Home | History | Annotate | Line # | Download | only in safestack
      1 //===-- safestack.cc ------------------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the runtime support for the safe stack protection
     11 // mechanism. The runtime manages allocation/deallocation of the unsafe stack
     12 // for the main thread, as well as all pthreads that are created/destroyed
     13 // during program execution.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include <errno.h>
     18 #include <limits.h>
     19 #include <pthread.h>
     20 #include <stddef.h>
     21 #include <stdint.h>
     22 #include <unistd.h>
     23 #include <stdlib.h>
     24 #include <sys/resource.h>
     25 #include <sys/types.h>
     26 #if !defined(__NetBSD__)
     27 #include <sys/user.h>
     28 #endif
     29 
     30 #include "interception/interception.h"
     31 #include "sanitizer_common/sanitizer_common.h"
     32 
     33 // TODO: The runtime library does not currently protect the safe stack beyond
     34 // relying on the system-enforced ASLR. The protection of the (safe) stack can
     35 // be provided by three alternative features:
     36 //
     37 // 1) Protection via hardware segmentation on x86-32 and some x86-64
     38 // architectures: the (safe) stack segment (implicitly accessed via the %ss
     39 // segment register) can be separated from the data segment (implicitly
     40 // accessed via the %ds segment register). Dereferencing a pointer to the safe
     41 // segment would result in a segmentation fault.
     42 //
     43 // 2) Protection via software fault isolation: memory writes that are not meant
     44 // to access the safe stack can be prevented from doing so through runtime
     45 // instrumentation. One way to do it is to allocate the safe stack(s) in the
     46 // upper half of the userspace and bitmask the corresponding upper bit of the
     47 // memory addresses of memory writes that are not meant to access the safe
     48 // stack.
     49 //
     50 // 3) Protection via information hiding on 64 bit architectures: the location
     51 // of the safe stack(s) can be randomized through secure mechanisms, and the
     52 // leakage of the stack pointer can be prevented. Currently, libc can leak the
     53 // stack pointer in several ways (e.g. in longjmp, signal handling, user-level
     54 // context switching related functions, etc.). These can be fixed in libc and
     55 // in other low-level libraries, by either eliminating the escaping/dumping of
     56 // the stack pointer (i.e., %rsp) when that's possible, or by using
     57 // encryption/PTR_MANGLE (XOR-ing the dumped stack pointer with another secret
     58 // we control and protect better, as is already done for setjmp in glibc.)
     59 // Furthermore, a static machine code level verifier can be ran after code
     60 // generation to make sure that the stack pointer is never written to memory,
     61 // or if it is, its written on the safe stack.
     62 //
     63 // Finally, while the Unsafe Stack pointer is currently stored in a thread
     64 // local variable, with libc support it could be stored in the TCB (thread
     65 // control block) as well, eliminating another level of indirection and making
     66 // such accesses faster. Alternatively, dedicating a separate register for
     67 // storing it would also be possible.
     68 
     69 /// Minimum stack alignment for the unsafe stack.
     70 const unsigned kStackAlign = 16;
     71 
     72 /// Default size of the unsafe stack. This value is only used if the stack
     73 /// size rlimit is set to infinity.
     74 const unsigned kDefaultUnsafeStackSize = 0x2800000;
     75 
     76 /// Runtime page size obtained through sysconf
     77 static unsigned pageSize;
     78 
     79 // TODO: To make accessing the unsafe stack pointer faster, we plan to
     80 // eventually store it directly in the thread control block data structure on
     81 // platforms where this structure is pointed to by %fs or %gs. This is exactly
     82 // the same mechanism as currently being used by the traditional stack
     83 // protector pass to store the stack guard (see getStackCookieLocation()
     84 // function above). Doing so requires changing the tcbhead_t struct in glibc
     85 // on Linux and tcb struct in libc on FreeBSD.
     86 //
     87 // For now, store it in a thread-local variable.
     88 extern "C" {
     89 __attribute__((visibility(
     90     "default"))) __thread void *__safestack_unsafe_stack_ptr = nullptr;
     91 }
     92 
     93 // Per-thread unsafe stack information. It's not frequently accessed, so there
     94 // it can be kept out of the tcb in normal thread-local variables.
     95 static __thread void *unsafe_stack_start = nullptr;
     96 static __thread size_t unsafe_stack_size = 0;
     97 static __thread size_t unsafe_stack_guard = 0;
     98 
     99 using namespace __sanitizer;
    100 
    101 static inline void *unsafe_stack_alloc(size_t size, size_t guard) {
    102   CHECK_GE(size + guard, size);
    103   void *addr = MmapOrDie(size + guard, "unsafe_stack_alloc");
    104   MprotectNoAccess((uptr)addr, (uptr)guard);
    105   return (char *)addr + guard;
    106 }
    107 
    108 static inline void unsafe_stack_setup(void *start, size_t size, size_t guard) {
    109   CHECK_GE((char *)start + size, (char *)start);
    110   CHECK_GE((char *)start + guard, (char *)start);
    111   void *stack_ptr = (char *)start + size;
    112   CHECK_EQ((((size_t)stack_ptr) & (kStackAlign - 1)), 0);
    113 
    114   __safestack_unsafe_stack_ptr = stack_ptr;
    115   unsafe_stack_start = start;
    116   unsafe_stack_size = size;
    117   unsafe_stack_guard = guard;
    118 }
    119 
    120 /// Thread data for the cleanup handler
    121 static pthread_key_t thread_cleanup_key;
    122 
    123 /// Safe stack per-thread information passed to the thread_start function
    124 struct tinfo {
    125   void *(*start_routine)(void *);
    126   void *start_routine_arg;
    127 
    128   void *unsafe_stack_start;
    129   size_t unsafe_stack_size;
    130   size_t unsafe_stack_guard;
    131 };
    132 
    133 /// Wrap the thread function in order to deallocate the unsafe stack when the
    134 /// thread terminates by returning from its main function.
    135 static void *thread_start(void *arg) {
    136   struct tinfo *tinfo = (struct tinfo *)arg;
    137 
    138   void *(*start_routine)(void *) = tinfo->start_routine;
    139   void *start_routine_arg = tinfo->start_routine_arg;
    140 
    141   // Setup the unsafe stack; this will destroy tinfo content
    142   unsafe_stack_setup(tinfo->unsafe_stack_start, tinfo->unsafe_stack_size,
    143                      tinfo->unsafe_stack_guard);
    144 
    145   // Make sure out thread-specific destructor will be called
    146   pthread_setspecific(thread_cleanup_key, (void *)1);
    147 
    148   return start_routine(start_routine_arg);
    149 }
    150 
    151 /// Linked list used to store exiting threads stack/thread information.
    152 struct thread_stack_ll {
    153   struct thread_stack_ll *next;
    154   void *stack_base;
    155   size_t size;
    156   pid_t pid;
    157   tid_t tid;
    158 };
    159 
    160 /// Linked list of unsafe stacks for threads that are exiting. We delay
    161 /// unmapping them until the thread exits.
    162 static thread_stack_ll *thread_stacks = nullptr;
    163 static pthread_mutex_t thread_stacks_mutex = PTHREAD_MUTEX_INITIALIZER;
    164 
    165 /// Thread-specific data destructor. We want to free the unsafe stack only after
    166 /// this thread is terminated. libc can call functions in safestack-instrumented
    167 /// code (like free) after thread-specific data destructors have run.
    168 static void thread_cleanup_handler(void *_iter) {
    169   CHECK_NE(unsafe_stack_start, nullptr);
    170   pthread_setspecific(thread_cleanup_key, NULL);
    171 
    172   pthread_mutex_lock(&thread_stacks_mutex);
    173   // Temporary list to hold the previous threads stacks so we don't hold the
    174   // thread_stacks_mutex for long.
    175   thread_stack_ll *temp_stacks = thread_stacks;
    176   thread_stacks = nullptr;
    177   pthread_mutex_unlock(&thread_stacks_mutex);
    178 
    179   pid_t pid = getpid();
    180   tid_t tid = GetTid();
    181 
    182   // Free stacks for dead threads
    183   thread_stack_ll **stackp = &temp_stacks;
    184   while (*stackp) {
    185     thread_stack_ll *stack = *stackp;
    186     int error;
    187     if (stack->pid != pid ||
    188         (internal_iserror(TgKill(stack->pid, stack->tid, 0), &error) &&
    189          error == ESRCH)) {
    190       UnmapOrDie(stack->stack_base, stack->size);
    191       *stackp = stack->next;
    192       free(stack);
    193     } else
    194       stackp = &stack->next;
    195   }
    196 
    197   thread_stack_ll *cur_stack =
    198       (thread_stack_ll *)malloc(sizeof(thread_stack_ll));
    199   cur_stack->stack_base = (char *)unsafe_stack_start - unsafe_stack_guard;
    200   cur_stack->size = unsafe_stack_size + unsafe_stack_guard;
    201   cur_stack->pid = pid;
    202   cur_stack->tid = tid;
    203 
    204   pthread_mutex_lock(&thread_stacks_mutex);
    205   // Merge thread_stacks with the current thread's stack and any remaining
    206   // temp_stacks
    207   *stackp = thread_stacks;
    208   cur_stack->next = temp_stacks;
    209   thread_stacks = cur_stack;
    210   pthread_mutex_unlock(&thread_stacks_mutex);
    211 
    212   unsafe_stack_start = nullptr;
    213 }
    214 
    215 static void EnsureInterceptorsInitialized();
    216 
    217 /// Intercept thread creation operation to allocate and setup the unsafe stack
    218 INTERCEPTOR(int, pthread_create, pthread_t *thread,
    219             const pthread_attr_t *attr,
    220             void *(*start_routine)(void*), void *arg) {
    221   EnsureInterceptorsInitialized();
    222   size_t size = 0;
    223   size_t guard = 0;
    224 
    225   if (attr) {
    226     pthread_attr_getstacksize(attr, &size);
    227     pthread_attr_getguardsize(attr, &guard);
    228   } else {
    229     // get pthread default stack size
    230     pthread_attr_t tmpattr;
    231     pthread_attr_init(&tmpattr);
    232     pthread_attr_getstacksize(&tmpattr, &size);
    233     pthread_attr_getguardsize(&tmpattr, &guard);
    234     pthread_attr_destroy(&tmpattr);
    235   }
    236 
    237   CHECK_NE(size, 0);
    238   CHECK_EQ((size & (kStackAlign - 1)), 0);
    239   CHECK_EQ((guard & (pageSize - 1)), 0);
    240 
    241   void *addr = unsafe_stack_alloc(size, guard);
    242   struct tinfo *tinfo =
    243       (struct tinfo *)(((char *)addr) + size - sizeof(struct tinfo));
    244   tinfo->start_routine = start_routine;
    245   tinfo->start_routine_arg = arg;
    246   tinfo->unsafe_stack_start = addr;
    247   tinfo->unsafe_stack_size = size;
    248   tinfo->unsafe_stack_guard = guard;
    249 
    250   return REAL(pthread_create)(thread, attr, thread_start, tinfo);
    251 }
    252 
    253 static BlockingMutex interceptor_init_lock(LINKER_INITIALIZED);
    254 static bool interceptors_inited = false;
    255 
    256 static void EnsureInterceptorsInitialized() {
    257   BlockingMutexLock lock(&interceptor_init_lock);
    258   if (interceptors_inited) return;
    259 
    260   // Initialize pthread interceptors for thread allocation
    261   INTERCEPT_FUNCTION(pthread_create);
    262 
    263   interceptors_inited = true;
    264 }
    265 
    266 extern "C" __attribute__((visibility("default")))
    267 #if !SANITIZER_CAN_USE_PREINIT_ARRAY
    268 // On ELF platforms, the constructor is invoked using .preinit_array (see below)
    269 __attribute__((constructor(0)))
    270 #endif
    271 void __safestack_init() {
    272   // Determine the stack size for the main thread.
    273   size_t size = kDefaultUnsafeStackSize;
    274   size_t guard = 4096;
    275 
    276   struct rlimit limit;
    277   if (getrlimit(RLIMIT_STACK, &limit) == 0 && limit.rlim_cur != RLIM_INFINITY)
    278     size = limit.rlim_cur;
    279 
    280   // Allocate unsafe stack for main thread
    281   void *addr = unsafe_stack_alloc(size, guard);
    282 
    283   unsafe_stack_setup(addr, size, guard);
    284   pageSize = sysconf(_SC_PAGESIZE);
    285 
    286   // Setup the cleanup handler
    287   pthread_key_create(&thread_cleanup_key, thread_cleanup_handler);
    288 }
    289 
    290 #if SANITIZER_CAN_USE_PREINIT_ARRAY
    291 // On ELF platforms, run safestack initialization before any other constructors.
    292 // On other platforms we use the constructor attribute to arrange to run our
    293 // initialization early.
    294 extern "C" {
    295 __attribute__((section(".preinit_array"),
    296                used)) void (*__safestack_preinit)(void) = __safestack_init;
    297 }
    298 #endif
    299 
    300 extern "C"
    301     __attribute__((visibility("default"))) void *__get_unsafe_stack_bottom() {
    302   return unsafe_stack_start;
    303 }
    304 
    305 extern "C"
    306     __attribute__((visibility("default"))) void *__get_unsafe_stack_top() {
    307   return (char*)unsafe_stack_start + unsafe_stack_size;
    308 }
    309 
    310 extern "C"
    311     __attribute__((visibility("default"))) void *__get_unsafe_stack_start() {
    312   return unsafe_stack_start;
    313 }
    314 
    315 extern "C"
    316     __attribute__((visibility("default"))) void *__get_unsafe_stack_ptr() {
    317   return __safestack_unsafe_stack_ptr;
    318 }
    319