Home | History | Annotate | Line # | Download | only in amdkfd
      1 /*	$NetBSD: kfd_chardev.c,v 1.3 2021/12/18 23:44:59 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright 2014 Advanced Micro Devices, Inc.
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the "Software"),
      8  * to deal in the Software without restriction, including without limitation
      9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     10  * and/or sell copies of the Software, and to permit persons to whom the
     11  * Software is furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice shall be included in
     14  * all copies or substantial portions of the Software.
     15  *
     16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
     20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
     21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
     22  * OTHER DEALINGS IN THE SOFTWARE.
     23  */
     24 
     25 #include <sys/cdefs.h>
     26 __KERNEL_RCSID(0, "$NetBSD: kfd_chardev.c,v 1.3 2021/12/18 23:44:59 riastradh Exp $");
     27 
     28 #include <linux/device.h>
     29 #include <linux/export.h>
     30 #include <linux/err.h>
     31 #include <linux/fs.h>
     32 #include <linux/file.h>
     33 #include <linux/sched.h>
     34 #include <linux/slab.h>
     35 #include <linux/uaccess.h>
     36 #include <linux/compat.h>
     37 #include <uapi/linux/kfd_ioctl.h>
     38 #include <linux/time.h>
     39 #include <linux/mm.h>
     40 #include <linux/mman.h>
     41 #include <linux/dma-buf.h>
     42 #include <asm/processor.h>
     43 #include "kfd_priv.h"
     44 #include "kfd_device_queue_manager.h"
     45 #include "kfd_dbgmgr.h"
     46 #include "amdgpu_amdkfd.h"
     47 
     48 static long kfd_ioctl(struct file *, unsigned int, unsigned long);
     49 static int kfd_open(struct inode *, struct file *);
     50 static int kfd_release(struct inode *, struct file *);
     51 static int kfd_mmap(struct file *, struct vm_area_struct *);
     52 
     53 static const char kfd_dev_name[] = "kfd";
     54 
     55 static const struct file_operations kfd_fops = {
     56 	.owner = THIS_MODULE,
     57 	.unlocked_ioctl = kfd_ioctl,
     58 	.compat_ioctl = compat_ptr_ioctl,
     59 	.open = kfd_open,
     60 	.release = kfd_release,
     61 	.mmap = kfd_mmap,
     62 };
     63 
     64 static int kfd_char_dev_major = -1;
     65 static struct class *kfd_class;
     66 struct device *kfd_device;
     67 
     68 int kfd_chardev_init(void)
     69 {
     70 	int err = 0;
     71 
     72 	kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops);
     73 	err = kfd_char_dev_major;
     74 	if (err < 0)
     75 		goto err_register_chrdev;
     76 
     77 	kfd_class = class_create(THIS_MODULE, kfd_dev_name);
     78 	err = PTR_ERR(kfd_class);
     79 	if (IS_ERR(kfd_class))
     80 		goto err_class_create;
     81 
     82 	kfd_device = device_create(kfd_class, NULL,
     83 					MKDEV(kfd_char_dev_major, 0),
     84 					NULL, kfd_dev_name);
     85 	err = PTR_ERR(kfd_device);
     86 	if (IS_ERR(kfd_device))
     87 		goto err_device_create;
     88 
     89 	return 0;
     90 
     91 err_device_create:
     92 	class_destroy(kfd_class);
     93 err_class_create:
     94 	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
     95 err_register_chrdev:
     96 	return err;
     97 }
     98 
     99 void kfd_chardev_exit(void)
    100 {
    101 	device_destroy(kfd_class, MKDEV(kfd_char_dev_major, 0));
    102 	class_destroy(kfd_class);
    103 	unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
    104 }
    105 
    106 struct device *kfd_chardev(void)
    107 {
    108 	return kfd_device;
    109 }
    110 
    111 
    112 static int kfd_open(struct inode *inode, struct file *filep)
    113 {
    114 	struct kfd_process *process;
    115 	bool is_32bit_user_mode;
    116 
    117 	if (iminor(inode) != 0)
    118 		return -ENODEV;
    119 
    120 	is_32bit_user_mode = in_compat_syscall();
    121 
    122 	if (is_32bit_user_mode) {
    123 		dev_warn(kfd_device,
    124 			"Process %d (32-bit) failed to open /dev/kfd\n"
    125 			"32-bit processes are not supported by amdkfd\n",
    126 			current->pid);
    127 		return -EPERM;
    128 	}
    129 
    130 	process = kfd_create_process(filep);
    131 	if (IS_ERR(process))
    132 		return PTR_ERR(process);
    133 
    134 	if (kfd_is_locked()) {
    135 		kfd_unref_process(process);
    136 		return -EAGAIN;
    137 	}
    138 
    139 	/* filep now owns the reference returned by kfd_create_process */
    140 	filep->private_data = process;
    141 
    142 	dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n",
    143 		process->pasid, process->is_32bit_user_mode);
    144 
    145 	return 0;
    146 }
    147 
    148 static int kfd_release(struct inode *inode, struct file *filep)
    149 {
    150 	struct kfd_process *process = filep->private_data;
    151 
    152 	if (process)
    153 		kfd_unref_process(process);
    154 
    155 	return 0;
    156 }
    157 
    158 static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p,
    159 					void *data)
    160 {
    161 	struct kfd_ioctl_get_version_args *args = data;
    162 
    163 	args->major_version = KFD_IOCTL_MAJOR_VERSION;
    164 	args->minor_version = KFD_IOCTL_MINOR_VERSION;
    165 
    166 	return 0;
    167 }
    168 
    169 static int set_queue_properties_from_user(struct queue_properties *q_properties,
    170 				struct kfd_ioctl_create_queue_args *args)
    171 {
    172 	if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
    173 		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
    174 		return -EINVAL;
    175 	}
    176 
    177 	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
    178 		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
    179 		return -EINVAL;
    180 	}
    181 
    182 	if ((args->ring_base_address) &&
    183 		(!access_ok((const void __user *) args->ring_base_address,
    184 			sizeof(uint64_t)))) {
    185 		pr_err("Can't access ring base address\n");
    186 		return -EFAULT;
    187 	}
    188 
    189 	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
    190 		pr_err("Ring size must be a power of 2 or 0\n");
    191 		return -EINVAL;
    192 	}
    193 
    194 	if (!access_ok((const void __user *) args->read_pointer_address,
    195 			sizeof(uint32_t))) {
    196 		pr_err("Can't access read pointer\n");
    197 		return -EFAULT;
    198 	}
    199 
    200 	if (!access_ok((const void __user *) args->write_pointer_address,
    201 			sizeof(uint32_t))) {
    202 		pr_err("Can't access write pointer\n");
    203 		return -EFAULT;
    204 	}
    205 
    206 	if (args->eop_buffer_address &&
    207 		!access_ok((const void __user *) args->eop_buffer_address,
    208 			sizeof(uint32_t))) {
    209 		pr_debug("Can't access eop buffer");
    210 		return -EFAULT;
    211 	}
    212 
    213 	if (args->ctx_save_restore_address &&
    214 		!access_ok((const void __user *) args->ctx_save_restore_address,
    215 			sizeof(uint32_t))) {
    216 		pr_debug("Can't access ctx save restore buffer");
    217 		return -EFAULT;
    218 	}
    219 
    220 	q_properties->is_interop = false;
    221 	q_properties->queue_percent = args->queue_percentage;
    222 	q_properties->priority = args->queue_priority;
    223 	q_properties->queue_address = args->ring_base_address;
    224 	q_properties->queue_size = args->ring_size;
    225 	q_properties->read_ptr = (uint32_t *) args->read_pointer_address;
    226 	q_properties->write_ptr = (uint32_t *) args->write_pointer_address;
    227 	q_properties->eop_ring_buffer_address = args->eop_buffer_address;
    228 	q_properties->eop_ring_buffer_size = args->eop_buffer_size;
    229 	q_properties->ctx_save_restore_area_address =
    230 			args->ctx_save_restore_address;
    231 	q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size;
    232 	q_properties->ctl_stack_size = args->ctl_stack_size;
    233 	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE ||
    234 		args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
    235 		q_properties->type = KFD_QUEUE_TYPE_COMPUTE;
    236 	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA)
    237 		q_properties->type = KFD_QUEUE_TYPE_SDMA;
    238 	else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_XGMI)
    239 		q_properties->type = KFD_QUEUE_TYPE_SDMA_XGMI;
    240 	else
    241 		return -ENOTSUPP;
    242 
    243 	if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
    244 		q_properties->format = KFD_QUEUE_FORMAT_AQL;
    245 	else
    246 		q_properties->format = KFD_QUEUE_FORMAT_PM4;
    247 
    248 	pr_debug("Queue Percentage: %d, %d\n",
    249 			q_properties->queue_percent, args->queue_percentage);
    250 
    251 	pr_debug("Queue Priority: %d, %d\n",
    252 			q_properties->priority, args->queue_priority);
    253 
    254 	pr_debug("Queue Address: 0x%llX, 0x%llX\n",
    255 			q_properties->queue_address, args->ring_base_address);
    256 
    257 	pr_debug("Queue Size: 0x%llX, %u\n",
    258 			q_properties->queue_size, args->ring_size);
    259 
    260 	pr_debug("Queue r/w Pointers: %px, %px\n",
    261 			q_properties->read_ptr,
    262 			q_properties->write_ptr);
    263 
    264 	pr_debug("Queue Format: %d\n", q_properties->format);
    265 
    266 	pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address);
    267 
    268 	pr_debug("Queue CTX save area: 0x%llX\n",
    269 			q_properties->ctx_save_restore_area_address);
    270 
    271 	return 0;
    272 }
    273 
    274 static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p,
    275 					void *data)
    276 {
    277 	struct kfd_ioctl_create_queue_args *args = data;
    278 	struct kfd_dev *dev;
    279 	int err = 0;
    280 	unsigned int queue_id;
    281 	struct kfd_process_device *pdd;
    282 	struct queue_properties q_properties;
    283 	uint32_t doorbell_offset_in_process = 0;
    284 
    285 	memset(&q_properties, 0, sizeof(struct queue_properties));
    286 
    287 	pr_debug("Creating queue ioctl\n");
    288 
    289 	err = set_queue_properties_from_user(&q_properties, args);
    290 	if (err)
    291 		return err;
    292 
    293 	pr_debug("Looking for gpu id 0x%x\n", args->gpu_id);
    294 	dev = kfd_device_by_id(args->gpu_id);
    295 	if (!dev) {
    296 		pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
    297 		return -EINVAL;
    298 	}
    299 
    300 	mutex_lock(&p->mutex);
    301 
    302 	pdd = kfd_bind_process_to_device(dev, p);
    303 	if (IS_ERR(pdd)) {
    304 		err = -ESRCH;
    305 		goto err_bind_process;
    306 	}
    307 
    308 	pr_debug("Creating queue for PASID 0x%x on gpu 0x%x\n",
    309 			p->pasid,
    310 			dev->id);
    311 
    312 	err = pqm_create_queue(&p->pqm, dev, filep, &q_properties, &queue_id,
    313 			&doorbell_offset_in_process);
    314 	if (err != 0)
    315 		goto err_create_queue;
    316 
    317 	args->queue_id = queue_id;
    318 
    319 
    320 	/* Return gpu_id as doorbell offset for mmap usage */
    321 	args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL;
    322 	args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id);
    323 	if (KFD_IS_SOC15(dev->device_info->asic_family))
    324 		/* On SOC15 ASICs, include the doorbell offset within the
    325 		 * process doorbell frame, which is 2 pages.
    326 		 */
    327 		args->doorbell_offset |= doorbell_offset_in_process;
    328 
    329 	mutex_unlock(&p->mutex);
    330 
    331 	pr_debug("Queue id %d was created successfully\n", args->queue_id);
    332 
    333 	pr_debug("Ring buffer address == 0x%016llX\n",
    334 			args->ring_base_address);
    335 
    336 	pr_debug("Read ptr address    == 0x%016llX\n",
    337 			args->read_pointer_address);
    338 
    339 	pr_debug("Write ptr address   == 0x%016llX\n",
    340 			args->write_pointer_address);
    341 
    342 	return 0;
    343 
    344 err_create_queue:
    345 err_bind_process:
    346 	mutex_unlock(&p->mutex);
    347 	return err;
    348 }
    349 
    350 static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p,
    351 					void *data)
    352 {
    353 	int retval;
    354 	struct kfd_ioctl_destroy_queue_args *args = data;
    355 
    356 	pr_debug("Destroying queue id %d for pasid 0x%x\n",
    357 				args->queue_id,
    358 				p->pasid);
    359 
    360 	mutex_lock(&p->mutex);
    361 
    362 	retval = pqm_destroy_queue(&p->pqm, args->queue_id);
    363 
    364 	mutex_unlock(&p->mutex);
    365 	return retval;
    366 }
    367 
    368 static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p,
    369 					void *data)
    370 {
    371 	int retval;
    372 	struct kfd_ioctl_update_queue_args *args = data;
    373 	struct queue_properties properties;
    374 
    375 	if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
    376 		pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
    377 		return -EINVAL;
    378 	}
    379 
    380 	if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
    381 		pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
    382 		return -EINVAL;
    383 	}
    384 
    385 	if ((args->ring_base_address) &&
    386 		(!access_ok((const void __user *) args->ring_base_address,
    387 			sizeof(uint64_t)))) {
    388 		pr_err("Can't access ring base address\n");
    389 		return -EFAULT;
    390 	}
    391 
    392 	if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
    393 		pr_err("Ring size must be a power of 2 or 0\n");
    394 		return -EINVAL;
    395 	}
    396 
    397 	properties.queue_address = args->ring_base_address;
    398 	properties.queue_size = args->ring_size;
    399 	properties.queue_percent = args->queue_percentage;
    400 	properties.priority = args->queue_priority;
    401 
    402 	pr_debug("Updating queue id %d for pasid 0x%x\n",
    403 			args->queue_id, p->pasid);
    404 
    405 	mutex_lock(&p->mutex);
    406 
    407 	retval = pqm_update_queue(&p->pqm, args->queue_id, &properties);
    408 
    409 	mutex_unlock(&p->mutex);
    410 
    411 	return retval;
    412 }
    413 
    414 static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p,
    415 					void *data)
    416 {
    417 	int retval;
    418 	const int max_num_cus = 1024;
    419 	struct kfd_ioctl_set_cu_mask_args *args = data;
    420 	struct queue_properties properties;
    421 	uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr;
    422 	size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32);
    423 
    424 	if ((args->num_cu_mask % 32) != 0) {
    425 		pr_debug("num_cu_mask 0x%x must be a multiple of 32",
    426 				args->num_cu_mask);
    427 		return -EINVAL;
    428 	}
    429 
    430 	properties.cu_mask_count = args->num_cu_mask;
    431 	if (properties.cu_mask_count == 0) {
    432 		pr_debug("CU mask cannot be 0");
    433 		return -EINVAL;
    434 	}
    435 
    436 	/* To prevent an unreasonably large CU mask size, set an arbitrary
    437 	 * limit of max_num_cus bits.  We can then just drop any CU mask bits
    438 	 * past max_num_cus bits and just use the first max_num_cus bits.
    439 	 */
    440 	if (properties.cu_mask_count > max_num_cus) {
    441 		pr_debug("CU mask cannot be greater than 1024 bits");
    442 		properties.cu_mask_count = max_num_cus;
    443 		cu_mask_size = sizeof(uint32_t) * (max_num_cus/32);
    444 	}
    445 
    446 	properties.cu_mask = kzalloc(cu_mask_size, GFP_KERNEL);
    447 	if (!properties.cu_mask)
    448 		return -ENOMEM;
    449 
    450 	retval = copy_from_user(properties.cu_mask, cu_mask_ptr, cu_mask_size);
    451 	if (retval) {
    452 		pr_debug("Could not copy CU mask from userspace");
    453 		kfree(properties.cu_mask);
    454 		return -EFAULT;
    455 	}
    456 
    457 	mutex_lock(&p->mutex);
    458 
    459 	retval = pqm_set_cu_mask(&p->pqm, args->queue_id, &properties);
    460 
    461 	mutex_unlock(&p->mutex);
    462 
    463 	if (retval)
    464 		kfree(properties.cu_mask);
    465 
    466 	return retval;
    467 }
    468 
    469 static int kfd_ioctl_get_queue_wave_state(struct file *filep,
    470 					  struct kfd_process *p, void *data)
    471 {
    472 	struct kfd_ioctl_get_queue_wave_state_args *args = data;
    473 	int r;
    474 
    475 	mutex_lock(&p->mutex);
    476 
    477 	r = pqm_get_wave_state(&p->pqm, args->queue_id,
    478 			       (void __user *)args->ctl_stack_address,
    479 			       &args->ctl_stack_used_size,
    480 			       &args->save_area_used_size);
    481 
    482 	mutex_unlock(&p->mutex);
    483 
    484 	return r;
    485 }
    486 
    487 static int kfd_ioctl_set_memory_policy(struct file *filep,
    488 					struct kfd_process *p, void *data)
    489 {
    490 	struct kfd_ioctl_set_memory_policy_args *args = data;
    491 	struct kfd_dev *dev;
    492 	int err = 0;
    493 	struct kfd_process_device *pdd;
    494 	enum cache_policy default_policy, alternate_policy;
    495 
    496 	if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT
    497 	    && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
    498 		return -EINVAL;
    499 	}
    500 
    501 	if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT
    502 	    && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
    503 		return -EINVAL;
    504 	}
    505 
    506 	dev = kfd_device_by_id(args->gpu_id);
    507 	if (!dev)
    508 		return -EINVAL;
    509 
    510 	mutex_lock(&p->mutex);
    511 
    512 	pdd = kfd_bind_process_to_device(dev, p);
    513 	if (IS_ERR(pdd)) {
    514 		err = -ESRCH;
    515 		goto out;
    516 	}
    517 
    518 	default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT)
    519 			 ? cache_policy_coherent : cache_policy_noncoherent;
    520 
    521 	alternate_policy =
    522 		(args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT)
    523 		   ? cache_policy_coherent : cache_policy_noncoherent;
    524 
    525 	if (!dev->dqm->ops.set_cache_memory_policy(dev->dqm,
    526 				&pdd->qpd,
    527 				default_policy,
    528 				alternate_policy,
    529 				(void __user *)args->alternate_aperture_base,
    530 				args->alternate_aperture_size))
    531 		err = -EINVAL;
    532 
    533 out:
    534 	mutex_unlock(&p->mutex);
    535 
    536 	return err;
    537 }
    538 
    539 static int kfd_ioctl_set_trap_handler(struct file *filep,
    540 					struct kfd_process *p, void *data)
    541 {
    542 	struct kfd_ioctl_set_trap_handler_args *args = data;
    543 	struct kfd_dev *dev;
    544 	int err = 0;
    545 	struct kfd_process_device *pdd;
    546 
    547 	dev = kfd_device_by_id(args->gpu_id);
    548 	if (!dev)
    549 		return -EINVAL;
    550 
    551 	mutex_lock(&p->mutex);
    552 
    553 	pdd = kfd_bind_process_to_device(dev, p);
    554 	if (IS_ERR(pdd)) {
    555 		err = -ESRCH;
    556 		goto out;
    557 	}
    558 
    559 	if (dev->dqm->ops.set_trap_handler(dev->dqm,
    560 					&pdd->qpd,
    561 					args->tba_addr,
    562 					args->tma_addr))
    563 		err = -EINVAL;
    564 
    565 out:
    566 	mutex_unlock(&p->mutex);
    567 
    568 	return err;
    569 }
    570 
    571 static int kfd_ioctl_dbg_register(struct file *filep,
    572 				struct kfd_process *p, void *data)
    573 {
    574 	struct kfd_ioctl_dbg_register_args *args = data;
    575 	struct kfd_dev *dev;
    576 	struct kfd_dbgmgr *dbgmgr_ptr;
    577 	struct kfd_process_device *pdd;
    578 	bool create_ok;
    579 	long status = 0;
    580 
    581 	dev = kfd_device_by_id(args->gpu_id);
    582 	if (!dev)
    583 		return -EINVAL;
    584 
    585 	if (dev->device_info->asic_family == CHIP_CARRIZO) {
    586 		pr_debug("kfd_ioctl_dbg_register not supported on CZ\n");
    587 		return -EINVAL;
    588 	}
    589 
    590 	mutex_lock(&p->mutex);
    591 	mutex_lock(kfd_get_dbgmgr_mutex());
    592 
    593 	/*
    594 	 * make sure that we have pdd, if this the first queue created for
    595 	 * this process
    596 	 */
    597 	pdd = kfd_bind_process_to_device(dev, p);
    598 	if (IS_ERR(pdd)) {
    599 		status = PTR_ERR(pdd);
    600 		goto out;
    601 	}
    602 
    603 	if (!dev->dbgmgr) {
    604 		/* In case of a legal call, we have no dbgmgr yet */
    605 		create_ok = kfd_dbgmgr_create(&dbgmgr_ptr, dev);
    606 		if (create_ok) {
    607 			status = kfd_dbgmgr_register(dbgmgr_ptr, p);
    608 			if (status != 0)
    609 				kfd_dbgmgr_destroy(dbgmgr_ptr);
    610 			else
    611 				dev->dbgmgr = dbgmgr_ptr;
    612 		}
    613 	} else {
    614 		pr_debug("debugger already registered\n");
    615 		status = -EINVAL;
    616 	}
    617 
    618 out:
    619 	mutex_unlock(kfd_get_dbgmgr_mutex());
    620 	mutex_unlock(&p->mutex);
    621 
    622 	return status;
    623 }
    624 
    625 static int kfd_ioctl_dbg_unregister(struct file *filep,
    626 				struct kfd_process *p, void *data)
    627 {
    628 	struct kfd_ioctl_dbg_unregister_args *args = data;
    629 	struct kfd_dev *dev;
    630 	long status;
    631 
    632 	dev = kfd_device_by_id(args->gpu_id);
    633 	if (!dev || !dev->dbgmgr)
    634 		return -EINVAL;
    635 
    636 	if (dev->device_info->asic_family == CHIP_CARRIZO) {
    637 		pr_debug("kfd_ioctl_dbg_unregister not supported on CZ\n");
    638 		return -EINVAL;
    639 	}
    640 
    641 	mutex_lock(kfd_get_dbgmgr_mutex());
    642 
    643 	status = kfd_dbgmgr_unregister(dev->dbgmgr, p);
    644 	if (!status) {
    645 		kfd_dbgmgr_destroy(dev->dbgmgr);
    646 		dev->dbgmgr = NULL;
    647 	}
    648 
    649 	mutex_unlock(kfd_get_dbgmgr_mutex());
    650 
    651 	return status;
    652 }
    653 
    654 /*
    655  * Parse and generate variable size data structure for address watch.
    656  * Total size of the buffer and # watch points is limited in order
    657  * to prevent kernel abuse. (no bearing to the much smaller HW limitation
    658  * which is enforced by dbgdev module)
    659  * please also note that the watch address itself are not "copied from user",
    660  * since it be set into the HW in user mode values.
    661  *
    662  */
    663 static int kfd_ioctl_dbg_address_watch(struct file *filep,
    664 					struct kfd_process *p, void *data)
    665 {
    666 	struct kfd_ioctl_dbg_address_watch_args *args = data;
    667 	struct kfd_dev *dev;
    668 	struct dbg_address_watch_info aw_info;
    669 	unsigned char *args_buff;
    670 	long status;
    671 	void __user *cmd_from_user;
    672 	uint64_t watch_mask_value = 0;
    673 	unsigned int args_idx = 0;
    674 
    675 	memset((void *) &aw_info, 0, sizeof(struct dbg_address_watch_info));
    676 
    677 	dev = kfd_device_by_id(args->gpu_id);
    678 	if (!dev)
    679 		return -EINVAL;
    680 
    681 	if (dev->device_info->asic_family == CHIP_CARRIZO) {
    682 		pr_debug("kfd_ioctl_dbg_wave_control not supported on CZ\n");
    683 		return -EINVAL;
    684 	}
    685 
    686 	cmd_from_user = (void __user *) args->content_ptr;
    687 
    688 	/* Validate arguments */
    689 
    690 	if ((args->buf_size_in_bytes > MAX_ALLOWED_AW_BUFF_SIZE) ||
    691 		(args->buf_size_in_bytes <= sizeof(*args) + sizeof(int) * 2) ||
    692 		(cmd_from_user == NULL))
    693 		return -EINVAL;
    694 
    695 	/* this is the actual buffer to work with */
    696 	args_buff = memdup_user(cmd_from_user,
    697 				args->buf_size_in_bytes - sizeof(*args));
    698 	if (IS_ERR(args_buff))
    699 		return PTR_ERR(args_buff);
    700 
    701 	aw_info.process = p;
    702 
    703 	aw_info.num_watch_points = *((uint32_t *)(&args_buff[args_idx]));
    704 	args_idx += sizeof(aw_info.num_watch_points);
    705 
    706 	aw_info.watch_mode = (enum HSA_DBG_WATCH_MODE *) &args_buff[args_idx];
    707 	args_idx += sizeof(enum HSA_DBG_WATCH_MODE) * aw_info.num_watch_points;
    708 
    709 	/*
    710 	 * set watch address base pointer to point on the array base
    711 	 * within args_buff
    712 	 */
    713 	aw_info.watch_address = (uint64_t *) &args_buff[args_idx];
    714 
    715 	/* skip over the addresses buffer */
    716 	args_idx += sizeof(aw_info.watch_address) * aw_info.num_watch_points;
    717 
    718 	if (args_idx >= args->buf_size_in_bytes - sizeof(*args)) {
    719 		status = -EINVAL;
    720 		goto out;
    721 	}
    722 
    723 	watch_mask_value = (uint64_t) args_buff[args_idx];
    724 
    725 	if (watch_mask_value > 0) {
    726 		/*
    727 		 * There is an array of masks.
    728 		 * set watch mask base pointer to point on the array base
    729 		 * within args_buff
    730 		 */
    731 		aw_info.watch_mask = (uint64_t *) &args_buff[args_idx];
    732 
    733 		/* skip over the masks buffer */
    734 		args_idx += sizeof(aw_info.watch_mask) *
    735 				aw_info.num_watch_points;
    736 	} else {
    737 		/* just the NULL mask, set to NULL and skip over it */
    738 		aw_info.watch_mask = NULL;
    739 		args_idx += sizeof(aw_info.watch_mask);
    740 	}
    741 
    742 	if (args_idx >= args->buf_size_in_bytes - sizeof(args)) {
    743 		status = -EINVAL;
    744 		goto out;
    745 	}
    746 
    747 	/* Currently HSA Event is not supported for DBG */
    748 	aw_info.watch_event = NULL;
    749 
    750 	mutex_lock(kfd_get_dbgmgr_mutex());
    751 
    752 	status = kfd_dbgmgr_address_watch(dev->dbgmgr, &aw_info);
    753 
    754 	mutex_unlock(kfd_get_dbgmgr_mutex());
    755 
    756 out:
    757 	kfree(args_buff);
    758 
    759 	return status;
    760 }
    761 
    762 /* Parse and generate fixed size data structure for wave control */
    763 static int kfd_ioctl_dbg_wave_control(struct file *filep,
    764 					struct kfd_process *p, void *data)
    765 {
    766 	struct kfd_ioctl_dbg_wave_control_args *args = data;
    767 	struct kfd_dev *dev;
    768 	struct dbg_wave_control_info wac_info;
    769 	unsigned char *args_buff;
    770 	uint32_t computed_buff_size;
    771 	long status;
    772 	void __user *cmd_from_user;
    773 	unsigned int args_idx = 0;
    774 
    775 	memset((void *) &wac_info, 0, sizeof(struct dbg_wave_control_info));
    776 
    777 	/* we use compact form, independent of the packing attribute value */
    778 	computed_buff_size = sizeof(*args) +
    779 				sizeof(wac_info.mode) +
    780 				sizeof(wac_info.operand) +
    781 				sizeof(wac_info.dbgWave_msg.DbgWaveMsg) +
    782 				sizeof(wac_info.dbgWave_msg.MemoryVA) +
    783 				sizeof(wac_info.trapId);
    784 
    785 	dev = kfd_device_by_id(args->gpu_id);
    786 	if (!dev)
    787 		return -EINVAL;
    788 
    789 	if (dev->device_info->asic_family == CHIP_CARRIZO) {
    790 		pr_debug("kfd_ioctl_dbg_wave_control not supported on CZ\n");
    791 		return -EINVAL;
    792 	}
    793 
    794 	/* input size must match the computed "compact" size */
    795 	if (args->buf_size_in_bytes != computed_buff_size) {
    796 		pr_debug("size mismatch, computed : actual %u : %u\n",
    797 				args->buf_size_in_bytes, computed_buff_size);
    798 		return -EINVAL;
    799 	}
    800 
    801 	cmd_from_user = (void __user *) args->content_ptr;
    802 
    803 	if (cmd_from_user == NULL)
    804 		return -EINVAL;
    805 
    806 	/* copy the entire buffer from user */
    807 
    808 	args_buff = memdup_user(cmd_from_user,
    809 				args->buf_size_in_bytes - sizeof(*args));
    810 	if (IS_ERR(args_buff))
    811 		return PTR_ERR(args_buff);
    812 
    813 	/* move ptr to the start of the "pay-load" area */
    814 	wac_info.process = p;
    815 
    816 	wac_info.operand = *((enum HSA_DBG_WAVEOP *)(&args_buff[args_idx]));
    817 	args_idx += sizeof(wac_info.operand);
    818 
    819 	wac_info.mode = *((enum HSA_DBG_WAVEMODE *)(&args_buff[args_idx]));
    820 	args_idx += sizeof(wac_info.mode);
    821 
    822 	wac_info.trapId = *((uint32_t *)(&args_buff[args_idx]));
    823 	args_idx += sizeof(wac_info.trapId);
    824 
    825 	wac_info.dbgWave_msg.DbgWaveMsg.WaveMsgInfoGen2.Value =
    826 					*((uint32_t *)(&args_buff[args_idx]));
    827 	wac_info.dbgWave_msg.MemoryVA = NULL;
    828 
    829 	mutex_lock(kfd_get_dbgmgr_mutex());
    830 
    831 	pr_debug("Calling dbg manager process %p, operand %u, mode %u, trapId %u, message %u\n",
    832 			wac_info.process, wac_info.operand,
    833 			wac_info.mode, wac_info.trapId,
    834 			wac_info.dbgWave_msg.DbgWaveMsg.WaveMsgInfoGen2.Value);
    835 
    836 	status = kfd_dbgmgr_wave_control(dev->dbgmgr, &wac_info);
    837 
    838 	pr_debug("Returned status of dbg manager is %ld\n", status);
    839 
    840 	mutex_unlock(kfd_get_dbgmgr_mutex());
    841 
    842 	kfree(args_buff);
    843 
    844 	return status;
    845 }
    846 
    847 static int kfd_ioctl_get_clock_counters(struct file *filep,
    848 				struct kfd_process *p, void *data)
    849 {
    850 	struct kfd_ioctl_get_clock_counters_args *args = data;
    851 	struct kfd_dev *dev;
    852 
    853 	dev = kfd_device_by_id(args->gpu_id);
    854 	if (dev)
    855 		/* Reading GPU clock counter from KGD */
    856 		args->gpu_clock_counter = amdgpu_amdkfd_get_gpu_clock_counter(dev->kgd);
    857 	else
    858 		/* Node without GPU resource */
    859 		args->gpu_clock_counter = 0;
    860 
    861 	/* No access to rdtsc. Using raw monotonic time */
    862 	args->cpu_clock_counter = ktime_get_raw_ns();
    863 	args->system_clock_counter = ktime_get_boottime_ns();
    864 
    865 	/* Since the counter is in nano-seconds we use 1GHz frequency */
    866 	args->system_clock_freq = 1000000000;
    867 
    868 	return 0;
    869 }
    870 
    871 
    872 static int kfd_ioctl_get_process_apertures(struct file *filp,
    873 				struct kfd_process *p, void *data)
    874 {
    875 	struct kfd_ioctl_get_process_apertures_args *args = data;
    876 	struct kfd_process_device_apertures *pAperture;
    877 	struct kfd_process_device *pdd;
    878 
    879 	dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
    880 
    881 	args->num_of_nodes = 0;
    882 
    883 	mutex_lock(&p->mutex);
    884 
    885 	/*if the process-device list isn't empty*/
    886 	if (kfd_has_process_device_data(p)) {
    887 		/* Run over all pdd of the process */
    888 		pdd = kfd_get_first_process_device_data(p);
    889 		do {
    890 			pAperture =
    891 				&args->process_apertures[args->num_of_nodes];
    892 			pAperture->gpu_id = pdd->dev->id;
    893 			pAperture->lds_base = pdd->lds_base;
    894 			pAperture->lds_limit = pdd->lds_limit;
    895 			pAperture->gpuvm_base = pdd->gpuvm_base;
    896 			pAperture->gpuvm_limit = pdd->gpuvm_limit;
    897 			pAperture->scratch_base = pdd->scratch_base;
    898 			pAperture->scratch_limit = pdd->scratch_limit;
    899 
    900 			dev_dbg(kfd_device,
    901 				"node id %u\n", args->num_of_nodes);
    902 			dev_dbg(kfd_device,
    903 				"gpu id %u\n", pdd->dev->id);
    904 			dev_dbg(kfd_device,
    905 				"lds_base %llX\n", pdd->lds_base);
    906 			dev_dbg(kfd_device,
    907 				"lds_limit %llX\n", pdd->lds_limit);
    908 			dev_dbg(kfd_device,
    909 				"gpuvm_base %llX\n", pdd->gpuvm_base);
    910 			dev_dbg(kfd_device,
    911 				"gpuvm_limit %llX\n", pdd->gpuvm_limit);
    912 			dev_dbg(kfd_device,
    913 				"scratch_base %llX\n", pdd->scratch_base);
    914 			dev_dbg(kfd_device,
    915 				"scratch_limit %llX\n", pdd->scratch_limit);
    916 
    917 			args->num_of_nodes++;
    918 
    919 			pdd = kfd_get_next_process_device_data(p, pdd);
    920 		} while (pdd && (args->num_of_nodes < NUM_OF_SUPPORTED_GPUS));
    921 	}
    922 
    923 	mutex_unlock(&p->mutex);
    924 
    925 	return 0;
    926 }
    927 
    928 static int kfd_ioctl_get_process_apertures_new(struct file *filp,
    929 				struct kfd_process *p, void *data)
    930 {
    931 	struct kfd_ioctl_get_process_apertures_new_args *args = data;
    932 	struct kfd_process_device_apertures *pa;
    933 	struct kfd_process_device *pdd;
    934 	uint32_t nodes = 0;
    935 	int ret;
    936 
    937 	dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
    938 
    939 	if (args->num_of_nodes == 0) {
    940 		/* Return number of nodes, so that user space can alloacate
    941 		 * sufficient memory
    942 		 */
    943 		mutex_lock(&p->mutex);
    944 
    945 		if (!kfd_has_process_device_data(p))
    946 			goto out_unlock;
    947 
    948 		/* Run over all pdd of the process */
    949 		pdd = kfd_get_first_process_device_data(p);
    950 		do {
    951 			args->num_of_nodes++;
    952 			pdd = kfd_get_next_process_device_data(p, pdd);
    953 		} while (pdd);
    954 
    955 		goto out_unlock;
    956 	}
    957 
    958 	/* Fill in process-aperture information for all available
    959 	 * nodes, but not more than args->num_of_nodes as that is
    960 	 * the amount of memory allocated by user
    961 	 */
    962 	pa = kzalloc((sizeof(struct kfd_process_device_apertures) *
    963 				args->num_of_nodes), GFP_KERNEL);
    964 	if (!pa)
    965 		return -ENOMEM;
    966 
    967 	mutex_lock(&p->mutex);
    968 
    969 	if (!kfd_has_process_device_data(p)) {
    970 		args->num_of_nodes = 0;
    971 		kfree(pa);
    972 		goto out_unlock;
    973 	}
    974 
    975 	/* Run over all pdd of the process */
    976 	pdd = kfd_get_first_process_device_data(p);
    977 	do {
    978 		pa[nodes].gpu_id = pdd->dev->id;
    979 		pa[nodes].lds_base = pdd->lds_base;
    980 		pa[nodes].lds_limit = pdd->lds_limit;
    981 		pa[nodes].gpuvm_base = pdd->gpuvm_base;
    982 		pa[nodes].gpuvm_limit = pdd->gpuvm_limit;
    983 		pa[nodes].scratch_base = pdd->scratch_base;
    984 		pa[nodes].scratch_limit = pdd->scratch_limit;
    985 
    986 		dev_dbg(kfd_device,
    987 			"gpu id %u\n", pdd->dev->id);
    988 		dev_dbg(kfd_device,
    989 			"lds_base %llX\n", pdd->lds_base);
    990 		dev_dbg(kfd_device,
    991 			"lds_limit %llX\n", pdd->lds_limit);
    992 		dev_dbg(kfd_device,
    993 			"gpuvm_base %llX\n", pdd->gpuvm_base);
    994 		dev_dbg(kfd_device,
    995 			"gpuvm_limit %llX\n", pdd->gpuvm_limit);
    996 		dev_dbg(kfd_device,
    997 			"scratch_base %llX\n", pdd->scratch_base);
    998 		dev_dbg(kfd_device,
    999 			"scratch_limit %llX\n", pdd->scratch_limit);
   1000 		nodes++;
   1001 
   1002 		pdd = kfd_get_next_process_device_data(p, pdd);
   1003 	} while (pdd && (nodes < args->num_of_nodes));
   1004 	mutex_unlock(&p->mutex);
   1005 
   1006 	args->num_of_nodes = nodes;
   1007 	ret = copy_to_user(
   1008 			(void __user *)args->kfd_process_device_apertures_ptr,
   1009 			pa,
   1010 			(nodes * sizeof(struct kfd_process_device_apertures)));
   1011 	kfree(pa);
   1012 	return ret ? -EFAULT : 0;
   1013 
   1014 out_unlock:
   1015 	mutex_unlock(&p->mutex);
   1016 	return 0;
   1017 }
   1018 
   1019 static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p,
   1020 					void *data)
   1021 {
   1022 	struct kfd_ioctl_create_event_args *args = data;
   1023 	int err;
   1024 
   1025 	/* For dGPUs the event page is allocated in user mode. The
   1026 	 * handle is passed to KFD with the first call to this IOCTL
   1027 	 * through the event_page_offset field.
   1028 	 */
   1029 	if (args->event_page_offset) {
   1030 		struct kfd_dev *kfd;
   1031 		struct kfd_process_device *pdd;
   1032 		void *mem, *kern_addr;
   1033 		uint64_t size;
   1034 
   1035 		if (p->signal_page) {
   1036 			pr_err("Event page is already set\n");
   1037 			return -EINVAL;
   1038 		}
   1039 
   1040 		kfd = kfd_device_by_id(GET_GPU_ID(args->event_page_offset));
   1041 		if (!kfd) {
   1042 			pr_err("Getting device by id failed in %s\n", __func__);
   1043 			return -EINVAL;
   1044 		}
   1045 
   1046 		mutex_lock(&p->mutex);
   1047 		pdd = kfd_bind_process_to_device(kfd, p);
   1048 		if (IS_ERR(pdd)) {
   1049 			err = PTR_ERR(pdd);
   1050 			goto out_unlock;
   1051 		}
   1052 
   1053 		mem = kfd_process_device_translate_handle(pdd,
   1054 				GET_IDR_HANDLE(args->event_page_offset));
   1055 		if (!mem) {
   1056 			pr_err("Can't find BO, offset is 0x%llx\n",
   1057 			       args->event_page_offset);
   1058 			err = -EINVAL;
   1059 			goto out_unlock;
   1060 		}
   1061 		mutex_unlock(&p->mutex);
   1062 
   1063 		err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kfd->kgd,
   1064 						mem, &kern_addr, &size);
   1065 		if (err) {
   1066 			pr_err("Failed to map event page to kernel\n");
   1067 			return err;
   1068 		}
   1069 
   1070 		err = kfd_event_page_set(p, kern_addr, size);
   1071 		if (err) {
   1072 			pr_err("Failed to set event page\n");
   1073 			return err;
   1074 		}
   1075 	}
   1076 
   1077 	err = kfd_event_create(filp, p, args->event_type,
   1078 				args->auto_reset != 0, args->node_id,
   1079 				&args->event_id, &args->event_trigger_data,
   1080 				&args->event_page_offset,
   1081 				&args->event_slot_index);
   1082 
   1083 	return err;
   1084 
   1085 out_unlock:
   1086 	mutex_unlock(&p->mutex);
   1087 	return err;
   1088 }
   1089 
   1090 static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p,
   1091 					void *data)
   1092 {
   1093 	struct kfd_ioctl_destroy_event_args *args = data;
   1094 
   1095 	return kfd_event_destroy(p, args->event_id);
   1096 }
   1097 
   1098 static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p,
   1099 				void *data)
   1100 {
   1101 	struct kfd_ioctl_set_event_args *args = data;
   1102 
   1103 	return kfd_set_event(p, args->event_id);
   1104 }
   1105 
   1106 static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p,
   1107 				void *data)
   1108 {
   1109 	struct kfd_ioctl_reset_event_args *args = data;
   1110 
   1111 	return kfd_reset_event(p, args->event_id);
   1112 }
   1113 
   1114 static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p,
   1115 				void *data)
   1116 {
   1117 	struct kfd_ioctl_wait_events_args *args = data;
   1118 	int err;
   1119 
   1120 	err = kfd_wait_on_events(p, args->num_events,
   1121 			(void __user *)args->events_ptr,
   1122 			(args->wait_for_all != 0),
   1123 			args->timeout, &args->wait_result);
   1124 
   1125 	return err;
   1126 }
   1127 static int kfd_ioctl_set_scratch_backing_va(struct file *filep,
   1128 					struct kfd_process *p, void *data)
   1129 {
   1130 	struct kfd_ioctl_set_scratch_backing_va_args *args = data;
   1131 	struct kfd_process_device *pdd;
   1132 	struct kfd_dev *dev;
   1133 	long err;
   1134 
   1135 	dev = kfd_device_by_id(args->gpu_id);
   1136 	if (!dev)
   1137 		return -EINVAL;
   1138 
   1139 	mutex_lock(&p->mutex);
   1140 
   1141 	pdd = kfd_bind_process_to_device(dev, p);
   1142 	if (IS_ERR(pdd)) {
   1143 		err = PTR_ERR(pdd);
   1144 		goto bind_process_to_device_fail;
   1145 	}
   1146 
   1147 	pdd->qpd.sh_hidden_private_base = args->va_addr;
   1148 
   1149 	mutex_unlock(&p->mutex);
   1150 
   1151 	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS &&
   1152 	    pdd->qpd.vmid != 0 && dev->kfd2kgd->set_scratch_backing_va)
   1153 		dev->kfd2kgd->set_scratch_backing_va(
   1154 			dev->kgd, args->va_addr, pdd->qpd.vmid);
   1155 
   1156 	return 0;
   1157 
   1158 bind_process_to_device_fail:
   1159 	mutex_unlock(&p->mutex);
   1160 	return err;
   1161 }
   1162 
   1163 static int kfd_ioctl_get_tile_config(struct file *filep,
   1164 		struct kfd_process *p, void *data)
   1165 {
   1166 	struct kfd_ioctl_get_tile_config_args *args = data;
   1167 	struct kfd_dev *dev;
   1168 	struct tile_config config;
   1169 	int err = 0;
   1170 
   1171 	dev = kfd_device_by_id(args->gpu_id);
   1172 	if (!dev)
   1173 		return -EINVAL;
   1174 
   1175 	dev->kfd2kgd->get_tile_config(dev->kgd, &config);
   1176 
   1177 	args->gb_addr_config = config.gb_addr_config;
   1178 	args->num_banks = config.num_banks;
   1179 	args->num_ranks = config.num_ranks;
   1180 
   1181 	if (args->num_tile_configs > config.num_tile_configs)
   1182 		args->num_tile_configs = config.num_tile_configs;
   1183 	err = copy_to_user((void __user *)args->tile_config_ptr,
   1184 			config.tile_config_ptr,
   1185 			args->num_tile_configs * sizeof(uint32_t));
   1186 	if (err) {
   1187 		args->num_tile_configs = 0;
   1188 		return -EFAULT;
   1189 	}
   1190 
   1191 	if (args->num_macro_tile_configs > config.num_macro_tile_configs)
   1192 		args->num_macro_tile_configs =
   1193 				config.num_macro_tile_configs;
   1194 	err = copy_to_user((void __user *)args->macro_tile_config_ptr,
   1195 			config.macro_tile_config_ptr,
   1196 			args->num_macro_tile_configs * sizeof(uint32_t));
   1197 	if (err) {
   1198 		args->num_macro_tile_configs = 0;
   1199 		return -EFAULT;
   1200 	}
   1201 
   1202 	return 0;
   1203 }
   1204 
   1205 static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p,
   1206 				void *data)
   1207 {
   1208 	struct kfd_ioctl_acquire_vm_args *args = data;
   1209 	struct kfd_process_device *pdd;
   1210 	struct kfd_dev *dev;
   1211 	struct file *drm_file;
   1212 	int ret;
   1213 
   1214 	dev = kfd_device_by_id(args->gpu_id);
   1215 	if (!dev)
   1216 		return -EINVAL;
   1217 
   1218 	drm_file = fget(args->drm_fd);
   1219 	if (!drm_file)
   1220 		return -EINVAL;
   1221 
   1222 	mutex_lock(&p->mutex);
   1223 
   1224 	pdd = kfd_get_process_device_data(dev, p);
   1225 	if (!pdd) {
   1226 		ret = -EINVAL;
   1227 		goto err_unlock;
   1228 	}
   1229 
   1230 	if (pdd->drm_file) {
   1231 		ret = pdd->drm_file == drm_file ? 0 : -EBUSY;
   1232 		goto err_unlock;
   1233 	}
   1234 
   1235 	ret = kfd_process_device_init_vm(pdd, drm_file);
   1236 	if (ret)
   1237 		goto err_unlock;
   1238 	/* On success, the PDD keeps the drm_file reference */
   1239 	mutex_unlock(&p->mutex);
   1240 
   1241 	return 0;
   1242 
   1243 err_unlock:
   1244 	mutex_unlock(&p->mutex);
   1245 	fput(drm_file);
   1246 	return ret;
   1247 }
   1248 
   1249 bool kfd_dev_is_large_bar(struct kfd_dev *dev)
   1250 {
   1251 	struct kfd_local_mem_info mem_info;
   1252 
   1253 	if (debug_largebar) {
   1254 		pr_debug("Simulate large-bar allocation on non large-bar machine\n");
   1255 		return true;
   1256 	}
   1257 
   1258 	if (dev->device_info->needs_iommu_device)
   1259 		return false;
   1260 
   1261 	amdgpu_amdkfd_get_local_mem_info(dev->kgd, &mem_info);
   1262 	if (mem_info.local_mem_size_private == 0 &&
   1263 			mem_info.local_mem_size_public > 0)
   1264 		return true;
   1265 	return false;
   1266 }
   1267 
   1268 static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep,
   1269 					struct kfd_process *p, void *data)
   1270 {
   1271 	struct kfd_ioctl_alloc_memory_of_gpu_args *args = data;
   1272 	struct kfd_process_device *pdd;
   1273 	void *mem;
   1274 	struct kfd_dev *dev;
   1275 	int idr_handle;
   1276 	long err;
   1277 	uint64_t offset = args->mmap_offset;
   1278 	uint32_t flags = args->flags;
   1279 
   1280 	if (args->size == 0)
   1281 		return -EINVAL;
   1282 
   1283 	dev = kfd_device_by_id(args->gpu_id);
   1284 	if (!dev)
   1285 		return -EINVAL;
   1286 
   1287 	if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) &&
   1288 		(flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) &&
   1289 		!kfd_dev_is_large_bar(dev)) {
   1290 		pr_err("Alloc host visible vram on small bar is not allowed\n");
   1291 		return -EINVAL;
   1292 	}
   1293 
   1294 	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
   1295 		if (args->size != kfd_doorbell_process_slice(dev))
   1296 			return -EINVAL;
   1297 		offset = kfd_get_process_doorbells(dev, p);
   1298 	} else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
   1299 		if (args->size != PAGE_SIZE)
   1300 			return -EINVAL;
   1301 		offset = amdgpu_amdkfd_get_mmio_remap_phys_addr(dev->kgd);
   1302 		if (!offset)
   1303 			return -ENOMEM;
   1304 	}
   1305 
   1306 	mutex_lock(&p->mutex);
   1307 
   1308 	pdd = kfd_bind_process_to_device(dev, p);
   1309 	if (IS_ERR(pdd)) {
   1310 		err = PTR_ERR(pdd);
   1311 		goto err_unlock;
   1312 	}
   1313 
   1314 	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
   1315 		dev->kgd, args->va_addr, args->size,
   1316 		pdd->vm, (struct kgd_mem **) &mem, &offset,
   1317 		flags);
   1318 
   1319 	if (err)
   1320 		goto err_unlock;
   1321 
   1322 	idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
   1323 	if (idr_handle < 0) {
   1324 		err = -EFAULT;
   1325 		goto err_free;
   1326 	}
   1327 
   1328 	mutex_unlock(&p->mutex);
   1329 
   1330 	args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
   1331 	args->mmap_offset = offset;
   1332 
   1333 	/* MMIO is mapped through kfd device
   1334 	 * Generate a kfd mmap offset
   1335 	 */
   1336 	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
   1337 		args->mmap_offset = KFD_MMAP_TYPE_MMIO
   1338 					| KFD_MMAP_GPU_ID(args->gpu_id);
   1339 
   1340 	return 0;
   1341 
   1342 err_free:
   1343 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, (struct kgd_mem *)mem);
   1344 err_unlock:
   1345 	mutex_unlock(&p->mutex);
   1346 	return err;
   1347 }
   1348 
   1349 static int kfd_ioctl_free_memory_of_gpu(struct file *filep,
   1350 					struct kfd_process *p, void *data)
   1351 {
   1352 	struct kfd_ioctl_free_memory_of_gpu_args *args = data;
   1353 	struct kfd_process_device *pdd;
   1354 	void *mem;
   1355 	struct kfd_dev *dev;
   1356 	int ret;
   1357 
   1358 	dev = kfd_device_by_id(GET_GPU_ID(args->handle));
   1359 	if (!dev)
   1360 		return -EINVAL;
   1361 
   1362 	mutex_lock(&p->mutex);
   1363 
   1364 	pdd = kfd_get_process_device_data(dev, p);
   1365 	if (!pdd) {
   1366 		pr_err("Process device data doesn't exist\n");
   1367 		ret = -EINVAL;
   1368 		goto err_unlock;
   1369 	}
   1370 
   1371 	mem = kfd_process_device_translate_handle(
   1372 		pdd, GET_IDR_HANDLE(args->handle));
   1373 	if (!mem) {
   1374 		ret = -EINVAL;
   1375 		goto err_unlock;
   1376 	}
   1377 
   1378 	ret = amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd,
   1379 						(struct kgd_mem *)mem);
   1380 
   1381 	/* If freeing the buffer failed, leave the handle in place for
   1382 	 * clean-up during process tear-down.
   1383 	 */
   1384 	if (!ret)
   1385 		kfd_process_device_remove_obj_handle(
   1386 			pdd, GET_IDR_HANDLE(args->handle));
   1387 
   1388 err_unlock:
   1389 	mutex_unlock(&p->mutex);
   1390 	return ret;
   1391 }
   1392 
   1393 static int kfd_ioctl_map_memory_to_gpu(struct file *filep,
   1394 					struct kfd_process *p, void *data)
   1395 {
   1396 	struct kfd_ioctl_map_memory_to_gpu_args *args = data;
   1397 	struct kfd_process_device *pdd, *peer_pdd;
   1398 	void *mem;
   1399 	struct kfd_dev *dev, *peer;
   1400 	long err = 0;
   1401 	int i;
   1402 	uint32_t *devices_arr = NULL;
   1403 
   1404 	dev = kfd_device_by_id(GET_GPU_ID(args->handle));
   1405 	if (!dev)
   1406 		return -EINVAL;
   1407 
   1408 	if (!args->n_devices) {
   1409 		pr_debug("Device IDs array empty\n");
   1410 		return -EINVAL;
   1411 	}
   1412 	if (args->n_success > args->n_devices) {
   1413 		pr_debug("n_success exceeds n_devices\n");
   1414 		return -EINVAL;
   1415 	}
   1416 
   1417 	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
   1418 				    GFP_KERNEL);
   1419 	if (!devices_arr)
   1420 		return -ENOMEM;
   1421 
   1422 	err = copy_from_user(devices_arr,
   1423 			     (void __user *)args->device_ids_array_ptr,
   1424 			     args->n_devices * sizeof(*devices_arr));
   1425 	if (err != 0) {
   1426 		err = -EFAULT;
   1427 		goto copy_from_user_failed;
   1428 	}
   1429 
   1430 	mutex_lock(&p->mutex);
   1431 
   1432 	pdd = kfd_bind_process_to_device(dev, p);
   1433 	if (IS_ERR(pdd)) {
   1434 		err = PTR_ERR(pdd);
   1435 		goto bind_process_to_device_failed;
   1436 	}
   1437 
   1438 	mem = kfd_process_device_translate_handle(pdd,
   1439 						GET_IDR_HANDLE(args->handle));
   1440 	if (!mem) {
   1441 		err = -ENOMEM;
   1442 		goto get_mem_obj_from_handle_failed;
   1443 	}
   1444 
   1445 	for (i = args->n_success; i < args->n_devices; i++) {
   1446 		peer = kfd_device_by_id(devices_arr[i]);
   1447 		if (!peer) {
   1448 			pr_debug("Getting device by id failed for 0x%x\n",
   1449 				 devices_arr[i]);
   1450 			err = -EINVAL;
   1451 			goto get_mem_obj_from_handle_failed;
   1452 		}
   1453 
   1454 		peer_pdd = kfd_bind_process_to_device(peer, p);
   1455 		if (IS_ERR(peer_pdd)) {
   1456 			err = PTR_ERR(peer_pdd);
   1457 			goto get_mem_obj_from_handle_failed;
   1458 		}
   1459 		err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
   1460 			peer->kgd, (struct kgd_mem *)mem, peer_pdd->vm);
   1461 		if (err) {
   1462 			pr_err("Failed to map to gpu %d/%d\n",
   1463 			       i, args->n_devices);
   1464 			goto map_memory_to_gpu_failed;
   1465 		}
   1466 		args->n_success = i+1;
   1467 	}
   1468 
   1469 	mutex_unlock(&p->mutex);
   1470 
   1471 	err = amdgpu_amdkfd_gpuvm_sync_memory(dev->kgd, (struct kgd_mem *) mem, true);
   1472 	if (err) {
   1473 		pr_debug("Sync memory failed, wait interrupted by user signal\n");
   1474 		goto sync_memory_failed;
   1475 	}
   1476 
   1477 	/* Flush TLBs after waiting for the page table updates to complete */
   1478 	for (i = 0; i < args->n_devices; i++) {
   1479 		peer = kfd_device_by_id(devices_arr[i]);
   1480 		if (WARN_ON_ONCE(!peer))
   1481 			continue;
   1482 		peer_pdd = kfd_get_process_device_data(peer, p);
   1483 		if (WARN_ON_ONCE(!peer_pdd))
   1484 			continue;
   1485 		kfd_flush_tlb(peer_pdd);
   1486 	}
   1487 
   1488 	kfree(devices_arr);
   1489 
   1490 	return err;
   1491 
   1492 bind_process_to_device_failed:
   1493 get_mem_obj_from_handle_failed:
   1494 map_memory_to_gpu_failed:
   1495 	mutex_unlock(&p->mutex);
   1496 copy_from_user_failed:
   1497 sync_memory_failed:
   1498 	kfree(devices_arr);
   1499 
   1500 	return err;
   1501 }
   1502 
   1503 static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep,
   1504 					struct kfd_process *p, void *data)
   1505 {
   1506 	struct kfd_ioctl_unmap_memory_from_gpu_args *args = data;
   1507 	struct kfd_process_device *pdd, *peer_pdd;
   1508 	void *mem;
   1509 	struct kfd_dev *dev, *peer;
   1510 	long err = 0;
   1511 	uint32_t *devices_arr = NULL, i;
   1512 
   1513 	dev = kfd_device_by_id(GET_GPU_ID(args->handle));
   1514 	if (!dev)
   1515 		return -EINVAL;
   1516 
   1517 	if (!args->n_devices) {
   1518 		pr_debug("Device IDs array empty\n");
   1519 		return -EINVAL;
   1520 	}
   1521 	if (args->n_success > args->n_devices) {
   1522 		pr_debug("n_success exceeds n_devices\n");
   1523 		return -EINVAL;
   1524 	}
   1525 
   1526 	devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
   1527 				    GFP_KERNEL);
   1528 	if (!devices_arr)
   1529 		return -ENOMEM;
   1530 
   1531 	err = copy_from_user(devices_arr,
   1532 			     (void __user *)args->device_ids_array_ptr,
   1533 			     args->n_devices * sizeof(*devices_arr));
   1534 	if (err != 0) {
   1535 		err = -EFAULT;
   1536 		goto copy_from_user_failed;
   1537 	}
   1538 
   1539 	mutex_lock(&p->mutex);
   1540 
   1541 	pdd = kfd_get_process_device_data(dev, p);
   1542 	if (!pdd) {
   1543 		err = -EINVAL;
   1544 		goto bind_process_to_device_failed;
   1545 	}
   1546 
   1547 	mem = kfd_process_device_translate_handle(pdd,
   1548 						GET_IDR_HANDLE(args->handle));
   1549 	if (!mem) {
   1550 		err = -ENOMEM;
   1551 		goto get_mem_obj_from_handle_failed;
   1552 	}
   1553 
   1554 	for (i = args->n_success; i < args->n_devices; i++) {
   1555 		peer = kfd_device_by_id(devices_arr[i]);
   1556 		if (!peer) {
   1557 			err = -EINVAL;
   1558 			goto get_mem_obj_from_handle_failed;
   1559 		}
   1560 
   1561 		peer_pdd = kfd_get_process_device_data(peer, p);
   1562 		if (!peer_pdd) {
   1563 			err = -ENODEV;
   1564 			goto get_mem_obj_from_handle_failed;
   1565 		}
   1566 		err = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
   1567 			peer->kgd, (struct kgd_mem *)mem, peer_pdd->vm);
   1568 		if (err) {
   1569 			pr_err("Failed to unmap from gpu %d/%d\n",
   1570 			       i, args->n_devices);
   1571 			goto unmap_memory_from_gpu_failed;
   1572 		}
   1573 		args->n_success = i+1;
   1574 	}
   1575 	kfree(devices_arr);
   1576 
   1577 	mutex_unlock(&p->mutex);
   1578 
   1579 	return 0;
   1580 
   1581 bind_process_to_device_failed:
   1582 get_mem_obj_from_handle_failed:
   1583 unmap_memory_from_gpu_failed:
   1584 	mutex_unlock(&p->mutex);
   1585 copy_from_user_failed:
   1586 	kfree(devices_arr);
   1587 	return err;
   1588 }
   1589 
   1590 static int kfd_ioctl_get_dmabuf_info(struct file *filep,
   1591 		struct kfd_process *p, void *data)
   1592 {
   1593 	struct kfd_ioctl_get_dmabuf_info_args *args = data;
   1594 	struct kfd_dev *dev = NULL;
   1595 	struct kgd_dev *dma_buf_kgd;
   1596 	void *metadata_buffer = NULL;
   1597 	uint32_t flags;
   1598 	unsigned int i;
   1599 	int r;
   1600 
   1601 	/* Find a KFD GPU device that supports the get_dmabuf_info query */
   1602 	for (i = 0; kfd_topology_enum_kfd_devices(i, &dev) == 0; i++)
   1603 		if (dev)
   1604 			break;
   1605 	if (!dev)
   1606 		return -EINVAL;
   1607 
   1608 	if (args->metadata_ptr) {
   1609 		metadata_buffer = kzalloc(args->metadata_size, GFP_KERNEL);
   1610 		if (!metadata_buffer)
   1611 			return -ENOMEM;
   1612 	}
   1613 
   1614 	/* Get dmabuf info from KGD */
   1615 	r = amdgpu_amdkfd_get_dmabuf_info(dev->kgd, args->dmabuf_fd,
   1616 					  &dma_buf_kgd, &args->size,
   1617 					  metadata_buffer, args->metadata_size,
   1618 					  &args->metadata_size, &flags);
   1619 	if (r)
   1620 		goto exit;
   1621 
   1622 	/* Reverse-lookup gpu_id from kgd pointer */
   1623 	dev = kfd_device_by_kgd(dma_buf_kgd);
   1624 	if (!dev) {
   1625 		r = -EINVAL;
   1626 		goto exit;
   1627 	}
   1628 	args->gpu_id = dev->id;
   1629 	args->flags = flags;
   1630 
   1631 	/* Copy metadata buffer to user mode */
   1632 	if (metadata_buffer) {
   1633 		r = copy_to_user((void __user *)args->metadata_ptr,
   1634 				 metadata_buffer, args->metadata_size);
   1635 		if (r != 0)
   1636 			r = -EFAULT;
   1637 	}
   1638 
   1639 exit:
   1640 	kfree(metadata_buffer);
   1641 
   1642 	return r;
   1643 }
   1644 
   1645 static int kfd_ioctl_import_dmabuf(struct file *filep,
   1646 				   struct kfd_process *p, void *data)
   1647 {
   1648 	struct kfd_ioctl_import_dmabuf_args *args = data;
   1649 	struct kfd_process_device *pdd;
   1650 	struct dma_buf *dmabuf;
   1651 	struct kfd_dev *dev;
   1652 	int idr_handle;
   1653 	uint64_t size;
   1654 	void *mem;
   1655 	int r;
   1656 
   1657 	dev = kfd_device_by_id(args->gpu_id);
   1658 	if (!dev)
   1659 		return -EINVAL;
   1660 
   1661 	dmabuf = dma_buf_get(args->dmabuf_fd);
   1662 	if (IS_ERR(dmabuf))
   1663 		return PTR_ERR(dmabuf);
   1664 
   1665 	mutex_lock(&p->mutex);
   1666 
   1667 	pdd = kfd_bind_process_to_device(dev, p);
   1668 	if (IS_ERR(pdd)) {
   1669 		r = PTR_ERR(pdd);
   1670 		goto err_unlock;
   1671 	}
   1672 
   1673 	r = amdgpu_amdkfd_gpuvm_import_dmabuf(dev->kgd, dmabuf,
   1674 					      args->va_addr, pdd->vm,
   1675 					      (struct kgd_mem **)&mem, &size,
   1676 					      NULL);
   1677 	if (r)
   1678 		goto err_unlock;
   1679 
   1680 	idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
   1681 	if (idr_handle < 0) {
   1682 		r = -EFAULT;
   1683 		goto err_free;
   1684 	}
   1685 
   1686 	mutex_unlock(&p->mutex);
   1687 
   1688 	args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
   1689 
   1690 	return 0;
   1691 
   1692 err_free:
   1693 	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, (struct kgd_mem *)mem);
   1694 err_unlock:
   1695 	mutex_unlock(&p->mutex);
   1696 	return r;
   1697 }
   1698 
   1699 #define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \
   1700 	[_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \
   1701 			    .cmd_drv = 0, .name = #ioctl}
   1702 
   1703 /** Ioctl table */
   1704 static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = {
   1705 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION,
   1706 			kfd_ioctl_get_version, 0),
   1707 
   1708 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE,
   1709 			kfd_ioctl_create_queue, 0),
   1710 
   1711 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE,
   1712 			kfd_ioctl_destroy_queue, 0),
   1713 
   1714 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY,
   1715 			kfd_ioctl_set_memory_policy, 0),
   1716 
   1717 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS,
   1718 			kfd_ioctl_get_clock_counters, 0),
   1719 
   1720 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES,
   1721 			kfd_ioctl_get_process_apertures, 0),
   1722 
   1723 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE,
   1724 			kfd_ioctl_update_queue, 0),
   1725 
   1726 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT,
   1727 			kfd_ioctl_create_event, 0),
   1728 
   1729 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT,
   1730 			kfd_ioctl_destroy_event, 0),
   1731 
   1732 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT,
   1733 			kfd_ioctl_set_event, 0),
   1734 
   1735 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT,
   1736 			kfd_ioctl_reset_event, 0),
   1737 
   1738 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS,
   1739 			kfd_ioctl_wait_events, 0),
   1740 
   1741 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER,
   1742 			kfd_ioctl_dbg_register, 0),
   1743 
   1744 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER,
   1745 			kfd_ioctl_dbg_unregister, 0),
   1746 
   1747 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH,
   1748 			kfd_ioctl_dbg_address_watch, 0),
   1749 
   1750 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL,
   1751 			kfd_ioctl_dbg_wave_control, 0),
   1752 
   1753 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA,
   1754 			kfd_ioctl_set_scratch_backing_va, 0),
   1755 
   1756 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG,
   1757 			kfd_ioctl_get_tile_config, 0),
   1758 
   1759 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER,
   1760 			kfd_ioctl_set_trap_handler, 0),
   1761 
   1762 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW,
   1763 			kfd_ioctl_get_process_apertures_new, 0),
   1764 
   1765 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM,
   1766 			kfd_ioctl_acquire_vm, 0),
   1767 
   1768 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU,
   1769 			kfd_ioctl_alloc_memory_of_gpu, 0),
   1770 
   1771 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU,
   1772 			kfd_ioctl_free_memory_of_gpu, 0),
   1773 
   1774 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU,
   1775 			kfd_ioctl_map_memory_to_gpu, 0),
   1776 
   1777 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU,
   1778 			kfd_ioctl_unmap_memory_from_gpu, 0),
   1779 
   1780 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK,
   1781 			kfd_ioctl_set_cu_mask, 0),
   1782 
   1783 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE,
   1784 			kfd_ioctl_get_queue_wave_state, 0),
   1785 
   1786 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_DMABUF_INFO,
   1787 				kfd_ioctl_get_dmabuf_info, 0),
   1788 
   1789 	AMDKFD_IOCTL_DEF(AMDKFD_IOC_IMPORT_DMABUF,
   1790 				kfd_ioctl_import_dmabuf, 0),
   1791 
   1792 };
   1793 
   1794 #define AMDKFD_CORE_IOCTL_COUNT	ARRAY_SIZE(amdkfd_ioctls)
   1795 
   1796 static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
   1797 {
   1798 	struct kfd_process *process;
   1799 	amdkfd_ioctl_t *func;
   1800 	const struct amdkfd_ioctl_desc *ioctl = NULL;
   1801 	unsigned int nr = _IOC_NR(cmd);
   1802 	char stack_kdata[128];
   1803 	char *kdata = NULL;
   1804 	unsigned int usize, asize;
   1805 	int retcode = -EINVAL;
   1806 
   1807 	if (nr >= AMDKFD_CORE_IOCTL_COUNT)
   1808 		goto err_i1;
   1809 
   1810 	if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) {
   1811 		u32 amdkfd_size;
   1812 
   1813 		ioctl = &amdkfd_ioctls[nr];
   1814 
   1815 		amdkfd_size = _IOC_SIZE(ioctl->cmd);
   1816 		usize = asize = _IOC_SIZE(cmd);
   1817 		if (amdkfd_size > asize)
   1818 			asize = amdkfd_size;
   1819 
   1820 		cmd = ioctl->cmd;
   1821 	} else
   1822 		goto err_i1;
   1823 
   1824 	dev_dbg(kfd_device, "ioctl cmd 0x%x (#0x%x), arg 0x%lx\n", cmd, nr, arg);
   1825 
   1826 	/* Get the process struct from the filep. Only the process
   1827 	 * that opened /dev/kfd can use the file descriptor. Child
   1828 	 * processes need to create their own KFD device context.
   1829 	 */
   1830 	process = filep->private_data;
   1831 	if (process->lead_thread != current->group_leader) {
   1832 		dev_dbg(kfd_device, "Using KFD FD in wrong process\n");
   1833 		retcode = -EBADF;
   1834 		goto err_i1;
   1835 	}
   1836 
   1837 	/* Do not trust userspace, use our own definition */
   1838 	func = ioctl->func;
   1839 
   1840 	if (unlikely(!func)) {
   1841 		dev_dbg(kfd_device, "no function\n");
   1842 		retcode = -EINVAL;
   1843 		goto err_i1;
   1844 	}
   1845 
   1846 	if (cmd & (IOC_IN | IOC_OUT)) {
   1847 		if (asize <= sizeof(stack_kdata)) {
   1848 			kdata = stack_kdata;
   1849 		} else {
   1850 			kdata = kmalloc(asize, GFP_KERNEL);
   1851 			if (!kdata) {
   1852 				retcode = -ENOMEM;
   1853 				goto err_i1;
   1854 			}
   1855 		}
   1856 		if (asize > usize)
   1857 			memset(kdata + usize, 0, asize - usize);
   1858 	}
   1859 
   1860 	if (cmd & IOC_IN) {
   1861 		if (copy_from_user(kdata, (void __user *)arg, usize) != 0) {
   1862 			retcode = -EFAULT;
   1863 			goto err_i1;
   1864 		}
   1865 	} else if (cmd & IOC_OUT) {
   1866 		memset(kdata, 0, usize);
   1867 	}
   1868 
   1869 	retcode = func(filep, process, kdata);
   1870 
   1871 	if (cmd & IOC_OUT)
   1872 		if (copy_to_user((void __user *)arg, kdata, usize) != 0)
   1873 			retcode = -EFAULT;
   1874 
   1875 err_i1:
   1876 	if (!ioctl)
   1877 		dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n",
   1878 			  task_pid_nr(current), cmd, nr);
   1879 
   1880 	if (kdata != stack_kdata)
   1881 		kfree(kdata);
   1882 
   1883 	if (retcode)
   1884 		dev_dbg(kfd_device, "ioctl cmd (#0x%x), arg 0x%lx, ret = %d\n",
   1885 				nr, arg, retcode);
   1886 
   1887 	return retcode;
   1888 }
   1889 
   1890 static int kfd_mmio_mmap(struct kfd_dev *dev, struct kfd_process *process,
   1891 		      struct vm_area_struct *vma)
   1892 {
   1893 	phys_addr_t address;
   1894 	int ret;
   1895 
   1896 	if (vma->vm_end - vma->vm_start != PAGE_SIZE)
   1897 		return -EINVAL;
   1898 
   1899 	address = amdgpu_amdkfd_get_mmio_remap_phys_addr(dev->kgd);
   1900 
   1901 	vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE |
   1902 				VM_DONTDUMP | VM_PFNMAP;
   1903 
   1904 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
   1905 
   1906 	pr_debug("pasid 0x%x mapping mmio page\n"
   1907 		 "     target user address == 0x%08llX\n"
   1908 		 "     physical address    == 0x%08llX\n"
   1909 		 "     vm_flags            == 0x%04lX\n"
   1910 		 "     size                == 0x%04lX\n",
   1911 		 process->pasid, (unsigned long long) vma->vm_start,
   1912 		 address, vma->vm_flags, PAGE_SIZE);
   1913 
   1914 	ret = io_remap_pfn_range(vma,
   1915 				vma->vm_start,
   1916 				address >> PAGE_SHIFT,
   1917 				PAGE_SIZE,
   1918 				vma->vm_page_prot);
   1919 	return ret;
   1920 }
   1921 
   1922 
   1923 static int kfd_mmap(struct file *filp, struct vm_area_struct *vma)
   1924 {
   1925 	struct kfd_process *process;
   1926 	struct kfd_dev *dev = NULL;
   1927 	unsigned long mmap_offset;
   1928 	unsigned int gpu_id;
   1929 
   1930 	process = kfd_get_process(current);
   1931 	if (IS_ERR(process))
   1932 		return PTR_ERR(process);
   1933 
   1934 	mmap_offset = vma->vm_pgoff << PAGE_SHIFT;
   1935 	gpu_id = KFD_MMAP_GET_GPU_ID(mmap_offset);
   1936 	if (gpu_id)
   1937 		dev = kfd_device_by_id(gpu_id);
   1938 
   1939 	switch (mmap_offset & KFD_MMAP_TYPE_MASK) {
   1940 	case KFD_MMAP_TYPE_DOORBELL:
   1941 		if (!dev)
   1942 			return -ENODEV;
   1943 		return kfd_doorbell_mmap(dev, process, vma);
   1944 
   1945 	case KFD_MMAP_TYPE_EVENTS:
   1946 		return kfd_event_mmap(process, vma);
   1947 
   1948 	case KFD_MMAP_TYPE_RESERVED_MEM:
   1949 		if (!dev)
   1950 			return -ENODEV;
   1951 		return kfd_reserved_mem_mmap(dev, process, vma);
   1952 	case KFD_MMAP_TYPE_MMIO:
   1953 		if (!dev)
   1954 			return -ENODEV;
   1955 		return kfd_mmio_mmap(dev, process, vma);
   1956 	}
   1957 
   1958 	return -EFAULT;
   1959 }
   1960