Home | History | Annotate | Line # | Download | only in npfctl
      1 /*-
      2  * Copyright (c) 2010-2020 The NetBSD Foundation, Inc.
      3  * All rights reserved.
      4  *
      5  * This material is based upon work partially supported by The
      6  * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     19  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     20  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     21  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27  * POSSIBILITY OF SUCH DAMAGE.
     28  */
     29 
     30 /*
     31  * BPF byte-code generation for NPF rules.
     32  *
     33  * Overview
     34  *
     35  *	Each NPF rule is compiled into a BPF micro-program.  There is a
     36  *	BPF byte-code fragment for each higher-level filtering logic,
     37  *	e.g. to match L4 protocol, IP/mask, etc.  The generation process
     38  *	combines multiple BPF-byte code fragments into one program.
     39  *
     40  * Basic case
     41  *
     42  *	Consider a basic case where all filters should match.  They
     43  *	are expressed as logical conjunction, e.g.:
     44  *
     45  *		A and B and C and D
     46  *
     47  *	Each test (filter) criterion can be evaluated to true (match) or
     48  *	false (no match) and the logic is as follows:
     49  *
     50  *	- If the value is true, then jump to the "next" test (offset 0).
     51  *
     52  *	- If the value is false, then jump to the JUMP_MAGIC value (0xff).
     53  *	This "magic" value is used to indicate that it will have to be
     54  *	patched at a later stage.
     55  *
     56  *	Once all byte-code fragments are combined into one, then there
     57  *	are two additional steps:
     58  *
     59  *	- Two instructions are appended at the end of the program: "return
     60  *	success" followed by "return failure".
     61  *
     62  *	- All jumps with the JUMP_MAGIC value are patched to point to the
     63  *	"return failure" instruction.
     64  *
     65  *	Therefore, if all filter criteria will match, then the first
     66  *	instruction will be reached, indicating a successful match of the
     67  *	rule.  Otherwise, if any of the criteria will not match, it will
     68  *	take the failure path and the rule will not be matching.
     69  *
     70  * Grouping
     71  *
     72  *	Filters can have groups, which have an effect of logical
     73  *	disjunction, e.g.:
     74  *
     75  *		A and B and (C or D)
     76  *
     77  *	In such case, the logic inside the group has to be inverted i.e.
     78  *	the jump values swapped.  If the test value is true, then jump
     79  *	out of the group; if false, then jump "next".  At the end of the
     80  *	group, an addition failure path is appended and the JUMP_MAGIC
     81  *	uses within the group are patched to jump past the said path.
     82  *
     83  *	For multi-word comparisons (IPv6 addresses), there is another
     84  *	layer of grouping:
     85  *
     86  *		A and B and ((C and D) or (E and F))
     87  *
     88  *	This strains the simple-minded JUMP_MAGIC logic, so for now,
     89  *	when generating the jump-if-false targets for (C and D), we
     90  *	simply count the number of instructions left to skip over.
     91  *
     92  *	A better architecture might be to create asm-type labels for
     93  *	the jt and jf continuations in the first pass, and then, once
     94  *	their offsets are determined, go back and fill them in in the
     95  *	second pass.  This would simplify the logic (no need to compute
     96  *	exactly how many instructions we're about to generate in a
     97  *	chain of conditionals) and eliminate redundant RET #0
     98  *	instructions which are currently generated after some groups.
     99  */
    100 
    101 #include <sys/cdefs.h>
    102 __RCSID("$NetBSD: npf_bpf_comp.c,v 1.19 2025/07/10 11:44:12 joe Exp $");
    103 
    104 #include <stdlib.h>
    105 #include <stdbool.h>
    106 #include <stddef.h>
    107 #include <string.h>
    108 #include <inttypes.h>
    109 #include <err.h>
    110 #include <assert.h>
    111 
    112 #include <netinet/in.h>
    113 #include <netinet/in_systm.h>
    114 #define	__FAVOR_BSD
    115 #include <netinet/ip.h>
    116 #include <netinet/ip6.h>
    117 #include <netinet/udp.h>
    118 #include <netinet/tcp.h>
    119 #include <netinet/ip_icmp.h>
    120 #include <netinet/icmp6.h>
    121 
    122 #include <net/bpf.h>
    123 
    124 #include "npfctl.h"
    125 
    126 /*
    127  * Note: clear X_EQ_L4OFF when register X is invalidated i.e. it stores
    128  * something other than L4 header offset.  Generally, when BPF_LDX is used.
    129  */
    130 #define	FETCHED_L3		0x01
    131 #define	CHECKED_L4_PROTO	0x02
    132 #define	X_EQ_L4OFF		0x04
    133 #define	FETCHED_L2		0x08
    134 
    135 struct npf_bpf {
    136 	/*
    137 	 * BPF program code, the allocated length (in bytes), the number
    138 	 * of logical blocks and the flags.
    139 	 */
    140 	struct bpf_program	prog;
    141 	size_t			alen;
    142 	unsigned		nblocks;
    143 	sa_family_t		af;
    144 	uint32_t		flags;
    145 	uint8_t			eth_type;
    146 
    147 	/*
    148 	 * Indicators whether we are inside the group and whether this
    149 	 * group is implementing inverted logic.
    150 	 *
    151 	 * The current group offset (counted in BPF instructions)
    152 	 * and block number at the start of the group.
    153 	 */
    154 	unsigned		ingroup;
    155 	bool			invert;
    156 	bool			multiword;
    157 	unsigned		goff;
    158 	unsigned		gblock;
    159 
    160 	/* Track inversion (excl. mark). */
    161 	uint32_t		invflags;
    162 
    163 	/* BPF marks, allocated length and the real length. */
    164 	uint32_t *		marks;
    165 	size_t			malen;
    166 	size_t			mlen;
    167 };
    168 
    169 /*
    170  * NPF success and failure values to be returned from BPF.
    171  */
    172 #define	NPF_BPF_SUCCESS		((u_int)-1)
    173 #define	NPF_BPF_FAILURE		0
    174 
    175 /*
    176  * Magic value to indicate the failure path, which is fixed up on completion.
    177  * Note: this is the longest jump offset in BPF, since the offset is one byte.
    178  */
    179 #define	JUMP_MAGIC		0xff
    180 
    181 /* Reduce re-allocations by expanding in 64 byte blocks. */
    182 #define	ALLOC_MASK		(64 - 1)
    183 #define	ALLOC_ROUND(x)		(((x) + ALLOC_MASK) & ~ALLOC_MASK)
    184 
    185 #ifndef IPV6_VERSION
    186 #define	IPV6_VERSION		0x60
    187 #endif
    188 
    189 npf_bpf_t *
    190 npfctl_bpf_create(void)
    191 {
    192 	return ecalloc(1, sizeof(npf_bpf_t));
    193 }
    194 
    195 static void
    196 fixup_jumps(npf_bpf_t *ctx, u_int start, u_int end, bool swap)
    197 {
    198 	struct bpf_program *bp = &ctx->prog;
    199 
    200 	for (u_int i = start; i < end; i++) {
    201 		struct bpf_insn *insn = &bp->bf_insns[i];
    202 		const u_int fail_off = end - i;
    203 		bool seen_magic = false;
    204 
    205 		if (fail_off >= JUMP_MAGIC) {
    206 			errx(EXIT_FAILURE, "BPF generation error: "
    207 			    "the number of instructions is over the limit");
    208 		}
    209 		if (BPF_CLASS(insn->code) != BPF_JMP) {
    210 			continue;
    211 		}
    212 		if (BPF_OP(insn->code) == BPF_JA) {
    213 			/*
    214 			 * BPF_JA can be used to jump to the failure path.
    215 			 * If we are swapping i.e. inside the group, then
    216 			 * jump "next"; groups have a failure path appended
    217 			 * at their end.
    218 			 */
    219 			if (insn->k == JUMP_MAGIC) {
    220 				insn->k = swap ? 0 : fail_off;
    221 			}
    222 			continue;
    223 		}
    224 
    225 		/*
    226 		 * Fixup the "magic" value.  Swap only the "magic" jumps.
    227 		 */
    228 
    229 		if (insn->jt == JUMP_MAGIC) {
    230 			insn->jt = fail_off;
    231 			seen_magic = true;
    232 		}
    233 		if (insn->jf == JUMP_MAGIC) {
    234 			insn->jf = fail_off;
    235 			seen_magic = true;
    236 		}
    237 
    238 		if (seen_magic && swap) {
    239 			uint8_t jt = insn->jt;
    240 			insn->jt = insn->jf;
    241 			insn->jf = jt;
    242 		}
    243 	}
    244 }
    245 
    246 static void
    247 add_insns(npf_bpf_t *ctx, struct bpf_insn *insns, size_t count)
    248 {
    249 	struct bpf_program *bp = &ctx->prog;
    250 	size_t offset, len, reqlen;
    251 
    252 	/* Note: bf_len is the count of instructions. */
    253 	offset = bp->bf_len * sizeof(struct bpf_insn);
    254 	len = count * sizeof(struct bpf_insn);
    255 
    256 	/* Ensure the memory buffer for the program. */
    257 	reqlen = ALLOC_ROUND(offset + len);
    258 	if (reqlen > ctx->alen) {
    259 		bp->bf_insns = erealloc(bp->bf_insns, reqlen);
    260 		ctx->alen = reqlen;
    261 	}
    262 
    263 	/* Add the code block. */
    264 	memcpy((uint8_t *)bp->bf_insns + offset, insns, len);
    265 	bp->bf_len += count;
    266 }
    267 
    268 static void
    269 add_bmarks(npf_bpf_t *ctx, const uint32_t *m, size_t len)
    270 {
    271 	size_t reqlen, nargs = m[1];
    272 
    273 	if ((len / sizeof(uint32_t) - 2) != nargs) {
    274 		errx(EXIT_FAILURE, "invalid BPF block description");
    275 	}
    276 	reqlen = ALLOC_ROUND(ctx->mlen + len);
    277 	if (reqlen > ctx->malen) {
    278 		ctx->marks = erealloc(ctx->marks, reqlen);
    279 		ctx->malen = reqlen;
    280 	}
    281 	memcpy((uint8_t *)ctx->marks + ctx->mlen, m, len);
    282 	ctx->mlen += len;
    283 }
    284 
    285 static void
    286 done_block(npf_bpf_t *ctx, const uint32_t *m, size_t len)
    287 {
    288 	add_bmarks(ctx, m, len);
    289 	ctx->nblocks++;
    290 }
    291 
    292 struct bpf_program *
    293 npfctl_bpf_complete(npf_bpf_t *ctx)
    294 {
    295 	struct bpf_program *bp = &ctx->prog;
    296 	const u_int retoff = bp->bf_len;
    297 
    298 	/* No instructions (optimised out). */
    299 	if (!bp->bf_len)
    300 		return NULL;
    301 
    302 	/* Add the return fragment (success and failure paths). */
    303 	struct bpf_insn insns_ret[] = {
    304 		BPF_STMT(BPF_RET+BPF_K, NPF_BPF_SUCCESS),
    305 		BPF_STMT(BPF_RET+BPF_K, NPF_BPF_FAILURE),
    306 	};
    307 	add_insns(ctx, insns_ret, __arraycount(insns_ret));
    308 
    309 	/* Fixup all jumps to the main failure path. */
    310 	fixup_jumps(ctx, 0, retoff, false);
    311 
    312 	return &ctx->prog;
    313 }
    314 
    315 const void *
    316 npfctl_bpf_bmarks(npf_bpf_t *ctx, size_t *len)
    317 {
    318 	*len = ctx->mlen;
    319 	return ctx->marks;
    320 }
    321 
    322 void
    323 npfctl_bpf_destroy(npf_bpf_t *ctx)
    324 {
    325 	free(ctx->prog.bf_insns);
    326 	free(ctx->marks);
    327 	free(ctx);
    328 }
    329 
    330 /*
    331  * npfctl_bpf_group_enter: begin a logical group.  It merely uses logical
    332  * disjunction (OR) for comparisons within the group.
    333  */
    334 void
    335 npfctl_bpf_group_enter(npf_bpf_t *ctx, bool invert)
    336 {
    337 	struct bpf_program *bp = &ctx->prog;
    338 
    339 	assert(ctx->goff == 0);
    340 	assert(ctx->gblock == 0);
    341 
    342 	ctx->goff = bp->bf_len;
    343 	ctx->gblock = ctx->nblocks;
    344 	ctx->invert = invert;
    345 	ctx->multiword = false;
    346 	ctx->ingroup++;
    347 }
    348 
    349 void
    350 npfctl_bpf_group_exit(npf_bpf_t *ctx)
    351 {
    352 	struct bpf_program *bp = &ctx->prog;
    353 	const size_t curoff = bp->bf_len;
    354 
    355 	assert(ctx->ingroup);
    356 	ctx->ingroup--;
    357 
    358 	/*
    359 	 * If we're not inverting, there were only zero or one options,
    360 	 * and the last comparison was not a multi-word comparison
    361 	 * requiring a fallthrough failure -- nothing to do.
    362 	 */
    363 	if (!ctx->invert &&
    364 	    (ctx->nblocks - ctx->gblock) <= 1 &&
    365 	    !ctx->multiword) {
    366 		ctx->goff = ctx->gblock = 0;
    367 		return;
    368 	}
    369 
    370 	/*
    371 	 * If inverting, then prepend a jump over the statement below.
    372 	 * On match, it will skip-through and the fail path will be taken.
    373 	 */
    374 	if (ctx->invert) {
    375 		struct bpf_insn insns_ret[] = {
    376 			BPF_STMT(BPF_JMP+BPF_JA, 1),
    377 		};
    378 		add_insns(ctx, insns_ret, __arraycount(insns_ret));
    379 	}
    380 
    381 	/*
    382 	 * Append a failure return as a fall-through i.e. if there is
    383 	 * no match within the group.
    384 	 */
    385 	struct bpf_insn insns_ret[] = {
    386 		BPF_STMT(BPF_RET+BPF_K, NPF_BPF_FAILURE),
    387 	};
    388 	add_insns(ctx, insns_ret, __arraycount(insns_ret));
    389 
    390 	/*
    391 	 * Adjust jump offsets: on match - jump outside the group i.e.
    392 	 * to the current offset.  Otherwise, jump to the next instruction
    393 	 * which would lead to the fall-through code above if none matches.
    394 	 */
    395 	fixup_jumps(ctx, ctx->goff, curoff, true);
    396 	ctx->goff = ctx->gblock = 0;
    397 }
    398 
    399 static void
    400 fetch_l3(npf_bpf_t *ctx, sa_family_t af, unsigned flags)
    401 {
    402 	unsigned ver;
    403 
    404 	switch (af) {
    405 	case AF_INET:
    406 		ver = IPVERSION;
    407 		break;
    408 	case AF_INET6:
    409 		ver = IPV6_VERSION >> 4;
    410 		break;
    411 	case AF_UNSPEC:
    412 		ver = 0;
    413 		break;
    414 	default:
    415 		abort();
    416 	}
    417 
    418 	/*
    419 	 * The memory store is populated with:
    420 	 * - BPF_MW_IPVER: IP version (4 or 6).
    421 	 * - BPF_MW_L4OFF: L4 header offset.
    422 	 * - BPF_MW_L4PROTO: L4 protocol.
    423 	 */
    424 	if ((ctx->flags & FETCHED_L3) == 0 || (af && ctx->af == 0)) {
    425 		const uint8_t jt = ver ? 0 : JUMP_MAGIC;
    426 		const uint8_t jf = ver ? JUMP_MAGIC : 0;
    427 		const bool ingroup = ctx->ingroup != 0;
    428 		const bool invert = ctx->invert;
    429 
    430 		/*
    431 		 * L3 block cannot be inserted in the middle of a group.
    432 		 * In fact, it never is.  Check and start the group after.
    433 		 */
    434 		if (ingroup) {
    435 			assert(ctx->nblocks == ctx->gblock);
    436 			npfctl_bpf_group_exit(ctx);
    437 		}
    438 
    439 		/*
    440 		 * A <- IP version; A == expected-version?
    441 		 * If no particular version specified, check for non-zero.
    442 		 */
    443 		struct bpf_insn insns_af[] = {
    444 			BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_IPVER),
    445 			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, ver, jt, jf),
    446 		};
    447 		add_insns(ctx, insns_af, __arraycount(insns_af));
    448 		ctx->flags |= FETCHED_L3;
    449 		ctx->af = af;
    450 
    451 		if (af) {
    452 			uint32_t mwords[] = { BM_IPVER, 1, af };
    453 			add_bmarks(ctx, mwords, sizeof(mwords));
    454 		}
    455 		if (ingroup) {
    456 			npfctl_bpf_group_enter(ctx, invert);
    457 		}
    458 
    459 	} else if (af && af != ctx->af) {
    460 		errx(EXIT_FAILURE, "address family mismatch");
    461 	}
    462 
    463 	if ((flags & X_EQ_L4OFF) != 0 && (ctx->flags & X_EQ_L4OFF) == 0) {
    464 		/* X <- IP header length */
    465 		struct bpf_insn insns_hlen[] = {
    466 			BPF_STMT(BPF_LDX+BPF_MEM, BPF_MW_L4OFF),
    467 		};
    468 		add_insns(ctx, insns_hlen, __arraycount(insns_hlen));
    469 		ctx->flags |= X_EQ_L4OFF;
    470 	}
    471 }
    472 
    473 void
    474 fetch_ether_type(npf_bpf_t *ctx, uint16_t type)
    475 {
    476 	if ((ctx->flags & FETCHED_L2) != 0 || (type && ctx->eth_type != 0))
    477 		return;
    478 
    479 	const uint8_t jt = type ? 0 : JUMP_MAGIC;
    480 	const uint8_t jf = type ? JUMP_MAGIC : 0;
    481 	const bool ingroup = ctx->ingroup != 0;
    482 	const bool invert = ctx->invert;
    483 	unsigned off = offsetof(struct ether_header, ether_type);
    484 
    485 	/*
    486 	 * L2 block cannot be inserted in the middle of a group.
    487 	 * Check and start the group after.
    488 	 */
    489 	if (ingroup) {
    490 		assert(ctx->nblocks == ctx->gblock);
    491 		npfctl_bpf_group_exit(ctx);
    492 	}
    493 
    494 	type = ntohs(type);
    495 
    496 	struct bpf_insn insns_et[] = {
    497 		BPF_STMT(BPF_LD+BPF_H+BPF_ABS, off),
    498 		BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, type, jt, jf),
    499 	};
    500 	add_insns(ctx, insns_et, __arraycount(insns_et));
    501 	ctx->flags |= FETCHED_L2;
    502 	ctx->eth_type = type;
    503 
    504  	if (type) { /* bookmark ether type */
    505 		uint32_t mwords[] = { BM_ETHER_TYPE, 1, htons(type) };
    506 		add_bmarks(ctx, mwords, sizeof(mwords));
    507 	}
    508 	if (ingroup) {
    509 		npfctl_bpf_group_enter(ctx, invert);
    510 	}
    511 }
    512 
    513 static void
    514 bm_invert_checkpoint(npf_bpf_t *ctx, const unsigned opts, uint32_t layer)
    515 {
    516 	uint32_t bm = 0;
    517 
    518 	if (ctx->ingroup && ctx->invert) {
    519 		const unsigned seen = ctx->invflags;
    520 
    521 		if ((opts & MATCH_SRC) != 0 && (seen & MATCH_SRC) == 0) {
    522 			bm = (layer & NPF_RULE_LAYER_3) ? BM_SRC_NEG : BM_SRC_ENEG;
    523 		}
    524 		if ((opts & MATCH_DST) != 0 && (seen & MATCH_DST) == 0) {
    525 			bm = (layer & NPF_RULE_LAYER_3) ? BM_DST_NEG : BM_DST_ENEG;
    526 		}
    527 		ctx->invflags |= opts & (MATCH_SRC | MATCH_DST);
    528 	}
    529 	if (bm) {
    530 		uint32_t mwords[] = { bm, 0 };
    531 		add_bmarks(ctx, mwords, sizeof(mwords));
    532 	}
    533 }
    534 
    535 /*
    536  * npfctl_bpf_ipver: match the IP version.
    537  */
    538 void
    539 npfctl_bpf_ipver(npf_bpf_t *ctx, sa_family_t af)
    540 {
    541 	fetch_l3(ctx, af, 0);
    542 }
    543 
    544 /*
    545  * npfctl_bpf_proto: code block to match IP version and L4 protocol.
    546  */
    547 void
    548 npfctl_bpf_proto(npf_bpf_t *ctx, unsigned proto)
    549 {
    550 	struct bpf_insn insns_proto[] = {
    551 		/* A <- L4 protocol; A == expected-protocol? */
    552 		BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_L4PROTO),
    553 		BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, proto, 0, JUMP_MAGIC),
    554 	};
    555 	add_insns(ctx, insns_proto, __arraycount(insns_proto));
    556 
    557 	uint32_t mwords[] = { BM_PROTO, 1, proto };
    558 	done_block(ctx, mwords, sizeof(mwords));
    559 	ctx->flags |= CHECKED_L4_PROTO;
    560 }
    561 
    562 /*
    563  * npfctl_bpf_cidr: code block to match IPv4 or IPv6 CIDR.
    564  *
    565  * => IP address shall be in the network byte order.
    566  */
    567 void
    568 npfctl_bpf_cidr(npf_bpf_t *ctx, unsigned opts, sa_family_t af,
    569     const npf_addr_t *addr, const npf_netmask_t mask)
    570 {
    571 	const uint32_t *awords = (const uint32_t *)addr;
    572 	unsigned nwords, origlength, length, maxmask, off;
    573 
    574 	assert(((opts & MATCH_SRC) != 0) ^ ((opts & MATCH_DST) != 0));
    575 	assert((mask && mask <= NPF_MAX_NETMASK) || mask == NPF_NO_NETMASK);
    576 
    577 	switch (af) {
    578 	case AF_INET:
    579 		maxmask = 32;
    580 		off = (opts & MATCH_SRC) ?
    581 		    offsetof(struct ip, ip_src) :
    582 		    offsetof(struct ip, ip_dst);
    583 		nwords = sizeof(struct in_addr) / sizeof(uint32_t);
    584 		break;
    585 	case AF_INET6:
    586 		maxmask = 128;
    587 		off = (opts & MATCH_SRC) ?
    588 		    offsetof(struct ip6_hdr, ip6_src) :
    589 		    offsetof(struct ip6_hdr, ip6_dst);
    590 		nwords = sizeof(struct in6_addr) / sizeof(uint32_t);
    591 		break;
    592 	default:
    593 		abort();
    594 	}
    595 
    596 	/* Ensure address family. */
    597 	fetch_l3(ctx, af, 0);
    598 
    599 	length = origlength = (mask == NPF_NO_NETMASK) ? maxmask : mask;
    600 
    601 	/* CAUTION: BPF operates in host byte-order. */
    602 	for (unsigned i = 0; i < nwords; i++) {
    603 		const unsigned woff = i * sizeof(uint32_t);
    604 		uint32_t word = ntohl(awords[i]);
    605 		uint32_t wordmask;
    606 
    607 		if (length >= 32) {
    608 			/* The mask is a full word - do not apply it. */
    609 			wordmask = 0;
    610 			length -= 32;
    611 		} else if (length) {
    612 			wordmask = 0xffffffff << (32 - length);
    613 			length = 0;
    614 		} else {
    615 			/* The mask became zero - skip the rest. */
    616 			break;
    617 		}
    618 
    619 		/* A <- IP address (or one word of it) */
    620 		struct bpf_insn insns_ip[] = {
    621 			BPF_STMT(BPF_LD+BPF_W+BPF_ABS, off + woff),
    622 		};
    623 		add_insns(ctx, insns_ip, __arraycount(insns_ip));
    624 
    625 		/* A <- (A & MASK) */
    626 		if (wordmask) {
    627 			struct bpf_insn insns_mask[] = {
    628 				BPF_STMT(BPF_ALU+BPF_AND+BPF_K, wordmask),
    629 			};
    630 			add_insns(ctx, insns_mask, __arraycount(insns_mask));
    631 		}
    632 
    633 		/*
    634 		 * Determine how many instructions we have to jump
    635 		 * ahead if the match fails.
    636 		 *
    637 		 * - If this is the last word, we jump to the final
    638                  *   failure, JUMP_MAGIC.
    639 		 *
    640 		 * - If this is not the last word, we jump past the
    641 		 *   remaining instructions to match this sequence.
    642 		 *   Each 32-bit word in the sequence takes two
    643 		 *   instructions (BPF_LD and BPF_JMP).  If there is a
    644 		 *   partial-word mask ahead, there will be one
    645 		 *   additional instruction (BPF_ALU).
    646 		 */
    647 		uint8_t jf;
    648 		if (i + 1 == (origlength + 31)/32) {
    649 			jf = JUMP_MAGIC;
    650 		} else {
    651 			jf = 2*((origlength + 31)/32 - i - 1);
    652 			if (origlength % 32 != 0 && wordmask == 0)
    653 				jf += 1;
    654 		}
    655 
    656 		/* A == expected-IP-word ? */
    657 		struct bpf_insn insns_cmp[] = {
    658 			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, word, 0, jf),
    659 		};
    660 		add_insns(ctx, insns_cmp, __arraycount(insns_cmp));
    661 	}
    662 
    663 	/*
    664 	 * If we checked a chain of words in sequence, mark this as a
    665 	 * multi-word comparison so if this is in a group there will be
    666 	 * a fallthrough case.
    667 	 *
    668 	 * XXX This is a little silly; the compiler should really just
    669 	 * record holes where conditional jumps need success/failure
    670 	 * continuations, and go back to fill in the holes when the
    671 	 * locations of the continuations are determined later.  But
    672 	 * that requires restructuring this code a little more.
    673 	 */
    674 	ctx->multiword = (origlength + 31)/32 > 1;
    675 
    676 	uint32_t mwords[] = {
    677 		(opts & MATCH_SRC) ? BM_SRC_CIDR: BM_DST_CIDR, 6,
    678 		af, mask, awords[0], awords[1], awords[2], awords[3],
    679 	};
    680 	bm_invert_checkpoint(ctx, opts, NPF_RULE_LAYER_3);
    681 	done_block(ctx, mwords, sizeof(mwords));
    682 }
    683 
    684 /*
    685  * for ether address, 6 octets(a word and halfword)
    686  * just fetch directly using a word and halfword fetch
    687  */
    688 void
    689 npfctl_bpf_ether(npf_bpf_t *ctx, unsigned opts, struct ether_addr *ether_addr)
    690 {
    691 	uint32_t mac_word;
    692 	uint16_t mac_hword;
    693 	unsigned off;
    694 	assert(((opts & MATCH_SRC) != 0) ^ ((opts & MATCH_DST) != 0));
    695 
    696 	off = (opts & MATCH_SRC) ? offsetof(struct ether_header, ether_shost) :
    697 	    offsetof(struct ether_header, ether_dhost);
    698 
    699 	memcpy(&mac_word, ether_addr, sizeof(mac_word));
    700 	mac_word = ntohl(mac_word);
    701 
    702 	/* copy the last two bytes of the 6 byte ether address */
    703 	memcpy(&mac_hword, (uint8_t *)ether_addr + sizeof(mac_word), sizeof(mac_hword));
    704 	mac_hword = ntohs(mac_hword);
    705 
    706 	/* load and compare first word then do same to last halfword */
    707 	struct bpf_insn insns_ether_w[] = {
    708 		BPF_STMT(BPF_LD+BPF_W+BPF_ABS, off),
    709 		BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, mac_word, 0, 2),
    710 	};
    711 	add_insns(ctx, insns_ether_w, __arraycount(insns_ether_w));
    712 
    713 	struct bpf_insn insns_ether_h[] = {
    714 		BPF_STMT(BPF_LD+BPF_H+BPF_ABS, off + sizeof(mac_word)),
    715 		BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, mac_hword, 0, JUMP_MAGIC),
    716 	};
    717 	add_insns(ctx, insns_ether_h, __arraycount(insns_ether_h));
    718 
    719 	ctx->multiword = true;
    720 
    721 	uint32_t mwords[] = {
    722 		(opts & MATCH_SRC) ? BM_SRC_ETHER: BM_DST_ETHER, 2,
    723 		htonl(mac_word), htons(mac_hword)
    724 	};
    725 
    726 	bm_invert_checkpoint(ctx, opts, NPF_RULE_LAYER_2);
    727 	done_block(ctx, mwords, sizeof(mwords));
    728 }
    729 
    730 /*
    731  * npfctl_bpf_ports: code block to match TCP/UDP port range.
    732  *
    733  * => Port numbers shall be in the network byte order.
    734  */
    735 void
    736 npfctl_bpf_ports(npf_bpf_t *ctx, unsigned opts, in_port_t from, in_port_t to)
    737 {
    738 	const unsigned sport_off = offsetof(struct udphdr, uh_sport);
    739 	const unsigned dport_off = offsetof(struct udphdr, uh_dport);
    740 	unsigned off;
    741 
    742 	/* TCP and UDP port offsets are the same. */
    743 	assert(sport_off == offsetof(struct tcphdr, th_sport));
    744 	assert(dport_off == offsetof(struct tcphdr, th_dport));
    745 	assert(ctx->flags & CHECKED_L4_PROTO);
    746 
    747 	assert(((opts & MATCH_SRC) != 0) ^ ((opts & MATCH_DST) != 0));
    748 	off = (opts & MATCH_SRC) ? sport_off : dport_off;
    749 
    750 	/* X <- IP header length */
    751 	fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
    752 
    753 	struct bpf_insn insns_fetch[] = {
    754 		/* A <- port */
    755 		BPF_STMT(BPF_LD+BPF_H+BPF_IND, off),
    756 	};
    757 	add_insns(ctx, insns_fetch, __arraycount(insns_fetch));
    758 
    759 	/* CAUTION: BPF operates in host byte-order. */
    760 	from = ntohs(from);
    761 	to = ntohs(to);
    762 
    763 	if (from == to) {
    764 		/* Single port case. */
    765 		struct bpf_insn insns_port[] = {
    766 			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, from, 0, JUMP_MAGIC),
    767 		};
    768 		add_insns(ctx, insns_port, __arraycount(insns_port));
    769 	} else {
    770 		/* Port range case. */
    771 		struct bpf_insn insns_range[] = {
    772 			BPF_JUMP(BPF_JMP+BPF_JGE+BPF_K, from, 0, 1),
    773 			BPF_JUMP(BPF_JMP+BPF_JGT+BPF_K, to, 0, 1),
    774 			BPF_STMT(BPF_JMP+BPF_JA, JUMP_MAGIC),
    775 		};
    776 		add_insns(ctx, insns_range, __arraycount(insns_range));
    777 	}
    778 
    779 	uint32_t mwords[] = {
    780 		(opts & MATCH_SRC) ? BM_SRC_PORTS : BM_DST_PORTS, 2, from, to
    781 	};
    782 	done_block(ctx, mwords, sizeof(mwords));
    783 }
    784 
    785 /*
    786  * npfctl_bpf_tcpfl: code block to match TCP flags.
    787  */
    788 void
    789 npfctl_bpf_tcpfl(npf_bpf_t *ctx, uint8_t tf, uint8_t tf_mask)
    790 {
    791 	const unsigned tcpfl_off = offsetof(struct tcphdr, th_flags);
    792 	const bool usingmask = tf_mask != tf;
    793 
    794 	/* X <- IP header length */
    795 	fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
    796 
    797 	if ((ctx->flags & CHECKED_L4_PROTO) == 0) {
    798 		const unsigned jf = usingmask ? 3 : 2;
    799 		assert(ctx->ingroup == 0);
    800 
    801 		/*
    802 		 * A <- L4 protocol; A == TCP?  If not, jump out.
    803 		 *
    804 		 * Note: the TCP flag matching might be without 'proto tcp'
    805 		 * when using a plain 'stateful' rule.  In such case it also
    806 		 * handles other protocols, thus no strict TCP check.
    807 		 */
    808 		struct bpf_insn insns_tcp[] = {
    809 			BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_L4PROTO),
    810 			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, IPPROTO_TCP, 0, jf),
    811 		};
    812 		add_insns(ctx, insns_tcp, __arraycount(insns_tcp));
    813 	}
    814 
    815 	struct bpf_insn insns_tf[] = {
    816 		/* A <- TCP flags */
    817 		BPF_STMT(BPF_LD+BPF_B+BPF_IND, tcpfl_off),
    818 	};
    819 	add_insns(ctx, insns_tf, __arraycount(insns_tf));
    820 
    821 	if (usingmask) {
    822 		/* A <- (A & mask) */
    823 		struct bpf_insn insns_mask[] = {
    824 			BPF_STMT(BPF_ALU+BPF_AND+BPF_K, tf_mask),
    825 		};
    826 		add_insns(ctx, insns_mask, __arraycount(insns_mask));
    827 	}
    828 
    829 	struct bpf_insn insns_cmp[] = {
    830 		/* A == expected-TCP-flags? */
    831 		BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, tf, 0, JUMP_MAGIC),
    832 	};
    833 	add_insns(ctx, insns_cmp, __arraycount(insns_cmp));
    834 
    835 	uint32_t mwords[] = { BM_TCPFL, 2, tf, tf_mask };
    836 	done_block(ctx, mwords, sizeof(mwords));
    837 }
    838 
    839 /*
    840  * npfctl_bpf_icmp: code block to match ICMP type and/or code.
    841  * Note: suitable for both the ICMPv4 and ICMPv6.
    842  */
    843 void
    844 npfctl_bpf_icmp(npf_bpf_t *ctx, int type, int code)
    845 {
    846 	const u_int type_off = offsetof(struct icmp, icmp_type);
    847 	const u_int code_off = offsetof(struct icmp, icmp_code);
    848 
    849 	assert(ctx->flags & CHECKED_L4_PROTO);
    850 	assert(offsetof(struct icmp6_hdr, icmp6_type) == type_off);
    851 	assert(offsetof(struct icmp6_hdr, icmp6_code) == code_off);
    852 	assert(type != -1 || code != -1);
    853 
    854 	/* X <- IP header length */
    855 	fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
    856 
    857 	if (type != -1) {
    858 		struct bpf_insn insns_type[] = {
    859 			BPF_STMT(BPF_LD+BPF_B+BPF_IND, type_off),
    860 			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, type, 0, JUMP_MAGIC),
    861 		};
    862 		add_insns(ctx, insns_type, __arraycount(insns_type));
    863 
    864 		uint32_t mwords[] = { BM_ICMP_TYPE, 1, type };
    865 		done_block(ctx, mwords, sizeof(mwords));
    866 	}
    867 
    868 	if (code != -1) {
    869 		struct bpf_insn insns_code[] = {
    870 			BPF_STMT(BPF_LD+BPF_B+BPF_IND, code_off),
    871 			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, code, 0, JUMP_MAGIC),
    872 		};
    873 		add_insns(ctx, insns_code, __arraycount(insns_code));
    874 
    875 		uint32_t mwords[] = { BM_ICMP_CODE, 1, code };
    876 		done_block(ctx, mwords, sizeof(mwords));
    877 	}
    878 }
    879 
    880 #define	SRC_FLAG_BIT	(1U << 31)
    881 
    882 /*
    883  * npfctl_bpf_table: code block to match source/destination IP address
    884  * against NPF table specified by ID.
    885  */
    886 void
    887 npfctl_bpf_table(npf_bpf_t *ctx, unsigned opts, unsigned tid)
    888 {
    889 	const bool src = (opts & MATCH_SRC) != 0;
    890 
    891 	struct bpf_insn insns_table[] = {
    892 		BPF_STMT(BPF_LD+BPF_IMM, (src ? SRC_FLAG_BIT : 0) | tid),
    893 		BPF_STMT(BPF_MISC+BPF_COP, NPF_COP_TABLE),
    894 		BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0, JUMP_MAGIC, 0),
    895 	};
    896 	add_insns(ctx, insns_table, __arraycount(insns_table));
    897 
    898 	uint32_t mwords[] = { src ? BM_SRC_TABLE: BM_DST_TABLE, 1, tid };
    899 	bm_invert_checkpoint(ctx, opts, NPF_RULE_LAYER_3);
    900 	done_block(ctx, mwords, sizeof(mwords));
    901 }
    902