1 /* $NetBSD: kfd_crat.c,v 1.2 2021/12/18 23:44:59 riastradh Exp $ */ 2 3 /* 4 * Copyright 2015-2017 Advanced Micro Devices, Inc. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 */ 24 25 #include <sys/cdefs.h> 26 __KERNEL_RCSID(0, "$NetBSD: kfd_crat.c,v 1.2 2021/12/18 23:44:59 riastradh Exp $"); 27 28 #include <linux/pci.h> 29 #include <linux/acpi.h> 30 #include "kfd_crat.h" 31 #include "kfd_priv.h" 32 #include "kfd_topology.h" 33 #include "kfd_iommu.h" 34 #include "amdgpu_amdkfd.h" 35 36 /* GPU Processor ID base for dGPUs for which VCRAT needs to be created. 37 * GPU processor ID are expressed with Bit[31]=1. 38 * The base is set to 0x8000_0000 + 0x1000 to avoid collision with GPU IDs 39 * used in the CRAT. 40 */ 41 static uint32_t gpu_processor_id_low = 0x80001000; 42 43 /* Return the next available gpu_processor_id and increment it for next GPU 44 * @total_cu_count - Total CUs present in the GPU including ones 45 * masked off 46 */ 47 static inline unsigned int get_and_inc_gpu_processor_id( 48 unsigned int total_cu_count) 49 { 50 int current_id = gpu_processor_id_low; 51 52 gpu_processor_id_low += total_cu_count; 53 return current_id; 54 } 55 56 /* Static table to describe GPU Cache information */ 57 struct kfd_gpu_cache_info { 58 uint32_t cache_size; 59 uint32_t cache_level; 60 uint32_t flags; 61 /* Indicates how many Compute Units share this cache 62 * Value = 1 indicates the cache is not shared 63 */ 64 uint32_t num_cu_shared; 65 }; 66 67 static struct kfd_gpu_cache_info kaveri_cache_info[] = { 68 { 69 /* TCP L1 Cache per CU */ 70 .cache_size = 16, 71 .cache_level = 1, 72 .flags = (CRAT_CACHE_FLAGS_ENABLED | 73 CRAT_CACHE_FLAGS_DATA_CACHE | 74 CRAT_CACHE_FLAGS_SIMD_CACHE), 75 .num_cu_shared = 1, 76 77 }, 78 { 79 /* Scalar L1 Instruction Cache (in SQC module) per bank */ 80 .cache_size = 16, 81 .cache_level = 1, 82 .flags = (CRAT_CACHE_FLAGS_ENABLED | 83 CRAT_CACHE_FLAGS_INST_CACHE | 84 CRAT_CACHE_FLAGS_SIMD_CACHE), 85 .num_cu_shared = 2, 86 }, 87 { 88 /* Scalar L1 Data Cache (in SQC module) per bank */ 89 .cache_size = 8, 90 .cache_level = 1, 91 .flags = (CRAT_CACHE_FLAGS_ENABLED | 92 CRAT_CACHE_FLAGS_DATA_CACHE | 93 CRAT_CACHE_FLAGS_SIMD_CACHE), 94 .num_cu_shared = 2, 95 }, 96 97 /* TODO: Add L2 Cache information */ 98 }; 99 100 101 static struct kfd_gpu_cache_info carrizo_cache_info[] = { 102 { 103 /* TCP L1 Cache per CU */ 104 .cache_size = 16, 105 .cache_level = 1, 106 .flags = (CRAT_CACHE_FLAGS_ENABLED | 107 CRAT_CACHE_FLAGS_DATA_CACHE | 108 CRAT_CACHE_FLAGS_SIMD_CACHE), 109 .num_cu_shared = 1, 110 }, 111 { 112 /* Scalar L1 Instruction Cache (in SQC module) per bank */ 113 .cache_size = 8, 114 .cache_level = 1, 115 .flags = (CRAT_CACHE_FLAGS_ENABLED | 116 CRAT_CACHE_FLAGS_INST_CACHE | 117 CRAT_CACHE_FLAGS_SIMD_CACHE), 118 .num_cu_shared = 4, 119 }, 120 { 121 /* Scalar L1 Data Cache (in SQC module) per bank. */ 122 .cache_size = 4, 123 .cache_level = 1, 124 .flags = (CRAT_CACHE_FLAGS_ENABLED | 125 CRAT_CACHE_FLAGS_DATA_CACHE | 126 CRAT_CACHE_FLAGS_SIMD_CACHE), 127 .num_cu_shared = 4, 128 }, 129 130 /* TODO: Add L2 Cache information */ 131 }; 132 133 /* NOTE: In future if more information is added to struct kfd_gpu_cache_info 134 * the following ASICs may need a separate table. 135 */ 136 #define hawaii_cache_info kaveri_cache_info 137 #define tonga_cache_info carrizo_cache_info 138 #define fiji_cache_info carrizo_cache_info 139 #define polaris10_cache_info carrizo_cache_info 140 #define polaris11_cache_info carrizo_cache_info 141 #define polaris12_cache_info carrizo_cache_info 142 #define vegam_cache_info carrizo_cache_info 143 /* TODO - check & update Vega10 cache details */ 144 #define vega10_cache_info carrizo_cache_info 145 #define raven_cache_info carrizo_cache_info 146 #define renoir_cache_info carrizo_cache_info 147 /* TODO - check & update Navi10 cache details */ 148 #define navi10_cache_info carrizo_cache_info 149 150 static void kfd_populated_cu_info_cpu(struct kfd_topology_device *dev, 151 struct crat_subtype_computeunit *cu) 152 { 153 dev->node_props.cpu_cores_count = cu->num_cpu_cores; 154 dev->node_props.cpu_core_id_base = cu->processor_id_low; 155 if (cu->hsa_capability & CRAT_CU_FLAGS_IOMMU_PRESENT) 156 dev->node_props.capability |= HSA_CAP_ATS_PRESENT; 157 158 pr_debug("CU CPU: cores=%d id_base=%d\n", cu->num_cpu_cores, 159 cu->processor_id_low); 160 } 161 162 static void kfd_populated_cu_info_gpu(struct kfd_topology_device *dev, 163 struct crat_subtype_computeunit *cu) 164 { 165 dev->node_props.simd_id_base = cu->processor_id_low; 166 dev->node_props.simd_count = cu->num_simd_cores; 167 dev->node_props.lds_size_in_kb = cu->lds_size_in_kb; 168 dev->node_props.max_waves_per_simd = cu->max_waves_simd; 169 dev->node_props.wave_front_size = cu->wave_front_size; 170 dev->node_props.array_count = cu->array_count; 171 dev->node_props.cu_per_simd_array = cu->num_cu_per_array; 172 dev->node_props.simd_per_cu = cu->num_simd_per_cu; 173 dev->node_props.max_slots_scratch_cu = cu->max_slots_scatch_cu; 174 if (cu->hsa_capability & CRAT_CU_FLAGS_HOT_PLUGGABLE) 175 dev->node_props.capability |= HSA_CAP_HOT_PLUGGABLE; 176 pr_debug("CU GPU: id_base=%d\n", cu->processor_id_low); 177 } 178 179 /* kfd_parse_subtype_cu - parse compute unit subtypes and attach it to correct 180 * topology device present in the device_list 181 */ 182 static int kfd_parse_subtype_cu(struct crat_subtype_computeunit *cu, 183 struct list_head *device_list) 184 { 185 struct kfd_topology_device *dev; 186 187 pr_debug("Found CU entry in CRAT table with proximity_domain=%d caps=%x\n", 188 cu->proximity_domain, cu->hsa_capability); 189 list_for_each_entry(dev, device_list, list) { 190 if (cu->proximity_domain == dev->proximity_domain) { 191 if (cu->flags & CRAT_CU_FLAGS_CPU_PRESENT) 192 kfd_populated_cu_info_cpu(dev, cu); 193 194 if (cu->flags & CRAT_CU_FLAGS_GPU_PRESENT) 195 kfd_populated_cu_info_gpu(dev, cu); 196 break; 197 } 198 } 199 200 return 0; 201 } 202 203 static struct kfd_mem_properties * 204 find_subtype_mem(uint32_t heap_type, uint32_t flags, uint32_t width, 205 struct kfd_topology_device *dev) 206 { 207 struct kfd_mem_properties *props; 208 209 list_for_each_entry(props, &dev->mem_props, list) { 210 if (props->heap_type == heap_type 211 && props->flags == flags 212 && props->width == width) 213 return props; 214 } 215 216 return NULL; 217 } 218 /* kfd_parse_subtype_mem - parse memory subtypes and attach it to correct 219 * topology device present in the device_list 220 */ 221 static int kfd_parse_subtype_mem(struct crat_subtype_memory *mem, 222 struct list_head *device_list) 223 { 224 struct kfd_mem_properties *props; 225 struct kfd_topology_device *dev; 226 uint32_t heap_type; 227 uint64_t size_in_bytes; 228 uint32_t flags = 0; 229 uint32_t width; 230 231 pr_debug("Found memory entry in CRAT table with proximity_domain=%d\n", 232 mem->proximity_domain); 233 list_for_each_entry(dev, device_list, list) { 234 if (mem->proximity_domain == dev->proximity_domain) { 235 /* We're on GPU node */ 236 if (dev->node_props.cpu_cores_count == 0) { 237 /* APU */ 238 if (mem->visibility_type == 0) 239 heap_type = 240 HSA_MEM_HEAP_TYPE_FB_PRIVATE; 241 /* dGPU */ 242 else 243 heap_type = mem->visibility_type; 244 } else 245 heap_type = HSA_MEM_HEAP_TYPE_SYSTEM; 246 247 if (mem->flags & CRAT_MEM_FLAGS_HOT_PLUGGABLE) 248 flags |= HSA_MEM_FLAGS_HOT_PLUGGABLE; 249 if (mem->flags & CRAT_MEM_FLAGS_NON_VOLATILE) 250 flags |= HSA_MEM_FLAGS_NON_VOLATILE; 251 252 size_in_bytes = 253 ((uint64_t)mem->length_high << 32) + 254 mem->length_low; 255 width = mem->width; 256 257 /* Multiple banks of the same type are aggregated into 258 * one. User mode doesn't care about multiple physical 259 * memory segments. It's managed as a single virtual 260 * heap for user mode. 261 */ 262 props = find_subtype_mem(heap_type, flags, width, dev); 263 if (props) { 264 props->size_in_bytes += size_in_bytes; 265 break; 266 } 267 268 props = kfd_alloc_struct(props); 269 if (!props) 270 return -ENOMEM; 271 272 props->heap_type = heap_type; 273 props->flags = flags; 274 props->size_in_bytes = size_in_bytes; 275 props->width = width; 276 277 dev->node_props.mem_banks_count++; 278 list_add_tail(&props->list, &dev->mem_props); 279 280 break; 281 } 282 } 283 284 return 0; 285 } 286 287 /* kfd_parse_subtype_cache - parse cache subtypes and attach it to correct 288 * topology device present in the device_list 289 */ 290 static int kfd_parse_subtype_cache(struct crat_subtype_cache *cache, 291 struct list_head *device_list) 292 { 293 struct kfd_cache_properties *props; 294 struct kfd_topology_device *dev; 295 uint32_t id; 296 uint32_t total_num_of_cu; 297 298 id = cache->processor_id_low; 299 300 pr_debug("Found cache entry in CRAT table with processor_id=%d\n", id); 301 list_for_each_entry(dev, device_list, list) { 302 total_num_of_cu = (dev->node_props.array_count * 303 dev->node_props.cu_per_simd_array); 304 305 /* Cache infomration in CRAT doesn't have proximity_domain 306 * information as it is associated with a CPU core or GPU 307 * Compute Unit. So map the cache using CPU core Id or SIMD 308 * (GPU) ID. 309 * TODO: This works because currently we can safely assume that 310 * Compute Units are parsed before caches are parsed. In 311 * future, remove this dependency 312 */ 313 if ((id >= dev->node_props.cpu_core_id_base && 314 id <= dev->node_props.cpu_core_id_base + 315 dev->node_props.cpu_cores_count) || 316 (id >= dev->node_props.simd_id_base && 317 id < dev->node_props.simd_id_base + 318 total_num_of_cu)) { 319 props = kfd_alloc_struct(props); 320 if (!props) 321 return -ENOMEM; 322 323 props->processor_id_low = id; 324 props->cache_level = cache->cache_level; 325 props->cache_size = cache->cache_size; 326 props->cacheline_size = cache->cache_line_size; 327 props->cachelines_per_tag = cache->lines_per_tag; 328 props->cache_assoc = cache->associativity; 329 props->cache_latency = cache->cache_latency; 330 memcpy(props->sibling_map, cache->sibling_map, 331 sizeof(props->sibling_map)); 332 333 if (cache->flags & CRAT_CACHE_FLAGS_DATA_CACHE) 334 props->cache_type |= HSA_CACHE_TYPE_DATA; 335 if (cache->flags & CRAT_CACHE_FLAGS_INST_CACHE) 336 props->cache_type |= HSA_CACHE_TYPE_INSTRUCTION; 337 if (cache->flags & CRAT_CACHE_FLAGS_CPU_CACHE) 338 props->cache_type |= HSA_CACHE_TYPE_CPU; 339 if (cache->flags & CRAT_CACHE_FLAGS_SIMD_CACHE) 340 props->cache_type |= HSA_CACHE_TYPE_HSACU; 341 342 dev->cache_count++; 343 dev->node_props.caches_count++; 344 list_add_tail(&props->list, &dev->cache_props); 345 346 break; 347 } 348 } 349 350 return 0; 351 } 352 353 /* kfd_parse_subtype_iolink - parse iolink subtypes and attach it to correct 354 * topology device present in the device_list 355 */ 356 static int kfd_parse_subtype_iolink(struct crat_subtype_iolink *iolink, 357 struct list_head *device_list) 358 { 359 struct kfd_iolink_properties *props = NULL, *props2; 360 struct kfd_topology_device *dev, *to_dev; 361 uint32_t id_from; 362 uint32_t id_to; 363 364 id_from = iolink->proximity_domain_from; 365 id_to = iolink->proximity_domain_to; 366 367 pr_debug("Found IO link entry in CRAT table with id_from=%d, id_to %d\n", 368 id_from, id_to); 369 list_for_each_entry(dev, device_list, list) { 370 if (id_from == dev->proximity_domain) { 371 props = kfd_alloc_struct(props); 372 if (!props) 373 return -ENOMEM; 374 375 props->node_from = id_from; 376 props->node_to = id_to; 377 props->ver_maj = iolink->version_major; 378 props->ver_min = iolink->version_minor; 379 props->iolink_type = iolink->io_interface_type; 380 381 if (props->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS) 382 props->weight = 20; 383 else if (props->iolink_type == CRAT_IOLINK_TYPE_XGMI) 384 props->weight = 15 * iolink->num_hops_xgmi; 385 else 386 props->weight = node_distance(id_from, id_to); 387 388 props->min_latency = iolink->minimum_latency; 389 props->max_latency = iolink->maximum_latency; 390 props->min_bandwidth = iolink->minimum_bandwidth_mbs; 391 props->max_bandwidth = iolink->maximum_bandwidth_mbs; 392 props->rec_transfer_size = 393 iolink->recommended_transfer_size; 394 395 dev->io_link_count++; 396 dev->node_props.io_links_count++; 397 list_add_tail(&props->list, &dev->io_link_props); 398 break; 399 } 400 } 401 402 /* CPU topology is created before GPUs are detected, so CPU->GPU 403 * links are not built at that time. If a PCIe type is discovered, it 404 * means a GPU is detected and we are adding GPU->CPU to the topology. 405 * At this time, also add the corresponded CPU->GPU link if GPU 406 * is large bar. 407 * For xGMI, we only added the link with one direction in the crat 408 * table, add corresponded reversed direction link now. 409 */ 410 if (props && (iolink->flags & CRAT_IOLINK_FLAGS_BI_DIRECTIONAL)) { 411 to_dev = kfd_topology_device_by_proximity_domain(id_to); 412 if (!to_dev) 413 return -ENODEV; 414 /* same everything but the other direction */ 415 props2 = kmemdup(props, sizeof(*props2), GFP_KERNEL); 416 props2->node_from = id_to; 417 props2->node_to = id_from; 418 props2->kobj = NULL; 419 to_dev->io_link_count++; 420 to_dev->node_props.io_links_count++; 421 list_add_tail(&props2->list, &to_dev->io_link_props); 422 } 423 424 return 0; 425 } 426 427 /* kfd_parse_subtype - parse subtypes and attach it to correct topology device 428 * present in the device_list 429 * @sub_type_hdr - subtype section of crat_image 430 * @device_list - list of topology devices present in this crat_image 431 */ 432 static int kfd_parse_subtype(struct crat_subtype_generic *sub_type_hdr, 433 struct list_head *device_list) 434 { 435 struct crat_subtype_computeunit *cu; 436 struct crat_subtype_memory *mem; 437 struct crat_subtype_cache *cache; 438 struct crat_subtype_iolink *iolink; 439 int ret = 0; 440 441 switch (sub_type_hdr->type) { 442 case CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY: 443 cu = (struct crat_subtype_computeunit *)sub_type_hdr; 444 ret = kfd_parse_subtype_cu(cu, device_list); 445 break; 446 case CRAT_SUBTYPE_MEMORY_AFFINITY: 447 mem = (struct crat_subtype_memory *)sub_type_hdr; 448 ret = kfd_parse_subtype_mem(mem, device_list); 449 break; 450 case CRAT_SUBTYPE_CACHE_AFFINITY: 451 cache = (struct crat_subtype_cache *)sub_type_hdr; 452 ret = kfd_parse_subtype_cache(cache, device_list); 453 break; 454 case CRAT_SUBTYPE_TLB_AFFINITY: 455 /* 456 * For now, nothing to do here 457 */ 458 pr_debug("Found TLB entry in CRAT table (not processing)\n"); 459 break; 460 case CRAT_SUBTYPE_CCOMPUTE_AFFINITY: 461 /* 462 * For now, nothing to do here 463 */ 464 pr_debug("Found CCOMPUTE entry in CRAT table (not processing)\n"); 465 break; 466 case CRAT_SUBTYPE_IOLINK_AFFINITY: 467 iolink = (struct crat_subtype_iolink *)sub_type_hdr; 468 ret = kfd_parse_subtype_iolink(iolink, device_list); 469 break; 470 default: 471 pr_warn("Unknown subtype %d in CRAT\n", 472 sub_type_hdr->type); 473 } 474 475 return ret; 476 } 477 478 /* kfd_parse_crat_table - parse CRAT table. For each node present in CRAT 479 * create a kfd_topology_device and add in to device_list. Also parse 480 * CRAT subtypes and attach it to appropriate kfd_topology_device 481 * @crat_image - input image containing CRAT 482 * @device_list - [OUT] list of kfd_topology_device generated after 483 * parsing crat_image 484 * @proximity_domain - Proximity domain of the first device in the table 485 * 486 * Return - 0 if successful else -ve value 487 */ 488 int kfd_parse_crat_table(void *crat_image, struct list_head *device_list, 489 uint32_t proximity_domain) 490 { 491 struct kfd_topology_device *top_dev = NULL; 492 struct crat_subtype_generic *sub_type_hdr; 493 uint16_t node_id; 494 int ret = 0; 495 struct crat_header *crat_table = (struct crat_header *)crat_image; 496 uint16_t num_nodes; 497 uint32_t image_len; 498 499 if (!crat_image) 500 return -EINVAL; 501 502 if (!list_empty(device_list)) { 503 pr_warn("Error device list should be empty\n"); 504 return -EINVAL; 505 } 506 507 num_nodes = crat_table->num_domains; 508 image_len = crat_table->length; 509 510 pr_info("Parsing CRAT table with %d nodes\n", num_nodes); 511 512 for (node_id = 0; node_id < num_nodes; node_id++) { 513 top_dev = kfd_create_topology_device(device_list); 514 if (!top_dev) 515 break; 516 top_dev->proximity_domain = proximity_domain++; 517 } 518 519 if (!top_dev) { 520 ret = -ENOMEM; 521 goto err; 522 } 523 524 memcpy(top_dev->oem_id, crat_table->oem_id, CRAT_OEMID_LENGTH); 525 memcpy(top_dev->oem_table_id, crat_table->oem_table_id, 526 CRAT_OEMTABLEID_LENGTH); 527 top_dev->oem_revision = crat_table->oem_revision; 528 529 sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1); 530 while ((char *)sub_type_hdr + sizeof(struct crat_subtype_generic) < 531 ((char *)crat_image) + image_len) { 532 if (sub_type_hdr->flags & CRAT_SUBTYPE_FLAGS_ENABLED) { 533 ret = kfd_parse_subtype(sub_type_hdr, device_list); 534 if (ret) 535 break; 536 } 537 538 sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr + 539 sub_type_hdr->length); 540 } 541 542 err: 543 if (ret) 544 kfd_release_topology_device_list(device_list); 545 546 return ret; 547 } 548 549 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */ 550 static int fill_in_pcache(struct crat_subtype_cache *pcache, 551 struct kfd_gpu_cache_info *pcache_info, 552 struct kfd_cu_info *cu_info, 553 int mem_available, 554 int cu_bitmask, 555 int cache_type, unsigned int cu_processor_id, 556 int cu_block) 557 { 558 unsigned int cu_sibling_map_mask; 559 int first_active_cu; 560 561 /* First check if enough memory is available */ 562 if (sizeof(struct crat_subtype_cache) > mem_available) 563 return -ENOMEM; 564 565 cu_sibling_map_mask = cu_bitmask; 566 cu_sibling_map_mask >>= cu_block; 567 cu_sibling_map_mask &= 568 ((1 << pcache_info[cache_type].num_cu_shared) - 1); 569 first_active_cu = ffs(cu_sibling_map_mask); 570 571 /* CU could be inactive. In case of shared cache find the first active 572 * CU. and incase of non-shared cache check if the CU is inactive. If 573 * inactive active skip it 574 */ 575 if (first_active_cu) { 576 memset(pcache, 0, sizeof(struct crat_subtype_cache)); 577 pcache->type = CRAT_SUBTYPE_CACHE_AFFINITY; 578 pcache->length = sizeof(struct crat_subtype_cache); 579 pcache->flags = pcache_info[cache_type].flags; 580 pcache->processor_id_low = cu_processor_id 581 + (first_active_cu - 1); 582 pcache->cache_level = pcache_info[cache_type].cache_level; 583 pcache->cache_size = pcache_info[cache_type].cache_size; 584 585 /* Sibling map is w.r.t processor_id_low, so shift out 586 * inactive CU 587 */ 588 cu_sibling_map_mask = 589 cu_sibling_map_mask >> (first_active_cu - 1); 590 591 pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF); 592 pcache->sibling_map[1] = 593 (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF); 594 pcache->sibling_map[2] = 595 (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF); 596 pcache->sibling_map[3] = 597 (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF); 598 return 0; 599 } 600 return 1; 601 } 602 603 /* kfd_fill_gpu_cache_info - Fill GPU cache info using kfd_gpu_cache_info 604 * tables 605 * 606 * @kdev - [IN] GPU device 607 * @gpu_processor_id - [IN] GPU processor ID to which these caches 608 * associate 609 * @available_size - [IN] Amount of memory available in pcache 610 * @cu_info - [IN] Compute Unit info obtained from KGD 611 * @pcache - [OUT] memory into which cache data is to be filled in. 612 * @size_filled - [OUT] amount of data used up in pcache. 613 * @num_of_entries - [OUT] number of caches added 614 */ 615 static int kfd_fill_gpu_cache_info(struct kfd_dev *kdev, 616 int gpu_processor_id, 617 int available_size, 618 struct kfd_cu_info *cu_info, 619 struct crat_subtype_cache *pcache, 620 int *size_filled, 621 int *num_of_entries) 622 { 623 struct kfd_gpu_cache_info *pcache_info; 624 int num_of_cache_types = 0; 625 int i, j, k; 626 int ct = 0; 627 int mem_available = available_size; 628 unsigned int cu_processor_id; 629 int ret; 630 631 switch (kdev->device_info->asic_family) { 632 case CHIP_KAVERI: 633 pcache_info = kaveri_cache_info; 634 num_of_cache_types = ARRAY_SIZE(kaveri_cache_info); 635 break; 636 case CHIP_HAWAII: 637 pcache_info = hawaii_cache_info; 638 num_of_cache_types = ARRAY_SIZE(hawaii_cache_info); 639 break; 640 case CHIP_CARRIZO: 641 pcache_info = carrizo_cache_info; 642 num_of_cache_types = ARRAY_SIZE(carrizo_cache_info); 643 break; 644 case CHIP_TONGA: 645 pcache_info = tonga_cache_info; 646 num_of_cache_types = ARRAY_SIZE(tonga_cache_info); 647 break; 648 case CHIP_FIJI: 649 pcache_info = fiji_cache_info; 650 num_of_cache_types = ARRAY_SIZE(fiji_cache_info); 651 break; 652 case CHIP_POLARIS10: 653 pcache_info = polaris10_cache_info; 654 num_of_cache_types = ARRAY_SIZE(polaris10_cache_info); 655 break; 656 case CHIP_POLARIS11: 657 pcache_info = polaris11_cache_info; 658 num_of_cache_types = ARRAY_SIZE(polaris11_cache_info); 659 break; 660 case CHIP_POLARIS12: 661 pcache_info = polaris12_cache_info; 662 num_of_cache_types = ARRAY_SIZE(polaris12_cache_info); 663 break; 664 case CHIP_VEGAM: 665 pcache_info = vegam_cache_info; 666 num_of_cache_types = ARRAY_SIZE(vegam_cache_info); 667 break; 668 case CHIP_VEGA10: 669 case CHIP_VEGA12: 670 case CHIP_VEGA20: 671 case CHIP_ARCTURUS: 672 pcache_info = vega10_cache_info; 673 num_of_cache_types = ARRAY_SIZE(vega10_cache_info); 674 break; 675 case CHIP_RAVEN: 676 pcache_info = raven_cache_info; 677 num_of_cache_types = ARRAY_SIZE(raven_cache_info); 678 break; 679 case CHIP_RENOIR: 680 pcache_info = renoir_cache_info; 681 num_of_cache_types = ARRAY_SIZE(renoir_cache_info); 682 break; 683 case CHIP_NAVI10: 684 case CHIP_NAVI12: 685 case CHIP_NAVI14: 686 pcache_info = navi10_cache_info; 687 num_of_cache_types = ARRAY_SIZE(navi10_cache_info); 688 break; 689 default: 690 return -EINVAL; 691 } 692 693 *size_filled = 0; 694 *num_of_entries = 0; 695 696 /* For each type of cache listed in the kfd_gpu_cache_info table, 697 * go through all available Compute Units. 698 * The [i,j,k] loop will 699 * if kfd_gpu_cache_info.num_cu_shared = 1 700 * will parse through all available CU 701 * If (kfd_gpu_cache_info.num_cu_shared != 1) 702 * then it will consider only one CU from 703 * the shared unit 704 */ 705 706 for (ct = 0; ct < num_of_cache_types; ct++) { 707 cu_processor_id = gpu_processor_id; 708 for (i = 0; i < cu_info->num_shader_engines; i++) { 709 for (j = 0; j < cu_info->num_shader_arrays_per_engine; 710 j++) { 711 for (k = 0; k < cu_info->num_cu_per_sh; 712 k += pcache_info[ct].num_cu_shared) { 713 714 ret = fill_in_pcache(pcache, 715 pcache_info, 716 cu_info, 717 mem_available, 718 cu_info->cu_bitmap[i % 4][j + i / 4], 719 ct, 720 cu_processor_id, 721 k); 722 723 if (ret < 0) 724 break; 725 726 if (!ret) { 727 pcache++; 728 (*num_of_entries)++; 729 mem_available -= 730 sizeof(*pcache); 731 (*size_filled) += 732 sizeof(*pcache); 733 } 734 735 /* Move to next CU block */ 736 cu_processor_id += 737 pcache_info[ct].num_cu_shared; 738 } 739 } 740 } 741 } 742 743 pr_debug("Added [%d] GPU cache entries\n", *num_of_entries); 744 745 return 0; 746 } 747 748 /* 749 * kfd_create_crat_image_acpi - Allocates memory for CRAT image and 750 * copies CRAT from ACPI (if available). 751 * NOTE: Call kfd_destroy_crat_image to free CRAT image memory 752 * 753 * @crat_image: CRAT read from ACPI. If no CRAT in ACPI then 754 * crat_image will be NULL 755 * @size: [OUT] size of crat_image 756 * 757 * Return 0 if successful else return error code 758 */ 759 int kfd_create_crat_image_acpi(void **crat_image, size_t *size) 760 { 761 struct acpi_table_header *crat_table; 762 acpi_status status; 763 void *pcrat_image; 764 765 if (!crat_image) 766 return -EINVAL; 767 768 *crat_image = NULL; 769 770 /* Fetch the CRAT table from ACPI */ 771 status = acpi_get_table(CRAT_SIGNATURE, 0, &crat_table); 772 if (status == AE_NOT_FOUND) { 773 pr_warn("CRAT table not found\n"); 774 return -ENODATA; 775 } else if (ACPI_FAILURE(status)) { 776 const char *err = acpi_format_exception(status); 777 778 pr_err("CRAT table error: %s\n", err); 779 return -EINVAL; 780 } 781 782 if (ignore_crat) { 783 pr_info("CRAT table disabled by module option\n"); 784 return -ENODATA; 785 } 786 787 pcrat_image = kmemdup(crat_table, crat_table->length, GFP_KERNEL); 788 if (!pcrat_image) 789 return -ENOMEM; 790 791 *crat_image = pcrat_image; 792 *size = crat_table->length; 793 794 return 0; 795 } 796 797 /* Memory required to create Virtual CRAT. 798 * Since there is no easy way to predict the amount of memory required, the 799 * following amount are allocated for CPU and GPU Virtual CRAT. This is 800 * expected to cover all known conditions. But to be safe additional check 801 * is put in the code to ensure we don't overwrite. 802 */ 803 #define VCRAT_SIZE_FOR_CPU (2 * PAGE_SIZE) 804 #define VCRAT_SIZE_FOR_GPU (4 * PAGE_SIZE) 805 806 /* kfd_fill_cu_for_cpu - Fill in Compute info for the given CPU NUMA node 807 * 808 * @numa_node_id: CPU NUMA node id 809 * @avail_size: Available size in the memory 810 * @sub_type_hdr: Memory into which compute info will be filled in 811 * 812 * Return 0 if successful else return -ve value 813 */ 814 static int kfd_fill_cu_for_cpu(int numa_node_id, int *avail_size, 815 int proximity_domain, 816 struct crat_subtype_computeunit *sub_type_hdr) 817 { 818 const struct cpumask *cpumask; 819 820 *avail_size -= sizeof(struct crat_subtype_computeunit); 821 if (*avail_size < 0) 822 return -ENOMEM; 823 824 memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit)); 825 826 /* Fill in subtype header data */ 827 sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY; 828 sub_type_hdr->length = sizeof(struct crat_subtype_computeunit); 829 sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED; 830 831 cpumask = cpumask_of_node(numa_node_id); 832 833 /* Fill in CU data */ 834 sub_type_hdr->flags |= CRAT_CU_FLAGS_CPU_PRESENT; 835 sub_type_hdr->proximity_domain = proximity_domain; 836 sub_type_hdr->processor_id_low = kfd_numa_node_to_apic_id(numa_node_id); 837 if (sub_type_hdr->processor_id_low == -1) 838 return -EINVAL; 839 840 sub_type_hdr->num_cpu_cores = cpumask_weight(cpumask); 841 842 return 0; 843 } 844 845 /* kfd_fill_mem_info_for_cpu - Fill in Memory info for the given CPU NUMA node 846 * 847 * @numa_node_id: CPU NUMA node id 848 * @avail_size: Available size in the memory 849 * @sub_type_hdr: Memory into which compute info will be filled in 850 * 851 * Return 0 if successful else return -ve value 852 */ 853 static int kfd_fill_mem_info_for_cpu(int numa_node_id, int *avail_size, 854 int proximity_domain, 855 struct crat_subtype_memory *sub_type_hdr) 856 { 857 uint64_t mem_in_bytes = 0; 858 pg_data_t *pgdat; 859 int zone_type; 860 861 *avail_size -= sizeof(struct crat_subtype_memory); 862 if (*avail_size < 0) 863 return -ENOMEM; 864 865 memset(sub_type_hdr, 0, sizeof(struct crat_subtype_memory)); 866 867 /* Fill in subtype header data */ 868 sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY; 869 sub_type_hdr->length = sizeof(struct crat_subtype_memory); 870 sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED; 871 872 /* Fill in Memory Subunit data */ 873 874 /* Unlike si_meminfo, si_meminfo_node is not exported. So 875 * the following lines are duplicated from si_meminfo_node 876 * function 877 */ 878 pgdat = NODE_DATA(numa_node_id); 879 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 880 mem_in_bytes += zone_managed_pages(&pgdat->node_zones[zone_type]); 881 mem_in_bytes <<= PAGE_SHIFT; 882 883 sub_type_hdr->length_low = lower_32_bits(mem_in_bytes); 884 sub_type_hdr->length_high = upper_32_bits(mem_in_bytes); 885 sub_type_hdr->proximity_domain = proximity_domain; 886 887 return 0; 888 } 889 890 #ifdef CONFIG_X86_64 891 static int kfd_fill_iolink_info_for_cpu(int numa_node_id, int *avail_size, 892 uint32_t *num_entries, 893 struct crat_subtype_iolink *sub_type_hdr) 894 { 895 int nid; 896 struct cpuinfo_x86 *c = &cpu_data(0); 897 uint8_t link_type; 898 899 if (c->x86_vendor == X86_VENDOR_AMD) 900 link_type = CRAT_IOLINK_TYPE_HYPERTRANSPORT; 901 else 902 link_type = CRAT_IOLINK_TYPE_QPI_1_1; 903 904 *num_entries = 0; 905 906 /* Create IO links from this node to other CPU nodes */ 907 for_each_online_node(nid) { 908 if (nid == numa_node_id) /* node itself */ 909 continue; 910 911 *avail_size -= sizeof(struct crat_subtype_iolink); 912 if (*avail_size < 0) 913 return -ENOMEM; 914 915 memset(sub_type_hdr, 0, sizeof(struct crat_subtype_iolink)); 916 917 /* Fill in subtype header data */ 918 sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY; 919 sub_type_hdr->length = sizeof(struct crat_subtype_iolink); 920 sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED; 921 922 /* Fill in IO link data */ 923 sub_type_hdr->proximity_domain_from = numa_node_id; 924 sub_type_hdr->proximity_domain_to = nid; 925 sub_type_hdr->io_interface_type = link_type; 926 927 (*num_entries)++; 928 sub_type_hdr++; 929 } 930 931 return 0; 932 } 933 #endif 934 935 /* kfd_create_vcrat_image_cpu - Create Virtual CRAT for CPU 936 * 937 * @pcrat_image: Fill in VCRAT for CPU 938 * @size: [IN] allocated size of crat_image. 939 * [OUT] actual size of data filled in crat_image 940 */ 941 static int kfd_create_vcrat_image_cpu(void *pcrat_image, size_t *size) 942 { 943 struct crat_header *crat_table = (struct crat_header *)pcrat_image; 944 struct acpi_table_header *acpi_table; 945 acpi_status status; 946 struct crat_subtype_generic *sub_type_hdr; 947 int avail_size = *size; 948 int numa_node_id; 949 #ifdef CONFIG_X86_64 950 uint32_t entries = 0; 951 #endif 952 int ret = 0; 953 954 if (!pcrat_image || avail_size < VCRAT_SIZE_FOR_CPU) 955 return -EINVAL; 956 957 /* Fill in CRAT Header. 958 * Modify length and total_entries as subunits are added. 959 */ 960 avail_size -= sizeof(struct crat_header); 961 if (avail_size < 0) 962 return -ENOMEM; 963 964 memset(crat_table, 0, sizeof(struct crat_header)); 965 memcpy(&crat_table->signature, CRAT_SIGNATURE, 966 sizeof(crat_table->signature)); 967 crat_table->length = sizeof(struct crat_header); 968 969 status = acpi_get_table("DSDT", 0, &acpi_table); 970 if (status != AE_OK) 971 pr_warn("DSDT table not found for OEM information\n"); 972 else { 973 crat_table->oem_revision = acpi_table->revision; 974 memcpy(crat_table->oem_id, acpi_table->oem_id, 975 CRAT_OEMID_LENGTH); 976 memcpy(crat_table->oem_table_id, acpi_table->oem_table_id, 977 CRAT_OEMTABLEID_LENGTH); 978 } 979 crat_table->total_entries = 0; 980 crat_table->num_domains = 0; 981 982 sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1); 983 984 for_each_online_node(numa_node_id) { 985 if (kfd_numa_node_to_apic_id(numa_node_id) == -1) 986 continue; 987 988 /* Fill in Subtype: Compute Unit */ 989 ret = kfd_fill_cu_for_cpu(numa_node_id, &avail_size, 990 crat_table->num_domains, 991 (struct crat_subtype_computeunit *)sub_type_hdr); 992 if (ret < 0) 993 return ret; 994 crat_table->length += sub_type_hdr->length; 995 crat_table->total_entries++; 996 997 sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr + 998 sub_type_hdr->length); 999 1000 /* Fill in Subtype: Memory */ 1001 ret = kfd_fill_mem_info_for_cpu(numa_node_id, &avail_size, 1002 crat_table->num_domains, 1003 (struct crat_subtype_memory *)sub_type_hdr); 1004 if (ret < 0) 1005 return ret; 1006 crat_table->length += sub_type_hdr->length; 1007 crat_table->total_entries++; 1008 1009 sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr + 1010 sub_type_hdr->length); 1011 1012 /* Fill in Subtype: IO Link */ 1013 #ifdef CONFIG_X86_64 1014 ret = kfd_fill_iolink_info_for_cpu(numa_node_id, &avail_size, 1015 &entries, 1016 (struct crat_subtype_iolink *)sub_type_hdr); 1017 if (ret < 0) 1018 return ret; 1019 crat_table->length += (sub_type_hdr->length * entries); 1020 crat_table->total_entries += entries; 1021 1022 sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr + 1023 sub_type_hdr->length * entries); 1024 #else 1025 pr_info("IO link not available for non x86 platforms\n"); 1026 #endif 1027 1028 crat_table->num_domains++; 1029 } 1030 1031 /* TODO: Add cache Subtype for CPU. 1032 * Currently, CPU cache information is available in function 1033 * detect_cache_attributes(cpu) defined in the file 1034 * ./arch/x86/kernel/cpu/intel_cacheinfo.c. This function is not 1035 * exported and to get the same information the code needs to be 1036 * duplicated. 1037 */ 1038 1039 *size = crat_table->length; 1040 pr_info("Virtual CRAT table created for CPU\n"); 1041 1042 return 0; 1043 } 1044 1045 static int kfd_fill_gpu_memory_affinity(int *avail_size, 1046 struct kfd_dev *kdev, uint8_t type, uint64_t size, 1047 struct crat_subtype_memory *sub_type_hdr, 1048 uint32_t proximity_domain, 1049 const struct kfd_local_mem_info *local_mem_info) 1050 { 1051 *avail_size -= sizeof(struct crat_subtype_memory); 1052 if (*avail_size < 0) 1053 return -ENOMEM; 1054 1055 memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_memory)); 1056 sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY; 1057 sub_type_hdr->length = sizeof(struct crat_subtype_memory); 1058 sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED; 1059 1060 sub_type_hdr->proximity_domain = proximity_domain; 1061 1062 pr_debug("Fill gpu memory affinity - type 0x%x size 0x%llx\n", 1063 type, size); 1064 1065 sub_type_hdr->length_low = lower_32_bits(size); 1066 sub_type_hdr->length_high = upper_32_bits(size); 1067 1068 sub_type_hdr->width = local_mem_info->vram_width; 1069 sub_type_hdr->visibility_type = type; 1070 1071 return 0; 1072 } 1073 1074 /* kfd_fill_gpu_direct_io_link - Fill in direct io link from GPU 1075 * to its NUMA node 1076 * @avail_size: Available size in the memory 1077 * @kdev - [IN] GPU device 1078 * @sub_type_hdr: Memory into which io link info will be filled in 1079 * @proximity_domain - proximity domain of the GPU node 1080 * 1081 * Return 0 if successful else return -ve value 1082 */ 1083 static int kfd_fill_gpu_direct_io_link_to_cpu(int *avail_size, 1084 struct kfd_dev *kdev, 1085 struct crat_subtype_iolink *sub_type_hdr, 1086 uint32_t proximity_domain) 1087 { 1088 *avail_size -= sizeof(struct crat_subtype_iolink); 1089 if (*avail_size < 0) 1090 return -ENOMEM; 1091 1092 memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_iolink)); 1093 1094 /* Fill in subtype header data */ 1095 sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY; 1096 sub_type_hdr->length = sizeof(struct crat_subtype_iolink); 1097 sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED; 1098 if (kfd_dev_is_large_bar(kdev)) 1099 sub_type_hdr->flags |= CRAT_IOLINK_FLAGS_BI_DIRECTIONAL; 1100 1101 /* Fill in IOLINK subtype. 1102 * TODO: Fill-in other fields of iolink subtype 1103 */ 1104 sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_PCIEXPRESS; 1105 sub_type_hdr->proximity_domain_from = proximity_domain; 1106 #ifdef CONFIG_NUMA 1107 if (kdev->pdev->dev.numa_node == NUMA_NO_NODE) 1108 sub_type_hdr->proximity_domain_to = 0; 1109 else 1110 sub_type_hdr->proximity_domain_to = kdev->pdev->dev.numa_node; 1111 #else 1112 sub_type_hdr->proximity_domain_to = 0; 1113 #endif 1114 return 0; 1115 } 1116 1117 static int kfd_fill_gpu_xgmi_link_to_gpu(int *avail_size, 1118 struct kfd_dev *kdev, 1119 struct kfd_dev *peer_kdev, 1120 struct crat_subtype_iolink *sub_type_hdr, 1121 uint32_t proximity_domain_from, 1122 uint32_t proximity_domain_to) 1123 { 1124 *avail_size -= sizeof(struct crat_subtype_iolink); 1125 if (*avail_size < 0) 1126 return -ENOMEM; 1127 1128 memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_iolink)); 1129 1130 sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY; 1131 sub_type_hdr->length = sizeof(struct crat_subtype_iolink); 1132 sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED | 1133 CRAT_IOLINK_FLAGS_BI_DIRECTIONAL; 1134 1135 sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_XGMI; 1136 sub_type_hdr->proximity_domain_from = proximity_domain_from; 1137 sub_type_hdr->proximity_domain_to = proximity_domain_to; 1138 sub_type_hdr->num_hops_xgmi = 1139 amdgpu_amdkfd_get_xgmi_hops_count(kdev->kgd, peer_kdev->kgd); 1140 return 0; 1141 } 1142 1143 /* kfd_create_vcrat_image_gpu - Create Virtual CRAT for CPU 1144 * 1145 * @pcrat_image: Fill in VCRAT for GPU 1146 * @size: [IN] allocated size of crat_image. 1147 * [OUT] actual size of data filled in crat_image 1148 */ 1149 static int kfd_create_vcrat_image_gpu(void *pcrat_image, 1150 size_t *size, struct kfd_dev *kdev, 1151 uint32_t proximity_domain) 1152 { 1153 struct crat_header *crat_table = (struct crat_header *)pcrat_image; 1154 struct crat_subtype_generic *sub_type_hdr; 1155 struct kfd_local_mem_info local_mem_info; 1156 struct kfd_topology_device *peer_dev; 1157 struct crat_subtype_computeunit *cu; 1158 struct kfd_cu_info cu_info; 1159 int avail_size = *size; 1160 uint32_t total_num_of_cu; 1161 int num_of_cache_entries = 0; 1162 int cache_mem_filled = 0; 1163 uint32_t nid = 0; 1164 int ret = 0; 1165 1166 if (!pcrat_image || avail_size < VCRAT_SIZE_FOR_GPU) 1167 return -EINVAL; 1168 1169 /* Fill the CRAT Header. 1170 * Modify length and total_entries as subunits are added. 1171 */ 1172 avail_size -= sizeof(struct crat_header); 1173 if (avail_size < 0) 1174 return -ENOMEM; 1175 1176 memset(crat_table, 0, sizeof(struct crat_header)); 1177 1178 memcpy(&crat_table->signature, CRAT_SIGNATURE, 1179 sizeof(crat_table->signature)); 1180 /* Change length as we add more subtypes*/ 1181 crat_table->length = sizeof(struct crat_header); 1182 crat_table->num_domains = 1; 1183 crat_table->total_entries = 0; 1184 1185 /* Fill in Subtype: Compute Unit 1186 * First fill in the sub type header and then sub type data 1187 */ 1188 avail_size -= sizeof(struct crat_subtype_computeunit); 1189 if (avail_size < 0) 1190 return -ENOMEM; 1191 1192 sub_type_hdr = (struct crat_subtype_generic *)(crat_table + 1); 1193 memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit)); 1194 1195 sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY; 1196 sub_type_hdr->length = sizeof(struct crat_subtype_computeunit); 1197 sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED; 1198 1199 /* Fill CU subtype data */ 1200 cu = (struct crat_subtype_computeunit *)sub_type_hdr; 1201 cu->flags |= CRAT_CU_FLAGS_GPU_PRESENT; 1202 cu->proximity_domain = proximity_domain; 1203 1204 amdgpu_amdkfd_get_cu_info(kdev->kgd, &cu_info); 1205 cu->num_simd_per_cu = cu_info.simd_per_cu; 1206 cu->num_simd_cores = cu_info.simd_per_cu * cu_info.cu_active_number; 1207 cu->max_waves_simd = cu_info.max_waves_per_simd; 1208 1209 cu->wave_front_size = cu_info.wave_front_size; 1210 cu->array_count = cu_info.num_shader_arrays_per_engine * 1211 cu_info.num_shader_engines; 1212 total_num_of_cu = (cu->array_count * cu_info.num_cu_per_sh); 1213 cu->processor_id_low = get_and_inc_gpu_processor_id(total_num_of_cu); 1214 cu->num_cu_per_array = cu_info.num_cu_per_sh; 1215 cu->max_slots_scatch_cu = cu_info.max_scratch_slots_per_cu; 1216 cu->num_banks = cu_info.num_shader_engines; 1217 cu->lds_size_in_kb = cu_info.lds_size; 1218 1219 cu->hsa_capability = 0; 1220 1221 /* Check if this node supports IOMMU. During parsing this flag will 1222 * translate to HSA_CAP_ATS_PRESENT 1223 */ 1224 if (!kfd_iommu_check_device(kdev)) 1225 cu->hsa_capability |= CRAT_CU_FLAGS_IOMMU_PRESENT; 1226 1227 crat_table->length += sub_type_hdr->length; 1228 crat_table->total_entries++; 1229 1230 /* Fill in Subtype: Memory. Only on systems with large BAR (no 1231 * private FB), report memory as public. On other systems 1232 * report the total FB size (public+private) as a single 1233 * private heap. 1234 */ 1235 amdgpu_amdkfd_get_local_mem_info(kdev->kgd, &local_mem_info); 1236 sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr + 1237 sub_type_hdr->length); 1238 1239 if (debug_largebar) 1240 local_mem_info.local_mem_size_private = 0; 1241 1242 if (local_mem_info.local_mem_size_private == 0) 1243 ret = kfd_fill_gpu_memory_affinity(&avail_size, 1244 kdev, HSA_MEM_HEAP_TYPE_FB_PUBLIC, 1245 local_mem_info.local_mem_size_public, 1246 (struct crat_subtype_memory *)sub_type_hdr, 1247 proximity_domain, 1248 &local_mem_info); 1249 else 1250 ret = kfd_fill_gpu_memory_affinity(&avail_size, 1251 kdev, HSA_MEM_HEAP_TYPE_FB_PRIVATE, 1252 local_mem_info.local_mem_size_public + 1253 local_mem_info.local_mem_size_private, 1254 (struct crat_subtype_memory *)sub_type_hdr, 1255 proximity_domain, 1256 &local_mem_info); 1257 if (ret < 0) 1258 return ret; 1259 1260 crat_table->length += sizeof(struct crat_subtype_memory); 1261 crat_table->total_entries++; 1262 1263 /* TODO: Fill in cache information. This information is NOT readily 1264 * available in KGD 1265 */ 1266 sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr + 1267 sub_type_hdr->length); 1268 ret = kfd_fill_gpu_cache_info(kdev, cu->processor_id_low, 1269 avail_size, 1270 &cu_info, 1271 (struct crat_subtype_cache *)sub_type_hdr, 1272 &cache_mem_filled, 1273 &num_of_cache_entries); 1274 1275 if (ret < 0) 1276 return ret; 1277 1278 crat_table->length += cache_mem_filled; 1279 crat_table->total_entries += num_of_cache_entries; 1280 avail_size -= cache_mem_filled; 1281 1282 /* Fill in Subtype: IO_LINKS 1283 * Only direct links are added here which is Link from GPU to 1284 * to its NUMA node. Indirect links are added by userspace. 1285 */ 1286 sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr + 1287 cache_mem_filled); 1288 ret = kfd_fill_gpu_direct_io_link_to_cpu(&avail_size, kdev, 1289 (struct crat_subtype_iolink *)sub_type_hdr, proximity_domain); 1290 1291 if (ret < 0) 1292 return ret; 1293 1294 crat_table->length += sub_type_hdr->length; 1295 crat_table->total_entries++; 1296 1297 1298 /* Fill in Subtype: IO_LINKS 1299 * Direct links from GPU to other GPUs through xGMI. 1300 * We will loop GPUs that already be processed (with lower value 1301 * of proximity_domain), add the link for the GPUs with same 1302 * hive id (from this GPU to other GPU) . The reversed iolink 1303 * (from other GPU to this GPU) will be added 1304 * in kfd_parse_subtype_iolink. 1305 */ 1306 if (kdev->hive_id) { 1307 for (nid = 0; nid < proximity_domain; ++nid) { 1308 peer_dev = kfd_topology_device_by_proximity_domain(nid); 1309 if (!peer_dev->gpu) 1310 continue; 1311 if (peer_dev->gpu->hive_id != kdev->hive_id) 1312 continue; 1313 sub_type_hdr = (typeof(sub_type_hdr))( 1314 (char *)sub_type_hdr + 1315 sizeof(struct crat_subtype_iolink)); 1316 ret = kfd_fill_gpu_xgmi_link_to_gpu( 1317 &avail_size, kdev, peer_dev->gpu, 1318 (struct crat_subtype_iolink *)sub_type_hdr, 1319 proximity_domain, nid); 1320 if (ret < 0) 1321 return ret; 1322 crat_table->length += sub_type_hdr->length; 1323 crat_table->total_entries++; 1324 } 1325 } 1326 *size = crat_table->length; 1327 pr_info("Virtual CRAT table created for GPU\n"); 1328 1329 return ret; 1330 } 1331 1332 /* kfd_create_crat_image_virtual - Allocates memory for CRAT image and 1333 * creates a Virtual CRAT (VCRAT) image 1334 * 1335 * NOTE: Call kfd_destroy_crat_image to free CRAT image memory 1336 * 1337 * @crat_image: VCRAT image created because ACPI does not have a 1338 * CRAT for this device 1339 * @size: [OUT] size of virtual crat_image 1340 * @flags: COMPUTE_UNIT_CPU - Create VCRAT for CPU device 1341 * COMPUTE_UNIT_GPU - Create VCRAT for GPU 1342 * (COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU) - Create VCRAT for APU 1343 * -- this option is not currently implemented. 1344 * The assumption is that all AMD APUs will have CRAT 1345 * @kdev: Valid kfd_device required if flags contain COMPUTE_UNIT_GPU 1346 * 1347 * Return 0 if successful else return -ve value 1348 */ 1349 int kfd_create_crat_image_virtual(void **crat_image, size_t *size, 1350 int flags, struct kfd_dev *kdev, 1351 uint32_t proximity_domain) 1352 { 1353 void *pcrat_image = NULL; 1354 int ret = 0; 1355 1356 if (!crat_image) 1357 return -EINVAL; 1358 1359 *crat_image = NULL; 1360 1361 /* Allocate one VCRAT_SIZE_FOR_CPU for CPU virtual CRAT image and 1362 * VCRAT_SIZE_FOR_GPU for GPU virtual CRAT image. This should cover 1363 * all the current conditions. A check is put not to overwrite beyond 1364 * allocated size 1365 */ 1366 switch (flags) { 1367 case COMPUTE_UNIT_CPU: 1368 pcrat_image = kmalloc(VCRAT_SIZE_FOR_CPU, GFP_KERNEL); 1369 if (!pcrat_image) 1370 return -ENOMEM; 1371 *size = VCRAT_SIZE_FOR_CPU; 1372 ret = kfd_create_vcrat_image_cpu(pcrat_image, size); 1373 break; 1374 case COMPUTE_UNIT_GPU: 1375 if (!kdev) 1376 return -EINVAL; 1377 pcrat_image = kmalloc(VCRAT_SIZE_FOR_GPU, GFP_KERNEL); 1378 if (!pcrat_image) 1379 return -ENOMEM; 1380 *size = VCRAT_SIZE_FOR_GPU; 1381 ret = kfd_create_vcrat_image_gpu(pcrat_image, size, kdev, 1382 proximity_domain); 1383 break; 1384 case (COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU): 1385 /* TODO: */ 1386 ret = -EINVAL; 1387 pr_err("VCRAT not implemented for APU\n"); 1388 break; 1389 default: 1390 ret = -EINVAL; 1391 } 1392 1393 if (!ret) 1394 *crat_image = pcrat_image; 1395 else 1396 kfree(pcrat_image); 1397 1398 return ret; 1399 } 1400 1401 1402 /* kfd_destroy_crat_image 1403 * 1404 * @crat_image: [IN] - crat_image from kfd_create_crat_image_xxx(..) 1405 * 1406 */ 1407 void kfd_destroy_crat_image(void *crat_image) 1408 { 1409 kfree(crat_image); 1410 } 1411