Home | History | Annotate | Line # | Download | only in net
      1 /*	$NetBSD: pf_norm.c,v 1.30 2023/08/07 23:28:58 mrg Exp $	*/
      2 /*	$OpenBSD: pf_norm.c,v 1.109 2007/05/28 17:16:39 henning Exp $ */
      3 
      4 /*
      5  * Copyright 2001 Niels Provos <provos (at) citi.umich.edu>
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 #include <sys/cdefs.h>
     30 __KERNEL_RCSID(0, "$NetBSD: pf_norm.c,v 1.30 2023/08/07 23:28:58 mrg Exp $");
     31 
     32 #ifdef _KERNEL_OPT
     33 #include "opt_inet.h"
     34 #endif
     35 
     36 #include "pflog.h"
     37 
     38 #include <sys/param.h>
     39 #include <sys/systm.h>
     40 #include <sys/mbuf.h>
     41 #include <sys/filio.h>
     42 #include <sys/fcntl.h>
     43 #include <sys/socket.h>
     44 #include <sys/kernel.h>
     45 #include <sys/time.h>
     46 #include <sys/pool.h>
     47 
     48 #ifdef __NetBSD__
     49 #include <sys/cprng.h>
     50 #else
     51 #include <dev/rndvar.h>
     52 #endif /* !__NetBSD__ */
     53 #include <net/if.h>
     54 #include <net/if_types.h>
     55 #include <net/bpf.h>
     56 #include <net/route.h>
     57 #include <net/if_pflog.h>
     58 
     59 #include <netinet/in.h>
     60 #include <netinet/in_var.h>
     61 #include <netinet/in_systm.h>
     62 #include <netinet/ip.h>
     63 #include <netinet/ip_var.h>
     64 #include <netinet/tcp.h>
     65 #include <netinet/tcp_seq.h>
     66 #include <netinet/udp.h>
     67 #include <netinet/ip_icmp.h>
     68 
     69 #ifdef INET6
     70 #include <netinet/ip6.h>
     71 #endif /* INET6 */
     72 
     73 #include <net/pfvar.h>
     74 
     75 struct pf_frent {
     76 	LIST_ENTRY(pf_frent) fr_next;
     77 	struct ip *fr_ip;
     78 	struct mbuf *fr_m;
     79 };
     80 
     81 struct pf_frcache {
     82 	LIST_ENTRY(pf_frcache) fr_next;
     83 	uint16_t	fr_off;
     84 	uint16_t	fr_end;
     85 };
     86 
     87 #define PFFRAG_SEENLAST	0x0001		/* Seen the last fragment for this */
     88 #define PFFRAG_NOBUFFER	0x0002		/* Non-buffering fragment cache */
     89 #define PFFRAG_DROP	0x0004		/* Drop all fragments */
     90 #define BUFFER_FRAGMENTS(fr)	(!((fr)->fr_flags & PFFRAG_NOBUFFER))
     91 
     92 struct pf_fragment {
     93 	RB_ENTRY(pf_fragment) fr_entry;
     94 	TAILQ_ENTRY(pf_fragment) frag_next;
     95 	struct in_addr	fr_src;
     96 	struct in_addr	fr_dst;
     97 	u_int8_t	fr_p;		/* protocol of this fragment */
     98 	u_int8_t	fr_flags;	/* status flags */
     99 	u_int16_t	fr_id;		/* fragment id for reassemble */
    100 	u_int16_t	fr_max;		/* fragment data max */
    101 	u_int32_t	fr_timeout;
    102 #define fr_queue	fr_u.fru_queue
    103 #define fr_cache	fr_u.fru_cache
    104 	union {
    105 		LIST_HEAD(pf_fragq, pf_frent) fru_queue;	/* buffering */
    106 		LIST_HEAD(pf_cacheq, pf_frcache) fru_cache;	/* non-buf */
    107 	} fr_u;
    108 };
    109 
    110 TAILQ_HEAD(pf_fragqueue, pf_fragment)	pf_fragqueue;
    111 TAILQ_HEAD(pf_cachequeue, pf_fragment)	pf_cachequeue;
    112 
    113 static __inline int	 pf_frag_compare(struct pf_fragment *,
    114 			    struct pf_fragment *);
    115 RB_HEAD(pf_frag_tree, pf_fragment)	pf_frag_tree, pf_cache_tree;
    116 RB_PROTOTYPE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
    117 RB_GENERATE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
    118 
    119 /* Private prototypes */
    120 void			 pf_ip2key(struct pf_fragment *, struct ip *);
    121 void			 pf_remove_fragment(struct pf_fragment *);
    122 void			 pf_flush_fragments(void);
    123 void			 pf_free_fragment(struct pf_fragment *);
    124 struct pf_fragment	*pf_find_fragment(struct ip *, struct pf_frag_tree *);
    125 struct mbuf		*pf_reassemble(struct mbuf **, struct pf_fragment **,
    126 			    struct pf_frent *, int);
    127 struct mbuf		*pf_fragcache(struct mbuf **, struct ip*,
    128 			    struct pf_fragment **, int, int, int *);
    129 int			 pf_normalize_tcpopt(struct pf_rule *, struct mbuf *,
    130 			    struct tcphdr *, int);
    131 
    132 #define	DPFPRINTF(x) do {				\
    133 	if (pf_status.debug >= PF_DEBUG_MISC) {		\
    134 		printf("%s: ", __func__);		\
    135 		printf x ;				\
    136 	}						\
    137 } while(0)
    138 
    139 /* Globals */
    140 struct pool		 pf_frent_pl, pf_frag_pl, pf_cache_pl, pf_cent_pl;
    141 struct pool		 pf_state_scrub_pl;
    142 int			 pf_nfrents, pf_ncache;
    143 
    144 void
    145 pf_normalize_init(void)
    146 {
    147 #ifdef __NetBSD__
    148 	pool_init(&pf_frent_pl, sizeof(struct pf_frent), 0, 0, 0, "pffrent",
    149 	    NULL, IPL_SOFTNET);
    150 	pool_init(&pf_frag_pl, sizeof(struct pf_fragment), 0, 0, 0, "pffrag",
    151 	    NULL, IPL_SOFTNET);
    152 	pool_init(&pf_cache_pl, sizeof(struct pf_fragment), 0, 0, 0,
    153 	    "pffrcache", NULL, IPL_SOFTNET);
    154 	pool_init(&pf_cent_pl, sizeof(struct pf_frcache), 0, 0, 0, "pffrcent",
    155 	    NULL, IPL_SOFTNET);
    156 	pool_init(&pf_state_scrub_pl, sizeof(struct pf_state_scrub), 0, 0, 0,
    157 	    "pfstscr", NULL, IPL_SOFTNET);
    158 #else
    159 	pool_init(&pf_frent_pl, sizeof(struct pf_frent), 0, 0, 0, "pffrent",
    160 	    NULL);
    161 	pool_init(&pf_frag_pl, sizeof(struct pf_fragment), 0, 0, 0, "pffrag",
    162 	    NULL);
    163 	pool_init(&pf_cache_pl, sizeof(struct pf_fragment), 0, 0, 0,
    164 	    "pffrcache", NULL);
    165 	pool_init(&pf_cent_pl, sizeof(struct pf_frcache), 0, 0, 0, "pffrcent",
    166 	    NULL);
    167 	pool_init(&pf_state_scrub_pl, sizeof(struct pf_state_scrub), 0, 0, 0,
    168 	    "pfstscr", NULL);
    169 #endif /* !__NetBSD__ */
    170 
    171 	pool_sethiwat(&pf_frag_pl, PFFRAG_FRAG_HIWAT);
    172 	pool_sethardlimit(&pf_frent_pl, PFFRAG_FRENT_HIWAT, NULL, 0);
    173 	pool_sethardlimit(&pf_cache_pl, PFFRAG_FRCACHE_HIWAT, NULL, 0);
    174 	pool_sethardlimit(&pf_cent_pl, PFFRAG_FRCENT_HIWAT, NULL, 0);
    175 
    176 	TAILQ_INIT(&pf_fragqueue);
    177 	TAILQ_INIT(&pf_cachequeue);
    178 }
    179 
    180 #ifdef _MODULE
    181 void
    182 pf_normalize_destroy(void)
    183 {
    184 	pool_destroy(&pf_state_scrub_pl);
    185 	pool_destroy(&pf_cent_pl);
    186 	pool_destroy(&pf_cache_pl);
    187 	pool_destroy(&pf_frag_pl);
    188 	pool_destroy(&pf_frent_pl);
    189 }
    190 #endif /* _MODULE */
    191 
    192 static __inline int
    193 pf_frag_compare(struct pf_fragment *a, struct pf_fragment *b)
    194 {
    195 	int	diff;
    196 
    197 	if ((diff = a->fr_id - b->fr_id))
    198 		return (diff);
    199 	else if ((diff = a->fr_p - b->fr_p))
    200 		return (diff);
    201 	else if (a->fr_src.s_addr < b->fr_src.s_addr)
    202 		return (-1);
    203 	else if (a->fr_src.s_addr > b->fr_src.s_addr)
    204 		return (1);
    205 	else if (a->fr_dst.s_addr < b->fr_dst.s_addr)
    206 		return (-1);
    207 	else if (a->fr_dst.s_addr > b->fr_dst.s_addr)
    208 		return (1);
    209 	return (0);
    210 }
    211 
    212 void
    213 pf_purge_expired_fragments(void)
    214 {
    215 	struct pf_fragment	*frag;
    216 	u_int32_t		 expire = time_second -
    217 				    pf_default_rule.timeout[PFTM_FRAG];
    218 
    219 	while ((frag = TAILQ_LAST(&pf_fragqueue, pf_fragqueue)) != NULL) {
    220 		KASSERT(BUFFER_FRAGMENTS(frag));
    221 		if (frag->fr_timeout > expire)
    222 			break;
    223 
    224 		DPFPRINTF(("expiring %d(%p)\n", frag->fr_id, frag));
    225 		pf_free_fragment(frag);
    226 	}
    227 
    228 	while ((frag = TAILQ_LAST(&pf_cachequeue, pf_cachequeue)) != NULL) {
    229 		KASSERT(!BUFFER_FRAGMENTS(frag));
    230 		if (frag->fr_timeout > expire)
    231 			break;
    232 
    233 		DPFPRINTF(("expiring %d(%p)\n", frag->fr_id, frag));
    234 		pf_free_fragment(frag);
    235 		KASSERT(TAILQ_EMPTY(&pf_cachequeue) ||
    236 		    TAILQ_LAST(&pf_cachequeue, pf_cachequeue) != frag);
    237 	}
    238 }
    239 
    240 /*
    241  * Try to flush old fragments to make space for new ones
    242  */
    243 
    244 void
    245 pf_flush_fragments(void)
    246 {
    247 	struct pf_fragment	*frag;
    248 	int			 goal;
    249 
    250 	goal = pf_nfrents * 9 / 10;
    251 	DPFPRINTF(("trying to free > %d frents\n",
    252 	    pf_nfrents - goal));
    253 	while (goal < pf_nfrents) {
    254 		frag = TAILQ_LAST(&pf_fragqueue, pf_fragqueue);
    255 		if (frag == NULL)
    256 			break;
    257 		pf_free_fragment(frag);
    258 	}
    259 
    260 
    261 	goal = pf_ncache * 9 / 10;
    262 	DPFPRINTF(("trying to free > %d cache entries\n",
    263 	    pf_ncache - goal));
    264 	while (goal < pf_ncache) {
    265 		frag = TAILQ_LAST(&pf_cachequeue, pf_cachequeue);
    266 		if (frag == NULL)
    267 			break;
    268 		pf_free_fragment(frag);
    269 	}
    270 }
    271 
    272 /* Frees the fragments and all associated entries */
    273 
    274 void
    275 pf_free_fragment(struct pf_fragment *frag)
    276 {
    277 	struct pf_frent		*frent;
    278 	struct pf_frcache	*frcache;
    279 
    280 	/* Free all fragments */
    281 	if (BUFFER_FRAGMENTS(frag)) {
    282 		for (frent = LIST_FIRST(&frag->fr_queue); frent;
    283 		    frent = LIST_FIRST(&frag->fr_queue)) {
    284 			LIST_REMOVE(frent, fr_next);
    285 
    286 			m_freem(frent->fr_m);
    287 			pool_put(&pf_frent_pl, frent);
    288 			pf_nfrents--;
    289 		}
    290 	} else {
    291 		for (frcache = LIST_FIRST(&frag->fr_cache); frcache;
    292 		    frcache = LIST_FIRST(&frag->fr_cache)) {
    293 			LIST_REMOVE(frcache, fr_next);
    294 
    295 			KASSERT(LIST_EMPTY(&frag->fr_cache) ||
    296 			    LIST_FIRST(&frag->fr_cache)->fr_off >
    297 			    frcache->fr_end);
    298 
    299 			pool_put(&pf_cent_pl, frcache);
    300 			pf_ncache--;
    301 		}
    302 	}
    303 
    304 	pf_remove_fragment(frag);
    305 }
    306 
    307 void
    308 pf_ip2key(struct pf_fragment *key, struct ip *ip)
    309 {
    310 	key->fr_p = ip->ip_p;
    311 	key->fr_id = ip->ip_id;
    312 	key->fr_src.s_addr = ip->ip_src.s_addr;
    313 	key->fr_dst.s_addr = ip->ip_dst.s_addr;
    314 }
    315 
    316 struct pf_fragment *
    317 pf_find_fragment(struct ip *ip, struct pf_frag_tree *tree)
    318 {
    319 	struct pf_fragment	 key;
    320 	struct pf_fragment	*frag;
    321 
    322 	pf_ip2key(&key, ip);
    323 
    324 	frag = RB_FIND(pf_frag_tree, tree, &key);
    325 	if (frag != NULL) {
    326 		/* XXX Are we sure we want to update the timeout? */
    327 		frag->fr_timeout = time_second;
    328 		if (BUFFER_FRAGMENTS(frag)) {
    329 			TAILQ_REMOVE(&pf_fragqueue, frag, frag_next);
    330 			TAILQ_INSERT_HEAD(&pf_fragqueue, frag, frag_next);
    331 		} else {
    332 			TAILQ_REMOVE(&pf_cachequeue, frag, frag_next);
    333 			TAILQ_INSERT_HEAD(&pf_cachequeue, frag, frag_next);
    334 		}
    335 	}
    336 
    337 	return (frag);
    338 }
    339 
    340 /* Removes a fragment from the fragment queue and frees the fragment */
    341 
    342 void
    343 pf_remove_fragment(struct pf_fragment *frag)
    344 {
    345 	if (BUFFER_FRAGMENTS(frag)) {
    346 		RB_REMOVE(pf_frag_tree, &pf_frag_tree, frag);
    347 		TAILQ_REMOVE(&pf_fragqueue, frag, frag_next);
    348 		pool_put(&pf_frag_pl, frag);
    349 	} else {
    350 		RB_REMOVE(pf_frag_tree, &pf_cache_tree, frag);
    351 		TAILQ_REMOVE(&pf_cachequeue, frag, frag_next);
    352 		pool_put(&pf_cache_pl, frag);
    353 	}
    354 }
    355 
    356 #define FR_IP_OFF(fr)	((ntohs((fr)->fr_ip->ip_off) & IP_OFFMASK) << 3)
    357 struct mbuf *
    358 pf_reassemble(struct mbuf **m0, struct pf_fragment **frag,
    359     struct pf_frent *frent, int mff)
    360 {
    361 	struct mbuf	*m = *m0, *m2;
    362 	struct pf_frent	*frea, *next;
    363 	struct pf_frent	*frep = NULL;
    364 	struct ip	*ip = frent->fr_ip;
    365 	int		 hlen = ip->ip_hl << 2;
    366 	u_int16_t	 off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
    367 	u_int16_t	 ip_len = ntohs(ip->ip_len) - ip->ip_hl * 4;
    368 	u_int16_t	 frmax = ip_len + off;
    369 
    370 	KASSERT(*frag == NULL || BUFFER_FRAGMENTS(*frag));
    371 
    372 	/* Strip off ip header */
    373 	m->m_data += hlen;
    374 	m->m_len -= hlen;
    375 
    376 	/* Create a new reassembly queue for this packet */
    377 	if (*frag == NULL) {
    378 		*frag = pool_get(&pf_frag_pl, PR_NOWAIT);
    379 		if (*frag == NULL) {
    380 			pf_flush_fragments();
    381 			*frag = pool_get(&pf_frag_pl, PR_NOWAIT);
    382 			if (*frag == NULL)
    383 				goto drop_fragment;
    384 		}
    385 
    386 		(*frag)->fr_flags = 0;
    387 		(*frag)->fr_max = 0;
    388 		(*frag)->fr_src = frent->fr_ip->ip_src;
    389 		(*frag)->fr_dst = frent->fr_ip->ip_dst;
    390 		(*frag)->fr_p = frent->fr_ip->ip_p;
    391 		(*frag)->fr_id = frent->fr_ip->ip_id;
    392 		(*frag)->fr_timeout = time_second;
    393 		LIST_INIT(&(*frag)->fr_queue);
    394 
    395 		RB_INSERT(pf_frag_tree, &pf_frag_tree, *frag);
    396 		TAILQ_INSERT_HEAD(&pf_fragqueue, *frag, frag_next);
    397 
    398 		/* We do not have a previous fragment */
    399 		frep = NULL;
    400 		goto insert;
    401 	}
    402 
    403 	/*
    404 	 * Find a fragment after the current one:
    405 	 *  - off contains the real shifted offset.
    406 	 */
    407 	LIST_FOREACH(frea, &(*frag)->fr_queue, fr_next) {
    408 		if (FR_IP_OFF(frea) > off)
    409 			break;
    410 		frep = frea;
    411 	}
    412 
    413 	KASSERT(frep != NULL || frea != NULL);
    414 
    415 	if (frep != NULL &&
    416 	    FR_IP_OFF(frep) + ntohs(frep->fr_ip->ip_len) - frep->fr_ip->ip_hl *
    417 	    4 > off)
    418 	{
    419 		u_int16_t	precut;
    420 
    421 		precut = FR_IP_OFF(frep) + ntohs(frep->fr_ip->ip_len) -
    422 		    frep->fr_ip->ip_hl * 4 - off;
    423 		if (precut >= ip_len)
    424 			goto drop_fragment;
    425 		m_adj(frent->fr_m, precut);
    426 		DPFPRINTF(("overlap -%d\n", precut));
    427 		/* Enforce 8 byte boundaries */
    428 		ip->ip_off = htons(ntohs(ip->ip_off) + (precut >> 3));
    429 		off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
    430 		ip_len -= precut;
    431 		ip->ip_len = htons(ip_len);
    432 	}
    433 
    434 	for (; frea != NULL && ip_len + off > FR_IP_OFF(frea);
    435 	    frea = next)
    436 	{
    437 		u_int16_t	aftercut;
    438 
    439 		aftercut = ip_len + off - FR_IP_OFF(frea);
    440 		DPFPRINTF(("adjust overlap %d\n", aftercut));
    441 		if (aftercut < ntohs(frea->fr_ip->ip_len) - frea->fr_ip->ip_hl
    442 		    * 4)
    443 		{
    444 			frea->fr_ip->ip_len =
    445 			    htons(ntohs(frea->fr_ip->ip_len) - aftercut);
    446 			frea->fr_ip->ip_off = htons(ntohs(frea->fr_ip->ip_off) +
    447 			    (aftercut >> 3));
    448 			m_adj(frea->fr_m, aftercut);
    449 			break;
    450 		}
    451 
    452 		/* This fragment is completely overlapped, lose it */
    453 		next = LIST_NEXT(frea, fr_next);
    454 		m_freem(frea->fr_m);
    455 		LIST_REMOVE(frea, fr_next);
    456 		pool_put(&pf_frent_pl, frea);
    457 		pf_nfrents--;
    458 	}
    459 
    460  insert:
    461 	/* Update maximum data size */
    462 	if ((*frag)->fr_max < frmax)
    463 		(*frag)->fr_max = frmax;
    464 	/* This is the last segment */
    465 	if (!mff)
    466 		(*frag)->fr_flags |= PFFRAG_SEENLAST;
    467 
    468 	if (frep == NULL)
    469 		LIST_INSERT_HEAD(&(*frag)->fr_queue, frent, fr_next);
    470 	else
    471 		LIST_INSERT_AFTER(frep, frent, fr_next);
    472 
    473 	/* Check if we are completely reassembled */
    474 	if (!((*frag)->fr_flags & PFFRAG_SEENLAST))
    475 		return (NULL);
    476 
    477 	/* Check if we have all the data */
    478 	off = 0;
    479 	for (frep = LIST_FIRST(&(*frag)->fr_queue); frep; frep = next) {
    480 		next = LIST_NEXT(frep, fr_next);
    481 
    482 		off += ntohs(frep->fr_ip->ip_len) - frep->fr_ip->ip_hl * 4;
    483 		if (off < (*frag)->fr_max &&
    484 		    (next == NULL || FR_IP_OFF(next) != off))
    485 		{
    486 			DPFPRINTF(("missing fragment at %d, next %d, max %d\n",
    487 			    off, next == NULL ? -1 : FR_IP_OFF(next),
    488 			    (*frag)->fr_max));
    489 			return (NULL);
    490 		}
    491 	}
    492 	DPFPRINTF(("%d < %d?\n", off, (*frag)->fr_max));
    493 	if (off < (*frag)->fr_max)
    494 		return (NULL);
    495 
    496 	/* We have all the data */
    497 	frent = LIST_FIRST(&(*frag)->fr_queue);
    498 	KASSERT(frent != NULL);
    499 	if ((frent->fr_ip->ip_hl << 2) + off > IP_MAXPACKET) {
    500 		DPFPRINTF(("drop: too big: %d\n", off));
    501 		pf_free_fragment(*frag);
    502 		*frag = NULL;
    503 		return (NULL);
    504 	}
    505 	next = LIST_NEXT(frent, fr_next);
    506 
    507 	/* Magic from ip_input */
    508 	ip = frent->fr_ip;
    509 	m = frent->fr_m;
    510 	m2 = m->m_next;
    511 	m->m_next = NULL;
    512 	m_cat(m, m2);
    513 	pool_put(&pf_frent_pl, frent);
    514 	pf_nfrents--;
    515 	for (frent = next; frent != NULL; frent = next) {
    516 		next = LIST_NEXT(frent, fr_next);
    517 
    518 		m2 = frent->fr_m;
    519 		pool_put(&pf_frent_pl, frent);
    520 		pf_nfrents--;
    521 		m_cat(m, m2);
    522 	}
    523 
    524 	ip->ip_src = (*frag)->fr_src;
    525 	ip->ip_dst = (*frag)->fr_dst;
    526 
    527 	/* Remove from fragment queue */
    528 	pf_remove_fragment(*frag);
    529 	*frag = NULL;
    530 
    531 	hlen = ip->ip_hl << 2;
    532 	ip->ip_len = htons(off + hlen);
    533 	m->m_len += hlen;
    534 	m->m_data -= hlen;
    535 
    536 	/* some debugging cruft by sklower, below, will go away soon */
    537 	/* XXX this should be done elsewhere */
    538 	if (m->m_flags & M_PKTHDR) {
    539 		int plen = 0;
    540 		for (m2 = m; m2; m2 = m2->m_next)
    541 			plen += m2->m_len;
    542 		m->m_pkthdr.len = plen;
    543 #ifdef __NetBSD__
    544 		m->m_pkthdr.csum_flags = 0;
    545 #endif /* __NetBSD__ */
    546 	}
    547 
    548 	DPFPRINTF(("complete: %p(%d)\n", m, ntohs(ip->ip_len)));
    549 	return (m);
    550 
    551  drop_fragment:
    552 	/* Oops - fail safe - drop packet */
    553 	pool_put(&pf_frent_pl, frent);
    554 	pf_nfrents--;
    555 	m_freem(m);
    556 	return (NULL);
    557 }
    558 
    559 struct mbuf *
    560 pf_fragcache(struct mbuf **m0, struct ip *h, struct pf_fragment **frag, int mff,
    561     int drop, int *nomem)
    562 {
    563 	struct mbuf		*m = *m0;
    564 	struct pf_frcache	*frp, *fra, *cur = NULL;
    565 	int			 ip_len = ntohs(h->ip_len) - (h->ip_hl << 2);
    566 	u_int16_t		 off = ntohs(h->ip_off) << 3;
    567 	u_int16_t		 frmax = ip_len + off;
    568 	int			 hosed = 0;
    569 
    570 	KASSERT(*frag == NULL || !BUFFER_FRAGMENTS(*frag));
    571 
    572 	/* Create a new range queue for this packet */
    573 	if (*frag == NULL) {
    574 		*frag = pool_get(&pf_cache_pl, PR_NOWAIT);
    575 		if (*frag == NULL) {
    576 			pf_flush_fragments();
    577 			*frag = pool_get(&pf_cache_pl, PR_NOWAIT);
    578 			if (*frag == NULL)
    579 				goto no_mem;
    580 		}
    581 
    582 		/* Get an entry for the queue */
    583 		cur = pool_get(&pf_cent_pl, PR_NOWAIT);
    584 		if (cur == NULL) {
    585 			pool_put(&pf_cache_pl, *frag);
    586 			*frag = NULL;
    587 			goto no_mem;
    588 		}
    589 		pf_ncache++;
    590 
    591 		(*frag)->fr_flags = PFFRAG_NOBUFFER;
    592 		(*frag)->fr_max = 0;
    593 		(*frag)->fr_src = h->ip_src;
    594 		(*frag)->fr_dst = h->ip_dst;
    595 		(*frag)->fr_p = h->ip_p;
    596 		(*frag)->fr_id = h->ip_id;
    597 		(*frag)->fr_timeout = time_second;
    598 
    599 		cur->fr_off = off;
    600 		cur->fr_end = frmax;
    601 		LIST_INIT(&(*frag)->fr_cache);
    602 		LIST_INSERT_HEAD(&(*frag)->fr_cache, cur, fr_next);
    603 
    604 		RB_INSERT(pf_frag_tree, &pf_cache_tree, *frag);
    605 		TAILQ_INSERT_HEAD(&pf_cachequeue, *frag, frag_next);
    606 
    607 		DPFPRINTF(("fragcache[%d]: new %d-%d\n", h->ip_id, off, frmax));
    608 
    609 		goto pass;
    610 	}
    611 
    612 	/*
    613 	 * Find a fragment after the current one:
    614 	 *  - off contains the real shifted offset.
    615 	 */
    616 	frp = NULL;
    617 	LIST_FOREACH(fra, &(*frag)->fr_cache, fr_next) {
    618 		if (fra->fr_off > off)
    619 			break;
    620 		frp = fra;
    621 	}
    622 
    623 	KASSERT(frp != NULL || fra != NULL);
    624 
    625 	if (frp != NULL) {
    626 		int	precut;
    627 
    628 		precut = frp->fr_end - off;
    629 		if (precut >= ip_len) {
    630 			/* Fragment is entirely a duplicate */
    631 			DPFPRINTF(("fragcache[%d]: dead (%d-%d) %d-%d\n",
    632 			    h->ip_id, frp->fr_off, frp->fr_end, off, frmax));
    633 			goto drop_fragment;
    634 		}
    635 		if (precut == 0) {
    636 			/* They are adjacent.  Fixup cache entry */
    637 			DPFPRINTF(("fragcache[%d]: adjacent (%d-%d) %d-%d\n",
    638 			    h->ip_id, frp->fr_off, frp->fr_end, off, frmax));
    639 			frp->fr_end = frmax;
    640 		} else if (precut > 0) {
    641 			/* The first part of this payload overlaps with a
    642 			 * fragment that has already been passed.
    643 			 * Need to trim off the first part of the payload.
    644 			 * But to do so easily, we need to create another
    645 			 * mbuf to throw the original header into.
    646 			 */
    647 
    648 			DPFPRINTF(("fragcache[%d]: chop %d (%d-%d) %d-%d\n",
    649 			    h->ip_id, precut, frp->fr_off, frp->fr_end, off,
    650 			    frmax));
    651 
    652 			off += precut;
    653 			frmax -= precut;
    654 			/* Update the previous frag to encompass this one */
    655 			frp->fr_end = frmax;
    656 
    657 			if (!drop) {
    658 				/* XXX Optimization opportunity
    659 				 * This is a very heavy way to trim the payload.
    660 				 * we could do it much faster by diddling mbuf
    661 				 * internals but that would be even less legible
    662 				 * than this mbuf magic.  For my next trick,
    663 				 * I'll pull a rabbit out of my laptop.
    664 				 */
    665 				*m0 = m_dup(m, 0, h->ip_hl << 2, M_NOWAIT);
    666 				if (*m0 == NULL)
    667 					goto no_mem;
    668 				KASSERT((*m0)->m_next == NULL);
    669 				m_adj(m, precut + (h->ip_hl << 2));
    670 				m_cat(*m0, m);
    671 				m = *m0;
    672 				if (m->m_flags & M_PKTHDR) {
    673 					int plen = 0;
    674 					struct mbuf *t;
    675 					for (t = m; t; t = t->m_next)
    676 						plen += t->m_len;
    677 					m->m_pkthdr.len = plen;
    678 				}
    679 
    680 
    681 				h = mtod(m, struct ip *);
    682 
    683 
    684 				KASSERT((int)m->m_len ==
    685 				    ntohs(h->ip_len) - precut);
    686 				h->ip_off = htons(ntohs(h->ip_off) +
    687 				    (precut >> 3));
    688 				h->ip_len = htons(ntohs(h->ip_len) - precut);
    689 			} else {
    690 				hosed++;
    691 			}
    692 		} else {
    693 			/* There is a gap between fragments */
    694 
    695 			DPFPRINTF(("fragcache[%d]: gap %d (%d-%d) %d-%d\n",
    696 			    h->ip_id, -precut, frp->fr_off, frp->fr_end, off,
    697 			    frmax));
    698 
    699 			cur = pool_get(&pf_cent_pl, PR_NOWAIT);
    700 			if (cur == NULL)
    701 				goto no_mem;
    702 			pf_ncache++;
    703 
    704 			cur->fr_off = off;
    705 			cur->fr_end = frmax;
    706 			LIST_INSERT_AFTER(frp, cur, fr_next);
    707 		}
    708 	}
    709 
    710 	if (fra != NULL) {
    711 		int	aftercut;
    712 		int	merge = 0;
    713 
    714 		aftercut = frmax - fra->fr_off;
    715 		if (aftercut == 0) {
    716 			/* Adjacent fragments */
    717 			DPFPRINTF(("fragcache[%d]: adjacent %d-%d (%d-%d)\n",
    718 			    h->ip_id, off, frmax, fra->fr_off, fra->fr_end));
    719 			fra->fr_off = off;
    720 			merge = 1;
    721 		} else if (aftercut > 0) {
    722 			/* Need to chop off the tail of this fragment */
    723 			DPFPRINTF(("fragcache[%d]: chop %d %d-%d (%d-%d)\n",
    724 			    h->ip_id, aftercut, off, frmax, fra->fr_off,
    725 			    fra->fr_end));
    726 			fra->fr_off = off;
    727 			frmax -= aftercut;
    728 
    729 			merge = 1;
    730 
    731 			if (!drop) {
    732 				m_adj(m, -aftercut);
    733 				if (m->m_flags & M_PKTHDR) {
    734 					int plen = 0;
    735 					struct mbuf *t;
    736 					for (t = m; t; t = t->m_next)
    737 						plen += t->m_len;
    738 					m->m_pkthdr.len = plen;
    739 				}
    740 				h = mtod(m, struct ip *);
    741 				KASSERT((int)m->m_len ==
    742 				    ntohs(h->ip_len) - aftercut);
    743 				h->ip_len = htons(ntohs(h->ip_len) - aftercut);
    744 			} else {
    745 				hosed++;
    746 			}
    747 		} else if (frp == NULL) {
    748 			/* There is a gap between fragments */
    749 			DPFPRINTF(("fragcache[%d]: gap %d %d-%d (%d-%d)\n",
    750 			    h->ip_id, -aftercut, off, frmax, fra->fr_off,
    751 			    fra->fr_end));
    752 
    753 			cur = pool_get(&pf_cent_pl, PR_NOWAIT);
    754 			if (cur == NULL)
    755 				goto no_mem;
    756 			pf_ncache++;
    757 
    758 			cur->fr_off = off;
    759 			cur->fr_end = frmax;
    760 			LIST_INSERT_BEFORE(fra, cur, fr_next);
    761 		}
    762 
    763 
    764 		/* Need to glue together two separate fragment descriptors */
    765 		if (merge) {
    766 			if (cur && fra->fr_off <= cur->fr_end) {
    767 				/* Need to merge in a previous 'cur' */
    768 				DPFPRINTF(("fragcache[%d]: adjacent(merge "
    769 				    "%d-%d) %d-%d (%d-%d)\n",
    770 				    h->ip_id, cur->fr_off, cur->fr_end, off,
    771 				    frmax, fra->fr_off, fra->fr_end));
    772 				fra->fr_off = cur->fr_off;
    773 				LIST_REMOVE(cur, fr_next);
    774 				pool_put(&pf_cent_pl, cur);
    775 				pf_ncache--;
    776 				cur = NULL;
    777 
    778 			} else if (frp && fra->fr_off <= frp->fr_end) {
    779 				/* Need to merge in a modified 'frp' */
    780 				KASSERT(cur == NULL);
    781 				DPFPRINTF(("fragcache[%d]: adjacent(merge "
    782 				    "%d-%d) %d-%d (%d-%d)\n",
    783 				    h->ip_id, frp->fr_off, frp->fr_end, off,
    784 				    frmax, fra->fr_off, fra->fr_end));
    785 				fra->fr_off = frp->fr_off;
    786 				LIST_REMOVE(frp, fr_next);
    787 				pool_put(&pf_cent_pl, frp);
    788 				pf_ncache--;
    789 				frp = NULL;
    790 
    791 			}
    792 		}
    793 	}
    794 
    795 	if (hosed) {
    796 		/*
    797 		 * We must keep tracking the overall fragment even when
    798 		 * we're going to drop it anyway so that we know when to
    799 		 * free the overall descriptor.  Thus we drop the frag late.
    800 		 */
    801 		goto drop_fragment;
    802 	}
    803 
    804 
    805  pass:
    806 	/* Update maximum data size */
    807 	if ((*frag)->fr_max < frmax)
    808 		(*frag)->fr_max = frmax;
    809 
    810 	/* This is the last segment */
    811 	if (!mff)
    812 		(*frag)->fr_flags |= PFFRAG_SEENLAST;
    813 
    814 	/* Check if we are completely reassembled */
    815 	if (((*frag)->fr_flags & PFFRAG_SEENLAST) &&
    816 	    LIST_FIRST(&(*frag)->fr_cache)->fr_off == 0 &&
    817 	    LIST_FIRST(&(*frag)->fr_cache)->fr_end == (*frag)->fr_max) {
    818 		/* Remove from fragment queue */
    819 		DPFPRINTF(("fragcache[%d]: done 0-%d\n", h->ip_id,
    820 		    (*frag)->fr_max));
    821 		pf_free_fragment(*frag);
    822 		*frag = NULL;
    823 	}
    824 
    825 	return (m);
    826 
    827  no_mem:
    828 	*nomem = 1;
    829 
    830 	/* Still need to pay attention to !IP_MF */
    831 	if (!mff && *frag != NULL)
    832 		(*frag)->fr_flags |= PFFRAG_SEENLAST;
    833 
    834 	m_freem(m);
    835 	return (NULL);
    836 
    837  drop_fragment:
    838 
    839 	/* Still need to pay attention to !IP_MF */
    840 	if (!mff && *frag != NULL)
    841 		(*frag)->fr_flags |= PFFRAG_SEENLAST;
    842 
    843 	if (drop) {
    844 		/* This fragment has been deemed bad.  Don't reass */
    845 		if (((*frag)->fr_flags & PFFRAG_DROP) == 0)
    846 			DPFPRINTF(("fragcache[%d]: dropping overall fragment\n",
    847 			    h->ip_id));
    848 		(*frag)->fr_flags |= PFFRAG_DROP;
    849 	}
    850 
    851 	m_freem(m);
    852 	return (NULL);
    853 }
    854 
    855 int
    856 pf_normalize_ip(struct mbuf **m0, int dir, struct pfi_kif *kif, u_short *reason,
    857     struct pf_pdesc *pd)
    858 {
    859 	struct mbuf		*m = *m0;
    860 	struct pf_rule		*r;
    861 	struct pf_frent		*frent;
    862 	struct pf_fragment	*frag = NULL;
    863 	struct ip		*h = mtod(m, struct ip *);
    864 	int			 mff = (ntohs(h->ip_off) & IP_MF);
    865 	int			 hlen = h->ip_hl << 2;
    866 	u_int16_t		 fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
    867 	u_int16_t		 frmax;
    868 	int			 ip_len;
    869 
    870 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
    871 	while (r != NULL) {
    872 		r->evaluations++;
    873 		if (pfi_kif_match(r->kif, kif) == r->ifnot)
    874 			r = r->skip[PF_SKIP_IFP].ptr;
    875 		else if (r->direction && r->direction != dir)
    876 			r = r->skip[PF_SKIP_DIR].ptr;
    877 		else if (r->af && r->af != AF_INET)
    878 			r = r->skip[PF_SKIP_AF].ptr;
    879 		else if (r->proto && r->proto != h->ip_p)
    880 			r = r->skip[PF_SKIP_PROTO].ptr;
    881 		else if (PF_MISMATCHAW(&r->src.addr,
    882 		    (struct pf_addr *)&h->ip_src.s_addr, AF_INET,
    883 		    r->src.neg, kif))
    884 			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
    885 		else if (PF_MISMATCHAW(&r->dst.addr,
    886 		    (struct pf_addr *)&h->ip_dst.s_addr, AF_INET,
    887 		    r->dst.neg, NULL))
    888 			r = r->skip[PF_SKIP_DST_ADDR].ptr;
    889 		else
    890 			break;
    891 	}
    892 
    893 	if (r == NULL || r->action == PF_NOSCRUB)
    894 		return (PF_PASS);
    895 	else {
    896 		r->packets[dir == PF_OUT]++;
    897 		r->bytes[dir == PF_OUT] += pd->tot_len;
    898 	}
    899 
    900 	/* Check for illegal packets */
    901 	if (hlen < (int)sizeof(struct ip))
    902 		goto drop;
    903 
    904 	if (hlen > ntohs(h->ip_len))
    905 		goto drop;
    906 
    907 	/* Clear IP_DF if the rule uses the no-df option */
    908 	if (r->rule_flag & PFRULE_NODF && h->ip_off & htons(IP_DF)) {
    909 		u_int16_t off = h->ip_off;
    910 
    911 		h->ip_off &= htons(~IP_DF);
    912 		h->ip_sum = pf_cksum_fixup(h->ip_sum, off, h->ip_off, 0);
    913 	}
    914 
    915 	/* We will need other tests here */
    916 	if (!fragoff && !mff)
    917 		goto no_fragment;
    918 
    919 	/* We're dealing with a fragment now. Don't allow fragments
    920 	 * with IP_DF to enter the cache. If the flag was cleared by
    921 	 * no-df above, fine. Otherwise drop it.
    922 	 */
    923 	if (h->ip_off & htons(IP_DF)) {
    924 		DPFPRINTF(("IP_DF\n"));
    925 		goto bad;
    926 	}
    927 
    928 	ip_len = ntohs(h->ip_len) - hlen;
    929 
    930 	/* All fragments are 8 byte aligned */
    931 	if (mff && (ip_len & 0x7)) {
    932 		DPFPRINTF(("mff and %d\n", ip_len));
    933 		goto bad;
    934 	}
    935 
    936 	/* Respect maximum length */
    937 	if (fragoff + ip_len > IP_MAXPACKET) {
    938 		DPFPRINTF(("max packet %d\n", fragoff + ip_len));
    939 		goto bad;
    940 	}
    941 	frmax = fragoff + ip_len;
    942 
    943 	if ((r->rule_flag & (PFRULE_FRAGCROP|PFRULE_FRAGDROP)) == 0) {
    944 		/* Fully buffer all of the fragments */
    945 
    946 		frag = pf_find_fragment(h, &pf_frag_tree);
    947 
    948 		/* Check if we saw the last fragment already */
    949 		if (frag != NULL && (frag->fr_flags & PFFRAG_SEENLAST) &&
    950 		    frmax > frag->fr_max)
    951 			goto bad;
    952 
    953 		/* Get an entry for the fragment queue */
    954 		frent = pool_get(&pf_frent_pl, PR_NOWAIT);
    955 		if (frent == NULL) {
    956 			REASON_SET(reason, PFRES_MEMORY);
    957 			return (PF_DROP);
    958 		}
    959 		pf_nfrents++;
    960 		frent->fr_ip = h;
    961 		frent->fr_m = m;
    962 
    963 		/* Might return a completely reassembled mbuf, or NULL */
    964 		DPFPRINTF(("reass frag %d @ %d-%d\n", h->ip_id, fragoff, frmax));
    965 		*m0 = m = pf_reassemble(m0, &frag, frent, mff);
    966 
    967 		if (m == NULL)
    968 			return (PF_DROP);
    969 
    970 		if (frag != NULL && (frag->fr_flags & PFFRAG_DROP))
    971 			goto drop;
    972 
    973 		h = mtod(m, struct ip *);
    974 	} else {
    975 		/* non-buffering fragment cache (drops or masks overlaps) */
    976 		int	nomem = 0;
    977 
    978 #ifdef __NetBSD__
    979 		struct pf_mtag *pf_mtag = pf_find_mtag(m);
    980 		KASSERT(pf_mtag != NULL);
    981 
    982 		if (dir == PF_OUT && pf_mtag->flags & PF_TAG_FRAGCACHE) {
    983 #else
    984 		if (dir == PF_OUT && m->m_pkthdr.pf.flags & PF_TAG_FRAGCACHE) {
    985 #endif /* !__NetBSD__ */
    986 			/*
    987 			 * Already passed the fragment cache in the
    988 			 * input direction.  If we continued, it would
    989 			 * appear to be a dup and would be dropped.
    990 			 */
    991 			goto fragment_pass;
    992 		}
    993 
    994 		frag = pf_find_fragment(h, &pf_cache_tree);
    995 
    996 		/* Check if we saw the last fragment already */
    997 		if (frag != NULL && (frag->fr_flags & PFFRAG_SEENLAST) &&
    998 		    frmax > frag->fr_max) {
    999 			if (r->rule_flag & PFRULE_FRAGDROP)
   1000 				frag->fr_flags |= PFFRAG_DROP;
   1001 			goto bad;
   1002 		}
   1003 
   1004 		*m0 = m = pf_fragcache(m0, h, &frag, mff,
   1005 		    (r->rule_flag & PFRULE_FRAGDROP) ? 1 : 0, &nomem);
   1006 		if (m == NULL) {
   1007 			if (nomem)
   1008 				goto no_mem;
   1009 			goto drop;
   1010 		}
   1011 
   1012 		if (dir == PF_IN)
   1013 #ifdef __NetBSD__
   1014 		{
   1015 			pf_mtag = pf_find_mtag(m);
   1016 			KASSERT(pf_mtag != NULL);
   1017 
   1018 			pf_mtag->flags |= PF_TAG_FRAGCACHE;
   1019 		}
   1020 #else
   1021 			m->m_pkthdr.pf.flags |= PF_TAG_FRAGCACHE;
   1022 #endif /* !__NetBSD__ */
   1023 
   1024 		if (frag != NULL && (frag->fr_flags & PFFRAG_DROP))
   1025 			goto drop;
   1026 		goto fragment_pass;
   1027 	}
   1028 
   1029  no_fragment:
   1030 	/* At this point, only IP_DF is allowed in ip_off */
   1031 	if (h->ip_off & ~htons(IP_DF)) {
   1032 		u_int16_t off = h->ip_off;
   1033 
   1034 		h->ip_off &= htons(IP_DF);
   1035 		h->ip_sum = pf_cksum_fixup(h->ip_sum, off, h->ip_off, 0);
   1036 	}
   1037 
   1038 	/* Enforce a minimum ttl, may cause endless packet loops */
   1039 	if (r->min_ttl && h->ip_ttl < r->min_ttl) {
   1040 		u_int16_t ip_ttl = h->ip_ttl;
   1041 
   1042 		h->ip_ttl = r->min_ttl;
   1043 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_ttl, h->ip_ttl, 0);
   1044 	}
   1045 
   1046 	if (r->rule_flag & PFRULE_RANDOMID) {
   1047 		u_int16_t id = h->ip_id;
   1048 
   1049 		h->ip_id = ip_randomid();
   1050 		h->ip_sum = pf_cksum_fixup(h->ip_sum, id, h->ip_id, 0);
   1051 	}
   1052 	if ((r->rule_flag & (PFRULE_FRAGCROP|PFRULE_FRAGDROP)) == 0)
   1053 		pd->flags |= PFDESC_IP_REAS;
   1054 
   1055 	return (PF_PASS);
   1056 
   1057  fragment_pass:
   1058 	/* Enforce a minimum ttl, may cause endless packet loops */
   1059 	if (r->min_ttl && h->ip_ttl < r->min_ttl) {
   1060 		u_int16_t ip_ttl = h->ip_ttl;
   1061 
   1062 		h->ip_ttl = r->min_ttl;
   1063 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_ttl, h->ip_ttl, 0);
   1064 	}
   1065 	if ((r->rule_flag & (PFRULE_FRAGCROP|PFRULE_FRAGDROP)) == 0)
   1066 		pd->flags |= PFDESC_IP_REAS;
   1067 	return (PF_PASS);
   1068 
   1069  no_mem:
   1070 	REASON_SET(reason, PFRES_MEMORY);
   1071 	if (r != NULL && r->log)
   1072 		PFLOG_PACKET(kif, h, m, AF_INET, dir, *reason, r, NULL, NULL, pd);
   1073 	return (PF_DROP);
   1074 
   1075  drop:
   1076 	REASON_SET(reason, PFRES_NORM);
   1077 	if (r != NULL && r->log)
   1078 		PFLOG_PACKET(kif, h, m, AF_INET, dir, *reason, r, NULL, NULL, pd);
   1079 	return (PF_DROP);
   1080 
   1081  bad:
   1082 	DPFPRINTF(("dropping bad fragment\n"));
   1083 
   1084 	/* Free associated fragments */
   1085 	if (frag != NULL)
   1086 		pf_free_fragment(frag);
   1087 
   1088 	REASON_SET(reason, PFRES_FRAG);
   1089 	if (r != NULL && r->log)
   1090 		PFLOG_PACKET(kif, h, m, AF_INET, dir, *reason, r, NULL, NULL, pd);
   1091 
   1092 	return (PF_DROP);
   1093 }
   1094 
   1095 #ifdef INET6
   1096 int
   1097 pf_normalize_ip6(struct mbuf **m0, int dir, struct pfi_kif *kif,
   1098     u_short *reason, struct pf_pdesc *pd)
   1099 {
   1100 	struct mbuf		*m = *m0;
   1101 	struct pf_rule		*r;
   1102 	struct ip6_hdr		*h = mtod(m, struct ip6_hdr *);
   1103 	int			 off;
   1104 	struct ip6_ext		 ext;
   1105 	struct ip6_opt		 opt;
   1106 	struct ip6_opt_jumbo	 jumbo;
   1107 	struct ip6_frag		 frag;
   1108 	u_int32_t		 jumbolen = 0, plen;
   1109 	u_int16_t		 fragoff = 0;
   1110 	int			 optend;
   1111 	int			 ooff;
   1112 	u_int8_t		 proto;
   1113 	int			 terminal;
   1114 
   1115 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
   1116 	while (r != NULL) {
   1117 		r->evaluations++;
   1118 		if (pfi_kif_match(r->kif, kif) == r->ifnot)
   1119 			r = r->skip[PF_SKIP_IFP].ptr;
   1120 		else if (r->direction && r->direction != dir)
   1121 			r = r->skip[PF_SKIP_DIR].ptr;
   1122 		else if (r->af && r->af != AF_INET6)
   1123 			r = r->skip[PF_SKIP_AF].ptr;
   1124 #if 0 /* header chain! */
   1125 		else if (r->proto && r->proto != h->ip6_nxt)
   1126 			r = r->skip[PF_SKIP_PROTO].ptr;
   1127 #endif
   1128 		else if (PF_MISMATCHAW(&r->src.addr,
   1129 		    (struct pf_addr *)&h->ip6_src, AF_INET6,
   1130 		    r->src.neg, kif))
   1131 			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
   1132 		else if (PF_MISMATCHAW(&r->dst.addr,
   1133 		    (struct pf_addr *)&h->ip6_dst, AF_INET6,
   1134 		    r->dst.neg, NULL))
   1135 			r = r->skip[PF_SKIP_DST_ADDR].ptr;
   1136 		else
   1137 			break;
   1138 	}
   1139 
   1140 	if (r == NULL || r->action == PF_NOSCRUB)
   1141 		return (PF_PASS);
   1142 	else {
   1143 		r->packets[dir == PF_OUT]++;
   1144 		r->bytes[dir == PF_OUT] += pd->tot_len;
   1145 	}
   1146 
   1147 	/* Check for illegal packets */
   1148 	if (sizeof(struct ip6_hdr) + IPV6_MAXPACKET < m->m_pkthdr.len)
   1149 		goto drop;
   1150 
   1151 	off = sizeof(struct ip6_hdr);
   1152 	proto = h->ip6_nxt;
   1153 	terminal = 0;
   1154 	do {
   1155 		switch (proto) {
   1156 		case IPPROTO_FRAGMENT:
   1157 			goto fragment;
   1158 			break;
   1159 		case IPPROTO_AH:
   1160 		case IPPROTO_ROUTING:
   1161 		case IPPROTO_DSTOPTS:
   1162 			if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
   1163 			    NULL, AF_INET6))
   1164 				goto shortpkt;
   1165 			if (proto == IPPROTO_AH)
   1166 				off += (ext.ip6e_len + 2) * 4;
   1167 			else
   1168 				off += (ext.ip6e_len + 1) * 8;
   1169 			proto = ext.ip6e_nxt;
   1170 			break;
   1171 		case IPPROTO_HOPOPTS:
   1172 			if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
   1173 			    NULL, AF_INET6))
   1174 				goto shortpkt;
   1175 			optend = off + (ext.ip6e_len + 1) * 8;
   1176 			ooff = off + sizeof(ext);
   1177 			do {
   1178 				if (!pf_pull_hdr(m, ooff, &opt.ip6o_type,
   1179 				    sizeof(opt.ip6o_type), NULL, NULL,
   1180 				    AF_INET6))
   1181 					goto shortpkt;
   1182 				if (opt.ip6o_type == IP6OPT_PAD1) {
   1183 					ooff++;
   1184 					continue;
   1185 				}
   1186 				if (!pf_pull_hdr(m, ooff, &opt, sizeof(opt),
   1187 				    NULL, NULL, AF_INET6))
   1188 					goto shortpkt;
   1189 				if (ooff + sizeof(opt) + opt.ip6o_len > optend)
   1190 					goto drop;
   1191 				switch (opt.ip6o_type) {
   1192 				case IP6OPT_JUMBO:
   1193 					if (h->ip6_plen != 0)
   1194 						goto drop;
   1195 					if (!pf_pull_hdr(m, ooff, &jumbo,
   1196 					    sizeof(jumbo), NULL, NULL,
   1197 					    AF_INET6))
   1198 						goto shortpkt;
   1199 					memcpy(&jumbolen, jumbo.ip6oj_jumbo_len,
   1200 					    sizeof(jumbolen));
   1201 					jumbolen = ntohl(jumbolen);
   1202 					if (jumbolen <= IPV6_MAXPACKET)
   1203 						goto drop;
   1204 					if (sizeof(struct ip6_hdr) + jumbolen !=
   1205 					    m->m_pkthdr.len)
   1206 						goto drop;
   1207 					break;
   1208 				default:
   1209 					break;
   1210 				}
   1211 				ooff += sizeof(opt) + opt.ip6o_len;
   1212 			} while (ooff < optend);
   1213 
   1214 			off = optend;
   1215 			proto = ext.ip6e_nxt;
   1216 			break;
   1217 		default:
   1218 			terminal = 1;
   1219 			break;
   1220 		}
   1221 	} while (!terminal);
   1222 
   1223 	/* jumbo payload option must be present, or plen > 0 */
   1224 	if (ntohs(h->ip6_plen) == 0)
   1225 		plen = jumbolen;
   1226 	else
   1227 		plen = ntohs(h->ip6_plen);
   1228 	if (plen == 0)
   1229 		goto drop;
   1230 	if (sizeof(struct ip6_hdr) + plen > m->m_pkthdr.len)
   1231 		goto shortpkt;
   1232 
   1233 	/* Enforce a minimum ttl, may cause endless packet loops */
   1234 	if (r->min_ttl && h->ip6_hlim < r->min_ttl)
   1235 		h->ip6_hlim = r->min_ttl;
   1236 
   1237 	return (PF_PASS);
   1238 
   1239  fragment:
   1240 	if (ntohs(h->ip6_plen) == 0 || jumbolen)
   1241 		goto drop;
   1242 	plen = ntohs(h->ip6_plen);
   1243 
   1244 	if (!pf_pull_hdr(m, off, &frag, sizeof(frag), NULL, NULL, AF_INET6))
   1245 		goto shortpkt;
   1246 	fragoff = ntohs(frag.ip6f_offlg & IP6F_OFF_MASK);
   1247 	if (fragoff + (plen - off - sizeof(frag)) > IPV6_MAXPACKET)
   1248 		goto badfrag;
   1249 
   1250 	/* do something about it */
   1251 	/* remember to set pd->flags |= PFDESC_IP_REAS */
   1252 	return (PF_PASS);
   1253 
   1254  shortpkt:
   1255 	REASON_SET(reason, PFRES_SHORT);
   1256 	if (r != NULL && r->log)
   1257 		PFLOG_PACKET(kif, h, m, AF_INET6, dir, *reason, r, NULL, NULL, pd);
   1258 	return (PF_DROP);
   1259 
   1260  drop:
   1261 	REASON_SET(reason, PFRES_NORM);
   1262 	if (r != NULL && r->log)
   1263 		PFLOG_PACKET(kif, h, m, AF_INET6, dir, *reason, r, NULL, NULL, pd);
   1264 	return (PF_DROP);
   1265 
   1266  badfrag:
   1267 	REASON_SET(reason, PFRES_FRAG);
   1268 	if (r != NULL && r->log)
   1269 		PFLOG_PACKET(kif, h, m, AF_INET6, dir, *reason, r, NULL, NULL, pd);
   1270 	return (PF_DROP);
   1271 }
   1272 #endif /* INET6 */
   1273 
   1274 int
   1275 pf_normalize_tcp(int dir, struct pfi_kif *kif, struct mbuf *m,
   1276     int ipoff, int off, void *h, struct pf_pdesc *pd)
   1277 {
   1278 	struct pf_rule	*r, *rm = NULL;
   1279 	struct tcphdr	*th = pd->hdr.tcp;
   1280 	int		 rewrite = 0;
   1281 	u_short		 reason;
   1282 	u_int8_t	 flags;
   1283 	sa_family_t	 af = pd->af;
   1284 
   1285 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
   1286 	while (r != NULL) {
   1287 		r->evaluations++;
   1288 		if (pfi_kif_match(r->kif, kif) == r->ifnot)
   1289 			r = r->skip[PF_SKIP_IFP].ptr;
   1290 		else if (r->direction && r->direction != dir)
   1291 			r = r->skip[PF_SKIP_DIR].ptr;
   1292 		else if (r->af && r->af != af)
   1293 			r = r->skip[PF_SKIP_AF].ptr;
   1294 		else if (r->proto && r->proto != pd->proto)
   1295 			r = r->skip[PF_SKIP_PROTO].ptr;
   1296 		else if (PF_MISMATCHAW(&r->src.addr, pd->src, af,
   1297 		    r->src.neg, kif))
   1298 			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
   1299 		else if (r->src.port_op && !pf_match_port(r->src.port_op,
   1300 			    r->src.port[0], r->src.port[1], th->th_sport))
   1301 			r = r->skip[PF_SKIP_SRC_PORT].ptr;
   1302 		else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af,
   1303 		    r->dst.neg, NULL))
   1304 			r = r->skip[PF_SKIP_DST_ADDR].ptr;
   1305 		else if (r->dst.port_op && !pf_match_port(r->dst.port_op,
   1306 			    r->dst.port[0], r->dst.port[1], th->th_dport))
   1307 			r = r->skip[PF_SKIP_DST_PORT].ptr;
   1308 		else if (r->os_fingerprint != PF_OSFP_ANY && !pf_osfp_match(
   1309 			    pf_osfp_fingerprint(pd, m, off, th),
   1310 			    r->os_fingerprint))
   1311 			r = TAILQ_NEXT(r, entries);
   1312 		else {
   1313 			rm = r;
   1314 			break;
   1315 		}
   1316 	}
   1317 
   1318 	if (rm == NULL || rm->action == PF_NOSCRUB)
   1319 		return (PF_PASS);
   1320 	else {
   1321 		r->packets[dir == PF_OUT]++;
   1322 		r->bytes[dir == PF_OUT] += pd->tot_len;
   1323 	}
   1324 
   1325 	if (rm->rule_flag & PFRULE_REASSEMBLE_TCP)
   1326 		pd->flags |= PFDESC_TCP_NORM;
   1327 
   1328 	flags = th->th_flags;
   1329 	if (flags & TH_SYN) {
   1330 		/* Illegal packet */
   1331 		if (flags & TH_RST)
   1332 			goto tcp_drop;
   1333 
   1334 		if (flags & TH_FIN)
   1335 			flags &= ~TH_FIN;
   1336 	} else {
   1337 		/* Illegal packet */
   1338 		if (!(flags & (TH_ACK|TH_RST)))
   1339 			goto tcp_drop;
   1340 	}
   1341 
   1342 	if (!(flags & TH_ACK)) {
   1343 		/* These flags are only valid if ACK is set */
   1344 		if ((flags & TH_FIN) || (flags & TH_PUSH) || (flags & TH_URG))
   1345 			goto tcp_drop;
   1346 	}
   1347 
   1348 	/* Check for illegal header length */
   1349 	if (th->th_off < (sizeof(struct tcphdr) >> 2))
   1350 		goto tcp_drop;
   1351 
   1352 	/* If flags changed, or reserved data set, then adjust */
   1353 	if (flags != th->th_flags || th->th_x2 != 0) {
   1354 		u_int16_t	ov, nv;
   1355 
   1356 		ov = *(u_int16_t *)(&th->th_ack + 1);
   1357 		th->th_flags = flags;
   1358 		th->th_x2 = 0;
   1359 		nv = *(u_int16_t *)(&th->th_ack + 1);
   1360 
   1361 		th->th_sum = pf_cksum_fixup(th->th_sum, ov, nv, 0);
   1362 		rewrite = 1;
   1363 	}
   1364 
   1365 	/* Remove urgent pointer, if TH_URG is not set */
   1366 	if (!(flags & TH_URG) && th->th_urp) {
   1367 		th->th_sum = pf_cksum_fixup(th->th_sum, th->th_urp, 0, 0);
   1368 		th->th_urp = 0;
   1369 		rewrite = 1;
   1370 	}
   1371 
   1372 	/* Process options */
   1373 	if (r->max_mss && pf_normalize_tcpopt(r, m, th, off))
   1374 		rewrite = 1;
   1375 
   1376 	/* copy back packet headers if we sanitized */
   1377 	if (rewrite)
   1378 		m_copyback(m, off, sizeof(*th), th);
   1379 
   1380 	return (PF_PASS);
   1381 
   1382  tcp_drop:
   1383 	REASON_SET_NOPTR(&reason, PFRES_NORM);
   1384 	if (rm != NULL && r->log)
   1385 		PFLOG_PACKET(kif, h, m, AF_INET, dir, reason, r, NULL, NULL, pd);
   1386 	return (PF_DROP);
   1387 }
   1388 
   1389 int
   1390 pf_normalize_tcp_init(struct mbuf *m, int off, struct pf_pdesc *pd,
   1391     struct tcphdr *th, struct pf_state_peer *src,
   1392     struct pf_state_peer *dst)
   1393 {
   1394 	u_int32_t tsval, tsecr;
   1395 	u_int8_t hdr[60];
   1396 	u_int8_t *opt;
   1397 
   1398 	KASSERT(src->scrub == NULL);
   1399 
   1400 	src->scrub = pool_get(&pf_state_scrub_pl, PR_NOWAIT);
   1401 	if (src->scrub == NULL)
   1402 		return (1);
   1403 	bzero(src->scrub, sizeof(*src->scrub));
   1404 
   1405 	switch (pd->af) {
   1406 #ifdef INET
   1407 	case AF_INET: {
   1408 		struct ip *h = mtod(m, struct ip *);
   1409 		src->scrub->pfss_ttl = h->ip_ttl;
   1410 		break;
   1411 	}
   1412 #endif /* INET */
   1413 #ifdef INET6
   1414 	case AF_INET6: {
   1415 		struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
   1416 		src->scrub->pfss_ttl = h->ip6_hlim;
   1417 		break;
   1418 	}
   1419 #endif /* INET6 */
   1420 	}
   1421 
   1422 
   1423 	/*
   1424 	 * All normalizations below are only begun if we see the start of
   1425 	 * the connections.  They must all set an enabled bit in pfss_flags
   1426 	 */
   1427 	if ((th->th_flags & TH_SYN) == 0)
   1428 		return (0);
   1429 
   1430 
   1431 	if (th->th_off > (sizeof(struct tcphdr) >> 2) && src->scrub &&
   1432 	    pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
   1433 		/* Diddle with TCP options */
   1434 		int hlen;
   1435 		opt = hdr + sizeof(struct tcphdr);
   1436 		hlen = (th->th_off << 2) - sizeof(struct tcphdr);
   1437 		while (hlen >= TCPOLEN_TIMESTAMP) {
   1438 			switch (*opt) {
   1439 			case TCPOPT_EOL:	/* FALLTHROUGH */
   1440 			case TCPOPT_NOP:
   1441 				opt++;
   1442 				hlen--;
   1443 				break;
   1444 			case TCPOPT_TIMESTAMP:
   1445 				if (opt[1] >= TCPOLEN_TIMESTAMP) {
   1446 					src->scrub->pfss_flags |=
   1447 					    PFSS_TIMESTAMP;
   1448 					src->scrub->pfss_ts_mod =
   1449 					    htonl(cprng_fast32());
   1450 
   1451 					/* note PFSS_PAWS not set yet */
   1452 					memcpy(&tsval, &opt[2],
   1453 					    sizeof(u_int32_t));
   1454 					memcpy(&tsecr, &opt[6],
   1455 					    sizeof(u_int32_t));
   1456 					src->scrub->pfss_tsval0 = ntohl(tsval);
   1457 					src->scrub->pfss_tsval = ntohl(tsval);
   1458 					src->scrub->pfss_tsecr = ntohl(tsecr);
   1459 					getmicrouptime(&src->scrub->pfss_last);
   1460 				}
   1461 				/* FALLTHROUGH */
   1462 			default:
   1463 				hlen -= MAX(opt[1], 2);
   1464 				opt += MAX(opt[1], 2);
   1465 				break;
   1466 			}
   1467 		}
   1468 	}
   1469 
   1470 	return (0);
   1471 }
   1472 
   1473 void
   1474 pf_normalize_tcp_cleanup(struct pf_state *state)
   1475 {
   1476 	if (state->src.scrub)
   1477 		pool_put(&pf_state_scrub_pl, state->src.scrub);
   1478 	if (state->dst.scrub)
   1479 		pool_put(&pf_state_scrub_pl, state->dst.scrub);
   1480 
   1481 	/* Someday... flush the TCP segment reassembly descriptors. */
   1482 }
   1483 
   1484 int
   1485 pf_normalize_tcp_stateful(struct mbuf *m, int off, struct pf_pdesc *pd,
   1486     u_short *reason, struct tcphdr *th, struct pf_state *state,
   1487     struct pf_state_peer *src, struct pf_state_peer *dst, int *writeback)
   1488 {
   1489 	struct timeval uptime;
   1490 	u_int32_t tsval = 0, tsecr = 0;
   1491 	u_int tsval_from_last;
   1492 	u_int8_t hdr[60];
   1493 	u_int8_t *opt;
   1494 	int copyback = 0;
   1495 	int got_ts = 0;
   1496 
   1497 	KASSERT(src->scrub || dst->scrub);
   1498 
   1499 	/*
   1500 	 * Enforce the minimum TTL seen for this connection.  Negate a common
   1501 	 * technique to evade an intrusion detection system and confuse
   1502 	 * firewall state code.
   1503 	 */
   1504 	switch (pd->af) {
   1505 #ifdef INET
   1506 	case AF_INET: {
   1507 		if (src->scrub) {
   1508 			struct ip *h = mtod(m, struct ip *);
   1509 			if (h->ip_ttl > src->scrub->pfss_ttl)
   1510 				src->scrub->pfss_ttl = h->ip_ttl;
   1511 			h->ip_ttl = src->scrub->pfss_ttl;
   1512 		}
   1513 		break;
   1514 	}
   1515 #endif /* INET */
   1516 #ifdef INET6
   1517 	case AF_INET6: {
   1518 		if (src->scrub) {
   1519 			struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
   1520 			if (h->ip6_hlim > src->scrub->pfss_ttl)
   1521 				src->scrub->pfss_ttl = h->ip6_hlim;
   1522 			h->ip6_hlim = src->scrub->pfss_ttl;
   1523 		}
   1524 		break;
   1525 	}
   1526 #endif /* INET6 */
   1527 	}
   1528 
   1529 	if (th->th_off > (sizeof(struct tcphdr) >> 2) &&
   1530 	    ((src->scrub && (src->scrub->pfss_flags & PFSS_TIMESTAMP)) ||
   1531 	    (dst->scrub && (dst->scrub->pfss_flags & PFSS_TIMESTAMP))) &&
   1532 	    pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
   1533 		/* Diddle with TCP options */
   1534 		int hlen;
   1535 		opt = hdr + sizeof(struct tcphdr);
   1536 		hlen = (th->th_off << 2) - sizeof(struct tcphdr);
   1537 		while (hlen >= TCPOLEN_TIMESTAMP) {
   1538 			switch (*opt) {
   1539 			case TCPOPT_EOL:	/* FALLTHROUGH */
   1540 			case TCPOPT_NOP:
   1541 				opt++;
   1542 				hlen--;
   1543 				break;
   1544 			case TCPOPT_TIMESTAMP:
   1545 				/* Modulate the timestamps.  Can be used for
   1546 				 * NAT detection, OS uptime determination or
   1547 				 * reboot detection.
   1548 				 */
   1549 
   1550 				if (got_ts) {
   1551 					/* Huh?  Multiple timestamps!? */
   1552 					if (pf_status.debug >= PF_DEBUG_MISC) {
   1553 						DPFPRINTF(("multiple TS??"));
   1554 						pf_print_state(state);
   1555 						printf("\n");
   1556 					}
   1557 					REASON_SET(reason, PFRES_TS);
   1558 					return (PF_DROP);
   1559 				}
   1560 				if (opt[1] >= TCPOLEN_TIMESTAMP) {
   1561 					memcpy(&tsval, &opt[2],
   1562 					    sizeof(u_int32_t));
   1563 					if (tsval && src->scrub &&
   1564 					    (src->scrub->pfss_flags &
   1565 					    PFSS_TIMESTAMP)) {
   1566 						tsval = ntohl(tsval);
   1567 						pf_change_a(&opt[2],
   1568 						    &th->th_sum,
   1569 						    htonl(tsval +
   1570 						    src->scrub->pfss_ts_mod),
   1571 						    0);
   1572 						copyback = 1;
   1573 					}
   1574 
   1575 					/* Modulate TS reply iff valid (!0) */
   1576 					memcpy(&tsecr, &opt[6],
   1577 					    sizeof(u_int32_t));
   1578 					if (tsecr && dst->scrub &&
   1579 					    (dst->scrub->pfss_flags &
   1580 					    PFSS_TIMESTAMP)) {
   1581 						tsecr = ntohl(tsecr)
   1582 						    - dst->scrub->pfss_ts_mod;
   1583 						pf_change_a(&opt[6],
   1584 						    &th->th_sum, htonl(tsecr),
   1585 						    0);
   1586 						copyback = 1;
   1587 					}
   1588 					got_ts = 1;
   1589 				}
   1590 				/* FALLTHROUGH */
   1591 			default:
   1592 				hlen -= MAX(opt[1], 2);
   1593 				opt += MAX(opt[1], 2);
   1594 				break;
   1595 			}
   1596 		}
   1597 		if (copyback) {
   1598 			/* Copyback the options, caller copys back header */
   1599 			*writeback = 1;
   1600 			m_copyback(m, off + sizeof(struct tcphdr),
   1601 			    (th->th_off << 2) - sizeof(struct tcphdr), hdr +
   1602 			    sizeof(struct tcphdr));
   1603 		}
   1604 	}
   1605 
   1606 
   1607 	/*
   1608 	 * Must invalidate PAWS checks on connections idle for too long.
   1609 	 * The fastest allowed timestamp clock is 1ms.  That turns out to
   1610 	 * be about 24 days before it wraps.  XXX Right now our lowerbound
   1611 	 * TS echo check only works for the first 12 days of a connection
   1612 	 * when the TS has exhausted half its 32bit space
   1613 	 */
   1614 #define TS_MAX_IDLE	(24*24*60*60)
   1615 #define TS_MAX_CONN	(12*24*60*60)	/* XXX remove when better tsecr check */
   1616 
   1617 	getmicrouptime(&uptime);
   1618 	if (src->scrub && (src->scrub->pfss_flags & PFSS_PAWS) &&
   1619 	    (uptime.tv_sec - src->scrub->pfss_last.tv_sec > TS_MAX_IDLE ||
   1620 	    time_second - state->creation > TS_MAX_CONN))  {
   1621 		if (pf_status.debug >= PF_DEBUG_MISC) {
   1622 			DPFPRINTF(("src idled out of PAWS\n"));
   1623 			pf_print_state(state);
   1624 			printf("\n");
   1625 		}
   1626 		src->scrub->pfss_flags = (src->scrub->pfss_flags & ~PFSS_PAWS)
   1627 		    | PFSS_PAWS_IDLED;
   1628 	}
   1629 	if (dst->scrub && (dst->scrub->pfss_flags & PFSS_PAWS) &&
   1630 	    uptime.tv_sec - dst->scrub->pfss_last.tv_sec > TS_MAX_IDLE) {
   1631 		if (pf_status.debug >= PF_DEBUG_MISC) {
   1632 			DPFPRINTF(("dst idled out of PAWS\n"));
   1633 			pf_print_state(state);
   1634 			printf("\n");
   1635 		}
   1636 		dst->scrub->pfss_flags = (dst->scrub->pfss_flags & ~PFSS_PAWS)
   1637 		    | PFSS_PAWS_IDLED;
   1638 	}
   1639 
   1640 	if (got_ts && src->scrub && dst->scrub &&
   1641 	    (src->scrub->pfss_flags & PFSS_PAWS) &&
   1642 	    (dst->scrub->pfss_flags & PFSS_PAWS)) {
   1643 		/* Validate that the timestamps are "in-window".
   1644 		 * RFC1323 describes TCP Timestamp options that allow
   1645 		 * measurement of RTT (round trip time) and PAWS
   1646 		 * (protection against wrapped sequence numbers).  PAWS
   1647 		 * gives us a set of rules for rejecting packets on
   1648 		 * long fat pipes (packets that were somehow delayed
   1649 		 * in transit longer than the time it took to send the
   1650 		 * full TCP sequence space of 4Gb).  We can use these
   1651 		 * rules and infer a few others that will let us treat
   1652 		 * the 32bit timestamp and the 32bit echoed timestamp
   1653 		 * as sequence numbers to prevent a blind attacker from
   1654 		 * inserting packets into a connection.
   1655 		 *
   1656 		 * RFC1323 tells us:
   1657 		 *  - The timestamp on this packet must be greater than
   1658 		 *    or equal to the last value echoed by the other
   1659 		 *    endpoint.  The RFC says those will be discarded
   1660 		 *    since it is a dup that has already been acked.
   1661 		 *    This gives us a lowerbound on the timestamp.
   1662 		 *        timestamp >= other last echoed timestamp
   1663 		 *  - The timestamp will be less than or equal to
   1664 		 *    the last timestamp plus the time between the
   1665 		 *    last packet and now.  The RFC defines the max
   1666 		 *    clock rate as 1ms.  We will allow clocks to be
   1667 		 *    up to 10% fast and will allow a total difference
   1668 		 *    or 30 seconds due to a route change.  And this
   1669 		 *    gives us an upperbound on the timestamp.
   1670 		 *        timestamp <= last timestamp + max ticks
   1671 		 *    We have to be careful here.  Windows will send an
   1672 		 *    initial timestamp of zero and then initialize it
   1673 		 *    to a random value after the 3whs; presumably to
   1674 		 *    avoid a DoS by having to call an expensive RNG
   1675 		 *    during a SYN flood.  Proof MS has at least one
   1676 		 *    good security geek.
   1677 		 *
   1678 		 *  - The TCP timestamp option must also echo the other
   1679 		 *    endpoints timestamp.  The timestamp echoed is the
   1680 		 *    one carried on the earliest unacknowledged segment
   1681 		 *    on the left edge of the sequence window.  The RFC
   1682 		 *    states that the host will reject any echoed
   1683 		 *    timestamps that were larger than any ever sent.
   1684 		 *    This gives us an upperbound on the TS echo.
   1685 		 *        tescr <= largest_tsval
   1686 		 *  - The lowerbound on the TS echo is a little more
   1687 		 *    tricky to determine.  The other endpoint's echoed
   1688 		 *    values will not decrease.  But there may be
   1689 		 *    network conditions that re-order packets and
   1690 		 *    cause our view of them to decrease.  For now the
   1691 		 *    only lowerbound we can safely determine is that
   1692 		 *    the TS echo will never be less than the original
   1693 		 *    TS.  XXX There is probably a better lowerbound.
   1694 		 *    Remove TS_MAX_CONN with better lowerbound check.
   1695 		 *        tescr >= other original TS
   1696 		 *
   1697 		 * It is also important to note that the fastest
   1698 		 * timestamp clock of 1ms will wrap its 32bit space in
   1699 		 * 24 days.  So we just disable TS checking after 24
   1700 		 * days of idle time.  We actually must use a 12d
   1701 		 * connection limit until we can come up with a better
   1702 		 * lowerbound to the TS echo check.
   1703 		 */
   1704 		struct timeval delta_ts;
   1705 		int ts_fudge;
   1706 
   1707 
   1708 		/*
   1709 		 * PFTM_TS_DIFF is how many seconds of leeway to allow
   1710 		 * a host's timestamp.  This can happen if the previous
   1711 		 * packet got delayed in transit for much longer than
   1712 		 * this packet.
   1713 		 */
   1714 		if ((ts_fudge = state->rule.ptr->timeout[PFTM_TS_DIFF]) == 0)
   1715 			ts_fudge = pf_default_rule.timeout[PFTM_TS_DIFF];
   1716 
   1717 
   1718 		/* Calculate max ticks since the last timestamp */
   1719 #define TS_MAXFREQ	1100		/* RFC max TS freq of 1 kHz + 10% skew */
   1720 #define TS_MICROSECS	1000000		/* microseconds per second */
   1721 		timersub(&uptime, &src->scrub->pfss_last, &delta_ts);
   1722 		tsval_from_last = (delta_ts.tv_sec + ts_fudge) * TS_MAXFREQ;
   1723 		tsval_from_last += delta_ts.tv_usec / (TS_MICROSECS/TS_MAXFREQ);
   1724 
   1725 
   1726 		if ((src->state >= TCPS_ESTABLISHED &&
   1727 		    dst->state >= TCPS_ESTABLISHED) &&
   1728 		    (SEQ_LT(tsval, dst->scrub->pfss_tsecr) ||
   1729 		    SEQ_GT(tsval, src->scrub->pfss_tsval + tsval_from_last) ||
   1730 		    (tsecr && (SEQ_GT(tsecr, dst->scrub->pfss_tsval) ||
   1731 		    SEQ_LT(tsecr, dst->scrub->pfss_tsval0))))) {
   1732 			/* Bad RFC1323 implementation or an insertion attack.
   1733 			 *
   1734 			 * - Solaris 2.6 and 2.7 are known to send another ACK
   1735 			 *   after the FIN,FIN|ACK,ACK closing that carries
   1736 			 *   an old timestamp.
   1737 			 */
   1738 
   1739 			DPFPRINTF(("Timestamp failed %c%c%c%c\n",
   1740 			    SEQ_LT(tsval, dst->scrub->pfss_tsecr) ? '0' : ' ',
   1741 			    SEQ_GT(tsval, src->scrub->pfss_tsval +
   1742 			    tsval_from_last) ? '1' : ' ',
   1743 			    SEQ_GT(tsecr, dst->scrub->pfss_tsval) ? '2' : ' ',
   1744 			    SEQ_LT(tsecr, dst->scrub->pfss_tsval0)? '3' : ' '));
   1745 			DPFPRINTF((" tsval: %" PRIu32 "  tsecr: %" PRIu32
   1746 			    "  +ticks: %" PRIu32 "  idle: %"PRIx64"s %ums\n",
   1747 			    tsval, tsecr, tsval_from_last, delta_ts.tv_sec,
   1748 			    delta_ts.tv_usec / 1000U));
   1749 			DPFPRINTF((" src->tsval: %" PRIu32 "  tsecr: %" PRIu32
   1750 			    "\n",
   1751 			    src->scrub->pfss_tsval, src->scrub->pfss_tsecr));
   1752 			DPFPRINTF((" dst->tsval: %" PRIu32 "  tsecr: %" PRIu32
   1753 			    "  tsval0: %" PRIu32 "\n",
   1754 			    dst->scrub->pfss_tsval,
   1755 			    dst->scrub->pfss_tsecr, dst->scrub->pfss_tsval0));
   1756 			if (pf_status.debug >= PF_DEBUG_MISC) {
   1757 				pf_print_state(state);
   1758 				pf_print_flags(th->th_flags);
   1759 				printf("\n");
   1760 			}
   1761 			REASON_SET(reason, PFRES_TS);
   1762 			return (PF_DROP);
   1763 		}
   1764 
   1765 		/* XXX I'd really like to require tsecr but it's optional */
   1766 
   1767 	} else if (!got_ts && (th->th_flags & TH_RST) == 0 &&
   1768 	    ((src->state == TCPS_ESTABLISHED && dst->state == TCPS_ESTABLISHED)
   1769 	    || pd->p_len > 0 || (th->th_flags & TH_SYN)) &&
   1770 	    src->scrub && dst->scrub &&
   1771 	    (src->scrub->pfss_flags & PFSS_PAWS) &&
   1772 	    (dst->scrub->pfss_flags & PFSS_PAWS)) {
   1773 		/* Didn't send a timestamp.  Timestamps aren't really useful
   1774 		 * when:
   1775 		 *  - connection opening or closing (often not even sent).
   1776 		 *    but we must not let an attacker to put a FIN on a
   1777 		 *    data packet to sneak it through our ESTABLISHED check.
   1778 		 *  - on a TCP reset.  RFC suggests not even looking at TS.
   1779 		 *  - on an empty ACK.  The TS will not be echoed so it will
   1780 		 *    probably not help keep the RTT calculation in sync and
   1781 		 *    there isn't as much danger when the sequence numbers
   1782 		 *    got wrapped.  So some stacks don't include TS on empty
   1783 		 *    ACKs :-(
   1784 		 *
   1785 		 * To minimize the disruption to mostly RFC1323 conformant
   1786 		 * stacks, we will only require timestamps on data packets.
   1787 		 *
   1788 		 * And what do ya know, we cannot require timestamps on data
   1789 		 * packets.  There appear to be devices that do legitimate
   1790 		 * TCP connection hijacking.  There are HTTP devices that allow
   1791 		 * a 3whs (with timestamps) and then buffer the HTTP request.
   1792 		 * If the intermediate device has the HTTP response cache, it
   1793 		 * will spoof the response but not bother timestamping its
   1794 		 * packets.  So we can look for the presence of a timestamp in
   1795 		 * the first data packet and if there, require it in all future
   1796 		 * packets.
   1797 		 */
   1798 
   1799 		if (pd->p_len > 0 && (src->scrub->pfss_flags & PFSS_DATA_TS)) {
   1800 			/*
   1801 			 * Hey!  Someone tried to sneak a packet in.  Or the
   1802 			 * stack changed its RFC1323 behavior?!?!
   1803 			 */
   1804 			if (pf_status.debug >= PF_DEBUG_MISC) {
   1805 				DPFPRINTF(("Did not receive expected RFC1323 "
   1806 				    "timestamp\n"));
   1807 				pf_print_state(state);
   1808 				pf_print_flags(th->th_flags);
   1809 				printf("\n");
   1810 			}
   1811 			REASON_SET(reason, PFRES_TS);
   1812 			return (PF_DROP);
   1813 		}
   1814 	}
   1815 
   1816 
   1817 	/*
   1818 	 * We will note if a host sends his data packets with or without
   1819 	 * timestamps.  And require all data packets to contain a timestamp
   1820 	 * if the first does.  PAWS implicitly requires that all data packets be
   1821 	 * timestamped.  But I think there are middle-man devices that hijack
   1822 	 * TCP streams immediately after the 3whs and don't timestamp their
   1823 	 * packets (seen in a WWW accelerator or cache).
   1824 	 */
   1825 	if (pd->p_len > 0 && src->scrub && (src->scrub->pfss_flags &
   1826 	    (PFSS_TIMESTAMP|PFSS_DATA_TS|PFSS_DATA_NOTS)) == PFSS_TIMESTAMP) {
   1827 		if (got_ts)
   1828 			src->scrub->pfss_flags |= PFSS_DATA_TS;
   1829 		else {
   1830 			src->scrub->pfss_flags |= PFSS_DATA_NOTS;
   1831 			if (pf_status.debug >= PF_DEBUG_MISC && dst->scrub &&
   1832 			    (dst->scrub->pfss_flags & PFSS_TIMESTAMP)) {
   1833 				/* Don't warn if other host rejected RFC1323 */
   1834 				DPFPRINTF(("Broken RFC1323 stack did not "
   1835 				    "timestamp data packet. Disabled PAWS "
   1836 				    "security.\n"));
   1837 				pf_print_state(state);
   1838 				pf_print_flags(th->th_flags);
   1839 				printf("\n");
   1840 			}
   1841 		}
   1842 	}
   1843 
   1844 
   1845 	/*
   1846 	 * Update PAWS values
   1847 	 */
   1848 	if (got_ts && src->scrub && PFSS_TIMESTAMP == (src->scrub->pfss_flags &
   1849 	    (PFSS_PAWS_IDLED|PFSS_TIMESTAMP))) {
   1850 		getmicrouptime(&src->scrub->pfss_last);
   1851 		if (SEQ_GEQ(tsval, src->scrub->pfss_tsval) ||
   1852 		    (src->scrub->pfss_flags & PFSS_PAWS) == 0)
   1853 			src->scrub->pfss_tsval = tsval;
   1854 
   1855 		if (tsecr) {
   1856 			if (SEQ_GEQ(tsecr, src->scrub->pfss_tsecr) ||
   1857 			    (src->scrub->pfss_flags & PFSS_PAWS) == 0)
   1858 				src->scrub->pfss_tsecr = tsecr;
   1859 
   1860 			if ((src->scrub->pfss_flags & PFSS_PAWS) == 0 &&
   1861 			    (SEQ_LT(tsval, src->scrub->pfss_tsval0) ||
   1862 			    src->scrub->pfss_tsval0 == 0)) {
   1863 				/* tsval0 MUST be the lowest timestamp */
   1864 				src->scrub->pfss_tsval0 = tsval;
   1865 			}
   1866 
   1867 			/* Only fully initialized after a TS gets echoed */
   1868 			if ((src->scrub->pfss_flags & PFSS_PAWS) == 0)
   1869 				src->scrub->pfss_flags |= PFSS_PAWS;
   1870 		}
   1871 	}
   1872 
   1873 	/* I have a dream....  TCP segment reassembly.... */
   1874 	return (0);
   1875 }
   1876 
   1877 int
   1878 pf_normalize_tcpopt(struct pf_rule *r, struct mbuf *m, struct tcphdr *th,
   1879     int off)
   1880 {
   1881 	u_int16_t	*mss;
   1882 	int		 thoff;
   1883 	int		 opt, cnt, optlen = 0;
   1884 	int		 rewrite = 0;
   1885 	u_char		*optp;
   1886 
   1887 	thoff = th->th_off << 2;
   1888 	cnt = thoff - sizeof(struct tcphdr);
   1889 	optp = mtod(m, u_char *) + off + sizeof(struct tcphdr);
   1890 
   1891 	for (; cnt > 0; cnt -= optlen, optp += optlen) {
   1892 		opt = optp[0];
   1893 		if (opt == TCPOPT_EOL)
   1894 			break;
   1895 		if (opt == TCPOPT_NOP)
   1896 			optlen = 1;
   1897 		else {
   1898 			if (cnt < 2)
   1899 				break;
   1900 			optlen = optp[1];
   1901 			if (optlen < 2 || optlen > cnt)
   1902 				break;
   1903 		}
   1904 		switch (opt) {
   1905 		case TCPOPT_MAXSEG:
   1906 			mss = (u_int16_t *)(optp + 2);
   1907 			if ((ntohs(*mss)) > r->max_mss) {
   1908 				th->th_sum = pf_cksum_fixup(th->th_sum,
   1909 				    *mss, htons(r->max_mss), 0);
   1910 				*mss = htons(r->max_mss);
   1911 				rewrite = 1;
   1912 			}
   1913 			break;
   1914 		default:
   1915 			break;
   1916 		}
   1917 	}
   1918 
   1919 	return (rewrite);
   1920 }
   1921