Home | History | Annotate | Line # | Download | only in genfs
      1 /*	$NetBSD: genfs_io.c,v 1.104 2024/04/05 13:05:40 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.104 2024/04/05 13:05:40 riastradh Exp $");
     35 
     36 #include <sys/param.h>
     37 #include <sys/systm.h>
     38 #include <sys/proc.h>
     39 #include <sys/kernel.h>
     40 #include <sys/mount.h>
     41 #include <sys/vnode.h>
     42 #include <sys/kmem.h>
     43 #include <sys/kauth.h>
     44 #include <sys/fstrans.h>
     45 #include <sys/buf.h>
     46 #include <sys/atomic.h>
     47 
     48 #include <miscfs/genfs/genfs.h>
     49 #include <miscfs/genfs/genfs_node.h>
     50 #include <miscfs/specfs/specdev.h>
     51 
     52 #include <uvm/uvm.h>
     53 #include <uvm/uvm_pager.h>
     54 #include <uvm/uvm_page_array.h>
     55 
     56 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
     57     off_t, enum uio_rw);
     58 static void genfs_dio_iodone(struct buf *);
     59 
     60 static int genfs_getpages_read(struct vnode *, struct vm_page **, int, off_t,
     61     off_t, bool, bool, bool, bool);
     62 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
     63     void (*)(struct buf *));
     64 static void genfs_rel_pages(struct vm_page **, unsigned int);
     65 
     66 int genfs_maxdio = MAXPHYS;
     67 
     68 static void
     69 genfs_rel_pages(struct vm_page **pgs, unsigned int npages)
     70 {
     71 	unsigned int i;
     72 
     73 	for (i = 0; i < npages; i++) {
     74 		struct vm_page *pg = pgs[i];
     75 
     76 		if (pg == NULL || pg == PGO_DONTCARE)
     77 			continue;
     78 		KASSERT(uvm_page_owner_locked_p(pg, true));
     79 		if (pg->flags & PG_FAKE) {
     80 			pg->flags |= PG_RELEASED;
     81 		}
     82 	}
     83 	uvm_page_unbusy(pgs, npages);
     84 }
     85 
     86 /*
     87  * generic VM getpages routine.
     88  * Return PG_BUSY pages for the given range,
     89  * reading from backing store if necessary.
     90  */
     91 
     92 int
     93 genfs_getpages(void *v)
     94 {
     95 	struct vop_getpages_args /* {
     96 		struct vnode *a_vp;
     97 		voff_t a_offset;
     98 		struct vm_page **a_m;
     99 		int *a_count;
    100 		int a_centeridx;
    101 		vm_prot_t a_access_type;
    102 		int a_advice;
    103 		int a_flags;
    104 	} */ * const ap = v;
    105 
    106 	off_t diskeof, memeof;
    107 	int i, error, npages, iflag;
    108 	const int flags = ap->a_flags;
    109 	struct vnode * const vp = ap->a_vp;
    110 	struct uvm_object * const uobj = &vp->v_uobj;
    111 	const bool async = (flags & PGO_SYNCIO) == 0;
    112 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
    113 	const bool overwrite = (flags & PGO_OVERWRITE) != 0;
    114 	const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
    115 	const bool need_wapbl = (vp->v_mount->mnt_wapbl &&
    116 			(flags & PGO_JOURNALLOCKED) == 0);
    117 	const bool glocked = (flags & PGO_GLOCKHELD) != 0;
    118 	bool holds_wapbl = false;
    119 	struct mount *trans_mount = NULL;
    120 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
    121 
    122 	UVMHIST_LOG(ubchist, "vp %#jx off 0x%jx/%jx count %jd",
    123 	    (uintptr_t)vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
    124 
    125 	KASSERT(memwrite >= overwrite);
    126 	KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
    127 	    vp->v_type == VLNK || vp->v_type == VBLK);
    128 
    129 	/*
    130 	 * the object must be locked.  it can only be a read lock when
    131 	 * processing a read fault with PGO_LOCKED.
    132 	 */
    133 
    134 	KASSERT(rw_lock_held(uobj->vmobjlock));
    135 	KASSERT(rw_write_held(uobj->vmobjlock) ||
    136 	   ((flags & PGO_LOCKED) != 0 && !memwrite));
    137 
    138 #ifdef DIAGNOSTIC
    139 	if ((flags & PGO_JOURNALLOCKED) && vp->v_mount->mnt_wapbl)
    140                 WAPBL_JLOCK_ASSERT(vp->v_mount);
    141 #endif
    142 
    143 	/*
    144 	 * check for reclaimed vnode.  v_interlock is not held here, but
    145 	 * VI_DEADCHECK is set with vmobjlock held.
    146 	 */
    147 
    148 	iflag = atomic_load_relaxed(&vp->v_iflag);
    149 	if (__predict_false((iflag & VI_DEADCHECK) != 0)) {
    150 		mutex_enter(vp->v_interlock);
    151 		error = vdead_check(vp, VDEAD_NOWAIT);
    152 		mutex_exit(vp->v_interlock);
    153 		if (error) {
    154 			if ((flags & PGO_LOCKED) == 0)
    155 				rw_exit(uobj->vmobjlock);
    156 			return error;
    157 		}
    158 	}
    159 
    160 startover:
    161 	error = 0;
    162 	const voff_t origvsize = vp->v_size;
    163 	const off_t origoffset = ap->a_offset;
    164 	const int orignpages = *ap->a_count;
    165 
    166 	GOP_SIZE(vp, origvsize, &diskeof, 0);
    167 	if (flags & PGO_PASTEOF) {
    168 		off_t newsize;
    169 #if defined(DIAGNOSTIC)
    170 		off_t writeeof;
    171 #endif /* defined(DIAGNOSTIC) */
    172 
    173 		newsize = MAX(origvsize,
    174 		    origoffset + (orignpages << PAGE_SHIFT));
    175 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
    176 #if defined(DIAGNOSTIC)
    177 		GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
    178 		if (newsize > round_page(writeeof)) {
    179 			panic("%s: past eof: %" PRId64 " vs. %" PRId64,
    180 			    __func__, newsize, round_page(writeeof));
    181 		}
    182 #endif /* defined(DIAGNOSTIC) */
    183 	} else {
    184 		GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
    185 	}
    186 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
    187 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0);
    188 	KASSERT(origoffset >= 0);
    189 	KASSERT(orignpages > 0);
    190 
    191 	/*
    192 	 * Bounds-check the request.
    193 	 */
    194 
    195 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
    196 		if ((flags & PGO_LOCKED) == 0) {
    197 			rw_exit(uobj->vmobjlock);
    198 		}
    199 		UVMHIST_LOG(ubchist, "off 0x%jx count %jd goes past EOF 0x%jx",
    200 		    origoffset, *ap->a_count, memeof,0);
    201 		error = EINVAL;
    202 		goto out_err;
    203 	}
    204 
    205 	/* uobj is locked */
    206 
    207 	if ((flags & PGO_NOTIMESTAMP) == 0 &&
    208 	    (vp->v_type != VBLK ||
    209 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
    210 		int updflags = 0;
    211 
    212 		if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
    213 			updflags = GOP_UPDATE_ACCESSED;
    214 		}
    215 		if (memwrite) {
    216 			updflags |= GOP_UPDATE_MODIFIED;
    217 		}
    218 		if (updflags != 0) {
    219 			GOP_MARKUPDATE(vp, updflags);
    220 		}
    221 	}
    222 
    223 	/*
    224 	 * For PGO_LOCKED requests, just return whatever's in memory.
    225 	 */
    226 
    227 	if (flags & PGO_LOCKED) {
    228 		int nfound;
    229 		struct vm_page *pg;
    230 
    231 		KASSERT(!glocked);
    232 		npages = *ap->a_count;
    233 #if defined(DEBUG)
    234 		for (i = 0; i < npages; i++) {
    235 			pg = ap->a_m[i];
    236 			KASSERT(pg == NULL || pg == PGO_DONTCARE);
    237 		}
    238 #endif /* defined(DEBUG) */
    239  		nfound = uvn_findpages(uobj, origoffset, &npages,
    240 		    ap->a_m, NULL,
    241 		    UFP_NOWAIT | UFP_NOALLOC | UFP_NOBUSY |
    242 		    (memwrite ? UFP_NORDONLY : 0));
    243 		KASSERT(npages == *ap->a_count);
    244 		if (nfound == 0) {
    245 			error = EBUSY;
    246 			goto out_err;
    247 		}
    248 		/*
    249 		 * lock and unlock g_glock to ensure that no one is truncating
    250 		 * the file behind us.
    251 		 */
    252 		if (!genfs_node_rdtrylock(vp)) {
    253 			/*
    254 			 * restore the array.
    255 			 */
    256 
    257 			for (i = 0; i < npages; i++) {
    258 				pg = ap->a_m[i];
    259 
    260 				if (pg != NULL && pg != PGO_DONTCARE) {
    261 					ap->a_m[i] = NULL;
    262 				}
    263 				KASSERT(ap->a_m[i] == NULL ||
    264 				    ap->a_m[i] == PGO_DONTCARE);
    265 			}
    266 		} else {
    267 			genfs_node_unlock(vp);
    268 		}
    269 		error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
    270 		if (error == 0 && memwrite) {
    271 			for (i = 0; i < npages; i++) {
    272 				pg = ap->a_m[i];
    273 				if (pg == NULL || pg == PGO_DONTCARE) {
    274 					continue;
    275 				}
    276 				if (uvm_pagegetdirty(pg) ==
    277 				    UVM_PAGE_STATUS_CLEAN) {
    278 					uvm_pagemarkdirty(pg,
    279 					    UVM_PAGE_STATUS_UNKNOWN);
    280 				}
    281 			}
    282 		}
    283 		goto out_err;
    284 	}
    285 	rw_exit(uobj->vmobjlock);
    286 
    287 	/*
    288 	 * find the requested pages and make some simple checks.
    289 	 * leave space in the page array for a whole block.
    290 	 */
    291 
    292 	const int fs_bshift = (vp->v_type != VBLK) ?
    293 	    vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
    294 	const int fs_bsize = 1 << fs_bshift;
    295 #define	blk_mask	(fs_bsize - 1)
    296 #define	trunc_blk(x)	((x) & ~blk_mask)
    297 #define	round_blk(x)	(((x) + blk_mask) & ~blk_mask)
    298 
    299 	const int orignmempages = MIN(orignpages,
    300 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
    301 	npages = orignmempages;
    302 	const off_t startoffset = trunc_blk(origoffset);
    303 	const off_t endoffset = MIN(
    304 	    round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
    305 	    round_page(memeof));
    306 	const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
    307 
    308 	const int pgs_size = sizeof(struct vm_page *) *
    309 	    ((endoffset - startoffset) >> PAGE_SHIFT);
    310 	struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
    311 
    312 	if (pgs_size > sizeof(pgs_onstack)) {
    313 		pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
    314 		if (pgs == NULL) {
    315 			pgs = pgs_onstack;
    316 			error = ENOMEM;
    317 			goto out_err;
    318 		}
    319 	} else {
    320 		pgs = pgs_onstack;
    321 		(void)memset(pgs, 0, pgs_size);
    322 	}
    323 
    324 	UVMHIST_LOG(ubchist, "ridx %jd npages %jd startoff %#jx endoff %#jx",
    325 	    ridx, npages, startoffset, endoffset);
    326 
    327 	if (trans_mount == NULL) {
    328 		trans_mount = vp->v_mount;
    329 		fstrans_start(trans_mount);
    330 		/*
    331 		 * check if this vnode is still valid.
    332 		 */
    333 		mutex_enter(vp->v_interlock);
    334 		error = vdead_check(vp, 0);
    335 		mutex_exit(vp->v_interlock);
    336 		if (error)
    337 			goto out_err_free;
    338 		/*
    339 		 * XXX: This assumes that we come here only via
    340 		 * the mmio path
    341 		 */
    342 		if (blockalloc && need_wapbl) {
    343 			error = WAPBL_BEGIN(trans_mount);
    344 			if (error)
    345 				goto out_err_free;
    346 			holds_wapbl = true;
    347 		}
    348 	}
    349 
    350 	/*
    351 	 * hold g_glock to prevent a race with truncate.
    352 	 *
    353 	 * check if our idea of v_size is still valid.
    354 	 */
    355 
    356 	KASSERT(!glocked || genfs_node_wrlocked(vp));
    357 	if (!glocked) {
    358 		if (blockalloc) {
    359 			genfs_node_wrlock(vp);
    360 		} else {
    361 			genfs_node_rdlock(vp);
    362 		}
    363 	}
    364 	rw_enter(uobj->vmobjlock, RW_WRITER);
    365 	if (vp->v_size < origvsize) {
    366 		if (!glocked) {
    367 			genfs_node_unlock(vp);
    368 		}
    369 		if (pgs != pgs_onstack)
    370 			kmem_free(pgs, pgs_size);
    371 		goto startover;
    372 	}
    373 
    374 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx], NULL,
    375 	    async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
    376 		if (!glocked) {
    377 			genfs_node_unlock(vp);
    378 		}
    379 		KASSERT(async != 0);
    380 		genfs_rel_pages(&pgs[ridx], orignmempages);
    381 		rw_exit(uobj->vmobjlock);
    382 		error = EBUSY;
    383 		goto out_err_free;
    384 	}
    385 
    386 	/*
    387 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
    388 	 */
    389 
    390 	if (overwrite) {
    391 		if (!glocked) {
    392 			genfs_node_unlock(vp);
    393 		}
    394 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
    395 
    396 		for (i = 0; i < npages; i++) {
    397 			struct vm_page *pg = pgs[ridx + i];
    398 
    399 			/*
    400 			 * it's caller's responsibility to allocate blocks
    401 			 * beforehand for the overwrite case.
    402 			 */
    403 
    404 			KASSERT((pg->flags & PG_RDONLY) == 0 || !blockalloc);
    405 			pg->flags &= ~PG_RDONLY;
    406 
    407 			/*
    408 			 * mark the page DIRTY.
    409 			 * otherwise another thread can do putpages and pull
    410 			 * our vnode from syncer's queue before our caller does
    411 			 * ubc_release.  note that putpages won't see CLEAN
    412 			 * pages even if they are BUSY.
    413 			 */
    414 
    415 			uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
    416 		}
    417 		npages += ridx;
    418 		goto out;
    419 	}
    420 
    421 	/*
    422 	 * if the pages are already resident, just return them.
    423 	 */
    424 
    425 	for (i = 0; i < npages; i++) {
    426 		struct vm_page *pg = pgs[ridx + i];
    427 
    428 		if ((pg->flags & PG_FAKE) ||
    429 		    (blockalloc && (pg->flags & PG_RDONLY) != 0)) {
    430 			break;
    431 		}
    432 	}
    433 	if (i == npages) {
    434 		if (!glocked) {
    435 			genfs_node_unlock(vp);
    436 		}
    437 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
    438 		npages += ridx;
    439 		goto out;
    440 	}
    441 
    442 	/*
    443 	 * the page wasn't resident and we're not overwriting,
    444 	 * so we're going to have to do some i/o.
    445 	 * find any additional pages needed to cover the expanded range.
    446 	 */
    447 
    448 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
    449 	if (startoffset != origoffset || npages != orignmempages) {
    450 		int npgs;
    451 
    452 		/*
    453 		 * we need to avoid deadlocks caused by locking
    454 		 * additional pages at lower offsets than pages we
    455 		 * already have locked.  unlock them all and start over.
    456 		 */
    457 
    458 		genfs_rel_pages(&pgs[ridx], orignmempages);
    459 		memset(pgs, 0, pgs_size);
    460 
    461 		UVMHIST_LOG(ubchist, "reset npages start 0x%jx end 0x%jx",
    462 		    startoffset, endoffset, 0,0);
    463 		npgs = npages;
    464 		if (uvn_findpages(uobj, startoffset, &npgs, pgs, NULL,
    465 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
    466 			if (!glocked) {
    467 				genfs_node_unlock(vp);
    468 			}
    469 			KASSERT(async != 0);
    470 			genfs_rel_pages(pgs, npages);
    471 			rw_exit(uobj->vmobjlock);
    472 			error = EBUSY;
    473 			goto out_err_free;
    474 		}
    475 	}
    476 
    477 	rw_exit(uobj->vmobjlock);
    478 	error = genfs_getpages_read(vp, pgs, npages, startoffset, diskeof,
    479 	    async, memwrite, blockalloc, glocked);
    480 	if (!glocked) {
    481 		genfs_node_unlock(vp);
    482 	}
    483 	if (error == 0 && async)
    484 		goto out_err_free;
    485 	rw_enter(uobj->vmobjlock, RW_WRITER);
    486 
    487 	/*
    488 	 * we're almost done!  release the pages...
    489 	 * for errors, we free the pages.
    490 	 * otherwise we activate them and mark them as valid and clean.
    491 	 * also, unbusy pages that were not actually requested.
    492 	 */
    493 
    494 	if (error) {
    495 		genfs_rel_pages(pgs, npages);
    496 		rw_exit(uobj->vmobjlock);
    497 		UVMHIST_LOG(ubchist, "returning error %jd", error,0,0,0);
    498 		goto out_err_free;
    499 	}
    500 
    501 out:
    502 	UVMHIST_LOG(ubchist, "succeeding, npages %jd", npages,0,0,0);
    503 	error = 0;
    504 	for (i = 0; i < npages; i++) {
    505 		struct vm_page *pg = pgs[i];
    506 		if (pg == NULL) {
    507 			continue;
    508 		}
    509 		UVMHIST_LOG(ubchist, "examining pg %#jx flags 0x%jx",
    510 		    (uintptr_t)pg, pg->flags, 0,0);
    511 		if (pg->flags & PG_FAKE && !overwrite) {
    512 			/*
    513 			 * we've read page's contents from the backing storage.
    514 			 *
    515 			 * for a read fault, we keep them CLEAN;  if we
    516 			 * encountered a hole while reading, the pages can
    517 			 * already been dirtied with zeros.
    518 			 */
    519 			KASSERTMSG(blockalloc || uvm_pagegetdirty(pg) ==
    520 			    UVM_PAGE_STATUS_CLEAN, "page %p not clean", pg);
    521 			pg->flags &= ~PG_FAKE;
    522 		}
    523 		KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
    524 		if (i < ridx || i >= ridx + orignmempages || async) {
    525 			UVMHIST_LOG(ubchist, "unbusy pg %#jx offset 0x%jx",
    526 			    (uintptr_t)pg, pg->offset,0,0);
    527 			if (pg->flags & PG_FAKE) {
    528 				KASSERT(overwrite);
    529 				uvm_pagezero(pg);
    530 			}
    531 			if (pg->flags & PG_RELEASED) {
    532 				uvm_pagefree(pg);
    533 				continue;
    534 			}
    535 			uvm_pagelock(pg);
    536 			uvm_pageenqueue(pg);
    537 			uvm_pagewakeup(pg);
    538 			uvm_pageunlock(pg);
    539 			pg->flags &= ~(PG_BUSY|PG_FAKE);
    540 			UVM_PAGE_OWN(pg, NULL);
    541 		} else if (memwrite && !overwrite &&
    542 		    uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_CLEAN) {
    543 			/*
    544 			 * for a write fault, start dirtiness tracking of
    545 			 * requested pages.
    546 			 */
    547 			uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_UNKNOWN);
    548 		}
    549 	}
    550 	rw_exit(uobj->vmobjlock);
    551 	if (ap->a_m != NULL) {
    552 		memcpy(ap->a_m, &pgs[ridx],
    553 		    orignmempages * sizeof(struct vm_page *));
    554 	}
    555 
    556 out_err_free:
    557 	if (pgs != NULL && pgs != pgs_onstack)
    558 		kmem_free(pgs, pgs_size);
    559 out_err:
    560 	if (trans_mount != NULL) {
    561 		if (holds_wapbl)
    562 			WAPBL_END(trans_mount);
    563 		fstrans_done(trans_mount);
    564 	}
    565 	return error;
    566 }
    567 
    568 /*
    569  * genfs_getpages_read: Read the pages in with VOP_BMAP/VOP_STRATEGY.
    570  *
    571  * "glocked" (which is currently not actually used) tells us not whether
    572  * the genfs_node is locked on entry (it always is) but whether it was
    573  * locked on entry to genfs_getpages.
    574  */
    575 static int
    576 genfs_getpages_read(struct vnode *vp, struct vm_page **pgs, int npages,
    577     off_t startoffset, off_t diskeof,
    578     bool async, bool memwrite, bool blockalloc, bool glocked)
    579 {
    580 	struct uvm_object * const uobj = &vp->v_uobj;
    581 	const int fs_bshift = (vp->v_type != VBLK) ?
    582 	    vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
    583 	const int dev_bshift = (vp->v_type != VBLK) ?
    584 	    vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
    585 	kauth_cred_t const cred = curlwp->l_cred;		/* XXXUBC curlwp */
    586 	size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
    587 	vaddr_t kva;
    588 	struct buf *bp, *mbp;
    589 	bool sawhole = false;
    590 	int i;
    591 	int error = 0;
    592 
    593 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
    594 
    595 	/*
    596 	 * read the desired page(s).
    597 	 */
    598 
    599 	totalbytes = npages << PAGE_SHIFT;
    600 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
    601 	tailbytes = totalbytes - bytes;
    602 	skipbytes = 0;
    603 
    604 	kva = uvm_pagermapin(pgs, npages,
    605 	    UVMPAGER_MAPIN_READ | (async ? 0 : UVMPAGER_MAPIN_WAITOK));
    606 	if (kva == 0)
    607 		return EBUSY;
    608 
    609 	mbp = getiobuf(vp, true);
    610 	mbp->b_bufsize = totalbytes;
    611 	mbp->b_data = (void *)kva;
    612 	mbp->b_resid = mbp->b_bcount = bytes;
    613 	mbp->b_cflags |= BC_BUSY;
    614 	if (async) {
    615 		mbp->b_flags = B_READ | B_ASYNC;
    616 		mbp->b_iodone = uvm_aio_aiodone;
    617 	} else {
    618 		mbp->b_flags = B_READ;
    619 		mbp->b_iodone = NULL;
    620 	}
    621 	if (async)
    622 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
    623 	else
    624 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
    625 
    626 	/*
    627 	 * if EOF is in the middle of the range, zero the part past EOF.
    628 	 * skip over pages which are not PG_FAKE since in that case they have
    629 	 * valid data that we need to preserve.
    630 	 */
    631 
    632 	tailstart = bytes;
    633 	while (tailbytes > 0) {
    634 		const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
    635 
    636 		KASSERT(len <= tailbytes);
    637 		if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
    638 			memset((void *)(kva + tailstart), 0, len);
    639 			UVMHIST_LOG(ubchist, "tailbytes %#jx 0x%jx 0x%jx",
    640 			    (uintptr_t)kva, tailstart, len, 0);
    641 		}
    642 		tailstart += len;
    643 		tailbytes -= len;
    644 	}
    645 
    646 	/*
    647 	 * now loop over the pages, reading as needed.
    648 	 */
    649 
    650 	bp = NULL;
    651 	off_t offset;
    652 	for (offset = startoffset;
    653 	    bytes > 0;
    654 	    offset += iobytes, bytes -= iobytes) {
    655 		int run;
    656 		daddr_t lbn, blkno;
    657 		int pidx;
    658 		struct vnode *devvp;
    659 
    660 		/*
    661 		 * skip pages which don't need to be read.
    662 		 */
    663 
    664 		pidx = (offset - startoffset) >> PAGE_SHIFT;
    665 		while ((pgs[pidx]->flags & PG_FAKE) == 0) {
    666 			size_t b;
    667 
    668 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
    669 			if ((pgs[pidx]->flags & PG_RDONLY)) {
    670 				sawhole = true;
    671 			}
    672 			b = MIN(PAGE_SIZE, bytes);
    673 			offset += b;
    674 			bytes -= b;
    675 			skipbytes += b;
    676 			pidx++;
    677 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%jx",
    678 			    offset, 0,0,0);
    679 			if (bytes == 0) {
    680 				goto loopdone;
    681 			}
    682 		}
    683 
    684 		/*
    685 		 * bmap the file to find out the blkno to read from and
    686 		 * how much we can read in one i/o.  if bmap returns an error,
    687 		 * skip the rest of the top-level i/o.
    688 		 */
    689 
    690 		lbn = offset >> fs_bshift;
    691 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
    692 		if (error) {
    693 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%jx -> %jd",
    694 			    lbn,error,0,0);
    695 			skipbytes += bytes;
    696 			bytes = 0;
    697 			goto loopdone;
    698 		}
    699 
    700 		/*
    701 		 * see how many pages can be read with this i/o.
    702 		 * reduce the i/o size if necessary to avoid
    703 		 * overwriting pages with valid data.
    704 		 */
    705 
    706 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
    707 		    bytes);
    708 		if (offset + iobytes > round_page(offset)) {
    709 			int pcount;
    710 
    711 			pcount = 1;
    712 			while (pidx + pcount < npages &&
    713 			    pgs[pidx + pcount]->flags & PG_FAKE) {
    714 				pcount++;
    715 			}
    716 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
    717 			    (offset - trunc_page(offset)));
    718 		}
    719 
    720 		/*
    721 		 * if this block isn't allocated, zero it instead of
    722 		 * reading it.  unless we are going to allocate blocks,
    723 		 * mark the pages we zeroed PG_RDONLY.
    724 		 */
    725 
    726 		if (blkno == (daddr_t)-1) {
    727 			int holepages = (round_page(offset + iobytes) -
    728 			    trunc_page(offset)) >> PAGE_SHIFT;
    729 			UVMHIST_LOG(ubchist, "lbn 0x%jx -> HOLE", lbn,0,0,0);
    730 
    731 			sawhole = true;
    732 			memset((char *)kva + (offset - startoffset), 0,
    733 			    iobytes);
    734 			skipbytes += iobytes;
    735 
    736 			if (!blockalloc) {
    737 				rw_enter(uobj->vmobjlock, RW_WRITER);
    738 				for (i = 0; i < holepages; i++) {
    739 					pgs[pidx + i]->flags |= PG_RDONLY;
    740 				}
    741 				rw_exit(uobj->vmobjlock);
    742 			}
    743 			continue;
    744 		}
    745 
    746 		/*
    747 		 * allocate a sub-buf for this piece of the i/o
    748 		 * (or just use mbp if there's only 1 piece),
    749 		 * and start it going.
    750 		 */
    751 
    752 		if (offset == startoffset && iobytes == bytes) {
    753 			bp = mbp;
    754 		} else {
    755 			UVMHIST_LOG(ubchist, "vp %#jx bp %#jx num now %jd",
    756 			    (uintptr_t)vp, (uintptr_t)bp, vp->v_numoutput, 0);
    757 			bp = getiobuf(vp, true);
    758 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
    759 		}
    760 		bp->b_lblkno = 0;
    761 
    762 		/* adjust physical blkno for partial blocks */
    763 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
    764 		    dev_bshift);
    765 
    766 		UVMHIST_LOG(ubchist,
    767 		    "bp %#jx offset 0x%x bcount 0x%x blkno 0x%x",
    768 		    (uintptr_t)bp, offset, bp->b_bcount, bp->b_blkno);
    769 
    770 		VOP_STRATEGY(devvp, bp);
    771 	}
    772 
    773 loopdone:
    774 	nestiobuf_done(mbp, skipbytes, error);
    775 	if (async) {
    776 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
    777 		return 0;
    778 	}
    779 	if (bp != NULL) {
    780 		error = biowait(mbp);
    781 	}
    782 
    783 	/* Remove the mapping (make KVA available as soon as possible) */
    784 	uvm_pagermapout(kva, npages);
    785 
    786 	/*
    787 	 * if this we encountered a hole then we have to do a little more work.
    788 	 * for read faults, we marked the page PG_RDONLY so that future
    789 	 * write accesses to the page will fault again.
    790 	 * for write faults, we must make sure that the backing store for
    791 	 * the page is completely allocated while the pages are locked.
    792 	 */
    793 
    794 	if (!error && sawhole && blockalloc) {
    795 		error = GOP_ALLOC(vp, startoffset,
    796 		    npages << PAGE_SHIFT, 0, cred);
    797 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%jx/0x%jx -> %jd",
    798 		    startoffset, npages << PAGE_SHIFT, error,0);
    799 		if (!error) {
    800 			rw_enter(uobj->vmobjlock, RW_WRITER);
    801 			for (i = 0; i < npages; i++) {
    802 				struct vm_page *pg = pgs[i];
    803 
    804 				if (pg == NULL) {
    805 					continue;
    806 				}
    807 				pg->flags &= ~PG_RDONLY;
    808 				uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
    809 				UVMHIST_LOG(ubchist, "mark dirty pg %#jx",
    810 				    (uintptr_t)pg, 0, 0, 0);
    811 			}
    812 			rw_exit(uobj->vmobjlock);
    813 		}
    814 	}
    815 
    816 	putiobuf(mbp);
    817 	return error;
    818 }
    819 
    820 /*
    821  * generic VM putpages routine.
    822  * Write the given range of pages to backing store.
    823  *
    824  * => "offhi == 0" means flush all pages at or after "offlo".
    825  * => object should be locked by caller.  we return with the
    826  *      object unlocked.
    827  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
    828  *	thus, a caller might want to unlock higher level resources
    829  *	(e.g. vm_map) before calling flush.
    830  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
    831  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
    832  *
    833  * note on "cleaning" object and PG_BUSY pages:
    834  *	this routine is holding the lock on the object.   the only time
    835  *	that it can run into a PG_BUSY page that it does not own is if
    836  *	some other process has started I/O on the page (e.g. either
    837  *	a pagein, or a pageout).  if the PG_BUSY page is being paged
    838  *	in, then it can not be dirty (!UVM_PAGE_STATUS_CLEAN) because no
    839  *	one has	had a chance to modify it yet.  if the PG_BUSY page is
    840  *	being paged out then it means that someone else has already started
    841  *	cleaning the page for us (how nice!).  in this case, if we
    842  *	have syncio specified, then after we make our pass through the
    843  *	object we need to wait for the other PG_BUSY pages to clear
    844  *	off (i.e. we need to do an iosync).   also note that once a
    845  *	page is PG_BUSY it must stay in its object until it is un-busyed.
    846  */
    847 
    848 int
    849 genfs_putpages(void *v)
    850 {
    851 	struct vop_putpages_args /* {
    852 		struct vnode *a_vp;
    853 		voff_t a_offlo;
    854 		voff_t a_offhi;
    855 		int a_flags;
    856 	} */ * const ap = v;
    857 
    858 	return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
    859 	    ap->a_flags, NULL);
    860 }
    861 
    862 int
    863 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
    864     int origflags, struct vm_page **busypg)
    865 {
    866 	struct uvm_object * const uobj = &vp->v_uobj;
    867 	krwlock_t * const slock = uobj->vmobjlock;
    868 	off_t nextoff;
    869 	int i, error, npages, nback;
    870 	int freeflag;
    871 	/*
    872 	 * This array is larger than it should so that it's size is constant.
    873 	 * The right size is MAXPAGES.
    874 	 */
    875 	struct vm_page *pgs[MAXPHYS / MIN_PAGE_SIZE];
    876 #define MAXPAGES (MAXPHYS / PAGE_SIZE)
    877 	struct vm_page *pg, *tpg;
    878 	struct uvm_page_array a;
    879 	bool wasclean, needs_clean;
    880 	bool async = (origflags & PGO_SYNCIO) == 0;
    881 	bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
    882 	struct mount *trans_mp;
    883 	int flags;
    884 	bool modified;		/* if we write out any pages */
    885 	bool holds_wapbl;
    886 	bool cleanall;		/* try to pull off from the syncer's list */
    887 	bool onworklst;
    888 	bool nodirty;
    889 	const bool dirtyonly = (origflags & (PGO_DEACTIVATE|PGO_FREE)) == 0;
    890 
    891 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
    892 
    893 	KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
    894 	KASSERT((startoff & PAGE_MASK) == 0);
    895 	KASSERT((endoff & PAGE_MASK) == 0);
    896 	KASSERT(startoff < endoff || endoff == 0);
    897 	KASSERT(rw_write_held(slock));
    898 
    899 	UVMHIST_LOG(ubchist, "vp %#jx pages %jd off 0x%jx len 0x%jx",
    900 	    (uintptr_t)vp, uobj->uo_npages, startoff, endoff - startoff);
    901 
    902 #ifdef DIAGNOSTIC
    903 	if ((origflags & PGO_JOURNALLOCKED) && vp->v_mount->mnt_wapbl)
    904                 WAPBL_JLOCK_ASSERT(vp->v_mount);
    905 #endif
    906 
    907 	trans_mp = NULL;
    908 	holds_wapbl = false;
    909 
    910 retry:
    911 	modified = false;
    912 	flags = origflags;
    913 
    914 	/*
    915 	 * shortcut if we have no pages to process.
    916 	 */
    917 
    918 	nodirty = uvm_obj_clean_p(uobj);
    919 #ifdef DIAGNOSTIC
    920 	mutex_enter(vp->v_interlock);
    921 	KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 || nodirty);
    922 	mutex_exit(vp->v_interlock);
    923 #endif
    924 	if (uobj->uo_npages == 0 || (dirtyonly && nodirty)) {
    925 		mutex_enter(vp->v_interlock);
    926 		if (vp->v_iflag & VI_ONWORKLST && LIST_EMPTY(&vp->v_dirtyblkhd)) {
    927 			vn_syncer_remove_from_worklist(vp);
    928 		}
    929 		mutex_exit(vp->v_interlock);
    930 		if (trans_mp) {
    931 			if (holds_wapbl)
    932 				WAPBL_END(trans_mp);
    933 			fstrans_done(trans_mp);
    934 		}
    935 		rw_exit(slock);
    936 		return (0);
    937 	}
    938 
    939 	/*
    940 	 * the vnode has pages, set up to process the request.
    941 	 */
    942 
    943 	if (trans_mp == NULL && (flags & PGO_CLEANIT) != 0) {
    944 		if (pagedaemon) {
    945 			/* Pagedaemon must not sleep here. */
    946 			trans_mp = vp->v_mount;
    947 			error = fstrans_start_nowait(trans_mp);
    948 			if (error) {
    949 				rw_exit(slock);
    950 				return error;
    951 			}
    952 		} else {
    953 			/*
    954 			 * Cannot use vdeadcheck() here as this operation
    955 			 * usually gets used from VOP_RECLAIM().  Test for
    956 			 * change of v_mount instead and retry on change.
    957 			 */
    958 			rw_exit(slock);
    959 			trans_mp = vp->v_mount;
    960 			fstrans_start(trans_mp);
    961 			if (vp->v_mount != trans_mp) {
    962 				fstrans_done(trans_mp);
    963 				trans_mp = NULL;
    964 			} else {
    965 				holds_wapbl = (trans_mp->mnt_wapbl &&
    966 				    (origflags & PGO_JOURNALLOCKED) == 0);
    967 				if (holds_wapbl) {
    968 					error = WAPBL_BEGIN(trans_mp);
    969 					if (error) {
    970 						fstrans_done(trans_mp);
    971 						return error;
    972 					}
    973 				}
    974 			}
    975 			rw_enter(slock, RW_WRITER);
    976 			goto retry;
    977 		}
    978 	}
    979 
    980 	error = 0;
    981 	wasclean = uvm_obj_nowriteback_p(uobj);
    982 	nextoff = startoff;
    983 	if (endoff == 0 || flags & PGO_ALLPAGES) {
    984 		endoff = trunc_page(LLONG_MAX);
    985 	}
    986 
    987 	/*
    988 	 * if this vnode is known not to have dirty pages,
    989 	 * don't bother to clean it out.
    990 	 */
    991 
    992 	if (nodirty) {
    993 		/* We handled the dirtyonly && nodirty case above.  */
    994 		KASSERT(!dirtyonly);
    995 		flags &= ~PGO_CLEANIT;
    996 	}
    997 
    998 	/*
    999 	 * start the loop to scan pages.
   1000 	 */
   1001 
   1002 	cleanall = true;
   1003 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
   1004 	uvm_page_array_init(&a, uobj, dirtyonly ? (UVM_PAGE_ARRAY_FILL_DIRTY |
   1005 	    (!async ? UVM_PAGE_ARRAY_FILL_WRITEBACK : 0)) : 0);
   1006 	for (;;) {
   1007 		bool pgprotected;
   1008 
   1009 		/*
   1010 		 * if !dirtyonly, iterate over all resident pages in the range.
   1011 		 *
   1012 		 * if dirtyonly, only possibly dirty pages are interesting.
   1013 		 * however, if we are asked to sync for integrity, we should
   1014 		 * wait on pages being written back by other threads as well.
   1015 		 */
   1016 
   1017 		pg = uvm_page_array_fill_and_peek(&a, nextoff, 0);
   1018 		if (pg == NULL) {
   1019 			break;
   1020 		}
   1021 
   1022 		KASSERT(pg->uobject == uobj);
   1023 		KASSERT((pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
   1024 		    (pg->flags & (PG_BUSY)) != 0);
   1025 		KASSERT(pg->offset >= startoff);
   1026 		KASSERT(pg->offset >= nextoff);
   1027 		KASSERT(!dirtyonly ||
   1028 		    uvm_pagegetdirty(pg) != UVM_PAGE_STATUS_CLEAN ||
   1029 		    uvm_obj_page_writeback_p(pg));
   1030 
   1031 		if (pg->offset >= endoff) {
   1032 			break;
   1033 		}
   1034 
   1035 		/*
   1036 		 * a preempt point.
   1037 		 */
   1038 
   1039 		if (preempt_needed()) {
   1040 			nextoff = pg->offset; /* visit this page again */
   1041 			rw_exit(slock);
   1042 			preempt();
   1043 			/*
   1044 			 * as we dropped the object lock, our cached pages can
   1045 			 * be stale.
   1046 			 */
   1047 			uvm_page_array_clear(&a);
   1048 			rw_enter(slock, RW_WRITER);
   1049 			continue;
   1050 		}
   1051 
   1052 		/*
   1053 		 * if the current page is busy, wait for it to become unbusy.
   1054 		 */
   1055 
   1056 		if ((pg->flags & PG_BUSY) != 0) {
   1057 			UVMHIST_LOG(ubchist, "busy %#jx", (uintptr_t)pg,
   1058 			   0, 0, 0);
   1059 			if ((pg->flags & (PG_RELEASED|PG_PAGEOUT)) != 0
   1060 			    && (flags & PGO_BUSYFAIL) != 0) {
   1061 				UVMHIST_LOG(ubchist, "busyfail %#jx",
   1062 				    (uintptr_t)pg, 0, 0, 0);
   1063 				error = EDEADLK;
   1064 				if (busypg != NULL)
   1065 					*busypg = pg;
   1066 				break;
   1067 			}
   1068 			if (pagedaemon) {
   1069 				/*
   1070 				 * someone has taken the page while we
   1071 				 * dropped the lock for fstrans_start.
   1072 				 */
   1073 				break;
   1074 			}
   1075 			/*
   1076 			 * don't bother to wait on other's activities
   1077 			 * unless we are asked to sync for integrity.
   1078 			 */
   1079 			if (!async && (flags & PGO_RECLAIM) == 0) {
   1080 				wasclean = false;
   1081 				nextoff = pg->offset + PAGE_SIZE;
   1082 				uvm_page_array_advance(&a);
   1083 				continue;
   1084 			}
   1085 			nextoff = pg->offset; /* visit this page again */
   1086 			uvm_pagewait(pg, slock, "genput");
   1087 			/*
   1088 			 * as we dropped the object lock, our cached pages can
   1089 			 * be stale.
   1090 			 */
   1091 			uvm_page_array_clear(&a);
   1092 			rw_enter(slock, RW_WRITER);
   1093 			continue;
   1094 		}
   1095 
   1096 		nextoff = pg->offset + PAGE_SIZE;
   1097 		uvm_page_array_advance(&a);
   1098 
   1099 		/*
   1100 		 * if we're freeing, remove all mappings of the page now.
   1101 		 * if we're cleaning, check if the page is needs to be cleaned.
   1102 		 */
   1103 
   1104 		pgprotected = false;
   1105 		if (flags & PGO_FREE) {
   1106 			pmap_page_protect(pg, VM_PROT_NONE);
   1107 			pgprotected = true;
   1108 		} else if (flags & PGO_CLEANIT) {
   1109 
   1110 			/*
   1111 			 * if we still have some hope to pull this vnode off
   1112 			 * from the syncer queue, write-protect the page.
   1113 			 */
   1114 
   1115 			if (cleanall && wasclean) {
   1116 
   1117 				/*
   1118 				 * uobj pages get wired only by uvm_fault
   1119 				 * where uobj is locked.
   1120 				 */
   1121 
   1122 				if (pg->wire_count == 0) {
   1123 					pmap_page_protect(pg,
   1124 					    VM_PROT_READ|VM_PROT_EXECUTE);
   1125 					pgprotected = true;
   1126 				} else {
   1127 					cleanall = false;
   1128 				}
   1129 			}
   1130 		}
   1131 
   1132 		if (flags & PGO_CLEANIT) {
   1133 			needs_clean = uvm_pagecheckdirty(pg, pgprotected);
   1134 		} else {
   1135 			needs_clean = false;
   1136 		}
   1137 
   1138 		/*
   1139 		 * if we're cleaning, build a cluster.
   1140 		 * the cluster will consist of pages which are currently dirty.
   1141 		 * if not cleaning, just operate on the one page.
   1142 		 */
   1143 
   1144 		if (needs_clean) {
   1145 			wasclean = false;
   1146 			memset(pgs, 0, sizeof(pgs));
   1147 			pg->flags |= PG_BUSY;
   1148 			UVM_PAGE_OWN(pg, "genfs_putpages");
   1149 
   1150 			/*
   1151 			 * let the fs constrain the offset range of the cluster.
   1152 			 * we additionally constrain the range here such that
   1153 			 * it fits in the "pgs" pages array.
   1154 			 */
   1155 
   1156 			off_t fslo, fshi, genlo, lo, off = pg->offset;
   1157 			GOP_PUTRANGE(vp, off, &fslo, &fshi);
   1158 			KASSERT(fslo == trunc_page(fslo));
   1159 			KASSERT(fslo <= off);
   1160 			KASSERT(fshi == trunc_page(fshi));
   1161 			KASSERT(fshi == 0 || off < fshi);
   1162 
   1163 			if (off > MAXPHYS / 2)
   1164 				genlo = trunc_page(off - (MAXPHYS / 2));
   1165 			else
   1166 				genlo = 0;
   1167 			lo = MAX(fslo, genlo);
   1168 
   1169 			/*
   1170 			 * first look backward.
   1171 			 */
   1172 
   1173 			npages = (off - lo) >> PAGE_SHIFT;
   1174 			nback = npages;
   1175 			uvn_findpages(uobj, off - PAGE_SIZE, &nback,
   1176 			    &pgs[0], NULL,
   1177 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
   1178 			if (nback) {
   1179 				memmove(&pgs[0], &pgs[npages - nback],
   1180 				    nback * sizeof(pgs[0]));
   1181 				if (npages - nback < nback)
   1182 					memset(&pgs[nback], 0,
   1183 					    (npages - nback) * sizeof(pgs[0]));
   1184 				else
   1185 					memset(&pgs[npages - nback], 0,
   1186 					    nback * sizeof(pgs[0]));
   1187 			}
   1188 
   1189 			/*
   1190 			 * then plug in our page of interest.
   1191 			 */
   1192 
   1193 			pgs[nback] = pg;
   1194 
   1195 			/*
   1196 			 * then look forward to fill in the remaining space in
   1197 			 * the array of pages.
   1198 			 *
   1199 			 * pass our cached array of pages so that hopefully
   1200 			 * uvn_findpages can find some good pages in it.
   1201 			 * the array a was filled above with the one of
   1202 			 * following sets of flags:
   1203 			 *	0
   1204 			 *	UVM_PAGE_ARRAY_FILL_DIRTY
   1205 			 *	UVM_PAGE_ARRAY_FILL_DIRTY|WRITEBACK
   1206 			 *
   1207 			 * XXX this is fragile but it'll work: the array
   1208 			 * was earlier filled sparsely, but UFP_DIRTYONLY
   1209 			 * implies dense.  see corresponding comment in
   1210 			 * uvn_findpages().
   1211 			 */
   1212 
   1213 			npages = MAXPAGES - nback - 1;
   1214 			if (fshi)
   1215 				npages = MIN(npages,
   1216 					     (fshi - off - 1) >> PAGE_SHIFT);
   1217 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
   1218 			    &pgs[nback + 1], &a,
   1219 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
   1220 			npages += nback + 1;
   1221 		} else {
   1222 			pgs[0] = pg;
   1223 			npages = 1;
   1224 			nback = 0;
   1225 		}
   1226 
   1227 		/*
   1228 		 * apply FREE or DEACTIVATE options if requested.
   1229 		 */
   1230 
   1231 		for (i = 0; i < npages; i++) {
   1232 			tpg = pgs[i];
   1233 			KASSERT(tpg->uobject == uobj);
   1234 			KASSERT(i == 0 ||
   1235 			    pgs[i-1]->offset + PAGE_SIZE == tpg->offset);
   1236 			KASSERT(!needs_clean || uvm_pagegetdirty(pgs[i]) !=
   1237 			    UVM_PAGE_STATUS_DIRTY);
   1238 			if (needs_clean) {
   1239 				/*
   1240 				 * mark pages as WRITEBACK so that concurrent
   1241 				 * fsync can find and wait for our activities.
   1242 				 */
   1243 				uvm_obj_page_set_writeback(pgs[i]);
   1244 			}
   1245 			if (tpg->offset < startoff || tpg->offset >= endoff)
   1246 				continue;
   1247 			if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
   1248 				uvm_pagelock(tpg);
   1249 				uvm_pagedeactivate(tpg);
   1250 				uvm_pageunlock(tpg);
   1251 			} else if (flags & PGO_FREE) {
   1252 				pmap_page_protect(tpg, VM_PROT_NONE);
   1253 				if (tpg->flags & PG_BUSY) {
   1254 					tpg->flags |= freeflag;
   1255 					if (pagedaemon) {
   1256 						uvm_pageout_start(1);
   1257 						uvm_pagelock(tpg);
   1258 						uvm_pagedequeue(tpg);
   1259 						uvm_pageunlock(tpg);
   1260 					}
   1261 				} else {
   1262 
   1263 					/*
   1264 					 * ``page is not busy''
   1265 					 * implies that npages is 1
   1266 					 * and needs_clean is false.
   1267 					 */
   1268 
   1269 					KASSERT(npages == 1);
   1270 					KASSERT(!needs_clean);
   1271 					KASSERT(pg == tpg);
   1272 					KASSERT(nextoff ==
   1273 					    tpg->offset + PAGE_SIZE);
   1274 					uvm_pagefree(tpg);
   1275 					if (pagedaemon)
   1276 						uvmexp.pdfreed++;
   1277 				}
   1278 			}
   1279 		}
   1280 		if (needs_clean) {
   1281 			modified = true;
   1282 			KASSERT(nextoff == pg->offset + PAGE_SIZE);
   1283 			KASSERT(nback < npages);
   1284 			nextoff = pg->offset + ((npages - nback) << PAGE_SHIFT);
   1285 			KASSERT(pgs[nback] == pg);
   1286 			KASSERT(nextoff == pgs[npages - 1]->offset + PAGE_SIZE);
   1287 
   1288 			/*
   1289 			 * start the i/o.
   1290 			 */
   1291 			rw_exit(slock);
   1292 			error = GOP_WRITE(vp, pgs, npages, flags);
   1293 			/*
   1294 			 * as we dropped the object lock, our cached pages can
   1295 			 * be stale.
   1296 			 */
   1297 			uvm_page_array_clear(&a);
   1298 			rw_enter(slock, RW_WRITER);
   1299 			if (error) {
   1300 				break;
   1301 			}
   1302 		}
   1303 	}
   1304 	uvm_page_array_fini(&a);
   1305 
   1306 	/*
   1307 	 * update ctime/mtime if the modification we started writing out might
   1308 	 * be from mmap'ed write.
   1309 	 *
   1310 	 * this is necessary when an application keeps a file mmaped and
   1311 	 * repeatedly modifies it via the window.  note that, because we
   1312 	 * don't always write-protect pages when cleaning, such modifications
   1313 	 * might not involve any page faults.
   1314 	 */
   1315 
   1316 	mutex_enter(vp->v_interlock);
   1317 	if (modified && (vp->v_iflag & VI_WRMAP) != 0 &&
   1318 	    (vp->v_type != VBLK ||
   1319 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
   1320 		GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
   1321 	}
   1322 
   1323 	/*
   1324 	 * if we no longer have any possibly dirty pages, take us off the
   1325 	 * syncer list.
   1326 	 */
   1327 
   1328 	if ((vp->v_iflag & VI_ONWORKLST) != 0 && uvm_obj_clean_p(uobj) &&
   1329 	    LIST_EMPTY(&vp->v_dirtyblkhd)) {
   1330 		vn_syncer_remove_from_worklist(vp);
   1331 	}
   1332 
   1333 	/* Wait for output to complete. */
   1334 	rw_exit(slock);
   1335 	if (!wasclean && !async && vp->v_numoutput != 0) {
   1336 		while (vp->v_numoutput != 0)
   1337 			cv_wait(&vp->v_cv, vp->v_interlock);
   1338 	}
   1339 	onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
   1340 	mutex_exit(vp->v_interlock);
   1341 
   1342 	if ((flags & PGO_RECLAIM) != 0 && onworklst) {
   1343 		/*
   1344 		 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
   1345 		 * retrying is not a big deal because, in many cases,
   1346 		 * uobj->uo_npages is already 0 here.
   1347 		 */
   1348 		rw_enter(slock, RW_WRITER);
   1349 		goto retry;
   1350 	}
   1351 
   1352 	if (trans_mp) {
   1353 		if (holds_wapbl)
   1354 			WAPBL_END(trans_mp);
   1355 		fstrans_done(trans_mp);
   1356 	}
   1357 
   1358 	return (error);
   1359 }
   1360 
   1361 /*
   1362  * Default putrange method for file systems that do not care
   1363  * how many pages are given to one GOP_WRITE() call.
   1364  */
   1365 void
   1366 genfs_gop_putrange(struct vnode *vp, off_t off, off_t *lop, off_t *hip)
   1367 {
   1368 
   1369 	*lop = 0;
   1370 	*hip = 0;
   1371 }
   1372 
   1373 int
   1374 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1375 {
   1376 	off_t off;
   1377 	vaddr_t kva;
   1378 	size_t len;
   1379 	int error;
   1380 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1381 
   1382 	UVMHIST_LOG(ubchist, "vp %#jx pgs %#jx npages %jd flags 0x%jx",
   1383 	    (uintptr_t)vp, (uintptr_t)pgs, npages, flags);
   1384 
   1385 	off = pgs[0]->offset;
   1386 	kva = uvm_pagermapin(pgs, npages,
   1387 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1388 	len = npages << PAGE_SHIFT;
   1389 
   1390 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1391 			    uvm_aio_aiodone);
   1392 
   1393 	return error;
   1394 }
   1395 
   1396 /*
   1397  * genfs_gop_write_rwmap:
   1398  *
   1399  * a variant of genfs_gop_write.  it's used by UDF for its directory buffers.
   1400  * this maps pages with PROT_WRITE so that VOP_STRATEGY can modifies
   1401  * the contents before writing it out to the underlying storage.
   1402  */
   1403 
   1404 int
   1405 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages,
   1406     int flags)
   1407 {
   1408 	off_t off;
   1409 	vaddr_t kva;
   1410 	size_t len;
   1411 	int error;
   1412 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1413 
   1414 	UVMHIST_LOG(ubchist, "vp %#jx pgs %#jx npages %jd flags 0x%jx",
   1415 	    (uintptr_t)vp, (uintptr_t)pgs, npages, flags);
   1416 
   1417 	off = pgs[0]->offset;
   1418 	kva = uvm_pagermapin(pgs, npages,
   1419 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1420 	len = npages << PAGE_SHIFT;
   1421 
   1422 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1423 			    uvm_aio_aiodone);
   1424 
   1425 	return error;
   1426 }
   1427 
   1428 /*
   1429  * Backend routine for doing I/O to vnode pages.  Pages are already locked
   1430  * and mapped into kernel memory.  Here we just look up the underlying
   1431  * device block addresses and call the strategy routine.
   1432  */
   1433 
   1434 static int
   1435 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
   1436     enum uio_rw rw, void (*iodone)(struct buf *))
   1437 {
   1438 	int s, error;
   1439 	int fs_bshift, dev_bshift;
   1440 	off_t eof, offset, startoffset;
   1441 	size_t bytes, iobytes, skipbytes;
   1442 	struct buf *mbp, *bp;
   1443 	const bool async = (flags & PGO_SYNCIO) == 0;
   1444 	const bool lazy = (flags & PGO_LAZY) == 0;
   1445 	const bool iowrite = rw == UIO_WRITE;
   1446 	const int brw = iowrite ? B_WRITE : B_READ;
   1447 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1448 
   1449 	UVMHIST_LOG(ubchist, "vp %#jx kva %#jx len 0x%jx flags 0x%jx",
   1450 	    (uintptr_t)vp, (uintptr_t)kva, len, flags);
   1451 
   1452 	KASSERT(vp->v_size != VSIZENOTSET);
   1453 	KASSERT(vp->v_writesize != VSIZENOTSET);
   1454 	KASSERTMSG(vp->v_size <= vp->v_writesize, "vp=%p"
   1455 	    " v_size=0x%llx v_writesize=0x%llx", vp,
   1456 	    (unsigned long long)vp->v_size,
   1457 	    (unsigned long long)vp->v_writesize);
   1458 	GOP_SIZE(vp, vp->v_writesize, &eof, 0);
   1459 	if (vp->v_type != VBLK) {
   1460 		fs_bshift = vp->v_mount->mnt_fs_bshift;
   1461 		dev_bshift = vp->v_mount->mnt_dev_bshift;
   1462 	} else {
   1463 		fs_bshift = DEV_BSHIFT;
   1464 		dev_bshift = DEV_BSHIFT;
   1465 	}
   1466 	error = 0;
   1467 	startoffset = off;
   1468 	bytes = MIN(len, eof - startoffset);
   1469 	skipbytes = 0;
   1470 	KASSERT(bytes != 0);
   1471 
   1472 	if (iowrite) {
   1473 		/*
   1474 		 * why += 2?
   1475 		 * 1 for biodone, 1 for uvm_aio_aiodone.
   1476 		 */
   1477 		mutex_enter(vp->v_interlock);
   1478 		vp->v_numoutput += 2;
   1479 		mutex_exit(vp->v_interlock);
   1480 	}
   1481 	mbp = getiobuf(vp, true);
   1482 	UVMHIST_LOG(ubchist, "vp %#jx mbp %#jx num now %jd bytes 0x%jx",
   1483 	    (uintptr_t)vp, (uintptr_t)mbp, vp->v_numoutput, bytes);
   1484 	mbp->b_bufsize = len;
   1485 	mbp->b_data = (void *)kva;
   1486 	mbp->b_resid = mbp->b_bcount = bytes;
   1487 	mbp->b_cflags |= BC_BUSY | BC_AGE;
   1488 	if (async) {
   1489 		mbp->b_flags = brw | B_ASYNC;
   1490 		mbp->b_iodone = iodone;
   1491 	} else {
   1492 		mbp->b_flags = brw;
   1493 		mbp->b_iodone = NULL;
   1494 	}
   1495 	if (curlwp == uvm.pagedaemon_lwp)
   1496 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
   1497 	else if (async || lazy)
   1498 		BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
   1499 	else
   1500 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
   1501 
   1502 	bp = NULL;
   1503 	for (offset = startoffset;
   1504 	    bytes > 0;
   1505 	    offset += iobytes, bytes -= iobytes) {
   1506 		int run;
   1507 		daddr_t lbn, blkno;
   1508 		struct vnode *devvp;
   1509 
   1510 		/*
   1511 		 * bmap the file to find out the blkno to read from and
   1512 		 * how much we can read in one i/o.  if bmap returns an error,
   1513 		 * skip the rest of the top-level i/o.
   1514 		 */
   1515 
   1516 		lbn = offset >> fs_bshift;
   1517 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
   1518 		if (error) {
   1519 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%jx -> %jd",
   1520 			    lbn, error, 0, 0);
   1521 			skipbytes += bytes;
   1522 			bytes = 0;
   1523 			goto loopdone;
   1524 		}
   1525 
   1526 		/*
   1527 		 * see how many pages can be read with this i/o.
   1528 		 * reduce the i/o size if necessary to avoid
   1529 		 * overwriting pages with valid data.
   1530 		 */
   1531 
   1532 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
   1533 		    bytes);
   1534 
   1535 		/*
   1536 		 * if this block isn't allocated, zero it instead of
   1537 		 * reading it.  unless we are going to allocate blocks,
   1538 		 * mark the pages we zeroed PG_RDONLY.
   1539 		 */
   1540 
   1541 		if (blkno == (daddr_t)-1) {
   1542 			if (!iowrite) {
   1543 				memset((char *)kva + (offset - startoffset), 0,
   1544 				    iobytes);
   1545 			}
   1546 			skipbytes += iobytes;
   1547 			continue;
   1548 		}
   1549 
   1550 		/*
   1551 		 * allocate a sub-buf for this piece of the i/o
   1552 		 * (or just use mbp if there's only 1 piece),
   1553 		 * and start it going.
   1554 		 */
   1555 
   1556 		if (offset == startoffset && iobytes == bytes) {
   1557 			bp = mbp;
   1558 		} else {
   1559 			UVMHIST_LOG(ubchist, "vp %#jx bp %#jx num now %jd",
   1560 			    (uintptr_t)vp, (uintptr_t)bp, vp->v_numoutput, 0);
   1561 			bp = getiobuf(vp, true);
   1562 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
   1563 		}
   1564 		bp->b_lblkno = 0;
   1565 
   1566 		/* adjust physical blkno for partial blocks */
   1567 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
   1568 		    dev_bshift);
   1569 
   1570 		UVMHIST_LOG(ubchist,
   1571 		    "bp %#jx offset 0x%jx bcount 0x%jx blkno 0x%jx",
   1572 		    (uintptr_t)bp, offset, bp->b_bcount, bp->b_blkno);
   1573 
   1574 		VOP_STRATEGY(devvp, bp);
   1575 	}
   1576 
   1577 loopdone:
   1578 	if (skipbytes) {
   1579 		UVMHIST_LOG(ubchist, "skipbytes %jd", skipbytes, 0,0,0);
   1580 	}
   1581 	nestiobuf_done(mbp, skipbytes, error);
   1582 	if (async) {
   1583 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
   1584 		return (0);
   1585 	}
   1586 	UVMHIST_LOG(ubchist, "waiting for mbp %#jx", (uintptr_t)mbp, 0, 0, 0);
   1587 	error = biowait(mbp);
   1588 	s = splbio();
   1589 	(*iodone)(mbp);
   1590 	splx(s);
   1591 	UVMHIST_LOG(ubchist, "returning, error %jd", error, 0, 0, 0);
   1592 	return (error);
   1593 }
   1594 
   1595 int
   1596 genfs_compat_getpages(void *v)
   1597 {
   1598 	struct vop_getpages_args /* {
   1599 		struct vnode *a_vp;
   1600 		voff_t a_offset;
   1601 		struct vm_page **a_m;
   1602 		int *a_count;
   1603 		int a_centeridx;
   1604 		vm_prot_t a_access_type;
   1605 		int a_advice;
   1606 		int a_flags;
   1607 	} */ *ap = v;
   1608 
   1609 	off_t origoffset;
   1610 	struct vnode *vp = ap->a_vp;
   1611 	struct uvm_object *uobj = &vp->v_uobj;
   1612 	struct vm_page *pg, **pgs;
   1613 	vaddr_t kva;
   1614 	int i, error, orignpages, npages;
   1615 	struct iovec iov;
   1616 	struct uio uio;
   1617 	kauth_cred_t cred = curlwp->l_cred;
   1618 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
   1619 
   1620 	error = 0;
   1621 	origoffset = ap->a_offset;
   1622 	orignpages = *ap->a_count;
   1623 	pgs = ap->a_m;
   1624 
   1625 	if (ap->a_flags & PGO_LOCKED) {
   1626 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m, NULL,
   1627 		    UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
   1628 
   1629 		error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
   1630 		return error;
   1631 	}
   1632 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
   1633 		rw_exit(uobj->vmobjlock);
   1634 		return EINVAL;
   1635 	}
   1636 	if ((ap->a_flags & PGO_SYNCIO) == 0) {
   1637 		rw_exit(uobj->vmobjlock);
   1638 		return 0;
   1639 	}
   1640 	npages = orignpages;
   1641 	uvn_findpages(uobj, origoffset, &npages, pgs, NULL, UFP_ALL);
   1642 	rw_exit(uobj->vmobjlock);
   1643 	kva = uvm_pagermapin(pgs, npages,
   1644 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1645 	for (i = 0; i < npages; i++) {
   1646 		pg = pgs[i];
   1647 		if ((pg->flags & PG_FAKE) == 0) {
   1648 			continue;
   1649 		}
   1650 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
   1651 		iov.iov_len = PAGE_SIZE;
   1652 		uio.uio_iov = &iov;
   1653 		uio.uio_iovcnt = 1;
   1654 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
   1655 		uio.uio_rw = UIO_READ;
   1656 		uio.uio_resid = PAGE_SIZE;
   1657 		UIO_SETUP_SYSSPACE(&uio);
   1658 		/* XXX vn_lock */
   1659 		error = VOP_READ(vp, &uio, 0, cred);
   1660 		if (error) {
   1661 			break;
   1662 		}
   1663 		if (uio.uio_resid) {
   1664 			memset(iov.iov_base, 0, uio.uio_resid);
   1665 		}
   1666 	}
   1667 	uvm_pagermapout(kva, npages);
   1668 	rw_enter(uobj->vmobjlock, RW_WRITER);
   1669 	for (i = 0; i < npages; i++) {
   1670 		pg = pgs[i];
   1671 		if (error && (pg->flags & PG_FAKE) != 0) {
   1672 			pg->flags |= PG_RELEASED;
   1673 		} else {
   1674 			uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_UNKNOWN);
   1675 			uvm_pagelock(pg);
   1676 			uvm_pageactivate(pg);
   1677 			uvm_pageunlock(pg);
   1678 		}
   1679 	}
   1680 	if (error) {
   1681 		uvm_page_unbusy(pgs, npages);
   1682 	}
   1683 	rw_exit(uobj->vmobjlock);
   1684 	return error;
   1685 }
   1686 
   1687 int
   1688 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
   1689     int flags)
   1690 {
   1691 	off_t offset;
   1692 	struct iovec iov;
   1693 	struct uio uio;
   1694 	kauth_cred_t cred = curlwp->l_cred;
   1695 	struct buf *bp;
   1696 	vaddr_t kva;
   1697 	int error;
   1698 
   1699 	offset = pgs[0]->offset;
   1700 	kva = uvm_pagermapin(pgs, npages,
   1701 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1702 
   1703 	iov.iov_base = (void *)kva;
   1704 	iov.iov_len = npages << PAGE_SHIFT;
   1705 	uio.uio_iov = &iov;
   1706 	uio.uio_iovcnt = 1;
   1707 	uio.uio_offset = offset;
   1708 	uio.uio_rw = UIO_WRITE;
   1709 	uio.uio_resid = npages << PAGE_SHIFT;
   1710 	UIO_SETUP_SYSSPACE(&uio);
   1711 	/* XXX vn_lock */
   1712 	error = VOP_WRITE(vp, &uio, 0, cred);
   1713 
   1714 	mutex_enter(vp->v_interlock);
   1715 	vp->v_numoutput++;
   1716 	mutex_exit(vp->v_interlock);
   1717 
   1718 	bp = getiobuf(vp, true);
   1719 	bp->b_cflags |= BC_BUSY | BC_AGE;
   1720 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
   1721 	bp->b_data = (char *)kva;
   1722 	bp->b_bcount = npages << PAGE_SHIFT;
   1723 	bp->b_bufsize = npages << PAGE_SHIFT;
   1724 	bp->b_resid = 0;
   1725 	bp->b_error = error;
   1726 	uvm_aio_aiodone(bp);
   1727 	return (error);
   1728 }
   1729 
   1730 /*
   1731  * Process a uio using direct I/O.  If we reach a part of the request
   1732  * which cannot be processed in this fashion for some reason, just return.
   1733  * The caller must handle some additional part of the request using
   1734  * buffered I/O before trying direct I/O again.
   1735  */
   1736 
   1737 void
   1738 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
   1739 {
   1740 	struct vmspace *vs;
   1741 	struct iovec *iov;
   1742 	vaddr_t va;
   1743 	size_t len;
   1744 	const int mask = DEV_BSIZE - 1;
   1745 	int error;
   1746 	bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
   1747 	    (ioflag & IO_JOURNALLOCKED) == 0);
   1748 
   1749 #ifdef DIAGNOSTIC
   1750 	if ((ioflag & IO_JOURNALLOCKED) && vp->v_mount->mnt_wapbl)
   1751                 WAPBL_JLOCK_ASSERT(vp->v_mount);
   1752 #endif
   1753 
   1754 	/*
   1755 	 * We only support direct I/O to user space for now.
   1756 	 */
   1757 
   1758 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
   1759 		return;
   1760 	}
   1761 
   1762 	/*
   1763 	 * If the vnode is mapped, we would need to get the getpages lock
   1764 	 * to stabilize the bmap, but then we would get into trouble while
   1765 	 * locking the pages if the pages belong to this same vnode (or a
   1766 	 * multi-vnode cascade to the same effect).  Just fall back to
   1767 	 * buffered I/O if the vnode is mapped to avoid this mess.
   1768 	 */
   1769 
   1770 	if (vp->v_vflag & VV_MAPPED) {
   1771 		return;
   1772 	}
   1773 
   1774 	if (need_wapbl) {
   1775 		error = WAPBL_BEGIN(vp->v_mount);
   1776 		if (error)
   1777 			return;
   1778 	}
   1779 
   1780 	/*
   1781 	 * Do as much of the uio as possible with direct I/O.
   1782 	 */
   1783 
   1784 	vs = uio->uio_vmspace;
   1785 	while (uio->uio_resid) {
   1786 		iov = uio->uio_iov;
   1787 		if (iov->iov_len == 0) {
   1788 			uio->uio_iov++;
   1789 			uio->uio_iovcnt--;
   1790 			continue;
   1791 		}
   1792 		va = (vaddr_t)iov->iov_base;
   1793 		len = MIN(iov->iov_len, genfs_maxdio);
   1794 		len &= ~mask;
   1795 
   1796 		/*
   1797 		 * If the next chunk is smaller than DEV_BSIZE or extends past
   1798 		 * the current EOF, then fall back to buffered I/O.
   1799 		 */
   1800 
   1801 		if (len == 0 || uio->uio_offset + len > vp->v_size) {
   1802 			break;
   1803 		}
   1804 
   1805 		/*
   1806 		 * Check alignment.  The file offset must be at least
   1807 		 * sector-aligned.  The exact constraint on memory alignment
   1808 		 * is very hardware-dependent, but requiring sector-aligned
   1809 		 * addresses there too is safe.
   1810 		 */
   1811 
   1812 		if (uio->uio_offset & mask || va & mask) {
   1813 			break;
   1814 		}
   1815 		error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
   1816 					  uio->uio_rw);
   1817 		if (error) {
   1818 			break;
   1819 		}
   1820 		iov->iov_base = (char *)iov->iov_base + len;
   1821 		iov->iov_len -= len;
   1822 		uio->uio_offset += len;
   1823 		uio->uio_resid -= len;
   1824 	}
   1825 
   1826 	if (need_wapbl)
   1827 		WAPBL_END(vp->v_mount);
   1828 }
   1829 
   1830 /*
   1831  * Iodone routine for direct I/O.  We don't do much here since the request is
   1832  * always synchronous, so the caller will do most of the work after biowait().
   1833  */
   1834 
   1835 static void
   1836 genfs_dio_iodone(struct buf *bp)
   1837 {
   1838 
   1839 	KASSERT((bp->b_flags & B_ASYNC) == 0);
   1840 	if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
   1841 		mutex_enter(bp->b_objlock);
   1842 		vwakeup(bp);
   1843 		mutex_exit(bp->b_objlock);
   1844 	}
   1845 	putiobuf(bp);
   1846 }
   1847 
   1848 /*
   1849  * Process one chunk of a direct I/O request.
   1850  */
   1851 
   1852 static int
   1853 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
   1854     off_t off, enum uio_rw rw)
   1855 {
   1856 	struct vm_map *map;
   1857 	struct pmap *upm, *kpm __unused;
   1858 	size_t klen = round_page(uva + len) - trunc_page(uva);
   1859 	off_t spoff, epoff;
   1860 	vaddr_t kva, puva;
   1861 	paddr_t pa;
   1862 	vm_prot_t prot;
   1863 	int error, rv __diagused, poff, koff;
   1864 	const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
   1865 		(rw == UIO_WRITE ? PGO_FREE : 0);
   1866 
   1867 	/*
   1868 	 * For writes, verify that this range of the file already has fully
   1869 	 * allocated backing store.  If there are any holes, just punt and
   1870 	 * make the caller take the buffered write path.
   1871 	 */
   1872 
   1873 	if (rw == UIO_WRITE) {
   1874 		daddr_t lbn, elbn, blkno;
   1875 		int bsize, bshift, run;
   1876 
   1877 		bshift = vp->v_mount->mnt_fs_bshift;
   1878 		bsize = 1 << bshift;
   1879 		lbn = off >> bshift;
   1880 		elbn = (off + len + bsize - 1) >> bshift;
   1881 		while (lbn < elbn) {
   1882 			error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
   1883 			if (error) {
   1884 				return error;
   1885 			}
   1886 			if (blkno == (daddr_t)-1) {
   1887 				return ENOSPC;
   1888 			}
   1889 			lbn += 1 + run;
   1890 		}
   1891 	}
   1892 
   1893 	/*
   1894 	 * Flush any cached pages for parts of the file that we're about to
   1895 	 * access.  If we're writing, invalidate pages as well.
   1896 	 */
   1897 
   1898 	spoff = trunc_page(off);
   1899 	epoff = round_page(off + len);
   1900 	rw_enter(vp->v_uobj.vmobjlock, RW_WRITER);
   1901 	error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
   1902 	if (error) {
   1903 		return error;
   1904 	}
   1905 
   1906 	/*
   1907 	 * Wire the user pages and remap them into kernel memory.
   1908 	 */
   1909 
   1910 	prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
   1911 	error = uvm_vslock(vs, (void *)uva, len, prot);
   1912 	if (error) {
   1913 		return error;
   1914 	}
   1915 
   1916 	map = &vs->vm_map;
   1917 	upm = vm_map_pmap(map);
   1918 	kpm = vm_map_pmap(kernel_map);
   1919 	puva = trunc_page(uva);
   1920 	kva = uvm_km_alloc(kernel_map, klen, atop(puva) & uvmexp.colormask,
   1921 	    UVM_KMF_VAONLY | UVM_KMF_WAITVA | UVM_KMF_COLORMATCH);
   1922 	for (poff = 0; poff < klen; poff += PAGE_SIZE) {
   1923 		rv = pmap_extract(upm, puva + poff, &pa);
   1924 		KASSERT(rv);
   1925 		pmap_kenter_pa(kva + poff, pa, prot, PMAP_WIRED);
   1926 	}
   1927 	pmap_update(kpm);
   1928 
   1929 	/*
   1930 	 * Do the I/O.
   1931 	 */
   1932 
   1933 	koff = uva - trunc_page(uva);
   1934 	error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
   1935 			    genfs_dio_iodone);
   1936 
   1937 	/*
   1938 	 * Tear down the kernel mapping.
   1939 	 */
   1940 
   1941 	pmap_kremove(kva, klen);
   1942 	pmap_update(kpm);
   1943 	uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
   1944 
   1945 	/*
   1946 	 * Unwire the user pages.
   1947 	 */
   1948 
   1949 	uvm_vsunlock(vs, (void *)uva, len);
   1950 	return error;
   1951 }
   1952