Home | History | Annotate | Line # | Download | only in clk
      1 /*	$NetBSD: nouveau_nvkm_subdev_clk_nv50.c,v 1.3 2021/12/18 23:45:39 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright 2012 Red Hat Inc.
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the "Software"),
      8  * to deal in the Software without restriction, including without limitation
      9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     10  * and/or sell copies of the Software, and to permit persons to whom the
     11  * Software is furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice shall be included in
     14  * all copies or substantial portions of the Software.
     15  *
     16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
     20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
     21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
     22  * OTHER DEALINGS IN THE SOFTWARE.
     23  *
     24  * Authors: Ben Skeggs
     25  */
     26 #include <sys/cdefs.h>
     27 __KERNEL_RCSID(0, "$NetBSD: nouveau_nvkm_subdev_clk_nv50.c,v 1.3 2021/12/18 23:45:39 riastradh Exp $");
     28 
     29 #include "nv50.h"
     30 #include "pll.h"
     31 #include "seq.h"
     32 
     33 #include <subdev/bios.h>
     34 #include <subdev/bios/pll.h>
     35 
     36 static u32
     37 read_div(struct nv50_clk *clk)
     38 {
     39 	struct nvkm_device *device = clk->base.subdev.device;
     40 	switch (device->chipset) {
     41 	case 0x50: /* it exists, but only has bit 31, not the dividers.. */
     42 	case 0x84:
     43 	case 0x86:
     44 	case 0x98:
     45 	case 0xa0:
     46 		return nvkm_rd32(device, 0x004700);
     47 	case 0x92:
     48 	case 0x94:
     49 	case 0x96:
     50 		return nvkm_rd32(device, 0x004800);
     51 	default:
     52 		return 0x00000000;
     53 	}
     54 }
     55 
     56 static u32
     57 read_pll_src(struct nv50_clk *clk, u32 base)
     58 {
     59 	struct nvkm_subdev *subdev = &clk->base.subdev;
     60 	struct nvkm_device *device = subdev->device;
     61 	u32 coef, ref = nvkm_clk_read(&clk->base, nv_clk_src_crystal);
     62 	u32 rsel = nvkm_rd32(device, 0x00e18c);
     63 	int P, N, M, id;
     64 
     65 	switch (device->chipset) {
     66 	case 0x50:
     67 	case 0xa0:
     68 		switch (base) {
     69 		case 0x4020:
     70 		case 0x4028: id = !!(rsel & 0x00000004); break;
     71 		case 0x4008: id = !!(rsel & 0x00000008); break;
     72 		case 0x4030: id = 0; break;
     73 		default:
     74 			nvkm_error(subdev, "ref: bad pll %06x\n", base);
     75 			return 0;
     76 		}
     77 
     78 		coef = nvkm_rd32(device, 0x00e81c + (id * 0x0c));
     79 		ref *=  (coef & 0x01000000) ? 2 : 4;
     80 		P    =  (coef & 0x00070000) >> 16;
     81 		N    = ((coef & 0x0000ff00) >> 8) + 1;
     82 		M    = ((coef & 0x000000ff) >> 0) + 1;
     83 		break;
     84 	case 0x84:
     85 	case 0x86:
     86 	case 0x92:
     87 		coef = nvkm_rd32(device, 0x00e81c);
     88 		P    = (coef & 0x00070000) >> 16;
     89 		N    = (coef & 0x0000ff00) >> 8;
     90 		M    = (coef & 0x000000ff) >> 0;
     91 		break;
     92 	case 0x94:
     93 	case 0x96:
     94 	case 0x98:
     95 		rsel = nvkm_rd32(device, 0x00c050);
     96 		switch (base) {
     97 		case 0x4020: rsel = (rsel & 0x00000003) >> 0; break;
     98 		case 0x4008: rsel = (rsel & 0x0000000c) >> 2; break;
     99 		case 0x4028: rsel = (rsel & 0x00001800) >> 11; break;
    100 		case 0x4030: rsel = 3; break;
    101 		default:
    102 			nvkm_error(subdev, "ref: bad pll %06x\n", base);
    103 			return 0;
    104 		}
    105 
    106 		switch (rsel) {
    107 		case 0: id = 1; break;
    108 		case 1: return nvkm_clk_read(&clk->base, nv_clk_src_crystal);
    109 		case 2: return nvkm_clk_read(&clk->base, nv_clk_src_href);
    110 		case 3: id = 0; break;
    111 		}
    112 
    113 		coef =  nvkm_rd32(device, 0x00e81c + (id * 0x28));
    114 		P    = (nvkm_rd32(device, 0x00e824 + (id * 0x28)) >> 16) & 7;
    115 		P   += (coef & 0x00070000) >> 16;
    116 		N    = (coef & 0x0000ff00) >> 8;
    117 		M    = (coef & 0x000000ff) >> 0;
    118 		break;
    119 	default:
    120 		BUG();
    121 	}
    122 
    123 	if (M)
    124 		return (ref * N / M) >> P;
    125 
    126 	return 0;
    127 }
    128 
    129 static u32
    130 read_pll_ref(struct nv50_clk *clk, u32 base)
    131 {
    132 	struct nvkm_subdev *subdev = &clk->base.subdev;
    133 	struct nvkm_device *device = subdev->device;
    134 	u32 src, mast = nvkm_rd32(device, 0x00c040);
    135 
    136 	switch (base) {
    137 	case 0x004028:
    138 		src = !!(mast & 0x00200000);
    139 		break;
    140 	case 0x004020:
    141 		src = !!(mast & 0x00400000);
    142 		break;
    143 	case 0x004008:
    144 		src = !!(mast & 0x00010000);
    145 		break;
    146 	case 0x004030:
    147 		src = !!(mast & 0x02000000);
    148 		break;
    149 	case 0x00e810:
    150 		return nvkm_clk_read(&clk->base, nv_clk_src_crystal);
    151 	default:
    152 		nvkm_error(subdev, "bad pll %06x\n", base);
    153 		return 0;
    154 	}
    155 
    156 	if (src)
    157 		return nvkm_clk_read(&clk->base, nv_clk_src_href);
    158 
    159 	return read_pll_src(clk, base);
    160 }
    161 
    162 static u32
    163 read_pll(struct nv50_clk *clk, u32 base)
    164 {
    165 	struct nvkm_device *device = clk->base.subdev.device;
    166 	u32 mast = nvkm_rd32(device, 0x00c040);
    167 	u32 ctrl = nvkm_rd32(device, base + 0);
    168 	u32 coef = nvkm_rd32(device, base + 4);
    169 	u32 ref = read_pll_ref(clk, base);
    170 	u32 freq = 0;
    171 	int N1, N2, M1, M2;
    172 
    173 	if (base == 0x004028 && (mast & 0x00100000)) {
    174 		/* wtf, appears to only disable post-divider on gt200 */
    175 		if (device->chipset != 0xa0)
    176 			return nvkm_clk_read(&clk->base, nv_clk_src_dom6);
    177 	}
    178 
    179 	N2 = (coef & 0xff000000) >> 24;
    180 	M2 = (coef & 0x00ff0000) >> 16;
    181 	N1 = (coef & 0x0000ff00) >> 8;
    182 	M1 = (coef & 0x000000ff);
    183 	if ((ctrl & 0x80000000) && M1) {
    184 		freq = ref * N1 / M1;
    185 		if ((ctrl & 0x40000100) == 0x40000000) {
    186 			if (M2)
    187 				freq = freq * N2 / M2;
    188 			else
    189 				freq = 0;
    190 		}
    191 	}
    192 
    193 	return freq;
    194 }
    195 
    196 int
    197 nv50_clk_read(struct nvkm_clk *base, enum nv_clk_src src)
    198 {
    199 	struct nv50_clk *clk = nv50_clk(base);
    200 	struct nvkm_subdev *subdev = &clk->base.subdev;
    201 	struct nvkm_device *device = subdev->device;
    202 	u32 mast = nvkm_rd32(device, 0x00c040);
    203 	u32 P = 0;
    204 
    205 	switch (src) {
    206 	case nv_clk_src_crystal:
    207 		return device->crystal;
    208 	case nv_clk_src_href:
    209 		return 100000; /* PCIE reference clock */
    210 	case nv_clk_src_hclk:
    211 		return div_u64((u64)nvkm_clk_read(&clk->base, nv_clk_src_href) * 27778, 10000);
    212 	case nv_clk_src_hclkm3:
    213 		return nvkm_clk_read(&clk->base, nv_clk_src_hclk) * 3;
    214 	case nv_clk_src_hclkm3d2:
    215 		return nvkm_clk_read(&clk->base, nv_clk_src_hclk) * 3 / 2;
    216 	case nv_clk_src_host:
    217 		switch (mast & 0x30000000) {
    218 		case 0x00000000: return nvkm_clk_read(&clk->base, nv_clk_src_href);
    219 		case 0x10000000: break;
    220 		case 0x20000000: /* !0x50 */
    221 		case 0x30000000: return nvkm_clk_read(&clk->base, nv_clk_src_hclk);
    222 		}
    223 		break;
    224 	case nv_clk_src_core:
    225 		if (!(mast & 0x00100000))
    226 			P = (nvkm_rd32(device, 0x004028) & 0x00070000) >> 16;
    227 		switch (mast & 0x00000003) {
    228 		case 0x00000000: return nvkm_clk_read(&clk->base, nv_clk_src_crystal) >> P;
    229 		case 0x00000001: return nvkm_clk_read(&clk->base, nv_clk_src_dom6);
    230 		case 0x00000002: return read_pll(clk, 0x004020) >> P;
    231 		case 0x00000003: return read_pll(clk, 0x004028) >> P;
    232 		}
    233 		break;
    234 	case nv_clk_src_shader:
    235 		P = (nvkm_rd32(device, 0x004020) & 0x00070000) >> 16;
    236 		switch (mast & 0x00000030) {
    237 		case 0x00000000:
    238 			if (mast & 0x00000080)
    239 				return nvkm_clk_read(&clk->base, nv_clk_src_host) >> P;
    240 			return nvkm_clk_read(&clk->base, nv_clk_src_crystal) >> P;
    241 		case 0x00000010: break;
    242 		case 0x00000020: return read_pll(clk, 0x004028) >> P;
    243 		case 0x00000030: return read_pll(clk, 0x004020) >> P;
    244 		}
    245 		break;
    246 	case nv_clk_src_mem:
    247 		P = (nvkm_rd32(device, 0x004008) & 0x00070000) >> 16;
    248 		if (nvkm_rd32(device, 0x004008) & 0x00000200) {
    249 			switch (mast & 0x0000c000) {
    250 			case 0x00000000:
    251 				return nvkm_clk_read(&clk->base, nv_clk_src_crystal) >> P;
    252 			case 0x00008000:
    253 			case 0x0000c000:
    254 				return nvkm_clk_read(&clk->base, nv_clk_src_href) >> P;
    255 			}
    256 		} else {
    257 			return read_pll(clk, 0x004008) >> P;
    258 		}
    259 		break;
    260 	case nv_clk_src_vdec:
    261 		P = (read_div(clk) & 0x00000700) >> 8;
    262 		switch (device->chipset) {
    263 		case 0x84:
    264 		case 0x86:
    265 		case 0x92:
    266 		case 0x94:
    267 		case 0x96:
    268 		case 0xa0:
    269 			switch (mast & 0x00000c00) {
    270 			case 0x00000000:
    271 				if (device->chipset == 0xa0) /* wtf?? */
    272 					return nvkm_clk_read(&clk->base, nv_clk_src_core) >> P;
    273 				return nvkm_clk_read(&clk->base, nv_clk_src_crystal) >> P;
    274 			case 0x00000400:
    275 				return 0;
    276 			case 0x00000800:
    277 				if (mast & 0x01000000)
    278 					return read_pll(clk, 0x004028) >> P;
    279 				return read_pll(clk, 0x004030) >> P;
    280 			case 0x00000c00:
    281 				return nvkm_clk_read(&clk->base, nv_clk_src_core) >> P;
    282 			}
    283 			break;
    284 		case 0x98:
    285 			switch (mast & 0x00000c00) {
    286 			case 0x00000000:
    287 				return nvkm_clk_read(&clk->base, nv_clk_src_core) >> P;
    288 			case 0x00000400:
    289 				return 0;
    290 			case 0x00000800:
    291 				return nvkm_clk_read(&clk->base, nv_clk_src_hclkm3d2) >> P;
    292 			case 0x00000c00:
    293 				return nvkm_clk_read(&clk->base, nv_clk_src_mem) >> P;
    294 			}
    295 			break;
    296 		}
    297 		break;
    298 	case nv_clk_src_dom6:
    299 		switch (device->chipset) {
    300 		case 0x50:
    301 		case 0xa0:
    302 			return read_pll(clk, 0x00e810) >> 2;
    303 		case 0x84:
    304 		case 0x86:
    305 		case 0x92:
    306 		case 0x94:
    307 		case 0x96:
    308 		case 0x98:
    309 			P = (read_div(clk) & 0x00000007) >> 0;
    310 			switch (mast & 0x0c000000) {
    311 			case 0x00000000: return nvkm_clk_read(&clk->base, nv_clk_src_href);
    312 			case 0x04000000: break;
    313 			case 0x08000000: return nvkm_clk_read(&clk->base, nv_clk_src_hclk);
    314 			case 0x0c000000:
    315 				return nvkm_clk_read(&clk->base, nv_clk_src_hclkm3) >> P;
    316 			}
    317 			break;
    318 		default:
    319 			break;
    320 		}
    321 	default:
    322 		break;
    323 	}
    324 
    325 	nvkm_debug(subdev, "unknown clock source %d %08x\n", src, mast);
    326 	return -EINVAL;
    327 }
    328 
    329 static u32
    330 calc_pll(struct nv50_clk *clk, u32 reg, u32 idx, int *N, int *M, int *P)
    331 {
    332 	struct nvkm_subdev *subdev = &clk->base.subdev;
    333 	struct nvbios_pll pll;
    334 	int ret;
    335 
    336 	ret = nvbios_pll_parse(subdev->device->bios, reg, &pll);
    337 	if (ret)
    338 		return 0;
    339 
    340 	pll.vco2.max_freq = 0;
    341 	pll.refclk = read_pll_ref(clk, reg);
    342 	if (!pll.refclk)
    343 		return 0;
    344 
    345 	return nv04_pll_calc(subdev, &pll, idx, N, M, NULL, NULL, P);
    346 }
    347 
    348 static inline u32
    349 calc_div(u32 src, u32 target, int *div)
    350 {
    351 	u32 clk0 = src, clk1 = src;
    352 	for (*div = 0; *div <= 7; (*div)++) {
    353 		if (clk0 <= target) {
    354 			clk1 = clk0 << (*div ? 1 : 0);
    355 			break;
    356 		}
    357 		clk0 >>= 1;
    358 	}
    359 
    360 	if (target - clk0 <= clk1 - target)
    361 		return clk0;
    362 	(*div)--;
    363 	return clk1;
    364 }
    365 
    366 static inline u32
    367 clk_same(u32 a, u32 b)
    368 {
    369 	return ((a / 1000) == (b / 1000));
    370 }
    371 
    372 int
    373 nv50_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate)
    374 {
    375 	struct nv50_clk *clk = nv50_clk(base);
    376 	struct nv50_clk_hwsq *hwsq = &clk->hwsq;
    377 	struct nvkm_subdev *subdev = &clk->base.subdev;
    378 	struct nvkm_device *device = subdev->device;
    379 	const int shader = cstate->domain[nv_clk_src_shader];
    380 	const int core = cstate->domain[nv_clk_src_core];
    381 	const int vdec = cstate->domain[nv_clk_src_vdec];
    382 	const int dom6 = cstate->domain[nv_clk_src_dom6];
    383 	u32 mastm = 0, mastv = 0;
    384 	u32 divsm = 0, divsv = 0;
    385 	int N, M, P1, P2;
    386 	int freq, out;
    387 
    388 	/* prepare a hwsq script from which we'll perform the reclock */
    389 	out = clk_init(hwsq, subdev);
    390 	if (out)
    391 		return out;
    392 
    393 	clk_wr32(hwsq, fifo, 0x00000001); /* block fifo */
    394 	clk_nsec(hwsq, 8000);
    395 	clk_setf(hwsq, 0x10, 0x00); /* disable fb */
    396 	clk_wait(hwsq, 0x00, 0x01); /* wait for fb disabled */
    397 
    398 	/* vdec: avoid modifying xpll until we know exactly how the other
    399 	 * clock domains work, i suspect at least some of them can also be
    400 	 * tied to xpll...
    401 	 */
    402 	if (vdec) {
    403 		/* see how close we can get using nvclk as a source */
    404 		freq = calc_div(core, vdec, &P1);
    405 
    406 		/* see how close we can get using xpll/hclk as a source */
    407 		if (device->chipset != 0x98)
    408 			out = read_pll(clk, 0x004030);
    409 		else
    410 			out = nvkm_clk_read(&clk->base, nv_clk_src_hclkm3d2);
    411 		out = calc_div(out, vdec, &P2);
    412 
    413 		/* select whichever gets us closest */
    414 		if (abs(vdec - freq) <= abs(vdec - out)) {
    415 			if (device->chipset != 0x98)
    416 				mastv |= 0x00000c00;
    417 			divsv |= P1 << 8;
    418 		} else {
    419 			mastv |= 0x00000800;
    420 			divsv |= P2 << 8;
    421 		}
    422 
    423 		mastm |= 0x00000c00;
    424 		divsm |= 0x00000700;
    425 	}
    426 
    427 	/* dom6: nfi what this is, but we're limited to various combinations
    428 	 * of the host clock frequency
    429 	 */
    430 	if (dom6) {
    431 		if (clk_same(dom6, nvkm_clk_read(&clk->base, nv_clk_src_href))) {
    432 			mastv |= 0x00000000;
    433 		} else
    434 		if (clk_same(dom6, nvkm_clk_read(&clk->base, nv_clk_src_hclk))) {
    435 			mastv |= 0x08000000;
    436 		} else {
    437 			freq = nvkm_clk_read(&clk->base, nv_clk_src_hclk) * 3;
    438 			calc_div(freq, dom6, &P1);
    439 
    440 			mastv |= 0x0c000000;
    441 			divsv |= P1;
    442 		}
    443 
    444 		mastm |= 0x0c000000;
    445 		divsm |= 0x00000007;
    446 	}
    447 
    448 	/* vdec/dom6: switch to "safe" clocks temporarily, update dividers
    449 	 * and then switch to target clocks
    450 	 */
    451 	clk_mask(hwsq, mast, mastm, 0x00000000);
    452 	clk_mask(hwsq, divs, divsm, divsv);
    453 	clk_mask(hwsq, mast, mastm, mastv);
    454 
    455 	/* core/shader: disconnect nvclk/sclk from their PLLs (nvclk to dom6,
    456 	 * sclk to hclk) before reprogramming
    457 	 */
    458 	if (device->chipset < 0x92)
    459 		clk_mask(hwsq, mast, 0x001000b0, 0x00100080);
    460 	else
    461 		clk_mask(hwsq, mast, 0x000000b3, 0x00000081);
    462 
    463 	/* core: for the moment at least, always use nvpll */
    464 	freq = calc_pll(clk, 0x4028, core, &N, &M, &P1);
    465 	if (freq == 0)
    466 		return -ERANGE;
    467 
    468 	clk_mask(hwsq, nvpll[0], 0xc03f0100,
    469 				 0x80000000 | (P1 << 19) | (P1 << 16));
    470 	clk_mask(hwsq, nvpll[1], 0x0000ffff, (N << 8) | M);
    471 
    472 	/* shader: tie to nvclk if possible, otherwise use spll.  have to be
    473 	 * very careful that the shader clock is at least twice the core, or
    474 	 * some chipsets will be very unhappy.  i expect most or all of these
    475 	 * cases will be handled by tying to nvclk, but it's possible there's
    476 	 * corners
    477 	 */
    478 	if (P1-- && shader == (core << 1)) {
    479 		clk_mask(hwsq, spll[0], 0xc03f0100, (P1 << 19) | (P1 << 16));
    480 		clk_mask(hwsq, mast, 0x00100033, 0x00000023);
    481 	} else {
    482 		freq = calc_pll(clk, 0x4020, shader, &N, &M, &P1);
    483 		if (freq == 0)
    484 			return -ERANGE;
    485 
    486 		clk_mask(hwsq, spll[0], 0xc03f0100,
    487 					0x80000000 | (P1 << 19) | (P1 << 16));
    488 		clk_mask(hwsq, spll[1], 0x0000ffff, (N << 8) | M);
    489 		clk_mask(hwsq, mast, 0x00100033, 0x00000033);
    490 	}
    491 
    492 	/* restore normal operation */
    493 	clk_setf(hwsq, 0x10, 0x01); /* enable fb */
    494 	clk_wait(hwsq, 0x00, 0x00); /* wait for fb enabled */
    495 	clk_wr32(hwsq, fifo, 0x00000000); /* un-block fifo */
    496 	return 0;
    497 }
    498 
    499 int
    500 nv50_clk_prog(struct nvkm_clk *base)
    501 {
    502 	struct nv50_clk *clk = nv50_clk(base);
    503 	return clk_exec(&clk->hwsq, true);
    504 }
    505 
    506 void
    507 nv50_clk_tidy(struct nvkm_clk *base)
    508 {
    509 	struct nv50_clk *clk = nv50_clk(base);
    510 	clk_exec(&clk->hwsq, false);
    511 }
    512 
    513 int
    514 nv50_clk_new_(const struct nvkm_clk_func *func, struct nvkm_device *device,
    515 	      int index, bool allow_reclock, struct nvkm_clk **pclk)
    516 {
    517 	struct nv50_clk *clk;
    518 	int ret;
    519 
    520 	if (!(clk = kzalloc(sizeof(*clk), GFP_KERNEL)))
    521 		return -ENOMEM;
    522 	ret = nvkm_clk_ctor(func, device, index, allow_reclock, &clk->base);
    523 	*pclk = &clk->base;
    524 	if (ret)
    525 		return ret;
    526 
    527 	clk->hwsq.r_fifo = hwsq_reg(0x002504);
    528 	clk->hwsq.r_spll[0] = hwsq_reg(0x004020);
    529 	clk->hwsq.r_spll[1] = hwsq_reg(0x004024);
    530 	clk->hwsq.r_nvpll[0] = hwsq_reg(0x004028);
    531 	clk->hwsq.r_nvpll[1] = hwsq_reg(0x00402c);
    532 	switch (device->chipset) {
    533 	case 0x92:
    534 	case 0x94:
    535 	case 0x96:
    536 		clk->hwsq.r_divs = hwsq_reg(0x004800);
    537 		break;
    538 	default:
    539 		clk->hwsq.r_divs = hwsq_reg(0x004700);
    540 		break;
    541 	}
    542 	clk->hwsq.r_mast = hwsq_reg(0x00c040);
    543 	return 0;
    544 }
    545 
    546 static const struct nvkm_clk_func
    547 nv50_clk = {
    548 	.read = nv50_clk_read,
    549 	.calc = nv50_clk_calc,
    550 	.prog = nv50_clk_prog,
    551 	.tidy = nv50_clk_tidy,
    552 	.domains = {
    553 		{ nv_clk_src_crystal, 0xff },
    554 		{ nv_clk_src_href   , 0xff },
    555 		{ nv_clk_src_core   , 0xff, 0, "core", 1000 },
    556 		{ nv_clk_src_shader , 0xff, 0, "shader", 1000 },
    557 		{ nv_clk_src_mem    , 0xff, 0, "memory", 1000 },
    558 		{ nv_clk_src_max }
    559 	}
    560 };
    561 
    562 int
    563 nv50_clk_new(struct nvkm_device *device, int index, struct nvkm_clk **pclk)
    564 {
    565 	return nv50_clk_new_(&nv50_clk, device, index, false, pclk);
    566 }
    567