Home | History | Annotate | Line # | Download | only in dcn10
      1 /*	$NetBSD: amdgpu_dcn10_optc.c,v 1.2 2021/12/18 23:45:03 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright 2012-15 Advanced Micro Devices, Inc.
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the "Software"),
      8  * to deal in the Software without restriction, including without limitation
      9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     10  * and/or sell copies of the Software, and to permit persons to whom the
     11  * Software is furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice shall be included in
     14  * all copies or substantial portions of the Software.
     15  *
     16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
     20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
     21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
     22  * OTHER DEALINGS IN THE SOFTWARE.
     23  *
     24  * Authors: AMD
     25  *
     26  */
     27 
     28 
     29 #include <sys/cdefs.h>
     30 __KERNEL_RCSID(0, "$NetBSD: amdgpu_dcn10_optc.c,v 1.2 2021/12/18 23:45:03 riastradh Exp $");
     31 
     32 #include "reg_helper.h"
     33 #include "dcn10_optc.h"
     34 #include "dc.h"
     35 
     36 #define REG(reg)\
     37 	optc1->tg_regs->reg
     38 
     39 #define CTX \
     40 	optc1->base.ctx
     41 
     42 #undef FN
     43 #define FN(reg_name, field_name) \
     44 	optc1->tg_shift->field_name, optc1->tg_mask->field_name
     45 
     46 #define STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN 0x100
     47 
     48 /**
     49 * apply_front_porch_workaround  TODO FPGA still need?
     50 *
     51 * This is a workaround for a bug that has existed since R5xx and has not been
     52 * fixed keep Front porch at minimum 2 for Interlaced mode or 1 for progressive.
     53 */
     54 static void apply_front_porch_workaround(struct dc_crtc_timing *timing)
     55 {
     56 	if (timing->flags.INTERLACE == 1) {
     57 		if (timing->v_front_porch < 2)
     58 			timing->v_front_porch = 2;
     59 	} else {
     60 		if (timing->v_front_porch < 1)
     61 			timing->v_front_porch = 1;
     62 	}
     63 }
     64 
     65 void optc1_program_global_sync(
     66 		struct timing_generator *optc,
     67 		int vready_offset,
     68 		int vstartup_start,
     69 		int vupdate_offset,
     70 		int vupdate_width)
     71 {
     72 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
     73 
     74 	optc1->vready_offset = vready_offset;
     75 	optc1->vstartup_start = vstartup_start;
     76 	optc1->vupdate_offset = vupdate_offset;
     77 	optc1->vupdate_width = vupdate_width;
     78 
     79 	if (optc1->vstartup_start == 0) {
     80 		BREAK_TO_DEBUGGER();
     81 		return;
     82 	}
     83 
     84 	REG_SET(OTG_VSTARTUP_PARAM, 0,
     85 		VSTARTUP_START, optc1->vstartup_start);
     86 
     87 	REG_SET_2(OTG_VUPDATE_PARAM, 0,
     88 			VUPDATE_OFFSET, optc1->vupdate_offset,
     89 			VUPDATE_WIDTH, optc1->vupdate_width);
     90 
     91 	REG_SET(OTG_VREADY_PARAM, 0,
     92 			VREADY_OFFSET, optc1->vready_offset);
     93 }
     94 
     95 static void optc1_disable_stereo(struct timing_generator *optc)
     96 {
     97 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
     98 
     99 	REG_SET(OTG_STEREO_CONTROL, 0,
    100 		OTG_STEREO_EN, 0);
    101 
    102 	REG_SET_2(OTG_3D_STRUCTURE_CONTROL, 0,
    103 		OTG_3D_STRUCTURE_EN, 0,
    104 		OTG_3D_STRUCTURE_STEREO_SEL_OVR, 0);
    105 }
    106 
    107 void optc1_setup_vertical_interrupt0(
    108 		struct timing_generator *optc,
    109 		uint32_t start_line,
    110 		uint32_t end_line)
    111 {
    112 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
    113 
    114 	REG_SET_2(OTG_VERTICAL_INTERRUPT0_POSITION, 0,
    115 			OTG_VERTICAL_INTERRUPT0_LINE_START, start_line,
    116 			OTG_VERTICAL_INTERRUPT0_LINE_END, end_line);
    117 }
    118 
    119 void optc1_setup_vertical_interrupt1(
    120 		struct timing_generator *optc,
    121 		uint32_t start_line)
    122 {
    123 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
    124 
    125 	REG_SET(OTG_VERTICAL_INTERRUPT1_POSITION, 0,
    126 				OTG_VERTICAL_INTERRUPT1_LINE_START, start_line);
    127 }
    128 
    129 void optc1_setup_vertical_interrupt2(
    130 		struct timing_generator *optc,
    131 		uint32_t start_line)
    132 {
    133 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
    134 
    135 	REG_SET(OTG_VERTICAL_INTERRUPT2_POSITION, 0,
    136 			OTG_VERTICAL_INTERRUPT2_LINE_START, start_line);
    137 }
    138 
    139 /**
    140  * program_timing_generator   used by mode timing set
    141  * Program CRTC Timing Registers - OTG_H_*, OTG_V_*, Pixel repetition.
    142  * Including SYNC. Call BIOS command table to program Timings.
    143  */
    144 void optc1_program_timing(
    145 	struct timing_generator *optc,
    146 	const struct dc_crtc_timing *dc_crtc_timing,
    147 	int vready_offset,
    148 	int vstartup_start,
    149 	int vupdate_offset,
    150 	int vupdate_width,
    151 	const enum signal_type signal,
    152 	bool use_vbios)
    153 {
    154 	struct dc_crtc_timing patched_crtc_timing;
    155 	uint32_t asic_blank_end;
    156 	uint32_t asic_blank_start;
    157 	uint32_t v_total;
    158 	uint32_t v_sync_end;
    159 	uint32_t h_sync_polarity, v_sync_polarity;
    160 	uint32_t start_point = 0;
    161 	uint32_t field_num = 0;
    162 	enum h_timing_div_mode h_div = H_TIMING_NO_DIV;
    163 
    164 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
    165 
    166 	optc1->signal = signal;
    167 	optc1->vready_offset = vready_offset;
    168 	optc1->vstartup_start = vstartup_start;
    169 	optc1->vupdate_offset = vupdate_offset;
    170 	optc1->vupdate_width = vupdate_width;
    171 	patched_crtc_timing = *dc_crtc_timing;
    172 	apply_front_porch_workaround(&patched_crtc_timing);
    173 
    174 	/* Load horizontal timing */
    175 
    176 	/* CRTC_H_TOTAL = vesa.h_total - 1 */
    177 	REG_SET(OTG_H_TOTAL, 0,
    178 			OTG_H_TOTAL,  patched_crtc_timing.h_total - 1);
    179 
    180 	/* h_sync_start = 0, h_sync_end = vesa.h_sync_width */
    181 	REG_UPDATE_2(OTG_H_SYNC_A,
    182 			OTG_H_SYNC_A_START, 0,
    183 			OTG_H_SYNC_A_END, patched_crtc_timing.h_sync_width);
    184 
    185 	/* blank_start = line end - front porch */
    186 	asic_blank_start = patched_crtc_timing.h_total -
    187 			patched_crtc_timing.h_front_porch;
    188 
    189 	/* blank_end = blank_start - active */
    190 	asic_blank_end = asic_blank_start -
    191 			patched_crtc_timing.h_border_right -
    192 			patched_crtc_timing.h_addressable -
    193 			patched_crtc_timing.h_border_left;
    194 
    195 	REG_UPDATE_2(OTG_H_BLANK_START_END,
    196 			OTG_H_BLANK_START, asic_blank_start,
    197 			OTG_H_BLANK_END, asic_blank_end);
    198 
    199 	/* h_sync polarity */
    200 	h_sync_polarity = patched_crtc_timing.flags.HSYNC_POSITIVE_POLARITY ?
    201 			0 : 1;
    202 
    203 	REG_UPDATE(OTG_H_SYNC_A_CNTL,
    204 			OTG_H_SYNC_A_POL, h_sync_polarity);
    205 
    206 	v_total = patched_crtc_timing.v_total - 1;
    207 
    208 	REG_SET(OTG_V_TOTAL, 0,
    209 			OTG_V_TOTAL, v_total);
    210 
    211 	/* In case of V_TOTAL_CONTROL is on, make sure OTG_V_TOTAL_MAX and
    212 	 * OTG_V_TOTAL_MIN are equal to V_TOTAL.
    213 	 */
    214 	REG_SET(OTG_V_TOTAL_MAX, 0,
    215 		OTG_V_TOTAL_MAX, v_total);
    216 	REG_SET(OTG_V_TOTAL_MIN, 0,
    217 		OTG_V_TOTAL_MIN, v_total);
    218 
    219 	/* v_sync_start = 0, v_sync_end = v_sync_width */
    220 	v_sync_end = patched_crtc_timing.v_sync_width;
    221 
    222 	REG_UPDATE_2(OTG_V_SYNC_A,
    223 			OTG_V_SYNC_A_START, 0,
    224 			OTG_V_SYNC_A_END, v_sync_end);
    225 
    226 	/* blank_start = frame end - front porch */
    227 	asic_blank_start = patched_crtc_timing.v_total -
    228 			patched_crtc_timing.v_front_porch;
    229 
    230 	/* blank_end = blank_start - active */
    231 	asic_blank_end = asic_blank_start -
    232 			patched_crtc_timing.v_border_bottom -
    233 			patched_crtc_timing.v_addressable -
    234 			patched_crtc_timing.v_border_top;
    235 
    236 	REG_UPDATE_2(OTG_V_BLANK_START_END,
    237 			OTG_V_BLANK_START, asic_blank_start,
    238 			OTG_V_BLANK_END, asic_blank_end);
    239 
    240 	/* v_sync polarity */
    241 	v_sync_polarity = patched_crtc_timing.flags.VSYNC_POSITIVE_POLARITY ?
    242 			0 : 1;
    243 
    244 	REG_UPDATE(OTG_V_SYNC_A_CNTL,
    245 		OTG_V_SYNC_A_POL, v_sync_polarity);
    246 
    247 	if (optc1->signal == SIGNAL_TYPE_DISPLAY_PORT ||
    248 			optc1->signal == SIGNAL_TYPE_DISPLAY_PORT_MST ||
    249 			optc1->signal == SIGNAL_TYPE_EDP) {
    250 		start_point = 1;
    251 		if (patched_crtc_timing.flags.INTERLACE == 1)
    252 			field_num = 1;
    253 	}
    254 
    255 	/* Interlace */
    256 	if (REG(OTG_INTERLACE_CONTROL)) {
    257 		if (patched_crtc_timing.flags.INTERLACE == 1)
    258 			REG_UPDATE(OTG_INTERLACE_CONTROL,
    259 					OTG_INTERLACE_ENABLE, 1);
    260 		else
    261 			REG_UPDATE(OTG_INTERLACE_CONTROL,
    262 					OTG_INTERLACE_ENABLE, 0);
    263 	}
    264 
    265 	/* VTG enable set to 0 first VInit */
    266 	REG_UPDATE(CONTROL,
    267 			VTG0_ENABLE, 0);
    268 
    269 	/* original code is using VTG offset to address OTG reg, seems wrong */
    270 	REG_UPDATE_2(OTG_CONTROL,
    271 			OTG_START_POINT_CNTL, start_point,
    272 			OTG_FIELD_NUMBER_CNTL, field_num);
    273 
    274 	optc->funcs->program_global_sync(optc,
    275 			vready_offset,
    276 			vstartup_start,
    277 			vupdate_offset,
    278 			vupdate_width);
    279 
    280 	optc->funcs->set_vtg_params(optc, dc_crtc_timing);
    281 
    282 	/* TODO
    283 	 * patched_crtc_timing.flags.HORZ_COUNT_BY_TWO == 1
    284 	 * program_horz_count_by_2
    285 	 * for DVI 30bpp mode, 0 otherwise
    286 	 * program_horz_count_by_2(optc, &patched_crtc_timing);
    287 	 */
    288 
    289 	/* Enable stereo - only when we need to pack 3D frame. Other types
    290 	 * of stereo handled in explicit call
    291 	 */
    292 
    293 	if (optc1_is_two_pixels_per_containter(&patched_crtc_timing) || optc1->opp_count == 2)
    294 		h_div = H_TIMING_DIV_BY2;
    295 
    296 	REG_UPDATE(OTG_H_TIMING_CNTL,
    297 		OTG_H_TIMING_DIV_BY2, h_div);
    298 }
    299 
    300 void optc1_set_vtg_params(struct timing_generator *optc,
    301 		const struct dc_crtc_timing *dc_crtc_timing)
    302 {
    303 	struct dc_crtc_timing patched_crtc_timing;
    304 	uint32_t asic_blank_end;
    305 	uint32_t v_init;
    306 	uint32_t v_fp2 = 0;
    307 	int32_t vertical_line_start;
    308 
    309 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
    310 
    311 	patched_crtc_timing = *dc_crtc_timing;
    312 	apply_front_porch_workaround(&patched_crtc_timing);
    313 
    314 	/* VCOUNT_INIT is the start of blank */
    315 	v_init = patched_crtc_timing.v_total - patched_crtc_timing.v_front_porch;
    316 
    317 	/* end of blank = v_init - active */
    318 	asic_blank_end = v_init -
    319 			patched_crtc_timing.v_border_bottom -
    320 			patched_crtc_timing.v_addressable -
    321 			patched_crtc_timing.v_border_top;
    322 
    323 	/* if VSTARTUP is before VSYNC, FP2 is the offset, otherwise 0 */
    324 	vertical_line_start = asic_blank_end - optc1->vstartup_start + 1;
    325 	if (vertical_line_start < 0)
    326 		v_fp2 = -vertical_line_start;
    327 
    328 	/* Interlace */
    329 	if (REG(OTG_INTERLACE_CONTROL)) {
    330 		if (patched_crtc_timing.flags.INTERLACE == 1) {
    331 			v_init = v_init / 2;
    332 			if ((optc1->vstartup_start/2)*2 > asic_blank_end)
    333 				v_fp2 = v_fp2 / 2;
    334 		}
    335 	}
    336 
    337 	REG_UPDATE_2(CONTROL,
    338 			VTG0_FP2, v_fp2,
    339 			VTG0_VCOUNT_INIT, v_init);
    340 }
    341 
    342 void optc1_set_blank_data_double_buffer(struct timing_generator *optc, bool enable)
    343 {
    344 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
    345 
    346 	uint32_t blank_data_double_buffer_enable = enable ? 1 : 0;
    347 
    348 	REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL,
    349 			OTG_BLANK_DATA_DOUBLE_BUFFER_EN, blank_data_double_buffer_enable);
    350 }
    351 
    352 /**
    353  * unblank_crtc
    354  * Call ASIC Control Object to UnBlank CRTC.
    355  */
    356 static void optc1_unblank_crtc(struct timing_generator *optc)
    357 {
    358 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
    359 
    360 	REG_UPDATE_2(OTG_BLANK_CONTROL,
    361 			OTG_BLANK_DATA_EN, 0,
    362 			OTG_BLANK_DE_MODE, 0);
    363 
    364 	/* W/A for automated testing
    365 	 * Automated testing will fail underflow test as there
    366 	 * sporadic underflows which occur during the optc blank
    367 	 * sequence.  As a w/a, clear underflow on unblank.
    368 	 * This prevents the failure, but will not mask actual
    369 	 * underflow that affect real use cases.
    370 	 */
    371 	optc1_clear_optc_underflow(optc);
    372 }
    373 
    374 /**
    375  * blank_crtc
    376  * Call ASIC Control Object to Blank CRTC.
    377  */
    378 
    379 static void optc1_blank_crtc(struct timing_generator *optc)
    380 {
    381 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
    382 
    383 	REG_UPDATE_2(OTG_BLANK_CONTROL,
    384 			OTG_BLANK_DATA_EN, 1,
    385 			OTG_BLANK_DE_MODE, 0);
    386 
    387 	optc1_set_blank_data_double_buffer(optc, false);
    388 }
    389 
    390 void optc1_set_blank(struct timing_generator *optc,
    391 		bool enable_blanking)
    392 {
    393 	if (enable_blanking)
    394 		optc1_blank_crtc(optc);
    395 	else
    396 		optc1_unblank_crtc(optc);
    397 }
    398 
    399 bool optc1_is_blanked(struct timing_generator *optc)
    400 {
    401 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
    402 	uint32_t blank_en;
    403 	uint32_t blank_state;
    404 
    405 	REG_GET_2(OTG_BLANK_CONTROL,
    406 			OTG_BLANK_DATA_EN, &blank_en,
    407 			OTG_CURRENT_BLANK_STATE, &blank_state);
    408 
    409 	return blank_en && blank_state;
    410 }
    411 
    412 void optc1_enable_optc_clock(struct timing_generator *optc, bool enable)
    413 {
    414 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
    415 
    416 	if (enable) {
    417 		REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL,
    418 				OPTC_INPUT_CLK_EN, 1,
    419 				OPTC_INPUT_CLK_GATE_DIS, 1);
    420 
    421 		REG_WAIT(OPTC_INPUT_CLOCK_CONTROL,
    422 				OPTC_INPUT_CLK_ON, 1,
    423 				1, 1000);
    424 
    425 		/* Enable clock */
    426 		REG_UPDATE_2(OTG_CLOCK_CONTROL,
    427 				OTG_CLOCK_EN, 1,
    428 				OTG_CLOCK_GATE_DIS, 1);
    429 		REG_WAIT(OTG_CLOCK_CONTROL,
    430 				OTG_CLOCK_ON, 1,
    431 				1, 1000);
    432 	} else  {
    433 		REG_UPDATE_2(OTG_CLOCK_CONTROL,
    434 				OTG_CLOCK_GATE_DIS, 0,
    435 				OTG_CLOCK_EN, 0);
    436 
    437 		REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL,
    438 				OPTC_INPUT_CLK_GATE_DIS, 0,
    439 				OPTC_INPUT_CLK_EN, 0);
    440 	}
    441 }
    442 
    443 /**
    444  * Enable CRTC
    445  * Enable CRTC - call ASIC Control Object to enable Timing generator.
    446  */
    447 static bool optc1_enable_crtc(struct timing_generator *optc)
    448 {
    449 	/* TODO FPGA wait for answer
    450 	 * OTG_MASTER_UPDATE_MODE != CRTC_MASTER_UPDATE_MODE
    451 	 * OTG_MASTER_UPDATE_LOCK != CRTC_MASTER_UPDATE_LOCK
    452 	 */
    453 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
    454 
    455 	/* opp instance for OTG. For DCN1.0, ODM is remoed.
    456 	 * OPP and OPTC should 1:1 mapping
    457 	 */
    458 	REG_UPDATE(OPTC_DATA_SOURCE_SELECT,
    459 			OPTC_SRC_SEL, optc->inst);
    460 
    461 	/* VTG enable first is for HW workaround */
    462 	REG_UPDATE(CONTROL,
    463 			VTG0_ENABLE, 1);
    464 
    465 	REG_SEQ_START();
    466 
    467 	/* Enable CRTC */
    468 	REG_UPDATE_2(OTG_CONTROL,
    469 			OTG_DISABLE_POINT_CNTL, 3,
    470 			OTG_MASTER_EN, 1);
    471 
    472 	REG_SEQ_SUBMIT();
    473 	REG_SEQ_WAIT_DONE();
    474 
    475 	return true;
    476 }
    477 
    478 /* disable_crtc - call ASIC Control Object to disable Timing generator. */
    479 bool optc1_disable_crtc(struct timing_generator *optc)
    480 {
    481 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
    482 
    483 	/* disable otg request until end of the first line
    484 	 * in the vertical blank region
    485 	 */
    486 	REG_UPDATE_2(OTG_CONTROL,
    487 			OTG_DISABLE_POINT_CNTL, 3,
    488 			OTG_MASTER_EN, 0);
    489 
    490 	REG_UPDATE(CONTROL,
    491 			VTG0_ENABLE, 0);
    492 
    493 	/* CRTC disabled, so disable  clock. */
    494 	REG_WAIT(OTG_CLOCK_CONTROL,
    495 			OTG_BUSY, 0,
    496 			1, 100000);
    497 
    498 	return true;
    499 }
    500 
    501 
    502 void optc1_program_blank_color(
    503 		struct timing_generator *optc,
    504 		const struct tg_color *black_color)
    505 {
    506 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
    507 
    508 	REG_SET_3(OTG_BLACK_COLOR, 0,
    509 			OTG_BLACK_COLOR_B_CB, black_color->color_b_cb,
    510 			OTG_BLACK_COLOR_G_Y, black_color->color_g_y,
    511 			OTG_BLACK_COLOR_R_CR, black_color->color_r_cr);
    512 }
    513 
    514 bool optc1_validate_timing(
    515 	struct timing_generator *optc,
    516 	const struct dc_crtc_timing *timing)
    517 {
    518 	uint32_t v_blank;
    519 	uint32_t h_blank;
    520 	uint32_t min_v_blank;
    521 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
    522 
    523 	ASSERT(timing != NULL);
    524 
    525 	v_blank = (timing->v_total - timing->v_addressable -
    526 					timing->v_border_top - timing->v_border_bottom);
    527 
    528 	h_blank = (timing->h_total - timing->h_addressable -
    529 		timing->h_border_right -
    530 		timing->h_border_left);
    531 
    532 	if (timing->timing_3d_format != TIMING_3D_FORMAT_NONE &&
    533 		timing->timing_3d_format != TIMING_3D_FORMAT_HW_FRAME_PACKING &&
    534 		timing->timing_3d_format != TIMING_3D_FORMAT_TOP_AND_BOTTOM &&
    535 		timing->timing_3d_format != TIMING_3D_FORMAT_SIDE_BY_SIDE &&
    536 		timing->timing_3d_format != TIMING_3D_FORMAT_FRAME_ALTERNATE &&
    537 		timing->timing_3d_format != TIMING_3D_FORMAT_INBAND_FA)
    538 		return false;
    539 
    540 	/* Temporarily blocking interlacing mode until it's supported */
    541 	if (timing->flags.INTERLACE == 1)
    542 		return false;
    543 
    544 	/* Check maximum number of pixels supported by Timing Generator
    545 	 * (Currently will never fail, in order to fail needs display which
    546 	 * needs more than 8192 horizontal and
    547 	 * more than 8192 vertical total pixels)
    548 	 */
    549 	if (timing->h_total > optc1->max_h_total ||
    550 		timing->v_total > optc1->max_v_total)
    551 		return false;
    552 
    553 
    554 	if (h_blank < optc1->min_h_blank)
    555 		return false;
    556 
    557 	if (timing->h_sync_width  < optc1->min_h_sync_width ||
    558 		 timing->v_sync_width  < optc1->min_v_sync_width)
    559 		return false;
    560 
    561 	min_v_blank = timing->flags.INTERLACE?optc1->min_v_blank_interlace:optc1->min_v_blank;
    562 
    563 	if (v_blank < min_v_blank)
    564 		return false;
    565 
    566 	return true;
    567 
    568 }
    569 
    570 /*
    571  * get_vblank_counter
    572  *
    573  * @brief
    574  * Get counter for vertical blanks. use register CRTC_STATUS_FRAME_COUNT which
    575  * holds the counter of frames.
    576  *
    577  * @param
    578  * struct timing_generator *optc - [in] timing generator which controls the
    579  * desired CRTC
    580  *
    581  * @return
    582  * Counter of frames, which should equal to number of vblanks.
    583  */
    584 uint32_t optc1_get_vblank_counter(struct timing_generator *optc)
    585 {
    586 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
    587 	uint32_t frame_count;
    588 
    589 	REG_GET(OTG_STATUS_FRAME_COUNT,
    590 		OTG_FRAME_COUNT, &frame_count);
    591 
    592 	return frame_count;
    593 }
    594 
    595 void optc1_lock(struct timing_generator *optc)
    596 {
    597 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
    598 	uint32_t regval = 0;
    599 
    600 	regval = REG_READ(OTG_CONTROL);
    601 
    602 	/* otg is not running, do not need to be locked */
    603 	if ((regval & 0x1) == 0x0)
    604 		return;
    605 
    606 	REG_SET(OTG_GLOBAL_CONTROL0, 0,
    607 			OTG_MASTER_UPDATE_LOCK_SEL, optc->inst);
    608 	REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
    609 			OTG_MASTER_UPDATE_LOCK, 1);
    610 
    611 	/* Should be fast, status does not update on maximus */
    612 	if (optc->ctx->dce_environment != DCE_ENV_FPGA_MAXIMUS) {
    613 
    614 		REG_WAIT(OTG_MASTER_UPDATE_LOCK,
    615 				UPDATE_LOCK_STATUS, 1,
    616 				1, 10);
    617 	}
    618 }
    619 
    620 void optc1_unlock(struct timing_generator *optc)
    621 {
    622 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
    623 
    624 	REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
    625 			OTG_MASTER_UPDATE_LOCK, 0);
    626 }
    627 
    628 void optc1_get_position(struct timing_generator *optc,
    629 		struct crtc_position *position)
    630 {
    631 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
    632 
    633 	REG_GET_2(OTG_STATUS_POSITION,
    634 			OTG_HORZ_COUNT, &position->horizontal_count,
    635 			OTG_VERT_COUNT, &position->vertical_count);
    636 
    637 	REG_GET(OTG_NOM_VERT_POSITION,
    638 			OTG_VERT_COUNT_NOM, &position->nominal_vcount);
    639 }
    640 
    641 bool optc1_is_counter_moving(struct timing_generator *optc)
    642 {
    643 	struct crtc_position position1, position2;
    644 
    645 	optc->funcs->get_position(optc, &position1);
    646 	optc->funcs->get_position(optc, &position2);
    647 
    648 	if (position1.horizontal_count == position2.horizontal_count &&
    649 		position1.vertical_count == position2.vertical_count)
    650 		return false;
    651 	else
    652 		return true;
    653 }
    654 
    655 bool optc1_did_triggered_reset_occur(
    656 	struct timing_generator *optc)
    657 {
    658 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
    659 	uint32_t occurred_force, occurred_vsync;
    660 
    661 	REG_GET(OTG_FORCE_COUNT_NOW_CNTL,
    662 		OTG_FORCE_COUNT_NOW_OCCURRED, &occurred_force);
    663 
    664 	REG_GET(OTG_VERT_SYNC_CONTROL,
    665 		OTG_FORCE_VSYNC_NEXT_LINE_OCCURRED, &occurred_vsync);
    666 
    667 	return occurred_vsync != 0 || occurred_force != 0;
    668 }
    669 
    670 void optc1_disable_reset_trigger(struct timing_generator *optc)
    671 {
    672 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
    673 
    674 	REG_WRITE(OTG_TRIGA_CNTL, 0);
    675 
    676 	REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
    677 		OTG_FORCE_COUNT_NOW_CLEAR, 1);
    678 
    679 	REG_SET(OTG_VERT_SYNC_CONTROL, 0,
    680 		OTG_FORCE_VSYNC_NEXT_LINE_CLEAR, 1);
    681 }
    682 
    683 void optc1_enable_reset_trigger(struct timing_generator *optc, int source_tg_inst)
    684 {
    685 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
    686 	uint32_t falling_edge;
    687 
    688 	REG_GET(OTG_V_SYNC_A_CNTL,
    689 			OTG_V_SYNC_A_POL, &falling_edge);
    690 
    691 	if (falling_edge)
    692 		REG_SET_3(OTG_TRIGA_CNTL, 0,
    693 				/* vsync signal from selected OTG pipe based
    694 				 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
    695 				 */
    696 				OTG_TRIGA_SOURCE_SELECT, 20,
    697 				OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
    698 				/* always detect falling edge */
    699 				OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 1);
    700 	else
    701 		REG_SET_3(OTG_TRIGA_CNTL, 0,
    702 				/* vsync signal from selected OTG pipe based
    703 				 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
    704 				 */
    705 				OTG_TRIGA_SOURCE_SELECT, 20,
    706 				OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
    707 				/* always detect rising edge */
    708 				OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1);
    709 
    710 	REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
    711 			/* force H count to H_TOTAL and V count to V_TOTAL in
    712 			 * progressive mode and V_TOTAL-1 in interlaced mode
    713 			 */
    714 			OTG_FORCE_COUNT_NOW_MODE, 2);
    715 }
    716 
    717 void optc1_enable_crtc_reset(
    718 		struct timing_generator *optc,
    719 		int source_tg_inst,
    720 		struct crtc_trigger_info *crtc_tp)
    721 {
    722 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
    723 	uint32_t falling_edge = 0;
    724 	uint32_t rising_edge = 0;
    725 
    726 	switch (crtc_tp->event) {
    727 
    728 	case CRTC_EVENT_VSYNC_RISING:
    729 		rising_edge = 1;
    730 		break;
    731 
    732 	case CRTC_EVENT_VSYNC_FALLING:
    733 		falling_edge = 1;
    734 		break;
    735 	}
    736 
    737 	REG_SET_4(OTG_TRIGA_CNTL, 0,
    738 		 /* vsync signal from selected OTG pipe based
    739 		  * on OTG_TRIG_SOURCE_PIPE_SELECT setting
    740 		  */
    741 		  OTG_TRIGA_SOURCE_SELECT, 20,
    742 		  OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
    743 		  /* always detect falling edge */
    744 		  OTG_TRIGA_RISING_EDGE_DETECT_CNTL, rising_edge,
    745 		  OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, falling_edge);
    746 
    747 	switch (crtc_tp->delay) {
    748 	case TRIGGER_DELAY_NEXT_LINE:
    749 		REG_SET(OTG_VERT_SYNC_CONTROL, 0,
    750 				OTG_AUTO_FORCE_VSYNC_MODE, 1);
    751 		break;
    752 	case TRIGGER_DELAY_NEXT_PIXEL:
    753 		REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
    754 			/* force H count to H_TOTAL and V count to V_TOTAL in
    755 			 * progressive mode and V_TOTAL-1 in interlaced mode
    756 			 */
    757 			OTG_FORCE_COUNT_NOW_MODE, 2);
    758 		break;
    759 	}
    760 }
    761 
    762 void optc1_wait_for_state(struct timing_generator *optc,
    763 		enum crtc_state state)
    764 {
    765 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
    766 
    767 	switch (state) {
    768 	case CRTC_STATE_VBLANK:
    769 		REG_WAIT(OTG_STATUS,
    770 				OTG_V_BLANK, 1,
    771 				1, 100000); /* 1 vupdate at 10hz */
    772 		break;
    773 
    774 	case CRTC_STATE_VACTIVE:
    775 		REG_WAIT(OTG_STATUS,
    776 				OTG_V_ACTIVE_DISP, 1,
    777 				1, 100000); /* 1 vupdate at 10hz */
    778 		break;
    779 
    780 	default:
    781 		break;
    782 	}
    783 }
    784 
    785 void optc1_set_early_control(
    786 	struct timing_generator *optc,
    787 	uint32_t early_cntl)
    788 {
    789 	/* asic design change, do not need this control
    790 	 * empty for share caller logic
    791 	 */
    792 }
    793 
    794 
    795 void optc1_set_static_screen_control(
    796 	struct timing_generator *optc,
    797 	uint32_t event_triggers,
    798 	uint32_t num_frames)
    799 {
    800 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
    801 
    802 	// By register spec, it only takes 8 bit value
    803 	if (num_frames > 0xFF)
    804 		num_frames = 0xFF;
    805 
    806 	/* Bit 8 is no longer applicable in RV for PSR case,
    807 	 * set bit 8 to 0 if given
    808 	 */
    809 	if ((event_triggers & STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN)
    810 			!= 0)
    811 		event_triggers = event_triggers &
    812 		~STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN;
    813 
    814 	REG_SET_2(OTG_STATIC_SCREEN_CONTROL, 0,
    815 			OTG_STATIC_SCREEN_EVENT_MASK, event_triggers,
    816 			OTG_STATIC_SCREEN_FRAME_COUNT, num_frames);
    817 }
    818 
    819 void optc1_setup_manual_trigger(struct timing_generator *optc)
    820 {
    821 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
    822 
    823 	REG_SET(OTG_GLOBAL_CONTROL2, 0,
    824 			MANUAL_FLOW_CONTROL_SEL, optc->inst);
    825 
    826 	REG_SET_8(OTG_TRIGA_CNTL, 0,
    827 			OTG_TRIGA_SOURCE_SELECT, 22,
    828 			OTG_TRIGA_SOURCE_PIPE_SELECT, optc->inst,
    829 			OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1,
    830 			OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 0,
    831 			OTG_TRIGA_POLARITY_SELECT, 0,
    832 			OTG_TRIGA_FREQUENCY_SELECT, 0,
    833 			OTG_TRIGA_DELAY, 0,
    834 			OTG_TRIGA_CLEAR, 1);
    835 }
    836 
    837 void optc1_program_manual_trigger(struct timing_generator *optc)
    838 {
    839 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
    840 
    841 	REG_SET(OTG_MANUAL_FLOW_CONTROL, 0,
    842 			MANUAL_FLOW_CONTROL, 1);
    843 
    844 	REG_SET(OTG_MANUAL_FLOW_CONTROL, 0,
    845 			MANUAL_FLOW_CONTROL, 0);
    846 }
    847 
    848 
    849 /**
    850  *****************************************************************************
    851  *  Function: set_drr
    852  *
    853  *  @brief
    854  *     Program dynamic refresh rate registers m_OTGx_OTG_V_TOTAL_*.
    855  *
    856  *****************************************************************************
    857  */
    858 void optc1_set_drr(
    859 	struct timing_generator *optc,
    860 	const struct drr_params *params)
    861 {
    862 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
    863 
    864 	if (params != NULL &&
    865 		params->vertical_total_max > 0 &&
    866 		params->vertical_total_min > 0) {
    867 
    868 		if (params->vertical_total_mid != 0) {
    869 
    870 			REG_SET(OTG_V_TOTAL_MID, 0,
    871 				OTG_V_TOTAL_MID, params->vertical_total_mid - 1);
    872 
    873 			REG_UPDATE_2(OTG_V_TOTAL_CONTROL,
    874 					OTG_VTOTAL_MID_REPLACING_MAX_EN, 1,
    875 					OTG_VTOTAL_MID_FRAME_NUM,
    876 					(uint8_t)params->vertical_total_mid_frame_num);
    877 
    878 		}
    879 
    880 		REG_SET(OTG_V_TOTAL_MAX, 0,
    881 			OTG_V_TOTAL_MAX, params->vertical_total_max - 1);
    882 
    883 		REG_SET(OTG_V_TOTAL_MIN, 0,
    884 			OTG_V_TOTAL_MIN, params->vertical_total_min - 1);
    885 
    886 		REG_UPDATE_5(OTG_V_TOTAL_CONTROL,
    887 				OTG_V_TOTAL_MIN_SEL, 1,
    888 				OTG_V_TOTAL_MAX_SEL, 1,
    889 				OTG_FORCE_LOCK_ON_EVENT, 0,
    890 				OTG_SET_V_TOTAL_MIN_MASK_EN, 0,
    891 				OTG_SET_V_TOTAL_MIN_MASK, 0);
    892 
    893 		// Setup manual flow control for EOF via TRIG_A
    894 		optc->funcs->setup_manual_trigger(optc);
    895 
    896 	} else {
    897 		REG_UPDATE_4(OTG_V_TOTAL_CONTROL,
    898 				OTG_SET_V_TOTAL_MIN_MASK, 0,
    899 				OTG_V_TOTAL_MIN_SEL, 0,
    900 				OTG_V_TOTAL_MAX_SEL, 0,
    901 				OTG_FORCE_LOCK_ON_EVENT, 0);
    902 
    903 		REG_SET(OTG_V_TOTAL_MIN, 0,
    904 			OTG_V_TOTAL_MIN, 0);
    905 
    906 		REG_SET(OTG_V_TOTAL_MAX, 0,
    907 			OTG_V_TOTAL_MAX, 0);
    908 	}
    909 }
    910 
    911 static void optc1_set_test_pattern(
    912 	struct timing_generator *optc,
    913 	/* TODO: replace 'controller_dp_test_pattern' by 'test_pattern_mode'
    914 	 * because this is not DP-specific (which is probably somewhere in DP
    915 	 * encoder) */
    916 	enum controller_dp_test_pattern test_pattern,
    917 	enum dc_color_depth color_depth)
    918 {
    919 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
    920 	enum test_pattern_color_format bit_depth;
    921 	enum test_pattern_dyn_range dyn_range;
    922 	enum test_pattern_mode mode;
    923 	uint32_t pattern_mask;
    924 	uint32_t pattern_data;
    925 	/* color ramp generator mixes 16-bits color */
    926 	uint32_t src_bpc = 16;
    927 	/* requested bpc */
    928 	uint32_t dst_bpc;
    929 	uint32_t index;
    930 	/* RGB values of the color bars.
    931 	 * Produce two RGB colors: RGB0 - white (all Fs)
    932 	 * and RGB1 - black (all 0s)
    933 	 * (three RGB components for two colors)
    934 	 */
    935 	uint16_t src_color[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000,
    936 						0x0000, 0x0000};
    937 	/* dest color (converted to the specified color format) */
    938 	uint16_t dst_color[6];
    939 	uint32_t inc_base;
    940 
    941 	/* translate to bit depth */
    942 	switch (color_depth) {
    943 	case COLOR_DEPTH_666:
    944 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_6;
    945 	break;
    946 	case COLOR_DEPTH_888:
    947 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
    948 	break;
    949 	case COLOR_DEPTH_101010:
    950 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_10;
    951 	break;
    952 	case COLOR_DEPTH_121212:
    953 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_12;
    954 	break;
    955 	default:
    956 		bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
    957 	break;
    958 	}
    959 
    960 	switch (test_pattern) {
    961 	case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES:
    962 	case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA:
    963 	{
    964 		dyn_range = (test_pattern ==
    965 				CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA ?
    966 				TEST_PATTERN_DYN_RANGE_CEA :
    967 				TEST_PATTERN_DYN_RANGE_VESA);
    968 		mode = TEST_PATTERN_MODE_COLORSQUARES_RGB;
    969 
    970 		REG_UPDATE_2(OTG_TEST_PATTERN_PARAMETERS,
    971 				OTG_TEST_PATTERN_VRES, 6,
    972 				OTG_TEST_PATTERN_HRES, 6);
    973 
    974 		REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
    975 				OTG_TEST_PATTERN_EN, 1,
    976 				OTG_TEST_PATTERN_MODE, mode,
    977 				OTG_TEST_PATTERN_DYNAMIC_RANGE, dyn_range,
    978 				OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
    979 	}
    980 	break;
    981 
    982 	case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS:
    983 	case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS:
    984 	{
    985 		mode = (test_pattern ==
    986 			CONTROLLER_DP_TEST_PATTERN_VERTICALBARS ?
    987 			TEST_PATTERN_MODE_VERTICALBARS :
    988 			TEST_PATTERN_MODE_HORIZONTALBARS);
    989 
    990 		switch (bit_depth) {
    991 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
    992 			dst_bpc = 6;
    993 		break;
    994 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
    995 			dst_bpc = 8;
    996 		break;
    997 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
    998 			dst_bpc = 10;
    999 		break;
   1000 		default:
   1001 			dst_bpc = 8;
   1002 		break;
   1003 		}
   1004 
   1005 		/* adjust color to the required colorFormat */
   1006 		for (index = 0; index < 6; index++) {
   1007 			/* dst = 2^dstBpc * src / 2^srcBpc = src >>
   1008 			 * (srcBpc - dstBpc);
   1009 			 */
   1010 			dst_color[index] =
   1011 				src_color[index] >> (src_bpc - dst_bpc);
   1012 		/* CRTC_TEST_PATTERN_DATA has 16 bits,
   1013 		 * lowest 6 are hardwired to ZERO
   1014 		 * color bits should be left aligned aligned to MSB
   1015 		 * XXXXXXXXXX000000 for 10 bit,
   1016 		 * XXXXXXXX00000000 for 8 bit and XXXXXX0000000000 for 6
   1017 		 */
   1018 			dst_color[index] <<= (16 - dst_bpc);
   1019 		}
   1020 
   1021 		REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
   1022 
   1023 		/* We have to write the mask before data, similar to pipeline.
   1024 		 * For example, for 8 bpc, if we want RGB0 to be magenta,
   1025 		 * and RGB1 to be cyan,
   1026 		 * we need to make 7 writes:
   1027 		 * MASK   DATA
   1028 		 * 000001 00000000 00000000                     set mask to R0
   1029 		 * 000010 11111111 00000000     R0 255, 0xFF00, set mask to G0
   1030 		 * 000100 00000000 00000000     G0 0,   0x0000, set mask to B0
   1031 		 * 001000 11111111 00000000     B0 255, 0xFF00, set mask to R1
   1032 		 * 010000 00000000 00000000     R1 0,   0x0000, set mask to G1
   1033 		 * 100000 11111111 00000000     G1 255, 0xFF00, set mask to B1
   1034 		 * 100000 11111111 00000000     B1 255, 0xFF00
   1035 		 *
   1036 		 * we will make a loop of 6 in which we prepare the mask,
   1037 		 * then write, then prepare the color for next write.
   1038 		 * first iteration will write mask only,
   1039 		 * but each next iteration color prepared in
   1040 		 * previous iteration will be written within new mask,
   1041 		 * the last component will written separately,
   1042 		 * mask is not changing between 6th and 7th write
   1043 		 * and color will be prepared by last iteration
   1044 		 */
   1045 
   1046 		/* write color, color values mask in CRTC_TEST_PATTERN_MASK
   1047 		 * is B1, G1, R1, B0, G0, R0
   1048 		 */
   1049 		pattern_data = 0;
   1050 		for (index = 0; index < 6; index++) {
   1051 			/* prepare color mask, first write PATTERN_DATA
   1052 			 * will have all zeros
   1053 			 */
   1054 			pattern_mask = (1 << index);
   1055 
   1056 			/* write color component */
   1057 			REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
   1058 					OTG_TEST_PATTERN_MASK, pattern_mask,
   1059 					OTG_TEST_PATTERN_DATA, pattern_data);
   1060 
   1061 			/* prepare next color component,
   1062 			 * will be written in the next iteration
   1063 			 */
   1064 			pattern_data = dst_color[index];
   1065 		}
   1066 		/* write last color component,
   1067 		 * it's been already prepared in the loop
   1068 		 */
   1069 		REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
   1070 				OTG_TEST_PATTERN_MASK, pattern_mask,
   1071 				OTG_TEST_PATTERN_DATA, pattern_data);
   1072 
   1073 		/* enable test pattern */
   1074 		REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
   1075 				OTG_TEST_PATTERN_EN, 1,
   1076 				OTG_TEST_PATTERN_MODE, mode,
   1077 				OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
   1078 				OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
   1079 	}
   1080 	break;
   1081 
   1082 	case CONTROLLER_DP_TEST_PATTERN_COLORRAMP:
   1083 	{
   1084 		mode = (bit_depth ==
   1085 			TEST_PATTERN_COLOR_FORMAT_BPC_10 ?
   1086 			TEST_PATTERN_MODE_DUALRAMP_RGB :
   1087 			TEST_PATTERN_MODE_SINGLERAMP_RGB);
   1088 
   1089 		switch (bit_depth) {
   1090 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
   1091 			dst_bpc = 6;
   1092 		break;
   1093 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
   1094 			dst_bpc = 8;
   1095 		break;
   1096 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
   1097 			dst_bpc = 10;
   1098 		break;
   1099 		default:
   1100 			dst_bpc = 8;
   1101 		break;
   1102 		}
   1103 
   1104 		/* increment for the first ramp for one color gradation
   1105 		 * 1 gradation for 6-bit color is 2^10
   1106 		 * gradations in 16-bit color
   1107 		 */
   1108 		inc_base = (src_bpc - dst_bpc);
   1109 
   1110 		switch (bit_depth) {
   1111 		case TEST_PATTERN_COLOR_FORMAT_BPC_6:
   1112 		{
   1113 			REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
   1114 					OTG_TEST_PATTERN_INC0, inc_base,
   1115 					OTG_TEST_PATTERN_INC1, 0,
   1116 					OTG_TEST_PATTERN_HRES, 6,
   1117 					OTG_TEST_PATTERN_VRES, 6,
   1118 					OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
   1119 		}
   1120 		break;
   1121 		case TEST_PATTERN_COLOR_FORMAT_BPC_8:
   1122 		{
   1123 			REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
   1124 					OTG_TEST_PATTERN_INC0, inc_base,
   1125 					OTG_TEST_PATTERN_INC1, 0,
   1126 					OTG_TEST_PATTERN_HRES, 8,
   1127 					OTG_TEST_PATTERN_VRES, 6,
   1128 					OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
   1129 		}
   1130 		break;
   1131 		case TEST_PATTERN_COLOR_FORMAT_BPC_10:
   1132 		{
   1133 			REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
   1134 					OTG_TEST_PATTERN_INC0, inc_base,
   1135 					OTG_TEST_PATTERN_INC1, inc_base + 2,
   1136 					OTG_TEST_PATTERN_HRES, 8,
   1137 					OTG_TEST_PATTERN_VRES, 5,
   1138 					OTG_TEST_PATTERN_RAMP0_OFFSET, 384 << 6);
   1139 		}
   1140 		break;
   1141 		default:
   1142 		break;
   1143 		}
   1144 
   1145 		REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
   1146 
   1147 		/* enable test pattern */
   1148 		REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
   1149 
   1150 		REG_SET_4(OTG_TEST_PATTERN_CONTROL, 0,
   1151 				OTG_TEST_PATTERN_EN, 1,
   1152 				OTG_TEST_PATTERN_MODE, mode,
   1153 				OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
   1154 				OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
   1155 	}
   1156 	break;
   1157 	case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE:
   1158 	{
   1159 		REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
   1160 		REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
   1161 		REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
   1162 	}
   1163 	break;
   1164 	default:
   1165 		break;
   1166 
   1167 	}
   1168 }
   1169 
   1170 void optc1_get_crtc_scanoutpos(
   1171 	struct timing_generator *optc,
   1172 	uint32_t *v_blank_start,
   1173 	uint32_t *v_blank_end,
   1174 	uint32_t *h_position,
   1175 	uint32_t *v_position)
   1176 {
   1177 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
   1178 	struct crtc_position position;
   1179 
   1180 	REG_GET_2(OTG_V_BLANK_START_END,
   1181 			OTG_V_BLANK_START, v_blank_start,
   1182 			OTG_V_BLANK_END, v_blank_end);
   1183 
   1184 	optc1_get_position(optc, &position);
   1185 
   1186 	*h_position = position.horizontal_count;
   1187 	*v_position = position.vertical_count;
   1188 }
   1189 
   1190 static void optc1_enable_stereo(struct timing_generator *optc,
   1191 	const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags)
   1192 {
   1193 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
   1194 
   1195 	if (flags) {
   1196 		uint32_t stereo_en;
   1197 		stereo_en = flags->FRAME_PACKED == 0 ? 1 : 0;
   1198 
   1199 		if (flags->PROGRAM_STEREO)
   1200 			REG_UPDATE_3(OTG_STEREO_CONTROL,
   1201 				OTG_STEREO_EN, stereo_en,
   1202 				OTG_STEREO_SYNC_OUTPUT_LINE_NUM, 0,
   1203 				OTG_STEREO_SYNC_OUTPUT_POLARITY, 0);
   1204 
   1205 		if (flags->PROGRAM_POLARITY)
   1206 			REG_UPDATE(OTG_STEREO_CONTROL,
   1207 				OTG_STEREO_EYE_FLAG_POLARITY,
   1208 				flags->RIGHT_EYE_POLARITY == 0 ? 0 : 1);
   1209 
   1210 		if (flags->DISABLE_STEREO_DP_SYNC)
   1211 			REG_UPDATE(OTG_STEREO_CONTROL,
   1212 				OTG_DISABLE_STEREOSYNC_OUTPUT_FOR_DP, 1);
   1213 
   1214 		if (flags->PROGRAM_STEREO)
   1215 			REG_UPDATE_2(OTG_3D_STRUCTURE_CONTROL,
   1216 				OTG_3D_STRUCTURE_EN, flags->FRAME_PACKED,
   1217 				OTG_3D_STRUCTURE_STEREO_SEL_OVR, flags->FRAME_PACKED);
   1218 
   1219 	}
   1220 }
   1221 
   1222 void optc1_program_stereo(struct timing_generator *optc,
   1223 	const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags)
   1224 {
   1225 	if (flags->PROGRAM_STEREO)
   1226 		optc1_enable_stereo(optc, timing, flags);
   1227 	else
   1228 		optc1_disable_stereo(optc);
   1229 }
   1230 
   1231 
   1232 bool optc1_is_stereo_left_eye(struct timing_generator *optc)
   1233 {
   1234 	bool ret = false;
   1235 	uint32_t left_eye = 0;
   1236 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
   1237 
   1238 	REG_GET(OTG_STEREO_STATUS,
   1239 		OTG_STEREO_CURRENT_EYE, &left_eye);
   1240 	if (left_eye == 1)
   1241 		ret = true;
   1242 	else
   1243 		ret = false;
   1244 
   1245 	return ret;
   1246 }
   1247 
   1248 bool optc1_get_hw_timing(struct timing_generator *tg,
   1249 		struct dc_crtc_timing *hw_crtc_timing)
   1250 {
   1251 	struct dcn_otg_state s = {0};
   1252 
   1253 	if (tg == NULL || hw_crtc_timing == NULL)
   1254 		return false;
   1255 
   1256 	optc1_read_otg_state(DCN10TG_FROM_TG(tg), &s);
   1257 
   1258 	hw_crtc_timing->h_total = s.h_total + 1;
   1259 	hw_crtc_timing->h_addressable = s.h_total - ((s.h_total - s.h_blank_start) + s.h_blank_end);
   1260 	hw_crtc_timing->h_front_porch = s.h_total + 1 - s.h_blank_start;
   1261 	hw_crtc_timing->h_sync_width = s.h_sync_a_end - s.h_sync_a_start;
   1262 
   1263 	hw_crtc_timing->v_total = s.v_total + 1;
   1264 	hw_crtc_timing->v_addressable = s.v_total - ((s.v_total - s.v_blank_start) + s.v_blank_end);
   1265 	hw_crtc_timing->v_front_porch = s.v_total + 1 - s.v_blank_start;
   1266 	hw_crtc_timing->v_sync_width = s.v_sync_a_end - s.v_sync_a_start;
   1267 
   1268 	return true;
   1269 }
   1270 
   1271 
   1272 void optc1_read_otg_state(struct optc *optc1,
   1273 		struct dcn_otg_state *s)
   1274 {
   1275 	REG_GET(OTG_CONTROL,
   1276 			OTG_MASTER_EN, &s->otg_enabled);
   1277 
   1278 	REG_GET_2(OTG_V_BLANK_START_END,
   1279 			OTG_V_BLANK_START, &s->v_blank_start,
   1280 			OTG_V_BLANK_END, &s->v_blank_end);
   1281 
   1282 	REG_GET(OTG_V_SYNC_A_CNTL,
   1283 			OTG_V_SYNC_A_POL, &s->v_sync_a_pol);
   1284 
   1285 	REG_GET(OTG_V_TOTAL,
   1286 			OTG_V_TOTAL, &s->v_total);
   1287 
   1288 	REG_GET(OTG_V_TOTAL_MAX,
   1289 			OTG_V_TOTAL_MAX, &s->v_total_max);
   1290 
   1291 	REG_GET(OTG_V_TOTAL_MIN,
   1292 			OTG_V_TOTAL_MIN, &s->v_total_min);
   1293 
   1294 	REG_GET(OTG_V_TOTAL_CONTROL,
   1295 			OTG_V_TOTAL_MAX_SEL, &s->v_total_max_sel);
   1296 
   1297 	REG_GET(OTG_V_TOTAL_CONTROL,
   1298 			OTG_V_TOTAL_MIN_SEL, &s->v_total_min_sel);
   1299 
   1300 	REG_GET_2(OTG_V_SYNC_A,
   1301 			OTG_V_SYNC_A_START, &s->v_sync_a_start,
   1302 			OTG_V_SYNC_A_END, &s->v_sync_a_end);
   1303 
   1304 	REG_GET_2(OTG_H_BLANK_START_END,
   1305 			OTG_H_BLANK_START, &s->h_blank_start,
   1306 			OTG_H_BLANK_END, &s->h_blank_end);
   1307 
   1308 	REG_GET_2(OTG_H_SYNC_A,
   1309 			OTG_H_SYNC_A_START, &s->h_sync_a_start,
   1310 			OTG_H_SYNC_A_END, &s->h_sync_a_end);
   1311 
   1312 	REG_GET(OTG_H_SYNC_A_CNTL,
   1313 			OTG_H_SYNC_A_POL, &s->h_sync_a_pol);
   1314 
   1315 	REG_GET(OTG_H_TOTAL,
   1316 			OTG_H_TOTAL, &s->h_total);
   1317 
   1318 	REG_GET(OPTC_INPUT_GLOBAL_CONTROL,
   1319 			OPTC_UNDERFLOW_OCCURRED_STATUS, &s->underflow_occurred_status);
   1320 }
   1321 
   1322 bool optc1_get_otg_active_size(struct timing_generator *optc,
   1323 		uint32_t *otg_active_width,
   1324 		uint32_t *otg_active_height)
   1325 {
   1326 	uint32_t otg_enabled;
   1327 	uint32_t v_blank_start;
   1328 	uint32_t v_blank_end;
   1329 	uint32_t h_blank_start;
   1330 	uint32_t h_blank_end;
   1331 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
   1332 
   1333 
   1334 	REG_GET(OTG_CONTROL,
   1335 			OTG_MASTER_EN, &otg_enabled);
   1336 
   1337 	if (otg_enabled == 0)
   1338 		return false;
   1339 
   1340 	REG_GET_2(OTG_V_BLANK_START_END,
   1341 			OTG_V_BLANK_START, &v_blank_start,
   1342 			OTG_V_BLANK_END, &v_blank_end);
   1343 
   1344 	REG_GET_2(OTG_H_BLANK_START_END,
   1345 			OTG_H_BLANK_START, &h_blank_start,
   1346 			OTG_H_BLANK_END, &h_blank_end);
   1347 
   1348 	*otg_active_width = v_blank_start - v_blank_end;
   1349 	*otg_active_height = h_blank_start - h_blank_end;
   1350 	return true;
   1351 }
   1352 
   1353 void optc1_clear_optc_underflow(struct timing_generator *optc)
   1354 {
   1355 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
   1356 
   1357 	REG_UPDATE(OPTC_INPUT_GLOBAL_CONTROL, OPTC_UNDERFLOW_CLEAR, 1);
   1358 }
   1359 
   1360 void optc1_tg_init(struct timing_generator *optc)
   1361 {
   1362 	optc1_set_blank_data_double_buffer(optc, true);
   1363 	optc1_clear_optc_underflow(optc);
   1364 }
   1365 
   1366 bool optc1_is_tg_enabled(struct timing_generator *optc)
   1367 {
   1368 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
   1369 	uint32_t otg_enabled = 0;
   1370 
   1371 	REG_GET(OTG_CONTROL, OTG_MASTER_EN, &otg_enabled);
   1372 
   1373 	return (otg_enabled != 0);
   1374 
   1375 }
   1376 
   1377 bool optc1_is_optc_underflow_occurred(struct timing_generator *optc)
   1378 {
   1379 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
   1380 	uint32_t underflow_occurred = 0;
   1381 
   1382 	REG_GET(OPTC_INPUT_GLOBAL_CONTROL,
   1383 			OPTC_UNDERFLOW_OCCURRED_STATUS,
   1384 			&underflow_occurred);
   1385 
   1386 	return (underflow_occurred == 1);
   1387 }
   1388 
   1389 bool optc1_configure_crc(struct timing_generator *optc,
   1390 			  const struct crc_params *params)
   1391 {
   1392 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
   1393 
   1394 	/* Cannot configure crc on a CRTC that is disabled */
   1395 	if (!optc1_is_tg_enabled(optc))
   1396 		return false;
   1397 
   1398 	REG_WRITE(OTG_CRC_CNTL, 0);
   1399 
   1400 	if (!params->enable)
   1401 		return true;
   1402 
   1403 	/* Program frame boundaries */
   1404 	/* Window A x axis start and end. */
   1405 	REG_UPDATE_2(OTG_CRC0_WINDOWA_X_CONTROL,
   1406 			OTG_CRC0_WINDOWA_X_START, params->windowa_x_start,
   1407 			OTG_CRC0_WINDOWA_X_END, params->windowa_x_end);
   1408 
   1409 	/* Window A y axis start and end. */
   1410 	REG_UPDATE_2(OTG_CRC0_WINDOWA_Y_CONTROL,
   1411 			OTG_CRC0_WINDOWA_Y_START, params->windowa_y_start,
   1412 			OTG_CRC0_WINDOWA_Y_END, params->windowa_y_end);
   1413 
   1414 	/* Window B x axis start and end. */
   1415 	REG_UPDATE_2(OTG_CRC0_WINDOWB_X_CONTROL,
   1416 			OTG_CRC0_WINDOWB_X_START, params->windowb_x_start,
   1417 			OTG_CRC0_WINDOWB_X_END, params->windowb_x_end);
   1418 
   1419 	/* Window B y axis start and end. */
   1420 	REG_UPDATE_2(OTG_CRC0_WINDOWB_Y_CONTROL,
   1421 			OTG_CRC0_WINDOWB_Y_START, params->windowb_y_start,
   1422 			OTG_CRC0_WINDOWB_Y_END, params->windowb_y_end);
   1423 
   1424 	/* Set crc mode and selection, and enable. Only using CRC0*/
   1425 	REG_UPDATE_3(OTG_CRC_CNTL,
   1426 			OTG_CRC_CONT_EN, params->continuous_mode ? 1 : 0,
   1427 			OTG_CRC0_SELECT, params->selection,
   1428 			OTG_CRC_EN, 1);
   1429 
   1430 	return true;
   1431 }
   1432 
   1433 bool optc1_get_crc(struct timing_generator *optc,
   1434 		    uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
   1435 {
   1436 	uint32_t field = 0;
   1437 	struct optc *optc1 = DCN10TG_FROM_TG(optc);
   1438 
   1439 	REG_GET(OTG_CRC_CNTL, OTG_CRC_EN, &field);
   1440 
   1441 	/* Early return if CRC is not enabled for this CRTC */
   1442 	if (!field)
   1443 		return false;
   1444 
   1445 	REG_GET_2(OTG_CRC0_DATA_RG,
   1446 			CRC0_R_CR, r_cr,
   1447 			CRC0_G_Y, g_y);
   1448 
   1449 	REG_GET(OTG_CRC0_DATA_B,
   1450 			CRC0_B_CB, b_cb);
   1451 
   1452 	return true;
   1453 }
   1454 
   1455 static const struct timing_generator_funcs dcn10_tg_funcs = {
   1456 		.validate_timing = optc1_validate_timing,
   1457 		.program_timing = optc1_program_timing,
   1458 		.setup_vertical_interrupt0 = optc1_setup_vertical_interrupt0,
   1459 		.setup_vertical_interrupt1 = optc1_setup_vertical_interrupt1,
   1460 		.setup_vertical_interrupt2 = optc1_setup_vertical_interrupt2,
   1461 		.program_global_sync = optc1_program_global_sync,
   1462 		.enable_crtc = optc1_enable_crtc,
   1463 		.disable_crtc = optc1_disable_crtc,
   1464 		/* used by enable_timing_synchronization. Not need for FPGA */
   1465 		.is_counter_moving = optc1_is_counter_moving,
   1466 		.get_position = optc1_get_position,
   1467 		.get_frame_count = optc1_get_vblank_counter,
   1468 		.get_scanoutpos = optc1_get_crtc_scanoutpos,
   1469 		.get_otg_active_size = optc1_get_otg_active_size,
   1470 		.set_early_control = optc1_set_early_control,
   1471 		/* used by enable_timing_synchronization. Not need for FPGA */
   1472 		.wait_for_state = optc1_wait_for_state,
   1473 		.set_blank = optc1_set_blank,
   1474 		.is_blanked = optc1_is_blanked,
   1475 		.set_blank_color = optc1_program_blank_color,
   1476 		.did_triggered_reset_occur = optc1_did_triggered_reset_occur,
   1477 		.enable_reset_trigger = optc1_enable_reset_trigger,
   1478 		.enable_crtc_reset = optc1_enable_crtc_reset,
   1479 		.disable_reset_trigger = optc1_disable_reset_trigger,
   1480 		.lock = optc1_lock,
   1481 		.unlock = optc1_unlock,
   1482 		.enable_optc_clock = optc1_enable_optc_clock,
   1483 		.set_drr = optc1_set_drr,
   1484 		.set_static_screen_control = optc1_set_static_screen_control,
   1485 		.set_test_pattern = optc1_set_test_pattern,
   1486 		.program_stereo = optc1_program_stereo,
   1487 		.is_stereo_left_eye = optc1_is_stereo_left_eye,
   1488 		.set_blank_data_double_buffer = optc1_set_blank_data_double_buffer,
   1489 		.tg_init = optc1_tg_init,
   1490 		.is_tg_enabled = optc1_is_tg_enabled,
   1491 		.is_optc_underflow_occurred = optc1_is_optc_underflow_occurred,
   1492 		.clear_optc_underflow = optc1_clear_optc_underflow,
   1493 		.get_crc = optc1_get_crc,
   1494 		.configure_crc = optc1_configure_crc,
   1495 		.set_vtg_params = optc1_set_vtg_params,
   1496 		.program_manual_trigger = optc1_program_manual_trigger,
   1497 		.setup_manual_trigger = optc1_setup_manual_trigger,
   1498 		.get_hw_timing = optc1_get_hw_timing,
   1499 };
   1500 
   1501 void dcn10_timing_generator_init(struct optc *optc1)
   1502 {
   1503 	optc1->base.funcs = &dcn10_tg_funcs;
   1504 
   1505 	optc1->max_h_total = optc1->tg_mask->OTG_H_TOTAL + 1;
   1506 	optc1->max_v_total = optc1->tg_mask->OTG_V_TOTAL + 1;
   1507 
   1508 	optc1->min_h_blank = 32;
   1509 	optc1->min_v_blank = 3;
   1510 	optc1->min_v_blank_interlace = 5;
   1511 	optc1->min_h_sync_width = 8;
   1512 	optc1->min_v_sync_width = 1;
   1513 }
   1514 
   1515 /* "Containter" vs. "pixel" is a concept within HW blocks, mostly those closer to the back-end. It works like this:
   1516  *
   1517  * - In most of the formats (RGB or YCbCr 4:4:4, 4:2:2 uncompressed and DSC 4:2:2 Simple) pixel rate is the same as
   1518  *   containter rate.
   1519  *
   1520  * - In 4:2:0 (DSC or uncompressed) there are two pixels per container, hence the target container rate has to be
   1521  *   halved to maintain the correct pixel rate.
   1522  *
   1523  * - Unlike 4:2:2 uncompressed, DSC 4:2:2 Native also has two pixels per container (this happens when DSC is applied
   1524  *   to it) and has to be treated the same as 4:2:0, i.e. target containter rate has to be halved in this case as well.
   1525  *
   1526  */
   1527 bool optc1_is_two_pixels_per_containter(const struct dc_crtc_timing *timing)
   1528 {
   1529 	bool two_pix = timing->pixel_encoding == PIXEL_ENCODING_YCBCR420;
   1530 
   1531 	two_pix = two_pix || (timing->flags.DSC && timing->pixel_encoding == PIXEL_ENCODING_YCBCR422
   1532 			&& !timing->dsc_cfg.ycbcr422_simple);
   1533 	return two_pix;
   1534 }
   1535 
   1536