t *func;
   6603 
   6604 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
   6605 		if ((*func)(sc, eaddr) == 0)
   6606 			break;
   6607 	}
   6608 	return *func == NULL ? ENXIO : 0;
   6609 }
   6610