Home | History | Annotate | Line # | Download | only in nfs
      1 /*	$NetBSD: nfs_subs.c,v 1.242 2022/02/09 21:50:24 andvar Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This code is derived from software contributed to Berkeley by
      8  * Rick Macklem at The University of Guelph.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. Neither the name of the University nor the names of its contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  *
     34  *	@(#)nfs_subs.c	8.8 (Berkeley) 5/22/95
     35  */
     36 
     37 /*
     38  * Copyright 2000 Wasabi Systems, Inc.
     39  * All rights reserved.
     40  *
     41  * Written by Frank van der Linden for Wasabi Systems, Inc.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *      This product includes software developed for the NetBSD Project by
     54  *      Wasabi Systems, Inc.
     55  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     56  *    or promote products derived from this software without specific prior
     57  *    written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     61  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     62  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     63  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     64  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     65  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     66  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     67  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     68  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     69  * POSSIBILITY OF SUCH DAMAGE.
     70  */
     71 
     72 #include <sys/cdefs.h>
     73 __KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.242 2022/02/09 21:50:24 andvar Exp $");
     74 
     75 #ifdef _KERNEL_OPT
     76 #include "opt_nfs.h"
     77 #endif
     78 
     79 /*
     80  * These functions support the macros and help fiddle mbuf chains for
     81  * the nfs op functions. They do things like create the rpc header and
     82  * copy data between mbuf chains and uio lists.
     83  */
     84 #include <sys/param.h>
     85 #include <sys/proc.h>
     86 #include <sys/systm.h>
     87 #include <sys/kernel.h>
     88 #include <sys/kmem.h>
     89 #include <sys/mount.h>
     90 #include <sys/vnode.h>
     91 #include <sys/namei.h>
     92 #include <sys/mbuf.h>
     93 #include <sys/socket.h>
     94 #include <sys/stat.h>
     95 #include <sys/filedesc.h>
     96 #include <sys/time.h>
     97 #include <sys/dirent.h>
     98 #include <sys/once.h>
     99 #include <sys/kauth.h>
    100 #include <sys/atomic.h>
    101 #include <sys/cprng.h>
    102 
    103 #include <uvm/uvm_page.h>
    104 #include <uvm/uvm_page_array.h>
    105 
    106 #include <nfs/rpcv2.h>
    107 #include <nfs/nfsproto.h>
    108 #include <nfs/nfsnode.h>
    109 #include <nfs/nfs.h>
    110 #include <nfs/xdr_subs.h>
    111 #include <nfs/nfsm_subs.h>
    112 #include <nfs/nfsmount.h>
    113 #include <nfs/nfsrtt.h>
    114 #include <nfs/nfs_var.h>
    115 
    116 #include <miscfs/specfs/specdev.h>
    117 
    118 #include <netinet/in.h>
    119 
    120 static u_int32_t nfs_xid;
    121 
    122 int nuidhash_max = NFS_MAXUIDHASH;
    123 /*
    124  * Data items converted to xdr at startup, since they are constant
    125  * This is kinda hokey, but may save a little time doing byte swaps
    126  */
    127 u_int32_t nfs_xdrneg1;
    128 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
    129 	rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
    130 	rpc_auth_kerb;
    131 u_int32_t nfs_prog, nfs_true, nfs_false;
    132 
    133 /* And other global data */
    134 const nfstype nfsv2_type[9] =
    135 	{ NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON };
    136 const nfstype nfsv3_type[9] =
    137 	{ NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON };
    138 const enum vtype nv2tov_type[8] =
    139 	{ VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
    140 const enum vtype nv3tov_type[8] =
    141 	{ VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
    142 int nfs_ticks;
    143 
    144 /* NFS client/server stats. */
    145 struct nfsstats nfsstats;
    146 
    147 /*
    148  * Mapping of old NFS Version 2 RPC numbers to generic numbers.
    149  */
    150 const int nfsv3_procid[NFS_NPROCS] = {
    151 	NFSPROC_NULL,
    152 	NFSPROC_GETATTR,
    153 	NFSPROC_SETATTR,
    154 	NFSPROC_NOOP,
    155 	NFSPROC_LOOKUP,
    156 	NFSPROC_READLINK,
    157 	NFSPROC_READ,
    158 	NFSPROC_NOOP,
    159 	NFSPROC_WRITE,
    160 	NFSPROC_CREATE,
    161 	NFSPROC_REMOVE,
    162 	NFSPROC_RENAME,
    163 	NFSPROC_LINK,
    164 	NFSPROC_SYMLINK,
    165 	NFSPROC_MKDIR,
    166 	NFSPROC_RMDIR,
    167 	NFSPROC_READDIR,
    168 	NFSPROC_FSSTAT,
    169 	NFSPROC_NOOP,
    170 	NFSPROC_NOOP,
    171 	NFSPROC_NOOP,
    172 	NFSPROC_NOOP,
    173 	NFSPROC_NOOP
    174 };
    175 
    176 /*
    177  * and the reverse mapping from generic to Version 2 procedure numbers
    178  */
    179 const int nfsv2_procid[NFS_NPROCS] = {
    180 	NFSV2PROC_NULL,
    181 	NFSV2PROC_GETATTR,
    182 	NFSV2PROC_SETATTR,
    183 	NFSV2PROC_LOOKUP,
    184 	NFSV2PROC_NOOP,
    185 	NFSV2PROC_READLINK,
    186 	NFSV2PROC_READ,
    187 	NFSV2PROC_WRITE,
    188 	NFSV2PROC_CREATE,
    189 	NFSV2PROC_MKDIR,
    190 	NFSV2PROC_SYMLINK,
    191 	NFSV2PROC_CREATE,
    192 	NFSV2PROC_REMOVE,
    193 	NFSV2PROC_RMDIR,
    194 	NFSV2PROC_RENAME,
    195 	NFSV2PROC_LINK,
    196 	NFSV2PROC_READDIR,
    197 	NFSV2PROC_NOOP,
    198 	NFSV2PROC_STATFS,
    199 	NFSV2PROC_NOOP,
    200 	NFSV2PROC_NOOP,
    201 	NFSV2PROC_NOOP,
    202 	NFSV2PROC_NOOP,
    203 };
    204 
    205 /*
    206  * Maps errno values to nfs error numbers.
    207  * Use NFSERR_IO as the catch all for ones not specifically defined in
    208  * RFC 1094.
    209  */
    210 static const u_char nfsrv_v2errmap[] = {
    211   NFSERR_PERM,	NFSERR_NOENT,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    212   NFSERR_NXIO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    213   NFSERR_IO,	NFSERR_IO,	NFSERR_ACCES,	NFSERR_IO,	NFSERR_IO,
    214   NFSERR_IO,	NFSERR_EXIST,	NFSERR_IO,	NFSERR_NODEV,	NFSERR_NOTDIR,
    215   NFSERR_ISDIR,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    216   NFSERR_IO,	NFSERR_FBIG,	NFSERR_NOSPC,	NFSERR_IO,	NFSERR_ROFS,
    217   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    218   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    219   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    220   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    221   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    222   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    223   NFSERR_IO,	NFSERR_IO,	NFSERR_NAMETOL,	NFSERR_IO,	NFSERR_IO,
    224   NFSERR_NOTEMPTY, NFSERR_IO,	NFSERR_IO,	NFSERR_DQUOT,	NFSERR_STALE,
    225   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    226   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    227   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    228   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    229   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    230   NFSERR_IO,	NFSERR_IO,	NFSERR_IO
    231 };
    232 __CTASSERT(__arraycount(nfsrv_v2errmap) == ELAST);
    233 
    234 /*
    235  * Maps errno values to nfs error numbers.
    236  * Although it is not obvious whether or not NFS clients really care if
    237  * a returned error value is in the specified list for the procedure, the
    238  * safest thing to do is filter them appropriately. For Version 2, the
    239  * X/Open XNFS document is the only specification that defines error values
    240  * for each RPC (The RFC simply lists all possible error values for all RPCs),
    241  * so I have decided to not do this for Version 2.
    242  * The first entry is the default error return and the rest are the valid
    243  * errors for that RPC in increasing numeric order.
    244  */
    245 static const short nfsv3err_null[] = {
    246 	0,
    247 	0,
    248 };
    249 
    250 static const short nfsv3err_getattr[] = {
    251 	NFSERR_IO,
    252 	NFSERR_IO,
    253 	NFSERR_STALE,
    254 	NFSERR_BADHANDLE,
    255 	NFSERR_SERVERFAULT,
    256 	0,
    257 };
    258 
    259 static const short nfsv3err_setattr[] = {
    260 	NFSERR_IO,
    261 	NFSERR_PERM,
    262 	NFSERR_IO,
    263 	NFSERR_ACCES,
    264 	NFSERR_INVAL,
    265 	NFSERR_NOSPC,
    266 	NFSERR_ROFS,
    267 	NFSERR_DQUOT,
    268 	NFSERR_STALE,
    269 	NFSERR_BADHANDLE,
    270 	NFSERR_NOT_SYNC,
    271 	NFSERR_SERVERFAULT,
    272 	0,
    273 };
    274 
    275 static const short nfsv3err_lookup[] = {
    276 	NFSERR_IO,
    277 	NFSERR_NOENT,
    278 	NFSERR_IO,
    279 	NFSERR_ACCES,
    280 	NFSERR_NOTDIR,
    281 	NFSERR_NAMETOL,
    282 	NFSERR_STALE,
    283 	NFSERR_BADHANDLE,
    284 	NFSERR_SERVERFAULT,
    285 	0,
    286 };
    287 
    288 static const short nfsv3err_access[] = {
    289 	NFSERR_IO,
    290 	NFSERR_IO,
    291 	NFSERR_STALE,
    292 	NFSERR_BADHANDLE,
    293 	NFSERR_SERVERFAULT,
    294 	0,
    295 };
    296 
    297 static const short nfsv3err_readlink[] = {
    298 	NFSERR_IO,
    299 	NFSERR_IO,
    300 	NFSERR_ACCES,
    301 	NFSERR_INVAL,
    302 	NFSERR_STALE,
    303 	NFSERR_BADHANDLE,
    304 	NFSERR_NOTSUPP,
    305 	NFSERR_SERVERFAULT,
    306 	0,
    307 };
    308 
    309 static const short nfsv3err_read[] = {
    310 	NFSERR_IO,
    311 	NFSERR_IO,
    312 	NFSERR_NXIO,
    313 	NFSERR_ACCES,
    314 	NFSERR_INVAL,
    315 	NFSERR_STALE,
    316 	NFSERR_BADHANDLE,
    317 	NFSERR_SERVERFAULT,
    318 	NFSERR_JUKEBOX,
    319 	0,
    320 };
    321 
    322 static const short nfsv3err_write[] = {
    323 	NFSERR_IO,
    324 	NFSERR_IO,
    325 	NFSERR_ACCES,
    326 	NFSERR_INVAL,
    327 	NFSERR_FBIG,
    328 	NFSERR_NOSPC,
    329 	NFSERR_ROFS,
    330 	NFSERR_DQUOT,
    331 	NFSERR_STALE,
    332 	NFSERR_BADHANDLE,
    333 	NFSERR_SERVERFAULT,
    334 	NFSERR_JUKEBOX,
    335 	0,
    336 };
    337 
    338 static const short nfsv3err_create[] = {
    339 	NFSERR_IO,
    340 	NFSERR_IO,
    341 	NFSERR_ACCES,
    342 	NFSERR_EXIST,
    343 	NFSERR_NOTDIR,
    344 	NFSERR_NOSPC,
    345 	NFSERR_ROFS,
    346 	NFSERR_NAMETOL,
    347 	NFSERR_DQUOT,
    348 	NFSERR_STALE,
    349 	NFSERR_BADHANDLE,
    350 	NFSERR_NOTSUPP,
    351 	NFSERR_SERVERFAULT,
    352 	0,
    353 };
    354 
    355 static const short nfsv3err_mkdir[] = {
    356 	NFSERR_IO,
    357 	NFSERR_IO,
    358 	NFSERR_ACCES,
    359 	NFSERR_EXIST,
    360 	NFSERR_NOTDIR,
    361 	NFSERR_NOSPC,
    362 	NFSERR_ROFS,
    363 	NFSERR_NAMETOL,
    364 	NFSERR_DQUOT,
    365 	NFSERR_STALE,
    366 	NFSERR_BADHANDLE,
    367 	NFSERR_NOTSUPP,
    368 	NFSERR_SERVERFAULT,
    369 	0,
    370 };
    371 
    372 static const short nfsv3err_symlink[] = {
    373 	NFSERR_IO,
    374 	NFSERR_IO,
    375 	NFSERR_ACCES,
    376 	NFSERR_EXIST,
    377 	NFSERR_NOTDIR,
    378 	NFSERR_NOSPC,
    379 	NFSERR_ROFS,
    380 	NFSERR_NAMETOL,
    381 	NFSERR_DQUOT,
    382 	NFSERR_STALE,
    383 	NFSERR_BADHANDLE,
    384 	NFSERR_NOTSUPP,
    385 	NFSERR_SERVERFAULT,
    386 	0,
    387 };
    388 
    389 static const short nfsv3err_mknod[] = {
    390 	NFSERR_IO,
    391 	NFSERR_IO,
    392 	NFSERR_ACCES,
    393 	NFSERR_EXIST,
    394 	NFSERR_NOTDIR,
    395 	NFSERR_NOSPC,
    396 	NFSERR_ROFS,
    397 	NFSERR_NAMETOL,
    398 	NFSERR_DQUOT,
    399 	NFSERR_STALE,
    400 	NFSERR_BADHANDLE,
    401 	NFSERR_NOTSUPP,
    402 	NFSERR_SERVERFAULT,
    403 	NFSERR_BADTYPE,
    404 	0,
    405 };
    406 
    407 static const short nfsv3err_remove[] = {
    408 	NFSERR_IO,
    409 	NFSERR_NOENT,
    410 	NFSERR_IO,
    411 	NFSERR_ACCES,
    412 	NFSERR_NOTDIR,
    413 	NFSERR_ROFS,
    414 	NFSERR_NAMETOL,
    415 	NFSERR_STALE,
    416 	NFSERR_BADHANDLE,
    417 	NFSERR_SERVERFAULT,
    418 	0,
    419 };
    420 
    421 static const short nfsv3err_rmdir[] = {
    422 	NFSERR_IO,
    423 	NFSERR_NOENT,
    424 	NFSERR_IO,
    425 	NFSERR_ACCES,
    426 	NFSERR_EXIST,
    427 	NFSERR_NOTDIR,
    428 	NFSERR_INVAL,
    429 	NFSERR_ROFS,
    430 	NFSERR_NAMETOL,
    431 	NFSERR_NOTEMPTY,
    432 	NFSERR_STALE,
    433 	NFSERR_BADHANDLE,
    434 	NFSERR_NOTSUPP,
    435 	NFSERR_SERVERFAULT,
    436 	0,
    437 };
    438 
    439 static const short nfsv3err_rename[] = {
    440 	NFSERR_IO,
    441 	NFSERR_NOENT,
    442 	NFSERR_IO,
    443 	NFSERR_ACCES,
    444 	NFSERR_EXIST,
    445 	NFSERR_XDEV,
    446 	NFSERR_NOTDIR,
    447 	NFSERR_ISDIR,
    448 	NFSERR_INVAL,
    449 	NFSERR_NOSPC,
    450 	NFSERR_ROFS,
    451 	NFSERR_MLINK,
    452 	NFSERR_NAMETOL,
    453 	NFSERR_NOTEMPTY,
    454 	NFSERR_DQUOT,
    455 	NFSERR_STALE,
    456 	NFSERR_BADHANDLE,
    457 	NFSERR_NOTSUPP,
    458 	NFSERR_SERVERFAULT,
    459 	0,
    460 };
    461 
    462 static const short nfsv3err_link[] = {
    463 	NFSERR_IO,
    464 	NFSERR_IO,
    465 	NFSERR_ACCES,
    466 	NFSERR_EXIST,
    467 	NFSERR_XDEV,
    468 	NFSERR_NOTDIR,
    469 	NFSERR_INVAL,
    470 	NFSERR_NOSPC,
    471 	NFSERR_ROFS,
    472 	NFSERR_MLINK,
    473 	NFSERR_NAMETOL,
    474 	NFSERR_DQUOT,
    475 	NFSERR_STALE,
    476 	NFSERR_BADHANDLE,
    477 	NFSERR_NOTSUPP,
    478 	NFSERR_SERVERFAULT,
    479 	0,
    480 };
    481 
    482 static const short nfsv3err_readdir[] = {
    483 	NFSERR_IO,
    484 	NFSERR_IO,
    485 	NFSERR_ACCES,
    486 	NFSERR_NOTDIR,
    487 	NFSERR_STALE,
    488 	NFSERR_BADHANDLE,
    489 	NFSERR_BAD_COOKIE,
    490 	NFSERR_TOOSMALL,
    491 	NFSERR_SERVERFAULT,
    492 	0,
    493 };
    494 
    495 static const short nfsv3err_readdirplus[] = {
    496 	NFSERR_IO,
    497 	NFSERR_IO,
    498 	NFSERR_ACCES,
    499 	NFSERR_NOTDIR,
    500 	NFSERR_STALE,
    501 	NFSERR_BADHANDLE,
    502 	NFSERR_BAD_COOKIE,
    503 	NFSERR_NOTSUPP,
    504 	NFSERR_TOOSMALL,
    505 	NFSERR_SERVERFAULT,
    506 	0,
    507 };
    508 
    509 static const short nfsv3err_fsstat[] = {
    510 	NFSERR_IO,
    511 	NFSERR_IO,
    512 	NFSERR_STALE,
    513 	NFSERR_BADHANDLE,
    514 	NFSERR_SERVERFAULT,
    515 	0,
    516 };
    517 
    518 static const short nfsv3err_fsinfo[] = {
    519 	NFSERR_STALE,
    520 	NFSERR_STALE,
    521 	NFSERR_BADHANDLE,
    522 	NFSERR_SERVERFAULT,
    523 	0,
    524 };
    525 
    526 static const short nfsv3err_pathconf[] = {
    527 	NFSERR_STALE,
    528 	NFSERR_STALE,
    529 	NFSERR_BADHANDLE,
    530 	NFSERR_SERVERFAULT,
    531 	0,
    532 };
    533 
    534 static const short nfsv3err_commit[] = {
    535 	NFSERR_IO,
    536 	NFSERR_IO,
    537 	NFSERR_STALE,
    538 	NFSERR_BADHANDLE,
    539 	NFSERR_SERVERFAULT,
    540 	0,
    541 };
    542 
    543 static const short * const nfsrv_v3errmap[] = {
    544 	nfsv3err_null,
    545 	nfsv3err_getattr,
    546 	nfsv3err_setattr,
    547 	nfsv3err_lookup,
    548 	nfsv3err_access,
    549 	nfsv3err_readlink,
    550 	nfsv3err_read,
    551 	nfsv3err_write,
    552 	nfsv3err_create,
    553 	nfsv3err_mkdir,
    554 	nfsv3err_symlink,
    555 	nfsv3err_mknod,
    556 	nfsv3err_remove,
    557 	nfsv3err_rmdir,
    558 	nfsv3err_rename,
    559 	nfsv3err_link,
    560 	nfsv3err_readdir,
    561 	nfsv3err_readdirplus,
    562 	nfsv3err_fsstat,
    563 	nfsv3err_fsinfo,
    564 	nfsv3err_pathconf,
    565 	nfsv3err_commit,
    566 };
    567 
    568 extern struct nfsrtt nfsrtt;
    569 
    570 u_long nfsdirhashmask;
    571 
    572 int nfs_webnamei(struct nameidata *, struct vnode *, struct proc *);
    573 
    574 /*
    575  * Create the header for an rpc request packet
    576  * The hsiz is the size of the rest of the nfs request header.
    577  * (just used to decide if a cluster is a good idea)
    578  */
    579 struct mbuf *
    580 nfsm_reqh(struct nfsnode *np, u_long procid, int hsiz, char **bposp)
    581 {
    582 	struct mbuf *mb;
    583 	char *bpos;
    584 
    585 	mb = m_get(M_WAIT, MT_DATA);
    586 	MCLAIM(mb, &nfs_mowner);
    587 	if (hsiz >= MINCLSIZE)
    588 		m_clget(mb, M_WAIT);
    589 	mb->m_len = 0;
    590 	bpos = mtod(mb, void *);
    591 
    592 	/* Finally, return values */
    593 	*bposp = bpos;
    594 	return (mb);
    595 }
    596 
    597 /*
    598  * Build the RPC header and fill in the authorization info.
    599  * The authorization string argument is only used when the credentials
    600  * come from outside of the kernel.
    601  * Returns the head of the mbuf list.
    602  */
    603 struct mbuf *
    604 nfsm_rpchead(kauth_cred_t cr, int nmflag, int procid,
    605 	int auth_type, int auth_len, char *auth_str, int verf_len,
    606 	char *verf_str, struct mbuf *mrest, int mrest_len,
    607 	struct mbuf **mbp, uint32_t *xidp)
    608 {
    609 	struct mbuf *mb;
    610 	u_int32_t *tl;
    611 	char *bpos;
    612 	int i;
    613 	struct mbuf *mreq;
    614 	int siz, grpsiz, authsiz;
    615 
    616 	authsiz = nfsm_rndup(auth_len);
    617 	mb = m_gethdr(M_WAIT, MT_DATA);
    618 	MCLAIM(mb, &nfs_mowner);
    619 	if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
    620 		m_clget(mb, M_WAIT);
    621 	} else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
    622 		m_align(mb, authsiz + 10 * NFSX_UNSIGNED);
    623 	} else {
    624 		m_align(mb, 8 * NFSX_UNSIGNED);
    625 	}
    626 	mb->m_len = 0;
    627 	mreq = mb;
    628 	bpos = mtod(mb, void *);
    629 
    630 	/*
    631 	 * First the RPC header.
    632 	 */
    633 	nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
    634 
    635 	*tl++ = *xidp = nfs_getxid();
    636 	*tl++ = rpc_call;
    637 	*tl++ = rpc_vers;
    638 	*tl++ = txdr_unsigned(NFS_PROG);
    639 	if (nmflag & NFSMNT_NFSV3)
    640 		*tl++ = txdr_unsigned(NFS_VER3);
    641 	else
    642 		*tl++ = txdr_unsigned(NFS_VER2);
    643 	if (nmflag & NFSMNT_NFSV3)
    644 		*tl++ = txdr_unsigned(procid);
    645 	else
    646 		*tl++ = txdr_unsigned(nfsv2_procid[procid]);
    647 
    648 	/*
    649 	 * And then the authorization cred.
    650 	 */
    651 	*tl++ = txdr_unsigned(auth_type);
    652 	*tl = txdr_unsigned(authsiz);
    653 	switch (auth_type) {
    654 	case RPCAUTH_UNIX:
    655 		nfsm_build(tl, u_int32_t *, auth_len);
    656 		*tl++ = 0;		/* stamp ?? */
    657 		*tl++ = 0;		/* NULL hostname */
    658 		*tl++ = txdr_unsigned(kauth_cred_geteuid(cr));
    659 		*tl++ = txdr_unsigned(kauth_cred_getegid(cr));
    660 		grpsiz = (auth_len >> 2) - 5;
    661 		*tl++ = txdr_unsigned(grpsiz);
    662 		for (i = 0; i < grpsiz; i++)
    663 			*tl++ = txdr_unsigned(kauth_cred_group(cr, i)); /* XXX elad review */
    664 		break;
    665 	case RPCAUTH_KERB4:
    666 		siz = auth_len;
    667 		while (siz > 0) {
    668 			if (M_TRAILINGSPACE(mb) == 0) {
    669 				struct mbuf *mb2;
    670 				mb2 = m_get(M_WAIT, MT_DATA);
    671 				MCLAIM(mb2, &nfs_mowner);
    672 				if (siz >= MINCLSIZE)
    673 					m_clget(mb2, M_WAIT);
    674 				mb->m_next = mb2;
    675 				mb = mb2;
    676 				mb->m_len = 0;
    677 				bpos = mtod(mb, void *);
    678 			}
    679 			i = uimin(siz, M_TRAILINGSPACE(mb));
    680 			memcpy(bpos, auth_str, i);
    681 			mb->m_len += i;
    682 			auth_str += i;
    683 			bpos += i;
    684 			siz -= i;
    685 		}
    686 		if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
    687 			for (i = 0; i < siz; i++)
    688 				*bpos++ = '\0';
    689 			mb->m_len += siz;
    690 		}
    691 		break;
    692 	};
    693 
    694 	/*
    695 	 * And the verifier...
    696 	 */
    697 	nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
    698 	if (verf_str) {
    699 		*tl++ = txdr_unsigned(RPCAUTH_KERB4);
    700 		*tl = txdr_unsigned(verf_len);
    701 		siz = verf_len;
    702 		while (siz > 0) {
    703 			if (M_TRAILINGSPACE(mb) == 0) {
    704 				struct mbuf *mb2;
    705 				mb2 = m_get(M_WAIT, MT_DATA);
    706 				MCLAIM(mb2, &nfs_mowner);
    707 				if (siz >= MINCLSIZE)
    708 					m_clget(mb2, M_WAIT);
    709 				mb->m_next = mb2;
    710 				mb = mb2;
    711 				mb->m_len = 0;
    712 				bpos = mtod(mb, void *);
    713 			}
    714 			i = uimin(siz, M_TRAILINGSPACE(mb));
    715 			memcpy(bpos, verf_str, i);
    716 			mb->m_len += i;
    717 			verf_str += i;
    718 			bpos += i;
    719 			siz -= i;
    720 		}
    721 		if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
    722 			for (i = 0; i < siz; i++)
    723 				*bpos++ = '\0';
    724 			mb->m_len += siz;
    725 		}
    726 	} else {
    727 		*tl++ = txdr_unsigned(RPCAUTH_NULL);
    728 		*tl = 0;
    729 	}
    730 	mb->m_next = mrest;
    731 	mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
    732 	m_reset_rcvif(mreq);
    733 	*mbp = mb;
    734 	return (mreq);
    735 }
    736 
    737 /*
    738  * copies mbuf chain to the uio scatter/gather list
    739  */
    740 int
    741 nfsm_mbuftouio(struct mbuf **mrep, struct uio *uiop, int siz, char **dpos)
    742 {
    743 	char *mbufcp, *uiocp;
    744 	int xfer, left, len;
    745 	struct mbuf *mp;
    746 	long uiosiz, rem;
    747 	int error = 0;
    748 
    749 	mp = *mrep;
    750 	mbufcp = *dpos;
    751 	len = mtod(mp, char *) + mp->m_len - mbufcp;
    752 	rem = nfsm_rndup(siz)-siz;
    753 	while (siz > 0) {
    754 		if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
    755 			return (EFBIG);
    756 		left = uiop->uio_iov->iov_len;
    757 		uiocp = uiop->uio_iov->iov_base;
    758 		if (left > siz)
    759 			left = siz;
    760 		uiosiz = left;
    761 		while (left > 0) {
    762 			while (len == 0) {
    763 				mp = mp->m_next;
    764 				if (mp == NULL)
    765 					return (EBADRPC);
    766 				mbufcp = mtod(mp, void *);
    767 				len = mp->m_len;
    768 			}
    769 			xfer = (left > len) ? len : left;
    770 			error = copyout_vmspace(uiop->uio_vmspace, mbufcp,
    771 			    uiocp, xfer);
    772 			if (error) {
    773 				return error;
    774 			}
    775 			left -= xfer;
    776 			len -= xfer;
    777 			mbufcp += xfer;
    778 			uiocp += xfer;
    779 			uiop->uio_offset += xfer;
    780 			uiop->uio_resid -= xfer;
    781 		}
    782 		if (uiop->uio_iov->iov_len <= siz) {
    783 			uiop->uio_iovcnt--;
    784 			uiop->uio_iov++;
    785 		} else {
    786 			uiop->uio_iov->iov_base =
    787 			    (char *)uiop->uio_iov->iov_base + uiosiz;
    788 			uiop->uio_iov->iov_len -= uiosiz;
    789 		}
    790 		siz -= uiosiz;
    791 	}
    792 	*dpos = mbufcp;
    793 	*mrep = mp;
    794 	if (rem > 0) {
    795 		if (len < rem)
    796 			error = nfs_adv(mrep, dpos, rem, len);
    797 		else
    798 			*dpos += rem;
    799 	}
    800 	return (error);
    801 }
    802 
    803 /*
    804  * copies a uio scatter/gather list to an mbuf chain.
    805  * NOTE: can only handle iovcnt == 1
    806  */
    807 int
    808 nfsm_uiotombuf(struct uio *uiop, struct mbuf **mq, int siz, char **bpos)
    809 {
    810 	char *uiocp;
    811 	struct mbuf *mp, *mp2;
    812 	int xfer, left, mlen;
    813 	int uiosiz, clflg, rem;
    814 	char *cp;
    815 	int error;
    816 
    817 #ifdef DIAGNOSTIC
    818 	if (uiop->uio_iovcnt != 1)
    819 		panic("nfsm_uiotombuf: iovcnt != 1");
    820 #endif
    821 
    822 	if (siz > MLEN)		/* or should it >= MCLBYTES ?? */
    823 		clflg = 1;
    824 	else
    825 		clflg = 0;
    826 	rem = nfsm_rndup(siz)-siz;
    827 	mp = mp2 = *mq;
    828 	while (siz > 0) {
    829 		left = uiop->uio_iov->iov_len;
    830 		uiocp = uiop->uio_iov->iov_base;
    831 		if (left > siz)
    832 			left = siz;
    833 		uiosiz = left;
    834 		while (left > 0) {
    835 			mlen = M_TRAILINGSPACE(mp);
    836 			if (mlen == 0) {
    837 				mp = m_get(M_WAIT, MT_DATA);
    838 				MCLAIM(mp, &nfs_mowner);
    839 				if (clflg)
    840 					m_clget(mp, M_WAIT);
    841 				mp->m_len = 0;
    842 				mp2->m_next = mp;
    843 				mp2 = mp;
    844 				mlen = M_TRAILINGSPACE(mp);
    845 			}
    846 			xfer = (left > mlen) ? mlen : left;
    847 			cp = mtod(mp, char *) + mp->m_len;
    848 			error = copyin_vmspace(uiop->uio_vmspace, uiocp, cp,
    849 			    xfer);
    850 			if (error) {
    851 				/* XXX */
    852 			}
    853 			mp->m_len += xfer;
    854 			left -= xfer;
    855 			uiocp += xfer;
    856 			uiop->uio_offset += xfer;
    857 			uiop->uio_resid -= xfer;
    858 		}
    859 		uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base +
    860 		    uiosiz;
    861 		uiop->uio_iov->iov_len -= uiosiz;
    862 		siz -= uiosiz;
    863 	}
    864 	if (rem > 0) {
    865 		if (rem > M_TRAILINGSPACE(mp)) {
    866 			mp = m_get(M_WAIT, MT_DATA);
    867 			MCLAIM(mp, &nfs_mowner);
    868 			mp->m_len = 0;
    869 			mp2->m_next = mp;
    870 		}
    871 		cp = mtod(mp, char *) + mp->m_len;
    872 		for (left = 0; left < rem; left++)
    873 			*cp++ = '\0';
    874 		mp->m_len += rem;
    875 		*bpos = cp;
    876 	} else
    877 		*bpos = mtod(mp, char *) + mp->m_len;
    878 	*mq = mp;
    879 	return (0);
    880 }
    881 
    882 /*
    883  * Get at least "siz" bytes of correctly aligned data.
    884  * When called the mbuf pointers are not necessarily correct,
    885  * dsosp points to what ought to be in m_data and left contains
    886  * what ought to be in m_len.
    887  * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
    888  * cases. (The macros use the vars. dpos and dpos2)
    889  */
    890 int
    891 nfsm_disct(struct mbuf **mdp, char **dposp, int siz, int left, char **cp2)
    892 {
    893 	struct mbuf *m1, *m2;
    894 	struct mbuf *havebuf = NULL;
    895 	char *src = *dposp;
    896 	char *dst;
    897 	int len;
    898 
    899 #ifdef DEBUG
    900 	if (left < 0)
    901 		panic("nfsm_disct: left < 0");
    902 #endif
    903 	m1 = *mdp;
    904 	/*
    905 	 * Skip through the mbuf chain looking for an mbuf with
    906 	 * some data. If the first mbuf found has enough data
    907 	 * and it is correctly aligned return it.
    908 	 */
    909 	while (left == 0) {
    910 		havebuf = m1;
    911 		*mdp = m1 = m1->m_next;
    912 		if (m1 == NULL)
    913 			return (EBADRPC);
    914 		src = mtod(m1, void *);
    915 		left = m1->m_len;
    916 		/*
    917 		 * If we start a new mbuf and it is big enough
    918 		 * and correctly aligned just return it, don't
    919 		 * do any pull up.
    920 		 */
    921 		if (left >= siz && nfsm_aligned(src)) {
    922 			*cp2 = src;
    923 			*dposp = src + siz;
    924 			return (0);
    925 		}
    926 	}
    927 	if ((m1->m_flags & M_EXT) != 0) {
    928 		if (havebuf && M_TRAILINGSPACE(havebuf) >= siz &&
    929 		    nfsm_aligned(mtod(havebuf, char *) + havebuf->m_len)) {
    930 			/*
    931 			 * If the first mbuf with data has external data
    932 			 * and there is a previous mbuf with some trailing
    933 			 * space, use it to move the data into.
    934 			 */
    935 			m2 = m1;
    936 			*mdp = m1 = havebuf;
    937 			*cp2 = mtod(m1, char *) + m1->m_len;
    938 		} else if (havebuf) {
    939 			/*
    940 			 * If the first mbuf has a external data
    941 			 * and there is no previous empty mbuf
    942 			 * allocate a new mbuf and move the external
    943 			 * data to the new mbuf. Also make the first
    944 			 * mbuf look empty.
    945 			 */
    946 			m2 = m1;
    947 			*mdp = m1 = m_get(M_WAIT, MT_DATA);
    948 			MCLAIM(m1, m2->m_owner);
    949 			if ((m2->m_flags & M_PKTHDR) != 0) {
    950 				m_move_pkthdr(m1, m2);
    951 			}
    952 			if (havebuf) {
    953 				havebuf->m_next = m1;
    954 			}
    955 			m1->m_next = m2;
    956 			MRESETDATA(m1);
    957 			m1->m_len = 0;
    958 			m2->m_data = src;
    959 			m2->m_len = left;
    960 			*cp2 = mtod(m1, char *);
    961 		} else {
    962 			struct mbuf **nextp = &m1->m_next;
    963 
    964 			m1->m_len -= left;
    965 			do {
    966 				m2 = m_get(M_WAIT, MT_DATA);
    967 				MCLAIM(m2, m1->m_owner);
    968 				if (left >= MINCLSIZE) {
    969 					MCLGET(m2, M_WAIT);
    970 				}
    971 				m2->m_next = *nextp;
    972 				*nextp = m2;
    973 				nextp = &m2->m_next;
    974 				len = (m2->m_flags & M_EXT) != 0 ?
    975 				    MCLBYTES : MLEN;
    976 				if (len > left) {
    977 					len = left;
    978 				}
    979 				memcpy(mtod(m2, char *), src, len);
    980 				m2->m_len = len;
    981 				src += len;
    982 				left -= len;
    983 			} while (left > 0);
    984 			*mdp = m1 = m1->m_next;
    985 			m2 = m1->m_next;
    986 			*cp2 = mtod(m1, char *);
    987 		}
    988 	} else {
    989 		/*
    990 		 * If the first mbuf has no external data
    991 		 * move the data to the front of the mbuf.
    992 		 */
    993 		MRESETDATA(m1);
    994 		dst = mtod(m1, char *);
    995 		if (dst != src) {
    996 			memmove(dst, src, left);
    997 		}
    998 		m1->m_len = left;
    999 		m2 = m1->m_next;
   1000 		*cp2 = m1->m_data;
   1001 	}
   1002 	*dposp = *cp2 + siz;
   1003 	/*
   1004 	 * Loop through mbufs pulling data up into first mbuf until
   1005 	 * the first mbuf is full or there is no more data to
   1006 	 * pullup.
   1007 	 */
   1008 	dst = mtod(m1, char *) + m1->m_len;
   1009 	while ((len = M_TRAILINGSPACE(m1)) != 0 && m2) {
   1010 		if ((len = uimin(len, m2->m_len)) != 0) {
   1011 			memcpy(dst, mtod(m2, char *), len);
   1012 		}
   1013 		m1->m_len += len;
   1014 		dst += len;
   1015 		m2->m_data += len;
   1016 		m2->m_len -= len;
   1017 		m2 = m2->m_next;
   1018 	}
   1019 	if (m1->m_len < siz)
   1020 		return (EBADRPC);
   1021 	return (0);
   1022 }
   1023 
   1024 /*
   1025  * Advance the position in the mbuf chain.
   1026  */
   1027 int
   1028 nfs_adv(struct mbuf **mdp, char **dposp, int offs, int left)
   1029 {
   1030 	struct mbuf *m;
   1031 	int s;
   1032 
   1033 	m = *mdp;
   1034 	s = left;
   1035 	while (s < offs) {
   1036 		offs -= s;
   1037 		m = m->m_next;
   1038 		if (m == NULL)
   1039 			return (EBADRPC);
   1040 		s = m->m_len;
   1041 	}
   1042 	*mdp = m;
   1043 	*dposp = mtod(m, char *) + offs;
   1044 	return (0);
   1045 }
   1046 
   1047 /*
   1048  * Copy a string into mbufs for the hard cases...
   1049  */
   1050 int
   1051 nfsm_strtmbuf(struct mbuf **mb, char **bpos, const char *cp, long siz)
   1052 {
   1053 	struct mbuf *m1 = NULL, *m2;
   1054 	long left, xfer, len, tlen;
   1055 	u_int32_t *tl;
   1056 	int putsize;
   1057 
   1058 	putsize = 1;
   1059 	m2 = *mb;
   1060 	left = M_TRAILINGSPACE(m2);
   1061 	if (left > 0) {
   1062 		tl = ((u_int32_t *)(*bpos));
   1063 		*tl++ = txdr_unsigned(siz);
   1064 		putsize = 0;
   1065 		left -= NFSX_UNSIGNED;
   1066 		m2->m_len += NFSX_UNSIGNED;
   1067 		if (left > 0) {
   1068 			memcpy((void *) tl, cp, left);
   1069 			siz -= left;
   1070 			cp += left;
   1071 			m2->m_len += left;
   1072 			left = 0;
   1073 		}
   1074 	}
   1075 	/* Loop around adding mbufs */
   1076 	while (siz > 0) {
   1077 		m1 = m_get(M_WAIT, MT_DATA);
   1078 		MCLAIM(m1, &nfs_mowner);
   1079 		if (siz > MLEN)
   1080 			m_clget(m1, M_WAIT);
   1081 		m1->m_len = NFSMSIZ(m1);
   1082 		m2->m_next = m1;
   1083 		m2 = m1;
   1084 		tl = mtod(m1, u_int32_t *);
   1085 		tlen = 0;
   1086 		if (putsize) {
   1087 			*tl++ = txdr_unsigned(siz);
   1088 			m1->m_len -= NFSX_UNSIGNED;
   1089 			tlen = NFSX_UNSIGNED;
   1090 			putsize = 0;
   1091 		}
   1092 		if (siz < m1->m_len) {
   1093 			len = nfsm_rndup(siz);
   1094 			xfer = siz;
   1095 			if (xfer < len)
   1096 				*(tl+(xfer>>2)) = 0;
   1097 		} else {
   1098 			xfer = len = m1->m_len;
   1099 		}
   1100 		memcpy((void *) tl, cp, xfer);
   1101 		m1->m_len = len+tlen;
   1102 		siz -= xfer;
   1103 		cp += xfer;
   1104 	}
   1105 	*mb = m1;
   1106 	*bpos = mtod(m1, char *) + m1->m_len;
   1107 	return (0);
   1108 }
   1109 
   1110 /*
   1111  * Directory caching routines. They work as follows:
   1112  * - a cache is maintained per VDIR nfsnode.
   1113  * - for each offset cookie that is exported to userspace, and can
   1114  *   thus be thrown back at us as an offset to VOP_READDIR, store
   1115  *   information in the cache.
   1116  * - cached are:
   1117  *   - cookie itself
   1118  *   - blocknumber (essentially just a search key in the buffer cache)
   1119  *   - entry number in block.
   1120  *   - offset cookie of block in which this entry is stored
   1121  *   - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
   1122  * - entries are looked up in a hash table
   1123  * - also maintained is an LRU list of entries, used to determine
   1124  *   which ones to delete if the cache grows too large.
   1125  * - if 32 <-> 64 translation mode is requested for a filesystem,
   1126  *   the cache also functions as a translation table
   1127  * - in the translation case, invalidating the cache does not mean
   1128  *   flushing it, but just marking entries as invalid, except for
   1129  *   the <64bit cookie, 32bitcookie> pair which is still valid, to
   1130  *   still be able to use the cache as a translation table.
   1131  * - 32 bit cookies are uniquely created by combining the hash table
   1132  *   entry value, and one generation count per hash table entry,
   1133  *   incremented each time an entry is appended to the chain.
   1134  * - the cache is invalidated each time a direcory is modified
   1135  * - sanity checks are also done; if an entry in a block turns
   1136  *   out not to have a matching cookie, the cache is invalidated
   1137  *   and a new block starting from the wanted offset is fetched from
   1138  *   the server.
   1139  * - directory entries as read from the server are extended to contain
   1140  *   the 64bit and, optionally, the 32bit cookies, for sanity checking
   1141  *   the cache and exporting them to userspace through the cookie
   1142  *   argument to VOP_READDIR.
   1143  */
   1144 
   1145 u_long
   1146 nfs_dirhash(off_t off)
   1147 {
   1148 	int i;
   1149 	char *cp = (char *)&off;
   1150 	u_long sum = 0L;
   1151 
   1152 	for (i = 0 ; i < sizeof (off); i++)
   1153 		sum += *cp++;
   1154 
   1155 	return sum;
   1156 }
   1157 
   1158 #define	_NFSDC_MTX(np)		(NFSTOV(np)->v_interlock)
   1159 #define	NFSDC_LOCK(np)		mutex_enter(_NFSDC_MTX(np))
   1160 #define	NFSDC_UNLOCK(np)	mutex_exit(_NFSDC_MTX(np))
   1161 #define	NFSDC_ASSERT_LOCKED(np) KASSERT(mutex_owned(_NFSDC_MTX(np)))
   1162 
   1163 void
   1164 nfs_initdircache(struct vnode *vp)
   1165 {
   1166 	struct nfsnode *np = VTONFS(vp);
   1167 	struct nfsdirhashhead *dircache;
   1168 
   1169 	dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, true,
   1170 	    &nfsdirhashmask);
   1171 
   1172 	NFSDC_LOCK(np);
   1173 	if (np->n_dircache == NULL) {
   1174 		np->n_dircachesize = 0;
   1175 		np->n_dircache = dircache;
   1176 		dircache = NULL;
   1177 		TAILQ_INIT(&np->n_dirchain);
   1178 	}
   1179 	NFSDC_UNLOCK(np);
   1180 	if (dircache)
   1181 		hashdone(dircache, HASH_LIST, nfsdirhashmask);
   1182 }
   1183 
   1184 void
   1185 nfs_initdirxlatecookie(struct vnode *vp)
   1186 {
   1187 	struct nfsnode *np = VTONFS(vp);
   1188 	unsigned *dirgens;
   1189 
   1190 	KASSERT(VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_XLATECOOKIE);
   1191 
   1192 	dirgens = kmem_zalloc(NFS_DIRHASHSIZ * sizeof(unsigned), KM_SLEEP);
   1193 	NFSDC_LOCK(np);
   1194 	if (np->n_dirgens == NULL) {
   1195 		np->n_dirgens = dirgens;
   1196 		dirgens = NULL;
   1197 	}
   1198 	NFSDC_UNLOCK(np);
   1199 	if (dirgens)
   1200 		kmem_free(dirgens, NFS_DIRHASHSIZ * sizeof(unsigned));
   1201 }
   1202 
   1203 static const struct nfsdircache dzero;
   1204 
   1205 static void nfs_unlinkdircache(struct nfsnode *np, struct nfsdircache *);
   1206 static void nfs_putdircache_unlocked(struct nfsnode *,
   1207     struct nfsdircache *);
   1208 
   1209 static void
   1210 nfs_unlinkdircache(struct nfsnode *np, struct nfsdircache *ndp)
   1211 {
   1212 
   1213 	NFSDC_ASSERT_LOCKED(np);
   1214 	KASSERT(ndp != &dzero);
   1215 
   1216 	if (LIST_NEXT(ndp, dc_hash) == (void *)-1)
   1217 		return;
   1218 
   1219 	TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
   1220 	LIST_REMOVE(ndp, dc_hash);
   1221 	LIST_NEXT(ndp, dc_hash) = (void *)-1; /* mark as unlinked */
   1222 
   1223 	nfs_putdircache_unlocked(np, ndp);
   1224 }
   1225 
   1226 void
   1227 nfs_putdircache(struct nfsnode *np, struct nfsdircache *ndp)
   1228 {
   1229 	int ref;
   1230 
   1231 	if (ndp == &dzero)
   1232 		return;
   1233 
   1234 	KASSERT(ndp->dc_refcnt > 0);
   1235 	NFSDC_LOCK(np);
   1236 	ref = --ndp->dc_refcnt;
   1237 	NFSDC_UNLOCK(np);
   1238 
   1239 	if (ref == 0)
   1240 		kmem_free(ndp, sizeof(*ndp));
   1241 }
   1242 
   1243 static void
   1244 nfs_putdircache_unlocked(struct nfsnode *np, struct nfsdircache *ndp)
   1245 {
   1246 	int ref;
   1247 
   1248 	NFSDC_ASSERT_LOCKED(np);
   1249 
   1250 	if (ndp == &dzero)
   1251 		return;
   1252 
   1253 	KASSERT(ndp->dc_refcnt > 0);
   1254 	ref = --ndp->dc_refcnt;
   1255 	if (ref == 0)
   1256 		kmem_free(ndp, sizeof(*ndp));
   1257 }
   1258 
   1259 struct nfsdircache *
   1260 nfs_searchdircache(struct vnode *vp, off_t off, int do32, int *hashent)
   1261 {
   1262 	struct nfsdirhashhead *ndhp;
   1263 	struct nfsdircache *ndp = NULL;
   1264 	struct nfsnode *np = VTONFS(vp);
   1265 	unsigned ent;
   1266 
   1267 	/*
   1268 	 * Zero is always a valid cookie.
   1269 	 */
   1270 	if (off == 0)
   1271 		/* XXXUNCONST */
   1272 		return (struct nfsdircache *)__UNCONST(&dzero);
   1273 
   1274 	if (!np->n_dircache)
   1275 		return NULL;
   1276 
   1277 	/*
   1278 	 * We use a 32bit cookie as search key, directly reconstruct
   1279 	 * the hashentry. Else use the hashfunction.
   1280 	 */
   1281 	if (do32) {
   1282 		ent = (u_int32_t)off >> 24;
   1283 		if (ent >= NFS_DIRHASHSIZ)
   1284 			return NULL;
   1285 		ndhp = &np->n_dircache[ent];
   1286 	} else {
   1287 		ndhp = NFSDIRHASH(np, off);
   1288 	}
   1289 
   1290 	if (hashent)
   1291 		*hashent = (int)(ndhp - np->n_dircache);
   1292 
   1293 	NFSDC_LOCK(np);
   1294 	if (do32) {
   1295 		LIST_FOREACH(ndp, ndhp, dc_hash) {
   1296 			if (ndp->dc_cookie32 == (u_int32_t)off) {
   1297 				/*
   1298 				 * An invalidated entry will become the
   1299 				 * start of a new block fetched from
   1300 				 * the server.
   1301 				 */
   1302 				if (ndp->dc_flags & NFSDC_INVALID) {
   1303 					ndp->dc_blkcookie = ndp->dc_cookie;
   1304 					ndp->dc_entry = 0;
   1305 					ndp->dc_flags &= ~NFSDC_INVALID;
   1306 				}
   1307 				break;
   1308 			}
   1309 		}
   1310 	} else {
   1311 		LIST_FOREACH(ndp, ndhp, dc_hash) {
   1312 			if (ndp->dc_cookie == off)
   1313 				break;
   1314 		}
   1315 	}
   1316 	if (ndp != NULL)
   1317 		ndp->dc_refcnt++;
   1318 	NFSDC_UNLOCK(np);
   1319 	return ndp;
   1320 }
   1321 
   1322 
   1323 struct nfsdircache *
   1324 nfs_enterdircache(struct vnode *vp, off_t off, off_t blkoff, int en,
   1325     daddr_t blkno)
   1326 {
   1327 	struct nfsnode *np = VTONFS(vp);
   1328 	struct nfsdirhashhead *ndhp;
   1329 	struct nfsdircache *ndp = NULL;
   1330 	struct nfsdircache *newndp = NULL;
   1331 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
   1332 	int hashent = 0, gen, overwrite;	/* XXX: GCC */
   1333 
   1334 	/*
   1335 	 * XXX refuse entries for offset 0. amd(8) erroneously sets
   1336 	 * cookie 0 for the '.' entry, making this necessary. This
   1337 	 * isn't so bad, as 0 is a special case anyway.
   1338 	 */
   1339 	if (off == 0)
   1340 		/* XXXUNCONST */
   1341 		return (struct nfsdircache *)__UNCONST(&dzero);
   1342 
   1343 	if (!np->n_dircache)
   1344 		/*
   1345 		 * XXX would like to do this in nfs_nget but vtype
   1346 		 * isn't known at that time.
   1347 		 */
   1348 		nfs_initdircache(vp);
   1349 
   1350 	if ((nmp->nm_flag & NFSMNT_XLATECOOKIE) && !np->n_dirgens)
   1351 		nfs_initdirxlatecookie(vp);
   1352 
   1353 retry:
   1354 	ndp = nfs_searchdircache(vp, off, 0, &hashent);
   1355 
   1356 	NFSDC_LOCK(np);
   1357 	if (ndp && (ndp->dc_flags & NFSDC_INVALID) == 0) {
   1358 		/*
   1359 		 * Overwriting an old entry. Check if it's the same.
   1360 		 * If so, just return. If not, remove the old entry.
   1361 		 */
   1362 		if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
   1363 			goto done;
   1364 		nfs_unlinkdircache(np, ndp);
   1365 		nfs_putdircache_unlocked(np, ndp);
   1366 		ndp = NULL;
   1367 	}
   1368 
   1369 	ndhp = &np->n_dircache[hashent];
   1370 
   1371 	if (!ndp) {
   1372 		if (newndp == NULL) {
   1373 			NFSDC_UNLOCK(np);
   1374 			newndp = kmem_alloc(sizeof(*newndp), KM_SLEEP);
   1375 			newndp->dc_refcnt = 1;
   1376 			LIST_NEXT(newndp, dc_hash) = (void *)-1;
   1377 			goto retry;
   1378 		}
   1379 		ndp = newndp;
   1380 		newndp = NULL;
   1381 		overwrite = 0;
   1382 		if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
   1383 			/*
   1384 			 * We're allocating a new entry, so bump the
   1385 			 * generation number.
   1386 			 */
   1387 			KASSERT(np->n_dirgens);
   1388 			gen = ++np->n_dirgens[hashent];
   1389 			if (gen == 0) {
   1390 				np->n_dirgens[hashent]++;
   1391 				gen++;
   1392 			}
   1393 			ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
   1394 		}
   1395 	} else
   1396 		overwrite = 1;
   1397 
   1398 	ndp->dc_cookie = off;
   1399 	ndp->dc_blkcookie = blkoff;
   1400 	ndp->dc_entry = en;
   1401 	ndp->dc_flags = 0;
   1402 
   1403 	if (overwrite)
   1404 		goto done;
   1405 
   1406 	/*
   1407 	 * If the maximum directory cookie cache size has been reached
   1408 	 * for this node, take one off the front. The idea is that
   1409 	 * directories are typically read front-to-back once, so that
   1410 	 * the oldest entries can be thrown away without much performance
   1411 	 * loss.
   1412 	 */
   1413 	if (np->n_dircachesize == NFS_MAXDIRCACHE) {
   1414 		nfs_unlinkdircache(np, TAILQ_FIRST(&np->n_dirchain));
   1415 	} else
   1416 		np->n_dircachesize++;
   1417 
   1418 	KASSERT(ndp->dc_refcnt == 1);
   1419 	LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
   1420 	TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
   1421 	ndp->dc_refcnt++;
   1422 done:
   1423 	KASSERT(ndp->dc_refcnt > 0);
   1424 	NFSDC_UNLOCK(np);
   1425 	if (newndp)
   1426 		nfs_putdircache(np, newndp);
   1427 	return ndp;
   1428 }
   1429 
   1430 void
   1431 nfs_invaldircache(struct vnode *vp, int flags)
   1432 {
   1433 	struct nfsnode *np = VTONFS(vp);
   1434 	struct nfsdircache *ndp = NULL;
   1435 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
   1436 	const bool forcefree = flags & NFS_INVALDIRCACHE_FORCE;
   1437 
   1438 #ifdef DIAGNOSTIC
   1439 	if (vp->v_type != VDIR)
   1440 		panic("nfs: invaldircache: not dir");
   1441 #endif
   1442 
   1443 	if ((flags & NFS_INVALDIRCACHE_KEEPEOF) == 0)
   1444 		np->n_flag &= ~NEOFVALID;
   1445 
   1446 	if (!np->n_dircache)
   1447 		return;
   1448 
   1449 	NFSDC_LOCK(np);
   1450 	if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
   1451 		while ((ndp = TAILQ_FIRST(&np->n_dirchain)) != NULL) {
   1452 			KASSERT(!forcefree || ndp->dc_refcnt == 1);
   1453 			nfs_unlinkdircache(np, ndp);
   1454 		}
   1455 		np->n_dircachesize = 0;
   1456 		if (forcefree && np->n_dirgens) {
   1457 			kmem_free(np->n_dirgens,
   1458 			    NFS_DIRHASHSIZ * sizeof(unsigned));
   1459 			np->n_dirgens = NULL;
   1460 		}
   1461 	} else {
   1462 		TAILQ_FOREACH(ndp, &np->n_dirchain, dc_chain)
   1463 			ndp->dc_flags |= NFSDC_INVALID;
   1464 	}
   1465 
   1466 	NFSDC_UNLOCK(np);
   1467 }
   1468 
   1469 /*
   1470  * Called once before VFS init to initialize shared and
   1471  * server-specific data structures.
   1472  */
   1473 static int
   1474 nfs_init0(void)
   1475 {
   1476 
   1477 	nfsrtt.pos = 0;
   1478 	rpc_vers = txdr_unsigned(RPC_VER2);
   1479 	rpc_call = txdr_unsigned(RPC_CALL);
   1480 	rpc_reply = txdr_unsigned(RPC_REPLY);
   1481 	rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
   1482 	rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
   1483 	rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
   1484 	rpc_autherr = txdr_unsigned(RPC_AUTHERR);
   1485 	rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
   1486 	rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
   1487 	nfs_prog = txdr_unsigned(NFS_PROG);
   1488 	nfs_true = txdr_unsigned(true);
   1489 	nfs_false = txdr_unsigned(false);
   1490 	nfs_xdrneg1 = txdr_unsigned(-1);
   1491 	nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
   1492 	if (nfs_ticks < 1)
   1493 		nfs_ticks = 1;
   1494 	nfsdreq_init();
   1495 
   1496 	/*
   1497 	 * Initialize reply list and start timer
   1498 	 */
   1499 	TAILQ_INIT(&nfs_reqq);
   1500 	mutex_init(&nfs_reqq_lock, MUTEX_DEFAULT, IPL_NONE);
   1501 	nfs_timer_init();
   1502 	MOWNER_ATTACH(&nfs_mowner);
   1503 
   1504 	return 0;
   1505 }
   1506 
   1507 static volatile uint32_t nfs_mutex;
   1508 static uint32_t nfs_refcount;
   1509 
   1510 #define nfs_p()	while (atomic_cas_32(&nfs_mutex, 0, 1) == 0) continue;
   1511 #define nfs_v()	while (atomic_cas_32(&nfs_mutex, 1, 0) == 1) continue;
   1512 
   1513 /*
   1514  * This is disgusting, but it must support both modular and monolothic
   1515  * configurations, plus the code is shared between server and client.
   1516  * For monolithic builds NFSSERVER may not imply NFS. Unfortunately we
   1517  * can't use regular mutexes here that would require static initialization
   1518  * and we can get initialized from multiple places, so we improvise.
   1519  *
   1520  * Yuck.
   1521  */
   1522 void
   1523 nfs_init(void)
   1524 {
   1525 
   1526 	nfs_p();
   1527 	if (nfs_refcount++ == 0)
   1528 		nfs_init0();
   1529 	nfs_v();
   1530 }
   1531 
   1532 void
   1533 nfs_fini(void)
   1534 {
   1535 
   1536 	nfs_p();
   1537 	if (--nfs_refcount == 0) {
   1538 		MOWNER_DETACH(&nfs_mowner);
   1539 		nfs_timer_fini();
   1540 		mutex_destroy(&nfs_reqq_lock);
   1541 		nfsdreq_fini();
   1542 	}
   1543 	nfs_v();
   1544 }
   1545 
   1546 /*
   1547  * A fiddled version of m_adj() that ensures null fill to a 32-bit
   1548  * boundary and only trims off the back end
   1549  *
   1550  * 1. trim off 'len' bytes as m_adj(mp, -len).
   1551  * 2. add zero-padding 'nul' bytes at the end of the mbuf chain.
   1552  */
   1553 void
   1554 nfs_zeropad(struct mbuf *mp, int len, int nul)
   1555 {
   1556 	struct mbuf *m;
   1557 	int count;
   1558 
   1559 	/*
   1560 	 * Trim from tail.  Scan the mbuf chain,
   1561 	 * calculating its length and finding the last mbuf.
   1562 	 * If the adjustment only affects this mbuf, then just
   1563 	 * adjust and return.  Otherwise, rescan and truncate
   1564 	 * after the remaining size.
   1565 	 */
   1566 	count = 0;
   1567 	m = mp;
   1568 	for (;;) {
   1569 		count += m->m_len;
   1570 		if (m->m_next == NULL)
   1571 			break;
   1572 		m = m->m_next;
   1573 	}
   1574 
   1575 	KDASSERT(count >= len);
   1576 
   1577 	if (m->m_len >= len) {
   1578 		m->m_len -= len;
   1579 	} else {
   1580 		count -= len;
   1581 		/*
   1582 		 * Correct length for chain is "count".
   1583 		 * Find the mbuf with last data, adjust its length,
   1584 		 * and toss data from remaining mbufs on chain.
   1585 		 */
   1586 		for (m = mp; m; m = m->m_next) {
   1587 			if (m->m_len >= count) {
   1588 				m->m_len = count;
   1589 				break;
   1590 			}
   1591 			count -= m->m_len;
   1592 		}
   1593 		KASSERT(m && m->m_next);
   1594 		m_freem(m->m_next);
   1595 		m->m_next = NULL;
   1596 	}
   1597 
   1598 	KDASSERT(m->m_next == NULL);
   1599 
   1600 	/*
   1601 	 * zero-padding.
   1602 	 */
   1603 	if (nul > 0) {
   1604 		char *cp;
   1605 		int i;
   1606 
   1607 		if (M_READONLY(m) || M_TRAILINGSPACE(m) < nul) {
   1608 			struct mbuf *n;
   1609 
   1610 			KDASSERT(MLEN >= nul);
   1611 			n = m_get(M_WAIT, MT_DATA);
   1612 			MCLAIM(n, &nfs_mowner);
   1613 			n->m_len = nul;
   1614 			n->m_next = NULL;
   1615 			m->m_next = n;
   1616 			cp = mtod(n, void *);
   1617 		} else {
   1618 			cp = mtod(m, char *) + m->m_len;
   1619 			m->m_len += nul;
   1620 		}
   1621 		for (i = 0; i < nul; i++)
   1622 			*cp++ = '\0';
   1623 	}
   1624 	return;
   1625 }
   1626 
   1627 /*
   1628  * Make these functions instead of macros, so that the kernel text size
   1629  * doesn't get too big...
   1630  */
   1631 void
   1632 nfsm_srvwcc(struct nfsrv_descript *nfsd, int before_ret, struct vattr *before_vap, int after_ret, struct vattr *after_vap, struct mbuf **mbp, char **bposp)
   1633 {
   1634 	struct mbuf *mb = *mbp;
   1635 	char *bpos = *bposp;
   1636 	u_int32_t *tl;
   1637 
   1638 	if (before_ret) {
   1639 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
   1640 		*tl = nfs_false;
   1641 	} else {
   1642 		nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
   1643 		*tl++ = nfs_true;
   1644 		txdr_hyper(before_vap->va_size, tl);
   1645 		tl += 2;
   1646 		txdr_nfsv3time(&(before_vap->va_mtime), tl);
   1647 		tl += 2;
   1648 		txdr_nfsv3time(&(before_vap->va_ctime), tl);
   1649 	}
   1650 	*bposp = bpos;
   1651 	*mbp = mb;
   1652 	nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
   1653 }
   1654 
   1655 void
   1656 nfsm_srvpostopattr(struct nfsrv_descript *nfsd, int after_ret, struct vattr *after_vap, struct mbuf **mbp, char **bposp)
   1657 {
   1658 	struct mbuf *mb = *mbp;
   1659 	char *bpos = *bposp;
   1660 	u_int32_t *tl;
   1661 	struct nfs_fattr *fp;
   1662 
   1663 	if (after_ret) {
   1664 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
   1665 		*tl = nfs_false;
   1666 	} else {
   1667 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
   1668 		*tl++ = nfs_true;
   1669 		fp = (struct nfs_fattr *)tl;
   1670 		nfsm_srvfattr(nfsd, after_vap, fp);
   1671 	}
   1672 	*mbp = mb;
   1673 	*bposp = bpos;
   1674 }
   1675 
   1676 void
   1677 nfsm_srvfattr(struct nfsrv_descript *nfsd, struct vattr *vap, struct nfs_fattr *fp)
   1678 {
   1679 
   1680 	fp->fa_nlink = txdr_unsigned(vap->va_nlink);
   1681 	fp->fa_uid = txdr_unsigned(vap->va_uid);
   1682 	fp->fa_gid = txdr_unsigned(vap->va_gid);
   1683 	if (nfsd->nd_flag & ND_NFSV3) {
   1684 		fp->fa_type = vtonfsv3_type(vap->va_type);
   1685 		fp->fa_mode = vtonfsv3_mode(vap->va_mode);
   1686 		txdr_hyper(vap->va_size, &fp->fa3_size);
   1687 		txdr_hyper(vap->va_bytes, &fp->fa3_used);
   1688 		fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
   1689 		fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
   1690 		fp->fa3_fsid.nfsuquad[0] = 0;
   1691 		fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
   1692 		txdr_hyper(vap->va_fileid, &fp->fa3_fileid);
   1693 		txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
   1694 		txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
   1695 		txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
   1696 	} else {
   1697 		fp->fa_type = vtonfsv2_type(vap->va_type);
   1698 		fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
   1699 		fp->fa2_size = txdr_unsigned(NFS_V2CLAMP32(vap->va_size));
   1700 		fp->fa2_blocksize = txdr_unsigned(NFS_V2CLAMP16(vap->va_blocksize));
   1701 		if (vap->va_type == VFIFO)
   1702 			fp->fa2_rdev = 0xffffffff;
   1703 		else
   1704 			fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
   1705 		fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
   1706 		fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
   1707 		fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
   1708 		txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
   1709 		txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
   1710 		txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
   1711 	}
   1712 }
   1713 
   1714 /*
   1715  * This function compares two net addresses by family and returns true
   1716  * if they are the same host.
   1717  * If there is any doubt, return false.
   1718  * The AF_INET family is handled as a special case so that address mbufs
   1719  * don't need to be saved to store "struct in_addr", which is only 4 bytes.
   1720  */
   1721 int
   1722 netaddr_match(int family, union nethostaddr *haddr, struct mbuf *nam)
   1723 {
   1724 	struct sockaddr_in *inetaddr;
   1725 
   1726 	switch (family) {
   1727 	case AF_INET:
   1728 		inetaddr = mtod(nam, struct sockaddr_in *);
   1729 		if (inetaddr->sin_family == AF_INET &&
   1730 		    inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
   1731 			return (1);
   1732 		break;
   1733 	case AF_INET6:
   1734 	    {
   1735 		struct sockaddr_in6 *sin6_1, *sin6_2;
   1736 
   1737 		sin6_1 = mtod(nam, struct sockaddr_in6 *);
   1738 		sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
   1739 		if (sin6_1->sin6_family == AF_INET6 &&
   1740 		    IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
   1741 			return 1;
   1742 	    }
   1743 	default:
   1744 		break;
   1745 	};
   1746 	return (0);
   1747 }
   1748 
   1749 struct nfs_clearcommit_ctx {
   1750 	struct mount *mp;
   1751 };
   1752 
   1753 static bool
   1754 nfs_clearcommit_selector(void *cl, struct vnode *vp)
   1755 {
   1756 	struct nfs_clearcommit_ctx *c = cl;
   1757 	struct nfsnode *np;
   1758 
   1759 	KASSERT(mutex_owned(vp->v_interlock));
   1760 
   1761 	/* XXXAD mountpoint check looks like nonsense to me */
   1762 	np = VTONFS(vp);
   1763 	if (vp->v_type != VREG || vp->v_mount != c->mp || np == NULL)
   1764 		return false;
   1765 	return false;
   1766 }
   1767 
   1768 /*
   1769  * The write verifier has changed (probably due to a server reboot), so all
   1770  * PG_NEEDCOMMIT pages will have to be written again. Since they are marked
   1771  * as dirty or are being written out just now, all this takes is clearing
   1772  * the PG_NEEDCOMMIT flag. Once done the new write verifier can be set for
   1773  * the mount point.
   1774  */
   1775 void
   1776 nfs_clearcommit(struct mount *mp)
   1777 {
   1778 	struct vnode *vp;
   1779 	struct vnode_iterator *marker;
   1780 	struct nfsmount *nmp = VFSTONFS(mp);
   1781 	struct nfs_clearcommit_ctx ctx;
   1782 	struct nfsnode *np;
   1783 	struct vm_page *pg;
   1784 	struct uvm_page_array a;
   1785 	voff_t off;
   1786 
   1787 	rw_enter(&nmp->nm_writeverflock, RW_WRITER);
   1788 	vfs_vnode_iterator_init(mp, &marker);
   1789 	ctx.mp = mp;
   1790 	for (;;) {
   1791 		vp = vfs_vnode_iterator_next(marker, nfs_clearcommit_selector,
   1792 		    &ctx);
   1793 		if (vp == NULL)
   1794 			break;
   1795 		rw_enter(vp->v_uobj.vmobjlock, RW_WRITER);
   1796 		np = VTONFS(vp);
   1797 		np->n_pushlo = np->n_pushhi = np->n_pushedlo =
   1798 		    np->n_pushedhi = 0;
   1799 		np->n_commitflags &=
   1800 		    ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
   1801 		uvm_page_array_init(&a, &vp->v_uobj, 0);
   1802 		off = 0;
   1803 		while ((pg = uvm_page_array_fill_and_peek(&a, off, 0)) !=
   1804 		    NULL) {
   1805 			pg->flags &= ~PG_NEEDCOMMIT;
   1806 			uvm_page_array_advance(&a);
   1807 			off = pg->offset + PAGE_SIZE;
   1808 		}
   1809 		uvm_page_array_fini(&a);
   1810 		rw_exit(vp->v_uobj.vmobjlock);
   1811 		vrele(vp);
   1812 	}
   1813 	KASSERT(vp == NULL);
   1814 	vfs_vnode_iterator_destroy(marker);
   1815 	mutex_enter(&nmp->nm_lock);
   1816 	nmp->nm_iflag &= ~NFSMNT_STALEWRITEVERF;
   1817 	mutex_exit(&nmp->nm_lock);
   1818 	rw_exit(&nmp->nm_writeverflock);
   1819 }
   1820 
   1821 void
   1822 nfs_merge_commit_ranges(struct vnode *vp)
   1823 {
   1824 	struct nfsnode *np = VTONFS(vp);
   1825 
   1826 	KASSERT(np->n_commitflags & NFS_COMMIT_PUSH_VALID);
   1827 
   1828 	if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
   1829 		np->n_pushedlo = np->n_pushlo;
   1830 		np->n_pushedhi = np->n_pushhi;
   1831 		np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
   1832 	} else {
   1833 		if (np->n_pushlo < np->n_pushedlo)
   1834 			np->n_pushedlo = np->n_pushlo;
   1835 		if (np->n_pushhi > np->n_pushedhi)
   1836 			np->n_pushedhi = np->n_pushhi;
   1837 	}
   1838 
   1839 	np->n_pushlo = np->n_pushhi = 0;
   1840 	np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
   1841 
   1842 #ifdef NFS_DEBUG_COMMIT
   1843 	printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
   1844 	    (unsigned)np->n_pushedhi);
   1845 #endif
   1846 }
   1847 
   1848 int
   1849 nfs_in_committed_range(struct vnode *vp, off_t off, off_t len)
   1850 {
   1851 	struct nfsnode *np = VTONFS(vp);
   1852 	off_t lo, hi;
   1853 
   1854 	if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
   1855 		return 0;
   1856 	lo = off;
   1857 	hi = lo + len;
   1858 
   1859 	return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
   1860 }
   1861 
   1862 int
   1863 nfs_in_tobecommitted_range(struct vnode *vp, off_t off, off_t len)
   1864 {
   1865 	struct nfsnode *np = VTONFS(vp);
   1866 	off_t lo, hi;
   1867 
   1868 	if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
   1869 		return 0;
   1870 	lo = off;
   1871 	hi = lo + len;
   1872 
   1873 	return (lo >= np->n_pushlo && hi <= np->n_pushhi);
   1874 }
   1875 
   1876 void
   1877 nfs_add_committed_range(struct vnode *vp, off_t off, off_t len)
   1878 {
   1879 	struct nfsnode *np = VTONFS(vp);
   1880 	off_t lo, hi;
   1881 
   1882 	lo = off;
   1883 	hi = lo + len;
   1884 
   1885 	if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
   1886 		np->n_pushedlo = lo;
   1887 		np->n_pushedhi = hi;
   1888 		np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
   1889 	} else {
   1890 		if (hi > np->n_pushedhi)
   1891 			np->n_pushedhi = hi;
   1892 		if (lo < np->n_pushedlo)
   1893 			np->n_pushedlo = lo;
   1894 	}
   1895 #ifdef NFS_DEBUG_COMMIT
   1896 	printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
   1897 	    (unsigned)np->n_pushedhi);
   1898 #endif
   1899 }
   1900 
   1901 void
   1902 nfs_del_committed_range(struct vnode *vp, off_t off, off_t len)
   1903 {
   1904 	struct nfsnode *np = VTONFS(vp);
   1905 	off_t lo, hi;
   1906 
   1907 	if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
   1908 		return;
   1909 
   1910 	lo = off;
   1911 	hi = lo + len;
   1912 
   1913 	if (lo > np->n_pushedhi || hi < np->n_pushedlo)
   1914 		return;
   1915 	if (lo <= np->n_pushedlo)
   1916 		np->n_pushedlo = hi;
   1917 	else if (hi >= np->n_pushedhi)
   1918 		np->n_pushedhi = lo;
   1919 	else {
   1920 		/*
   1921 		 * XXX There's only one range. If the deleted range
   1922 		 * is in the middle, pick the largest of the
   1923 		 * contiguous ranges that it leaves.
   1924 		 */
   1925 		if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
   1926 			np->n_pushedhi = lo;
   1927 		else
   1928 			np->n_pushedlo = hi;
   1929 	}
   1930 #ifdef NFS_DEBUG_COMMIT
   1931 	printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
   1932 	    (unsigned)np->n_pushedhi);
   1933 #endif
   1934 }
   1935 
   1936 void
   1937 nfs_add_tobecommitted_range(struct vnode *vp, off_t off, off_t len)
   1938 {
   1939 	struct nfsnode *np = VTONFS(vp);
   1940 	off_t lo, hi;
   1941 
   1942 	lo = off;
   1943 	hi = lo + len;
   1944 
   1945 	if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
   1946 		np->n_pushlo = lo;
   1947 		np->n_pushhi = hi;
   1948 		np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
   1949 	} else {
   1950 		if (lo < np->n_pushlo)
   1951 			np->n_pushlo = lo;
   1952 		if (hi > np->n_pushhi)
   1953 			np->n_pushhi = hi;
   1954 	}
   1955 #ifdef NFS_DEBUG_COMMIT
   1956 	printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
   1957 	    (unsigned)np->n_pushhi);
   1958 #endif
   1959 }
   1960 
   1961 void
   1962 nfs_del_tobecommitted_range(struct vnode *vp, off_t off, off_t len)
   1963 {
   1964 	struct nfsnode *np = VTONFS(vp);
   1965 	off_t lo, hi;
   1966 
   1967 	if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
   1968 		return;
   1969 
   1970 	lo = off;
   1971 	hi = lo + len;
   1972 
   1973 	if (lo > np->n_pushhi || hi < np->n_pushlo)
   1974 		return;
   1975 
   1976 	if (lo <= np->n_pushlo)
   1977 		np->n_pushlo = hi;
   1978 	else if (hi >= np->n_pushhi)
   1979 		np->n_pushhi = lo;
   1980 	else {
   1981 		/*
   1982 		 * XXX There's only one range. If the deleted range
   1983 		 * is in the middle, pick the largest of the
   1984 		 * contiguous ranges that it leaves.
   1985 		 */
   1986 		if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
   1987 			np->n_pushhi = lo;
   1988 		else
   1989 			np->n_pushlo = hi;
   1990 	}
   1991 #ifdef NFS_DEBUG_COMMIT
   1992 	printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
   1993 	    (unsigned)np->n_pushhi);
   1994 #endif
   1995 }
   1996 
   1997 /*
   1998  * Map errnos to NFS error numbers. For Version 3 also filter out error
   1999  * numbers not specified for the associated procedure.
   2000  */
   2001 int
   2002 nfsrv_errmap(struct nfsrv_descript *nd, int err)
   2003 {
   2004 	const short *defaulterrp, *errp;
   2005 
   2006 	if (nd->nd_flag & ND_NFSV3) {
   2007 	    if (nd->nd_procnum <= NFSPROC_COMMIT) {
   2008 		errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
   2009 		while (*++errp) {
   2010 			if (*errp == err)
   2011 				return (err);
   2012 			else if (*errp > err)
   2013 				break;
   2014 		}
   2015 		return ((int)*defaulterrp);
   2016 	    } else
   2017 		return (err & 0xffff);
   2018 	}
   2019 	if (err <= ELAST)
   2020 		return ((int)nfsrv_v2errmap[err - 1]);
   2021 	return (NFSERR_IO);
   2022 }
   2023 
   2024 u_int32_t
   2025 nfs_getxid(void)
   2026 {
   2027 	u_int32_t newxid;
   2028 
   2029 	if (__predict_false(nfs_xid == 0)) {
   2030 		nfs_xid = cprng_fast32();
   2031 	}
   2032 
   2033 	/* get next xid.  skip 0 */
   2034 	do {
   2035 		newxid = atomic_inc_32_nv(&nfs_xid);
   2036 	} while (__predict_false(newxid == 0));
   2037 
   2038 	return txdr_unsigned(newxid);
   2039 }
   2040 
   2041 /*
   2042  * assign a new xid for existing request.
   2043  * used for NFSERR_JUKEBOX handling.
   2044  */
   2045 void
   2046 nfs_renewxid(struct nfsreq *req)
   2047 {
   2048 	u_int32_t xid;
   2049 	int off;
   2050 
   2051 	xid = nfs_getxid();
   2052 	if (req->r_nmp->nm_sotype == SOCK_STREAM)
   2053 		off = sizeof(u_int32_t); /* RPC record mark */
   2054 	else
   2055 		off = 0;
   2056 
   2057 	m_copyback(req->r_mreq, off, sizeof(xid), (void *)&xid);
   2058 	req->r_xid = xid;
   2059 }
   2060