Home | History | Annotate | Line # | Download | only in x86
      1 /*	$NetBSD: cpu.c,v 1.145 2023/02/25 00:35:01 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      5  * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by RedBack Networks Inc.
     10  *
     11  * Author: Bill Sommerfeld
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32  * POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 /*
     36  * Copyright (c) 1999 Stefan Grefen
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. All advertising materials mentioning features or use of this software
     47  *    must display the following acknowledgement:
     48  *      This product includes software developed by the NetBSD
     49  *      Foundation, Inc. and its contributors.
     50  * 4. Neither the name of The NetBSD Foundation nor the names of its
     51  *    contributors may be used to endorse or promote products derived
     52  *    from this software without specific prior written permission.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     55  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64  * SUCH DAMAGE.
     65  */
     66 
     67 #include <sys/cdefs.h>
     68 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.145 2023/02/25 00:35:01 riastradh Exp $");
     69 
     70 #include "opt_ddb.h"
     71 #include "opt_multiprocessor.h"
     72 #include "opt_mpbios.h"		/* for MPDEBUG */
     73 #include "opt_mtrr.h"
     74 #include "opt_xen.h"
     75 
     76 #include "lapic.h"
     77 #include "ioapic.h"
     78 
     79 #include <sys/param.h>
     80 #include <sys/proc.h>
     81 #include <sys/systm.h>
     82 #include <sys/device.h>
     83 #include <sys/kmem.h>
     84 #include <sys/cpu.h>
     85 #include <sys/cpufreq.h>
     86 #include <sys/atomic.h>
     87 #include <sys/reboot.h>
     88 #include <sys/idle.h>
     89 
     90 #include <uvm/uvm.h>
     91 
     92 #include <machine/cpu.h>
     93 #include <machine/cpufunc.h>
     94 #include <machine/cpuvar.h>
     95 #include <machine/pmap.h>
     96 #include <machine/pmap_private.h>
     97 #include <machine/vmparam.h>
     98 #include <machine/mpbiosvar.h>
     99 #include <machine/pcb.h>
    100 #include <machine/specialreg.h>
    101 #include <machine/segments.h>
    102 #include <machine/gdt.h>
    103 #include <machine/mtrr.h>
    104 #include <machine/pio.h>
    105 
    106 #include <x86/fpu.h>
    107 
    108 #include <xen/xen.h>
    109 #include <xen/include/public/vcpu.h>
    110 #include <xen/vcpuvar.h>
    111 
    112 #if NLAPIC > 0
    113 #include <machine/apicvar.h>
    114 #include <machine/i82489reg.h>
    115 #include <machine/i82489var.h>
    116 #endif
    117 
    118 #include <dev/ic/mc146818reg.h>
    119 #include <dev/isa/isareg.h>
    120 
    121 static int	cpu_match(device_t, cfdata_t, void *);
    122 static void	cpu_attach(device_t, device_t, void *);
    123 static void	cpu_defer(device_t);
    124 static int	cpu_rescan(device_t, const char *, const int *);
    125 static void	cpu_childdetached(device_t, device_t);
    126 static int	vcpu_match(device_t, cfdata_t, void *);
    127 static void	vcpu_attach(device_t, device_t, void *);
    128 static void	cpu_attach_common(device_t, device_t, void *);
    129 void		cpu_offline_md(void);
    130 
    131 struct cpu_softc {
    132 	device_t sc_dev;		/* device tree glue */
    133 	struct cpu_info *sc_info;	/* pointer to CPU info */
    134 	bool sc_wasonline;
    135 };
    136 
    137 int mp_cpu_start(struct cpu_info *, vaddr_t);
    138 void mp_cpu_start_cleanup(struct cpu_info *);
    139 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    140 				      mp_cpu_start_cleanup };
    141 
    142 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
    143     cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
    144 
    145 CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
    146     vcpu_match, vcpu_attach, NULL, NULL);
    147 
    148 /*
    149  * Statically-allocated CPU info for the primary CPU (or the only
    150  * CPU, on uniprocessors).  The CPU info list is initialized to
    151  * point at it.
    152  */
    153 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    154 	.ci_dev = 0,
    155 	.ci_self = &cpu_info_primary,
    156 	.ci_idepth = -1,
    157 	.ci_curlwp = &lwp0,
    158 	.ci_curldt = -1,
    159 };
    160 struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    161 	.ci_dev = 0,
    162 	.ci_self = &phycpu_info_primary,
    163 };
    164 
    165 struct cpu_info *cpu_info_list = &cpu_info_primary;
    166 struct cpu_info *phycpu_info_list = &phycpu_info_primary;
    167 
    168 uint32_t cpu_feature[7] __read_mostly; /* X86 CPUID feature bits
    169 			  *	[0] basic features %edx
    170 			  *	[1] basic features %ecx
    171 			  *	[2] extended features %edx
    172 			  *	[3] extended features %ecx
    173 			  *	[4] VIA padlock features
    174 			  *	[5] structured extended features cpuid.7:%ebx
    175 			  *	[6] structured extended features cpuid.7:%ecx
    176 			  */
    177 
    178 bool x86_mp_online;
    179 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    180 
    181 #if defined(MULTIPROCESSOR)
    182 void    	cpu_hatch(void *);
    183 static void    	cpu_boot_secondary(struct cpu_info *ci);
    184 static void    	cpu_start_secondary(struct cpu_info *ci);
    185 #endif	/* MULTIPROCESSOR */
    186 
    187 static int
    188 cpu_match(device_t parent, cfdata_t match, void *aux)
    189 {
    190 
    191 	return 1;
    192 }
    193 
    194 static void
    195 cpu_attach(device_t parent, device_t self, void *aux)
    196 {
    197 	struct cpu_softc *sc = device_private(self);
    198 	struct cpu_attach_args *caa = aux;
    199 	struct cpu_info *ci;
    200 	uintptr_t ptr;
    201 	static int nphycpu = 0;
    202 
    203 	sc->sc_dev = self;
    204 
    205 	/*
    206 	 * If we're an Application Processor, allocate a cpu_info
    207 	 * If we're the first attached CPU use the primary cpu_info,
    208 	 * otherwise allocate a new one
    209 	 */
    210 	aprint_naive("\n");
    211 	aprint_normal("\n");
    212 	if (nphycpu > 0) {
    213 		struct cpu_info *tmp;
    214 		ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    215 		    KM_SLEEP);
    216 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    217 		ci->ci_curldt = -1;
    218 
    219 		tmp = phycpu_info_list;
    220 		while (tmp->ci_next)
    221 			tmp = tmp->ci_next;
    222 
    223 		tmp->ci_next = ci;
    224 	} else {
    225 		ci = &phycpu_info_primary;
    226 	}
    227 
    228 	ci->ci_self = ci;
    229 	sc->sc_info = ci;
    230 
    231 	ci->ci_dev = self;
    232 	ci->ci_acpiid = caa->cpu_id;
    233 	ci->ci_cpuid = caa->cpu_number;
    234 	ci->ci_vcpu = NULL;
    235 	ci->ci_index = nphycpu++;
    236 	ci->ci_kfpu_spl = -1;
    237 
    238 	if (!pmf_device_register(self, NULL, NULL))
    239 		aprint_error_dev(self, "couldn't establish power handler\n");
    240 
    241 	(void)config_defer(self, cpu_defer);
    242 }
    243 
    244 static void
    245 cpu_defer(device_t self)
    246 {
    247 	cpu_rescan(self, NULL, NULL);
    248 }
    249 
    250 static int
    251 cpu_rescan(device_t self, const char *ifattr, const int *locators)
    252 {
    253 	struct cpu_softc *sc = device_private(self);
    254 	struct cpufeature_attach_args cfaa;
    255 	struct cpu_info *ci = sc->sc_info;
    256 
    257 	memset(&cfaa, 0, sizeof(cfaa));
    258 	cfaa.ci = ci;
    259 
    260 	if (ifattr_match(ifattr, "cpufeaturebus")) {
    261 
    262 		if (ci->ci_frequency == NULL) {
    263 			cfaa.name = "frequency";
    264 			ci->ci_frequency =
    265 			    config_found(self, &cfaa, NULL,
    266 					 CFARGS(.iattr = "cpufeaturebus"));
    267 		}
    268 	}
    269 
    270 	return 0;
    271 }
    272 
    273 static void
    274 cpu_childdetached(device_t self, device_t child)
    275 {
    276 	struct cpu_softc *sc = device_private(self);
    277 	struct cpu_info *ci = sc->sc_info;
    278 
    279 	if (ci->ci_frequency == child)
    280 		ci->ci_frequency = NULL;
    281 }
    282 
    283 static int
    284 vcpu_match(device_t parent, cfdata_t match, void *aux)
    285 {
    286 	struct vcpu_attach_args *vcaa = aux;
    287 	struct vcpu_runstate_info vcr;
    288 	int error;
    289 
    290 	if (strcmp(vcaa->vcaa_name, match->cf_name) == 0) {
    291 		error = HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info,
    292 		    vcaa->vcaa_caa.cpu_number, &vcr);
    293 		switch (error) {
    294 		case 0:
    295 			return 1;
    296 		case -ENOENT:
    297 			return 0;
    298 		default:
    299 			panic("Unknown hypervisor error %d returned on vcpu runstate probe\n", error);
    300 		}
    301 	}
    302 
    303 	return 0;
    304 }
    305 
    306 static void
    307 vcpu_attach(device_t parent, device_t self, void *aux)
    308 {
    309 	struct vcpu_attach_args *vcaa = aux;
    310 
    311 	KASSERT(vcaa->vcaa_caa.cpu_func == NULL);
    312 	vcaa->vcaa_caa.cpu_func = &mp_cpu_funcs;
    313 	cpu_attach_common(parent, self, &vcaa->vcaa_caa);
    314 
    315 	if (!pmf_device_register(self, NULL, NULL))
    316 		aprint_error_dev(self, "couldn't establish power handler\n");
    317 }
    318 
    319 static int
    320 vcpu_is_up(struct cpu_info *ci)
    321 {
    322 	KASSERT(ci != NULL);
    323 	return HYPERVISOR_vcpu_op(VCPUOP_is_up, ci->ci_vcpuid, NULL);
    324 }
    325 
    326 static void
    327 cpu_vm_init(struct cpu_info *ci)
    328 {
    329 	int ncolors = 2, i;
    330 
    331 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    332 		struct x86_cache_info *cai;
    333 		int tcolors;
    334 
    335 		cai = &ci->ci_cinfo[i];
    336 
    337 		tcolors = atop(cai->cai_totalsize);
    338 		switch (cai->cai_associativity) {
    339 		case 0xff:
    340 			tcolors = 1; /* fully associative */
    341 			break;
    342 		case 0:
    343 		case 1:
    344 			break;
    345 		default:
    346 			tcolors /= cai->cai_associativity;
    347 		}
    348 		ncolors = uimax(ncolors, tcolors);
    349 	}
    350 
    351 	/*
    352 	 * Knowing the size of the largest cache on this CPU, potentially
    353 	 * re-color our pages.
    354 	 */
    355 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
    356 	uvm_page_recolor(ncolors);
    357 	pmap_tlb_cpu_init(ci);
    358 #ifndef __HAVE_DIRECT_MAP
    359 	pmap_vpage_cpu_init(ci);
    360 #endif
    361 }
    362 
    363 static void
    364 cpu_attach_common(device_t parent, device_t self, void *aux)
    365 {
    366 	struct cpu_softc *sc = device_private(self);
    367 	struct cpu_attach_args *caa = aux;
    368 	struct cpu_info *ci;
    369 	uintptr_t ptr;
    370 	int cpunum = caa->cpu_number;
    371 	static bool again = false;
    372 
    373 	sc->sc_dev = self;
    374 
    375 	/*
    376 	 * If we're an Application Processor, allocate a cpu_info
    377 	 * structure, otherwise use the primary's.
    378 	 */
    379 	if (caa->cpu_role == CPU_ROLE_AP) {
    380 		aprint_naive(": Application Processor\n");
    381 		ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    382 		    KM_SLEEP);
    383 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    384 		memset(ci, 0, sizeof(*ci));
    385 		cpu_init_tss(ci);
    386 	} else {
    387 		aprint_naive(": %s Processor\n",
    388 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    389 		ci = &cpu_info_primary;
    390 	}
    391 
    392 	ci->ci_self = ci;
    393 	sc->sc_info = ci;
    394 	ci->ci_dev = self;
    395 	ci->ci_cpuid = cpunum;
    396 	ci->ci_vcpuid = cpunum;
    397 	ci->ci_kfpu_spl = -1;
    398 
    399 	KASSERT(HYPERVISOR_shared_info != NULL);
    400 	KASSERT(cpunum < XEN_LEGACY_MAX_VCPUS);
    401 	ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
    402 
    403 	KASSERT(ci->ci_func == 0);
    404 	ci->ci_func = caa->cpu_func;
    405 	aprint_normal("\n");
    406 
    407 	/* Must be called before mi_cpu_attach(). */
    408 	cpu_vm_init(ci);
    409 
    410 	if (caa->cpu_role == CPU_ROLE_AP) {
    411 		int error;
    412 
    413 		error = mi_cpu_attach(ci);
    414 
    415 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    416 		if (error != 0) {
    417 			aprint_error_dev(self,
    418 			    "mi_cpu_attach failed with %d\n", error);
    419 			return;
    420 		}
    421 
    422 	} else {
    423 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    424 	}
    425 
    426 	KASSERT(ci->ci_cpuid == ci->ci_index);
    427 #ifdef __x86_64__
    428 	/* No user PGD mapped for this CPU yet */
    429 	ci->ci_xen_current_user_pgd = 0;
    430 #endif
    431 	mutex_init(&ci->ci_kpm_mtx, MUTEX_DEFAULT, IPL_VM);
    432 	pmap_reference(pmap_kernel());
    433 	ci->ci_pmap = pmap_kernel();
    434 	ci->ci_tlbstate = TLBSTATE_STALE;
    435 
    436 	/*
    437 	 * Boot processor may not be attached first, but the below
    438 	 * must be done to allow booting other processors.
    439 	 */
    440 	if (!again) {
    441 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    442 		/* Basic init. */
    443 		cpu_intr_init(ci);
    444 		cpu_get_tsc_freq(ci);
    445 		cpu_init(ci);
    446 		pmap_cpu_init_late(ci);
    447 
    448 		/* Every processor needs to init its own ipi h/w (similar to lapic) */
    449 		xen_ipi_init();
    450 
    451 		/* Make sure DELAY() is initialized. */
    452 		DELAY(1);
    453 		again = true;
    454 	}
    455 
    456 	/* further PCB init done later. */
    457 
    458 	switch (caa->cpu_role) {
    459 	case CPU_ROLE_SP:
    460 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    461 		cpu_identify(ci);
    462 		x86_cpu_idle_init();
    463 		break;
    464 
    465 	case CPU_ROLE_BP:
    466 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    467 		cpu_identify(ci);
    468 		x86_cpu_idle_init();
    469 		break;
    470 
    471 	case CPU_ROLE_AP:
    472 		atomic_or_32(&ci->ci_flags, CPUF_AP);
    473 
    474 		/*
    475 		 * report on an AP
    476 		 */
    477 
    478 #if defined(MULTIPROCESSOR)
    479 		/* interrupt handler stack */
    480 		cpu_intr_init(ci);
    481 
    482 		/* Setup per-cpu memory for idt */
    483 		idt_vec_init_cpu_md(&ci->ci_idtvec, cpu_index(ci));
    484 
    485 		/* Setup per-cpu memory for gdt */
    486 		gdt_alloc_cpu(ci);
    487 
    488 		pmap_cpu_init_late(ci);
    489 		cpu_start_secondary(ci);
    490 
    491 		if (ci->ci_flags & CPUF_PRESENT) {
    492 			struct cpu_info *tmp;
    493 
    494 			cpu_identify(ci);
    495 			tmp = cpu_info_list;
    496 			while (tmp->ci_next)
    497 				tmp = tmp->ci_next;
    498 
    499 			tmp->ci_next = ci;
    500 		}
    501 #else
    502 		aprint_error_dev(ci->ci_dev, "not started\n");
    503 #endif
    504 		break;
    505 
    506 	default:
    507 		panic("unknown processor type??\n");
    508 	}
    509 
    510 #ifdef MPVERBOSE
    511 	if (mp_verbose) {
    512 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    513 		struct pcb *pcb = lwp_getpcb(l);
    514 
    515 		aprint_verbose_dev(self,
    516 		    "idle lwp at %p, idle sp at %p\n",
    517 		    l,
    518 #ifdef i386
    519 		    (void *)pcb->pcb_esp
    520 #else
    521 		    (void *)pcb->pcb_rsp
    522 #endif
    523 		);
    524 
    525 	}
    526 #endif /* MPVERBOSE */
    527 }
    528 
    529 /*
    530  * Initialize the processor appropriately.
    531  */
    532 
    533 void
    534 cpu_init(struct cpu_info *ci)
    535 {
    536 	uint32_t cr4 = 0;
    537 
    538 	/*
    539 	 * If we have FXSAVE/FXRESTOR, use them.
    540 	 */
    541 	if (cpu_feature[0] & CPUID_FXSR) {
    542 		cr4 |= CR4_OSFXSR;
    543 
    544 		/*
    545 		 * If we have SSE/SSE2, enable XMM exceptions.
    546 		 */
    547 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
    548 			cr4 |= CR4_OSXMMEXCPT;
    549 	}
    550 
    551 	/* If xsave is supported, enable it */
    552 	if (cpu_feature[1] & CPUID2_XSAVE && x86_fpu_save >= FPU_SAVE_XSAVE)
    553 		cr4 |= CR4_OSXSAVE;
    554 
    555 	if (cr4) {
    556 		cr4 |= rcr4();
    557 		lcr4(cr4);
    558 	}
    559 
    560 	if (x86_fpu_save >= FPU_SAVE_FXSAVE) {
    561 		fpuinit_mxcsr_mask();
    562 	}
    563 
    564 	/*
    565 	 * Changing CR4 register may change cpuid values. For example, setting
    566 	 * CR4_OSXSAVE sets CPUID2_OSXSAVE. The CPUID2_OSXSAVE is in
    567 	 * ci_feat_val[1], so update it.
    568 	 * XXX Other than ci_feat_val[1] might be changed.
    569 	 */
    570 	if (cpuid_level >= 1) {
    571 		u_int descs[4];
    572 
    573 		x86_cpuid(1, descs);
    574 		ci->ci_feat_val[1] = descs[2];
    575 	}
    576 
    577 	/* If xsave is enabled, enable all fpu features */
    578 	if (cr4 & CR4_OSXSAVE) {
    579 		wrxcr(0, x86_xsave_features & XCR0_FPU);
    580 	}
    581 
    582 	atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    583 }
    584 
    585 
    586 #ifdef MULTIPROCESSOR
    587 
    588 void
    589 cpu_boot_secondary_processors(void)
    590 {
    591 	struct cpu_info *ci;
    592 	kcpuset_t *cpus;
    593 	u_long i;
    594 
    595 	kcpuset_create(&cpus, true);
    596 	kcpuset_set(cpus, cpu_index(curcpu()));
    597 	for (i = 0; i < maxcpus; i++) {
    598 		ci = cpu_lookup(i);
    599 		if (ci == NULL)
    600 			continue;
    601 		if (ci->ci_data.cpu_idlelwp == NULL)
    602 			continue;
    603 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    604 			continue;
    605 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    606 			continue;
    607 		cpu_boot_secondary(ci);
    608 		kcpuset_set(cpus, cpu_index(ci));
    609 	}
    610 	while (!kcpuset_match(cpus, kcpuset_running))
    611 		;
    612 	kcpuset_destroy(cpus);
    613 
    614 	x86_mp_online = true;
    615 }
    616 
    617 static void
    618 cpu_init_idle_lwp(struct cpu_info *ci)
    619 {
    620 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    621 	struct pcb *pcb = lwp_getpcb(l);
    622 
    623 	pcb->pcb_cr0 = rcr0();
    624 }
    625 
    626 void
    627 cpu_init_idle_lwps(void)
    628 {
    629 	struct cpu_info *ci;
    630 	u_long i;
    631 
    632 	for (i = 0; i < maxcpus; i++) {
    633 		ci = cpu_lookup(i);
    634 		if (ci == NULL)
    635 			continue;
    636 		if (ci->ci_data.cpu_idlelwp == NULL)
    637 			continue;
    638 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    639 			continue;
    640 		cpu_init_idle_lwp(ci);
    641 	}
    642 }
    643 
    644 static void
    645 cpu_start_secondary(struct cpu_info *ci)
    646 {
    647 	int i;
    648 
    649 	aprint_debug_dev(ci->ci_dev, "starting\n");
    650 
    651 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    652 
    653 	if (CPU_STARTUP(ci, (vaddr_t) cpu_hatch) != 0) {
    654 		return;
    655 	}
    656 
    657 	/*
    658 	 * wait for it to become ready
    659 	 */
    660 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    661 		delay(10);
    662 	}
    663 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    664 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    665 #if defined(MPDEBUG) && defined(DDB)
    666 		printf("dropping into debugger; continue from here to resume boot\n");
    667 		Debugger();
    668 #endif
    669 	}
    670 
    671 	CPU_START_CLEANUP(ci);
    672 }
    673 
    674 void
    675 cpu_boot_secondary(struct cpu_info *ci)
    676 {
    677 	int i;
    678 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    679 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    680 		delay(10);
    681 	}
    682 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    683 		aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
    684 #if defined(MPDEBUG) && defined(DDB)
    685 		printf("dropping into debugger; continue from here to resume boot\n");
    686 		Debugger();
    687 #endif
    688 	}
    689 }
    690 
    691 /*
    692  * APs end up here immediately after initialisation and VCPUOP_up in
    693  * mp_cpu_start().
    694  * At this point, we are running in the idle pcb/idle stack of the new
    695  * CPU.  This function jumps to the idle loop and starts looking for
    696  * work.
    697  */
    698 extern void x86_64_tls_switch(struct lwp *);
    699 void
    700 cpu_hatch(void *v)
    701 {
    702 	struct cpu_info *ci = (struct cpu_info *)v;
    703 	struct pcb *pcb;
    704 	int s, i;
    705 
    706 	/* Setup TLS and kernel GS/FS */
    707 	cpu_init_msrs(ci, true);
    708 	cpu_init_idt(ci);
    709 	gdt_init_cpu(ci);
    710 
    711 	cpu_probe(ci);
    712 
    713 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    714 
    715 	while ((ci->ci_flags & CPUF_GO) == 0) {
    716 		/* Don't use delay, boot CPU may be patching the text. */
    717 		for (i = 10000; i != 0; i--)
    718 			x86_pause();
    719 	}
    720 
    721 	/* Because the text may have been patched in x86_patch(). */
    722 	x86_flush();
    723 	tlbflushg();
    724 
    725 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    726 
    727 	KASSERT(ci->ci_curlwp == ci->ci_data.cpu_idlelwp);
    728 	KASSERT(curlwp == ci->ci_data.cpu_idlelwp);
    729 	pcb = lwp_getpcb(curlwp);
    730 	pcb->pcb_cr3 = pmap_pdirpa(pmap_kernel(), 0);
    731 
    732 	xen_ipi_init();
    733 
    734 	xen_initclocks();
    735 
    736 #ifdef __x86_64__
    737 	fpuinit(ci);
    738 #endif
    739 
    740 	lldt(GSEL(GLDT_SEL, SEL_KPL));
    741 
    742 	cpu_init(ci);
    743 	cpu_get_tsc_freq(ci);
    744 
    745 	s = splhigh();
    746 	x86_enable_intr();
    747 	splx(s);
    748 
    749 	aprint_debug_dev(ci->ci_dev, "running\n");
    750 
    751 	KASSERT(ci->ci_curlwp == ci->ci_data.cpu_idlelwp);
    752 	idle_loop(NULL);
    753 	KASSERT(false);
    754 }
    755 
    756 #if defined(DDB)
    757 
    758 #include <ddb/db_output.h>
    759 #include <machine/db_machdep.h>
    760 
    761 /*
    762  * Dump CPU information from ddb.
    763  */
    764 void
    765 cpu_debug_dump(void)
    766 {
    767 	struct cpu_info *ci;
    768 	CPU_INFO_ITERATOR cii;
    769 
    770 	db_printf("addr		dev	id	flags	ipis	curlwp\n");
    771 	for (CPU_INFO_FOREACH(cii, ci)) {
    772 		db_printf("%p	%s	%ld	%x	%x	%10p\n",
    773 		    ci,
    774 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
    775 		    (long)ci->ci_vcpuid,
    776 		    ci->ci_flags, ci->ci_ipis,
    777 		    ci->ci_curlwp);
    778 	}
    779 }
    780 #endif /* DDB */
    781 
    782 #endif /* MULTIPROCESSOR */
    783 
    784 extern void hypervisor_callback(void);
    785 extern void failsafe_callback(void);
    786 #ifdef __x86_64__
    787 typedef void (vector)(void);
    788 extern vector Xsyscall, Xsyscall32;
    789 #endif
    790 
    791 /*
    792  * Setup the "trampoline". On Xen, we setup nearly all cpu context
    793  * outside a trampoline, so we prototype and call targetip like so:
    794  * void targetip(struct cpu_info *);
    795  */
    796 
    797 static void
    798 gdt_prepframes(paddr_t *frames, vaddr_t base, uint32_t entries)
    799 {
    800 	int i;
    801 	for (i = 0; i < entries; i++) {
    802 		frames[i] = ((paddr_t)xpmap_ptetomach(
    803 		    (pt_entry_t *)(base + (i << PAGE_SHIFT)))) >> PAGE_SHIFT;
    804 
    805 		/* Mark Read-only */
    806 		pmap_pte_clearbits(kvtopte(base + (i << PAGE_SHIFT)),
    807 		    PTE_W);
    808 	}
    809 }
    810 
    811 #ifdef __x86_64__
    812 extern char *ldtstore;
    813 
    814 static void
    815 xen_init_amd64_vcpuctxt(struct cpu_info *ci, struct vcpu_guest_context *initctx,
    816     void targetrip(struct cpu_info *))
    817 {
    818 	/* page frames to point at GDT */
    819 	extern int gdt_size;
    820 	paddr_t frames[16];
    821 	psize_t gdt_ents;
    822 
    823 	struct lwp *l;
    824 	struct pcb *pcb;
    825 
    826 	volatile struct vcpu_info *vci;
    827 
    828 	KASSERT(ci != NULL);
    829 	KASSERT(ci != &cpu_info_primary);
    830 	KASSERT(initctx != NULL);
    831 	KASSERT(targetrip != NULL);
    832 
    833 	memset(initctx, 0, sizeof(*initctx));
    834 
    835 	gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
    836 	KASSERT(gdt_ents <= 16);
    837 
    838 	gdt_prepframes(frames, (vaddr_t)ci->ci_gdt, gdt_ents);
    839 
    840 	/* Initialise the vcpu context: We use idle_loop()'s pcb context. */
    841 
    842 	l = ci->ci_data.cpu_idlelwp;
    843 
    844 	KASSERT(l != NULL);
    845 	pcb = lwp_getpcb(l);
    846 	KASSERT(pcb != NULL);
    847 
    848 	/* resume with interrupts off */
    849 	vci = ci->ci_vcpu;
    850 	vci->evtchn_upcall_mask = 1;
    851 	__insn_barrier();
    852 
    853 	/* resume in kernel-mode */
    854 	initctx->flags = VGCF_in_kernel | VGCF_online;
    855 
    856 	/* Stack and entry points:
    857 	 * We arrange for the stack frame for cpu_hatch() to
    858 	 * appear as a callee frame of lwp_trampoline(). Being a
    859 	 * leaf frame prevents trampling on any of the MD stack setup
    860 	 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
    861 	 */
    862 
    863 	initctx->user_regs.rdi = (uint64_t) ci; /* targetrip(ci); */
    864 	initctx->user_regs.rip = (vaddr_t) targetrip;
    865 
    866 	initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
    867 
    868 	initctx->user_regs.rflags = pcb->pcb_flags;
    869 	initctx->user_regs.rsp = pcb->pcb_rsp;
    870 
    871 	/* Data segments */
    872 	initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
    873 	initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
    874 	initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
    875 
    876 	/* GDT */
    877 	memcpy(initctx->gdt_frames, frames, sizeof(frames));
    878 	initctx->gdt_ents = gdt_ents;
    879 
    880 	/* LDT */
    881 	initctx->ldt_base = (unsigned long)ldtstore;
    882 	initctx->ldt_ents = LDT_SIZE >> 3;
    883 
    884 	/* Kernel context state */
    885 	initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
    886 	initctx->kernel_sp = pcb->pcb_rsp0;
    887 	initctx->ctrlreg[0] = pcb->pcb_cr0;
    888 	initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
    889 	initctx->ctrlreg[2] = (vaddr_t)targetrip;
    890 	/*
    891 	 * Use pmap_kernel() L4 PD directly, until we setup the
    892 	 * per-cpu L4 PD in pmap_cpu_init_late()
    893 	 */
    894 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_kpm_pdirpa)));
    895 	initctx->ctrlreg[4] = CR4_PAE | CR4_OSFXSR | CR4_OSXMMEXCPT;
    896 
    897 	/* Xen callbacks */
    898 	initctx->event_callback_eip = (unsigned long)hypervisor_callback;
    899 	initctx->failsafe_callback_eip = (unsigned long)failsafe_callback;
    900 	initctx->syscall_callback_eip = (unsigned long)Xsyscall;
    901 
    902 	return;
    903 }
    904 #else /* i386 */
    905 extern union descriptor *ldtstore;
    906 extern void Xsyscall(void);
    907 
    908 static void
    909 xen_init_i386_vcpuctxt(struct cpu_info *ci, struct vcpu_guest_context *initctx,
    910     void targeteip(struct cpu_info *))
    911 {
    912 	/* page frames to point at GDT */
    913 	extern int gdt_size;
    914 	paddr_t frames[16];
    915 	psize_t gdt_ents;
    916 
    917 	struct lwp *l;
    918 	struct pcb *pcb;
    919 
    920 	volatile struct vcpu_info *vci;
    921 
    922 	KASSERT(ci != NULL);
    923 	KASSERT(ci != &cpu_info_primary);
    924 	KASSERT(initctx != NULL);
    925 	KASSERT(targeteip != NULL);
    926 
    927 	memset(initctx, 0, sizeof(*initctx));
    928 
    929 	gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
    930 	KASSERT(gdt_ents <= 16);
    931 
    932 	gdt_prepframes(frames, (vaddr_t)ci->ci_gdt, gdt_ents);
    933 
    934 	/*
    935 	 * Initialise the vcpu context:
    936 	 * We use this cpu's idle_loop() pcb context.
    937 	 */
    938 
    939 	l = ci->ci_data.cpu_idlelwp;
    940 
    941 	KASSERT(l != NULL);
    942 	pcb = lwp_getpcb(l);
    943 	KASSERT(pcb != NULL);
    944 
    945 	/* resume with interrupts off */
    946 	vci = ci->ci_vcpu;
    947 	vci->evtchn_upcall_mask = 1;
    948 	__insn_barrier();
    949 
    950 	/* resume in kernel-mode */
    951 	initctx->flags = VGCF_in_kernel | VGCF_online;
    952 
    953 	/* Stack frame setup for cpu_hatch():
    954 	 * We arrange for the stack frame for cpu_hatch() to
    955 	 * appear as a callee frame of lwp_trampoline(). Being a
    956 	 * leaf frame prevents trampling on any of the MD stack setup
    957 	 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
    958 	 */
    959 
    960 	initctx->user_regs.esp = pcb->pcb_esp - 4; /* Leave word for
    961 						      arg1 */
    962 	{
    963 		/* targeteip(ci); */
    964 		uint32_t *arg = (uint32_t *)initctx->user_regs.esp;
    965 		arg[1] = (uint32_t)ci; /* arg1 */
    966 	}
    967 
    968 	initctx->user_regs.eip = (vaddr_t)targeteip;
    969 	initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
    970 	initctx->user_regs.eflags |= pcb->pcb_iopl;
    971 
    972 	/* Data segments */
    973 	initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
    974 	initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
    975 	initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
    976 	initctx->user_regs.fs = GSEL(GDATA_SEL, SEL_KPL);
    977 
    978 	/* GDT */
    979 	memcpy(initctx->gdt_frames, frames, sizeof(frames));
    980 	initctx->gdt_ents = gdt_ents;
    981 
    982 	/* LDT */
    983 	initctx->ldt_base = (unsigned long)ldtstore;
    984 	initctx->ldt_ents = NLDT;
    985 
    986 	/* Kernel context state */
    987 	initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
    988 	initctx->kernel_sp = pcb->pcb_esp0;
    989 	initctx->ctrlreg[0] = pcb->pcb_cr0;
    990 	initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
    991 	initctx->ctrlreg[2] = (vaddr_t)targeteip;
    992 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_pae_l3_pdirpa)));
    993 	initctx->ctrlreg[4] = /* CR4_PAE | */CR4_OSFXSR | CR4_OSXMMEXCPT;
    994 
    995 	/* Xen callbacks */
    996 	initctx->event_callback_eip = (unsigned long)hypervisor_callback;
    997 	initctx->event_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
    998 	initctx->failsafe_callback_eip = (unsigned long)failsafe_callback;
    999 	initctx->failsafe_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
   1000 
   1001 	return;
   1002 }
   1003 #endif /* __x86_64__ */
   1004 
   1005 int
   1006 mp_cpu_start(struct cpu_info *ci, vaddr_t target)
   1007 {
   1008 	int hyperror;
   1009 	struct vcpu_guest_context *vcpuctx;
   1010 
   1011 	KASSERT(ci != NULL);
   1012 	KASSERT(ci != &cpu_info_primary);
   1013 	KASSERT(ci->ci_flags & CPUF_AP);
   1014 
   1015 	vcpuctx = kmem_alloc(sizeof(*vcpuctx), KM_SLEEP);
   1016 
   1017 #ifdef __x86_64__
   1018 	xen_init_amd64_vcpuctxt(ci, vcpuctx, (void (*)(struct cpu_info *))target);
   1019 #else
   1020 	xen_init_i386_vcpuctxt(ci, vcpuctx, (void (*)(struct cpu_info *))target);
   1021 #endif
   1022 
   1023 	/* Initialise the given vcpu to execute cpu_hatch(ci); */
   1024 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_initialise, ci->ci_vcpuid, vcpuctx))) {
   1025 		aprint_error(": context initialisation failed. errno = %d\n", hyperror);
   1026 		goto out;
   1027 	}
   1028 
   1029 	/* Start it up */
   1030 
   1031 	/* First bring it down */
   1032 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_down, ci->ci_vcpuid, NULL))) {
   1033 		aprint_error(": VCPUOP_down hypervisor command failed. errno = %d\n", hyperror);
   1034 		goto out;
   1035 	}
   1036 
   1037 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_up, ci->ci_vcpuid, NULL))) {
   1038 		aprint_error(": VCPUOP_up hypervisor command failed. errno = %d\n", hyperror);
   1039 		goto out;
   1040 	}
   1041 
   1042 	if (!vcpu_is_up(ci)) {
   1043 		aprint_error(": did not come up\n");
   1044 		hyperror = -1;
   1045 		goto out;
   1046 	}
   1047 
   1048 out:
   1049 	kmem_free(vcpuctx, sizeof(*vcpuctx));
   1050 	return hyperror;
   1051 }
   1052 
   1053 void
   1054 mp_cpu_start_cleanup(struct cpu_info *ci)
   1055 {
   1056 	if (vcpu_is_up(ci)) {
   1057 		aprint_debug_dev(ci->ci_dev, "is started.\n");
   1058 	} else {
   1059 		aprint_error_dev(ci->ci_dev, "did not start up.\n");
   1060 	}
   1061 }
   1062 
   1063 void
   1064 cpu_init_msrs(struct cpu_info *ci, bool full)
   1065 {
   1066 #ifdef __x86_64__
   1067 	if (full) {
   1068 		HYPERVISOR_set_segment_base(SEGBASE_FS, 0);
   1069 		HYPERVISOR_set_segment_base(SEGBASE_GS_KERNEL, (uint64_t)ci);
   1070 		HYPERVISOR_set_segment_base(SEGBASE_GS_USER, 0);
   1071 	}
   1072 #endif
   1073 
   1074 	if (cpu_feature[2] & CPUID_NOX)
   1075 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
   1076 }
   1077 
   1078 void
   1079 cpu_offline_md(void)
   1080 {
   1081 	return;
   1082 }
   1083 
   1084 void
   1085 cpu_get_tsc_freq(struct cpu_info *ci)
   1086 {
   1087 	uint32_t vcpu_tversion;
   1088 	const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
   1089 
   1090 	vcpu_tversion = tinfo->version;
   1091 	while (tinfo->version == vcpu_tversion); /* Wait for a time update. XXX: timeout ? */
   1092 
   1093 	uint64_t freq = 1000000000ULL << 32;
   1094 	freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
   1095 	if (tinfo->tsc_shift < 0)
   1096 		freq = freq << -tinfo->tsc_shift;
   1097 	else
   1098 		freq = freq >> tinfo->tsc_shift;
   1099 	ci->ci_data.cpu_cc_freq = freq;
   1100 }
   1101 
   1102 /*
   1103  * Loads pmap for the current CPU.
   1104  */
   1105 void
   1106 cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
   1107 {
   1108 	struct cpu_info *ci = curcpu();
   1109 	cpuid_t cid = cpu_index(ci);
   1110 	int i;
   1111 
   1112 	KASSERT(kpreempt_disabled());
   1113 	KASSERT(pmap != pmap_kernel());
   1114 
   1115 	mutex_enter(&ci->ci_kpm_mtx);
   1116 	/* make new pmap visible to xen_kpm_sync() */
   1117 	kcpuset_atomic_set(pmap->pm_xen_ptp_cpus, cid);
   1118 
   1119 #ifdef __x86_64__
   1120 	pd_entry_t *new_pgd;
   1121 	paddr_t l4_pd_ma;
   1122 
   1123 	l4_pd_ma = xpmap_ptom_masked(ci->ci_kpm_pdirpa);
   1124 
   1125 	/*
   1126 	 * Map user space address in kernel space and load
   1127 	 * user cr3
   1128 	 */
   1129 	new_pgd = pmap->pm_pdir;
   1130 	KASSERT(pmap == ci->ci_pmap);
   1131 
   1132 	/* Copy user pmap L4 PDEs (in user addr. range) to per-cpu L4 */
   1133 	for (i = 0; i < PDIR_SLOT_USERLIM; i++) {
   1134 		KASSERT(pmap != pmap_kernel() || new_pgd[i] == 0);
   1135 		if (ci->ci_kpm_pdir[i] != new_pgd[i]) {
   1136 			xpq_queue_pte_update(l4_pd_ma + i * sizeof(pd_entry_t),
   1137 			    new_pgd[i]);
   1138 		}
   1139 	}
   1140 
   1141 	xen_set_user_pgd(pmap_pdirpa(pmap, 0));
   1142 	ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
   1143 #else
   1144 	paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
   1145 	/* don't update the kernel L3 slot */
   1146 	for (i = 0; i < PDP_SIZE - 1; i++) {
   1147 		xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
   1148 		    xpmap_ptom(pmap->pm_pdirpa[i]) | PTE_P);
   1149 	}
   1150 #endif
   1151 
   1152 	tlbflush();
   1153 
   1154 	/* old pmap no longer visible to xen_kpm_sync() */
   1155 	if (oldpmap != pmap_kernel()) {
   1156 		kcpuset_atomic_clear(oldpmap->pm_xen_ptp_cpus, cid);
   1157 	}
   1158 	mutex_exit(&ci->ci_kpm_mtx);
   1159 }
   1160 
   1161 /*
   1162  * pmap_cpu_init_late: perform late per-CPU initialization.
   1163  *
   1164  * Short note about percpu PDIR pages. Both the PAE and __x86_64__ architectures
   1165  * have per-cpu PDIR tables, for two different reasons:
   1166  *  - on PAE, this is to get around Xen's pagetable setup constraints (multiple
   1167  *    L3[3]s cannot point to the same L2 - Xen will refuse to pin a table set up
   1168  *    this way).
   1169  *  - on __x86_64__, this is for multiple CPUs to map in different user pmaps
   1170  *    (see cpu_load_pmap()).
   1171  *
   1172  * What this means for us is that the PDIR of the pmap_kernel() is considered
   1173  * to be a canonical "SHADOW" PDIR with the following properties:
   1174  *  - its recursive mapping points to itself
   1175  *  - per-cpu recursive mappings point to themselves on __x86_64__
   1176  *  - per-cpu L4 pages' kernel entries are expected to be in sync with
   1177  *    the shadow
   1178  */
   1179 
   1180 void
   1181 pmap_cpu_init_late(struct cpu_info *ci)
   1182 {
   1183 	int i;
   1184 
   1185 	/*
   1186 	 * The BP has already its own PD page allocated during early
   1187 	 * MD startup.
   1188 	 */
   1189 
   1190 #ifdef __x86_64__
   1191 	/* Setup per-cpu normal_pdes */
   1192 	extern pd_entry_t * const normal_pdes[];
   1193 	for (i = 0;i < PTP_LEVELS - 1;i++) {
   1194 		ci->ci_normal_pdes[i] = normal_pdes[i];
   1195 	}
   1196 #endif
   1197 
   1198 	if (ci == &cpu_info_primary)
   1199 		return;
   1200 
   1201 	KASSERT(ci != NULL);
   1202 
   1203 #if defined(i386)
   1204 	cpu_alloc_l3_page(ci);
   1205 	KASSERT(ci->ci_pae_l3_pdirpa != 0);
   1206 
   1207 	/* Initialise L2 entries 0 - 2: Point them to pmap_kernel() */
   1208 	for (i = 0; i < PDP_SIZE - 1; i++) {
   1209 		ci->ci_pae_l3_pdir[i] =
   1210 		    xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[i]) | PTE_P;
   1211 	}
   1212 #endif
   1213 
   1214 	ci->ci_kpm_pdir = (pd_entry_t *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   1215 	    UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
   1216 
   1217 	if (ci->ci_kpm_pdir == NULL) {
   1218 		panic("%s: failed to allocate L4 per-cpu PD for CPU %d\n",
   1219 		    __func__, cpu_index(ci));
   1220 	}
   1221 	ci->ci_kpm_pdirpa = vtophys((vaddr_t)ci->ci_kpm_pdir);
   1222 	KASSERT(ci->ci_kpm_pdirpa != 0);
   1223 
   1224 #ifdef __x86_64__
   1225 	extern pt_entry_t xpmap_pg_nx;
   1226 
   1227 	/* Copy over the pmap_kernel() shadow L4 entries */
   1228 	memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir, PAGE_SIZE);
   1229 
   1230 	/* Recursive kernel mapping */
   1231 	ci->ci_kpm_pdir[PDIR_SLOT_PTE] = xpmap_ptom_masked(ci->ci_kpm_pdirpa)
   1232 	    | PTE_P | xpmap_pg_nx;
   1233 #else
   1234 	/* Copy over the pmap_kernel() shadow L2 entries */
   1235 	memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir + PDIR_SLOT_KERN,
   1236 	    nkptp[PTP_LEVELS - 1] * sizeof(pd_entry_t));
   1237 #endif
   1238 
   1239 	/* Xen wants a RO pdir. */
   1240 	pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_kpm_pdir,
   1241 	    (vaddr_t)ci->ci_kpm_pdir + PAGE_SIZE, VM_PROT_READ);
   1242 	pmap_update(pmap_kernel());
   1243 
   1244 #ifdef __x86_64__
   1245 	xpq_queue_pin_l4_table(xpmap_ptom_masked(ci->ci_kpm_pdirpa));
   1246 #else
   1247 	/*
   1248 	 * Initialize L3 entry 3. This mapping is shared across all pmaps and is
   1249 	 * static, ie: loading a new pmap will not update this entry.
   1250 	 */
   1251 	ci->ci_pae_l3_pdir[3] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PTE_P;
   1252 
   1253 	/* Xen wants a RO L3. */
   1254 	pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_pae_l3_pdir,
   1255 	    (vaddr_t)ci->ci_pae_l3_pdir + PAGE_SIZE, VM_PROT_READ);
   1256 	pmap_update(pmap_kernel());
   1257 
   1258 	xpq_queue_pin_l3_table(xpmap_ptom_masked(ci->ci_pae_l3_pdirpa));
   1259 #endif
   1260 }
   1261 
   1262 /*
   1263  * Notify all other cpus to halt.
   1264  */
   1265 
   1266 void
   1267 cpu_broadcast_halt(void)
   1268 {
   1269 	xen_broadcast_ipi(XEN_IPI_HALT);
   1270 }
   1271 
   1272 /*
   1273  * Send a dummy ipi to a cpu, and raise an AST on the running LWP.
   1274  */
   1275 
   1276 void
   1277 cpu_kick(struct cpu_info *ci)
   1278 {
   1279 	(void)xen_send_ipi(ci, XEN_IPI_AST);
   1280 }
   1281