Home | History | Annotate | Line # | Download | only in mmu
      1 /*	$NetBSD: nouveau_nvkm_subdev_mmu_mem.c,v 1.8 2022/05/31 20:53:35 mrg Exp $	*/
      2 
      3 /*
      4  * Copyright 2017 Red Hat Inc.
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the "Software"),
      8  * to deal in the Software without restriction, including without limitation
      9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     10  * and/or sell copies of the Software, and to permit persons to whom the
     11  * Software is furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice shall be included in
     14  * all copies or substantial portions of the Software.
     15  *
     16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
     20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
     21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
     22  * OTHER DEALINGS IN THE SOFTWARE.
     23  */
     24 #include <sys/cdefs.h>
     25 __KERNEL_RCSID(0, "$NetBSD: nouveau_nvkm_subdev_mmu_mem.c,v 1.8 2022/05/31 20:53:35 mrg Exp $");
     26 
     27 #define nvkm_mem(p) container_of((p), struct nvkm_mem, memory)
     28 #include "mem.h"
     29 
     30 #include <core/memory.h>
     31 
     32 #include <nvif/if000a.h>
     33 #include <nvif/unpack.h>
     34 
     35 #include <linux/nbsd-namespace.h>
     36 
     37 struct nvkm_mem {
     38 	struct nvkm_memory memory;
     39 	enum nvkm_memory_target target;
     40 	struct nvkm_mmu *mmu;
     41 	u64 pages;
     42 #ifdef __NetBSD__
     43 	bus_dma_segment_t *mem;
     44 	int nseg;
     45 	bus_dmamap_t dmamap;
     46 	bus_addr_t *dma;
     47 #else
     48 	struct page **mem;
     49 	union {
     50 		struct scatterlist *sgl;
     51 		dma_addr_t *dma;
     52 	};
     53 #endif
     54 };
     55 
     56 static enum nvkm_memory_target
     57 nvkm_mem_target(struct nvkm_memory *memory)
     58 {
     59 	return nvkm_mem(memory)->target;
     60 }
     61 
     62 static u8
     63 nvkm_mem_page(struct nvkm_memory *memory)
     64 {
     65 	return PAGE_SHIFT;
     66 }
     67 
     68 static u64
     69 nvkm_mem_addr(struct nvkm_memory *memory)
     70 {
     71 	struct nvkm_mem *mem = nvkm_mem(memory);
     72 	if (mem->pages == 1 && mem->mem)
     73 		return mem->dma[0];
     74 	return ~0ULL;
     75 }
     76 
     77 static u64
     78 nvkm_mem_size(struct nvkm_memory *memory)
     79 {
     80 	return nvkm_mem(memory)->pages << PAGE_SHIFT;
     81 }
     82 
     83 static int
     84 nvkm_mem_map_dma(struct nvkm_memory *memory, u64 offset, struct nvkm_vmm *vmm,
     85 		 struct nvkm_vma *vma, void *argv, u32 argc)
     86 {
     87 	struct nvkm_mem *mem = nvkm_mem(memory);
     88 	struct nvkm_vmm_map map = {
     89 		.memory = &mem->memory,
     90 		.offset = offset,
     91 		.dma = mem->dma,
     92 	};
     93 	return nvkm_vmm_map(vmm, vma, argv, argc, &map);
     94 }
     95 
     96 static void *
     97 nvkm_mem_dtor(struct nvkm_memory *memory)
     98 {
     99 	struct nvkm_mem *mem = nvkm_mem(memory);
    100 #ifdef __NetBSD__
    101 	if (mem->dma) {
    102 		kmem_free(mem->dma, mem->nseg * sizeof(mem->dma[0]));
    103 	}
    104 	if (mem->mem) {
    105 		struct nvkm_device *device = mem->mmu->subdev.device;
    106 		bus_dma_tag_t dmat = device->func->dma_tag(device);
    107 
    108 		bus_dmamap_unload(dmat, mem->dmamap);
    109 		bus_dmamem_free(dmat, mem->mem, mem->nseg);
    110 		bus_dmamap_destroy(dmat, mem->dmamap);
    111 		kmem_free(mem->mem, mem->pages * sizeof(mem->mem[0]));
    112 	}
    113 #else
    114 	if (mem->mem) {
    115 		while (mem->pages--) {
    116 			dma_unmap_page(mem->mmu->subdev.device->dev,
    117 				       mem->dma[mem->pages], PAGE_SIZE,
    118 				       DMA_BIDIRECTIONAL);
    119 			__free_page(mem->mem[mem->pages]);
    120 		}
    121 		kvfree(mem->dma);
    122 		kvfree(mem->mem);
    123 	}
    124 #endif
    125 	return mem;
    126 }
    127 
    128 static const struct nvkm_memory_func
    129 nvkm_mem_dma = {
    130 	.dtor = nvkm_mem_dtor,
    131 	.target = nvkm_mem_target,
    132 	.page = nvkm_mem_page,
    133 	.addr = nvkm_mem_addr,
    134 	.size = nvkm_mem_size,
    135 	.map = nvkm_mem_map_dma,
    136 };
    137 
    138 #ifndef __NetBSD__
    139 static int
    140 nvkm_mem_map_sgl(struct nvkm_memory *memory, u64 offset, struct nvkm_vmm *vmm,
    141 		 struct nvkm_vma *vma, void *argv, u32 argc)
    142 {
    143 	struct nvkm_mem *mem = nvkm_mem(memory);
    144 	struct nvkm_vmm_map map = {
    145 		.memory = &mem->memory,
    146 		.offset = offset,
    147 		.sgl = mem->sgl,
    148 	};
    149 	return nvkm_vmm_map(vmm, vma, argv, argc, &map);
    150 }
    151 
    152 static const struct nvkm_memory_func
    153 nvkm_mem_sgl = {
    154 	.dtor = nvkm_mem_dtor,
    155 	.target = nvkm_mem_target,
    156 	.page = nvkm_mem_page,
    157 	.addr = nvkm_mem_addr,
    158 	.size = nvkm_mem_size,
    159 	.map = nvkm_mem_map_sgl,
    160 };
    161 #endif
    162 
    163 int
    164 #ifdef __NetBSD__
    165 nvkm_mem_map_host(struct nvkm_memory *memory, bus_dma_tag_t *tagp, void **pmap,
    166     bus_size_t *sizep)
    167 #else
    168 nvkm_mem_map_host(struct nvkm_memory *memory, void **pmap)
    169 #endif
    170 {
    171 	struct nvkm_mem *mem = nvkm_mem(memory);
    172 	if (mem->mem) {
    173 #ifdef __NetBSD__
    174 		struct nvkm_device *device = mem->mmu->subdev.device;
    175 		bus_dma_tag_t dmat = device->func->dma_tag(device);
    176 		/* XXX errno NetBSD->Linux */
    177 		int ret = -bus_dmamem_map(dmat, mem->mem, mem->nseg,
    178 		    mem->pages << PAGE_SHIFT, pmap, BUS_DMA_WAITOK);
    179 		if (ret) {
    180 			*pmap = NULL;
    181 			return ret;
    182 		}
    183 		*tagp = dmat;
    184 		*sizep = mem->pages << PAGE_SHIFT;
    185 		return 0;
    186 #else
    187 		*pmap = vmap(mem->mem, mem->pages, VM_MAP, PAGE_KERNEL);
    188 #endif
    189 		return *pmap ? 0 : -EFAULT;
    190 	}
    191 	return -EINVAL;
    192 }
    193 
    194 static int
    195 nvkm_mem_new_host(struct nvkm_mmu *mmu, int type, u8 page, u64 size,
    196 		  void *argv, u32 argc, struct nvkm_memory **pmemory)
    197 {
    198 	struct device *dev = mmu->subdev.device->dev;
    199 	union {
    200 		struct nvif_mem_ram_vn vn;
    201 		struct nvif_mem_ram_v0 v0;
    202 	} *args = argv;
    203 	int ret = -ENOSYS;
    204 	enum nvkm_memory_target target;
    205 	struct nvkm_mem *mem;
    206 	gfp_t gfp = GFP_USER | __GFP_ZERO;
    207 
    208 	if ( (mmu->type[type].type & NVKM_MEM_COHERENT) &&
    209 	    !(mmu->type[type].type & NVKM_MEM_UNCACHED))
    210 		target = NVKM_MEM_TARGET_HOST;
    211 	else
    212 		target = NVKM_MEM_TARGET_NCOH;
    213 
    214 	if (page != PAGE_SHIFT)
    215 		return -EINVAL;
    216 
    217 	if (!(mem = kzalloc(sizeof(*mem), GFP_KERNEL)))
    218 		return -ENOMEM;
    219 	mem->target = target;
    220 	mem->mmu = mmu;
    221 	*pmemory = &mem->memory;
    222 
    223 	if (!(ret = nvif_unpack(ret, &argv, &argc, args->v0, 0, 0, false))) {
    224 		if (args->v0.dma) {
    225 			nvkm_memory_ctor(&nvkm_mem_dma, &mem->memory);
    226 #ifndef __NetBSD__
    227 			mem->dma = args->v0.dma;
    228 #else
    229 			mem->dmamap = args->v0.dma;
    230 			mem->nseg = mem->dmamap->dm_nsegs;
    231 			mem->dma = kmem_zalloc(mem->dmamap->dm_nsegs *
    232 			    sizeof(mem->dma[0]), KM_SLEEP);
    233 			for (unsigned i = 0; i < mem->dmamap->dm_nsegs; i++) {
    234 				KASSERT(mem->dmamap->dm_segs[i].ds_len <=
    235 				    PAGE_SIZE);
    236 				mem->dma[i] = mem->dmamap->dm_segs[i].ds_addr;
    237 			}
    238 #endif
    239 		} else {
    240 #ifdef __NetBSD__
    241 			return -ENODEV;
    242 #else
    243 			nvkm_memory_ctor(&nvkm_mem_sgl, &mem->memory);
    244 			mem->sgl = args->v0.sgl;
    245 #endif
    246 		}
    247 
    248 		if (!IS_ALIGNED(size, PAGE_SIZE))
    249 			return -EINVAL;
    250 		mem->pages = size >> PAGE_SHIFT;
    251 #ifdef __NetBSD__
    252 		KASSERT(mem->pages == mem->nseg);
    253 #endif
    254 		return 0;
    255 	} else
    256 	if ( (ret = nvif_unvers(ret, &argv, &argc, args->vn))) {
    257 		kfree(mem);
    258 		return ret;
    259 	}
    260 
    261 	nvkm_memory_ctor(&nvkm_mem_dma, &mem->memory);
    262 	size = ALIGN(size, PAGE_SIZE) >> PAGE_SHIFT;
    263 
    264 #ifdef __NetBSD__
    265 	__USE(gfp);
    266 	__USE(dev);
    267 	struct nvkm_device *device = mem->mmu->subdev.device;
    268 	bus_dma_tag_t dmat = device->func->dma_tag(device);
    269 	mem->mem = kmem_zalloc(size * sizeof(mem->mem[0]), KM_SLEEP);
    270 	/* XXX errno NetBSD->Linux */
    271 	ret = -bus_dmamem_alloc(dmat, size << PAGE_SHIFT, PAGE_SIZE, PAGE_SIZE,
    272 	    mem->mem, size, &mem->nseg, BUS_DMA_WAITOK);
    273 	if (ret) {
    274 fail0:		kmem_free(mem->mem, size * sizeof(mem->mem[0]));
    275 		return ret;
    276 	}
    277 	/* XXX errno NetBSD->Linux */
    278 	ret = -bus_dmamap_create(dmat, size << PAGE_SHIFT, mem->nseg,
    279 	    PAGE_SIZE, PAGE_SIZE, BUS_DMA_WAITOK, &mem->dmamap);
    280 	if (ret) {
    281 fail1:		bus_dmamem_free(dmat, mem->mem, mem->nseg);
    282 		goto fail0;
    283 	}
    284 	/* XXX errno NetBSD->Linux */
    285 	ret = -bus_dmamap_load_raw(dmat, mem->dmamap, mem->mem, mem->nseg,
    286 	    size << PAGE_SHIFT, BUS_DMA_WAITOK);
    287 	if (ret) {
    288 fail2: __unused
    289 		bus_dmamap_destroy(dmat, mem->dmamap);
    290 		goto fail1;
    291 	}
    292 	mem->dma = kmem_zalloc(mem->dmamap->dm_nsegs * sizeof(mem->dma[0]),
    293 	    KM_SLEEP);
    294 	for (unsigned i = 0; i < mem->dmamap->dm_nsegs; i++) {
    295 		KASSERT(mem->dmamap->dm_segs[i].ds_len <= PAGE_SIZE);
    296 		mem->dma[i] = mem->dmamap->dm_segs[i].ds_addr;
    297 	}
    298 	mem->pages = size;
    299 	KASSERT(mem->pages == mem->nseg);
    300 #else
    301 	if (!(mem->mem = kvmalloc_array(size, sizeof(*mem->mem), GFP_KERNEL)))
    302 		return -ENOMEM;
    303 	if (!(mem->dma = kvmalloc_array(size, sizeof(*mem->dma), GFP_KERNEL)))
    304 		return -ENOMEM;
    305 
    306 	if (mmu->dma_bits > 32)
    307 		gfp |= GFP_HIGHUSER;
    308 	else
    309 		gfp |= GFP_DMA32;
    310 
    311 	for (mem->pages = 0; size; size--, mem->pages++) {
    312 		struct page *p = alloc_page(gfp);
    313 		if (!p)
    314 			return -ENOMEM;
    315 
    316 		mem->dma[mem->pages] = dma_map_page(mmu->subdev.device->dev,
    317 						    p, 0, PAGE_SIZE,
    318 						    DMA_BIDIRECTIONAL);
    319 		if (dma_mapping_error(dev, mem->dma[mem->pages])) {
    320 			__free_page(p);
    321 			return -ENOMEM;
    322 		}
    323 
    324 		mem->mem[mem->pages] = p;
    325 	}
    326 #endif
    327 
    328 	return 0;
    329 }
    330 
    331 int
    332 nvkm_mem_new_type(struct nvkm_mmu *mmu, int type, u8 page, u64 size,
    333 		  void *argv, u32 argc, struct nvkm_memory **pmemory)
    334 {
    335 	struct nvkm_memory *memory = NULL;
    336 	int ret;
    337 
    338 	if (mmu->type[type].type & NVKM_MEM_VRAM) {
    339 		ret = mmu->func->mem.vram(mmu, type, page, size,
    340 					  argv, argc, &memory);
    341 	} else {
    342 		ret = nvkm_mem_new_host(mmu, type, page, size,
    343 					argv, argc, &memory);
    344 	}
    345 
    346 	if (ret)
    347 		nvkm_memory_unref(&memory);
    348 	*pmemory = memory;
    349 	return ret;
    350 }
    351