Home | History | Annotate | Line # | Download | only in libpthread
      1 /*	$NetBSD: pthread_mutex.c,v 1.83 2022/04/10 10:38:33 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001, 2003, 2006, 2007, 2008, 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * To track threads waiting for mutexes to be released, we use lockless
     34  * lists built on atomic operations and memory barriers.
     35  *
     36  * A simple spinlock would be faster and make the code easier to
     37  * follow, but spinlocks are problematic in userspace.  If a thread is
     38  * preempted by the kernel while holding a spinlock, any other thread
     39  * attempting to acquire that spinlock will needlessly busy wait.
     40  *
     41  * There is no good way to know that the holding thread is no longer
     42  * running, nor to request a wake-up once it has begun running again.
     43  * Of more concern, threads in the SCHED_FIFO class do not have a
     44  * limited time quantum and so could spin forever, preventing the
     45  * thread holding the spinlock from getting CPU time: it would never
     46  * be released.
     47  */
     48 
     49 #include <sys/cdefs.h>
     50 __RCSID("$NetBSD: pthread_mutex.c,v 1.83 2022/04/10 10:38:33 riastradh Exp $");
     51 
     52 /* Need to use libc-private names for atomic operations. */
     53 #include "../../common/lib/libc/atomic/atomic_op_namespace.h"
     54 
     55 #include <sys/types.h>
     56 #include <sys/lwpctl.h>
     57 #include <sys/sched.h>
     58 #include <sys/lock.h>
     59 
     60 #include <errno.h>
     61 #include <limits.h>
     62 #include <stdlib.h>
     63 #include <time.h>
     64 #include <string.h>
     65 #include <stdio.h>
     66 
     67 #include "pthread.h"
     68 #include "pthread_int.h"
     69 #include "reentrant.h"
     70 
     71 #define	MUTEX_RECURSIVE_BIT		((uintptr_t)0x02)
     72 #define	MUTEX_PROTECT_BIT		((uintptr_t)0x08)
     73 #define	MUTEX_THREAD			((uintptr_t)~0x0f)
     74 
     75 #define	MUTEX_RECURSIVE(x)		((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
     76 #define	MUTEX_PROTECT(x)		((uintptr_t)(x) & MUTEX_PROTECT_BIT)
     77 #define	MUTEX_OWNER(x)			((uintptr_t)(x) & MUTEX_THREAD)
     78 
     79 #define	MUTEX_GET_TYPE(x)		\
     80     ((int)(((uintptr_t)(x) & 0x000000ff) >> 0))
     81 #define	MUTEX_SET_TYPE(x, t) 		\
     82     (x) = (void *)(((uintptr_t)(x) & ~0x000000ff) | ((t) << 0))
     83 #define	MUTEX_GET_PROTOCOL(x)		\
     84     ((int)(((uintptr_t)(x) & 0x0000ff00) >> 8))
     85 #define	MUTEX_SET_PROTOCOL(x, p)	\
     86     (x) = (void *)(((uintptr_t)(x) & ~0x0000ff00) | ((p) << 8))
     87 #define	MUTEX_GET_CEILING(x)		\
     88     ((int)(((uintptr_t)(x) & 0x00ff0000) >> 16))
     89 #define	MUTEX_SET_CEILING(x, c)	\
     90     (x) = (void *)(((uintptr_t)(x) & ~0x00ff0000) | ((c) << 16))
     91 
     92 #if __GNUC_PREREQ__(3, 0)
     93 #define	NOINLINE		__attribute ((noinline))
     94 #else
     95 #define	NOINLINE		/* nothing */
     96 #endif
     97 
     98 struct waiter {
     99 	struct waiter	*volatile next;
    100 	lwpid_t		volatile lid;
    101 };
    102 
    103 static void	pthread__mutex_wakeup(pthread_t, struct pthread__waiter *);
    104 static int	pthread__mutex_lock_slow(pthread_mutex_t *,
    105     const struct timespec *);
    106 static void	pthread__mutex_pause(void);
    107 
    108 int		_pthread_mutex_held_np(pthread_mutex_t *);
    109 pthread_t	_pthread_mutex_owner_np(pthread_mutex_t *);
    110 
    111 __weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
    112 __weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
    113 
    114 __strong_alias(__libc_mutex_init,pthread_mutex_init)
    115 __strong_alias(__libc_mutex_lock,pthread_mutex_lock)
    116 __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
    117 __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
    118 __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
    119 
    120 __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
    121 __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
    122 __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
    123 
    124 int
    125 pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
    126 {
    127 	uintptr_t type, proto, val, ceil;
    128 
    129 #if 0
    130 	/*
    131 	 * Always initialize the mutex structure, maybe be used later
    132 	 * and the cost should be minimal.
    133 	 */
    134 	if (__predict_false(__uselibcstub))
    135 		return __libc_mutex_init_stub(ptm, attr);
    136 #endif
    137 
    138 	pthread__error(EINVAL, "Invalid mutes attribute",
    139 	    attr == NULL || attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    140 
    141 	if (attr == NULL) {
    142 		type = PTHREAD_MUTEX_NORMAL;
    143 		proto = PTHREAD_PRIO_NONE;
    144 		ceil = 0;
    145 	} else {
    146 		val = (uintptr_t)attr->ptma_private;
    147 
    148 		type = MUTEX_GET_TYPE(val);
    149 		proto = MUTEX_GET_PROTOCOL(val);
    150 		ceil = MUTEX_GET_CEILING(val);
    151 	}
    152 	switch (type) {
    153 	case PTHREAD_MUTEX_ERRORCHECK:
    154 		__cpu_simple_lock_set(&ptm->ptm_errorcheck);
    155 		ptm->ptm_owner = NULL;
    156 		break;
    157 	case PTHREAD_MUTEX_RECURSIVE:
    158 		__cpu_simple_lock_clear(&ptm->ptm_errorcheck);
    159 		ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
    160 		break;
    161 	default:
    162 		__cpu_simple_lock_clear(&ptm->ptm_errorcheck);
    163 		ptm->ptm_owner = NULL;
    164 		break;
    165 	}
    166 	switch (proto) {
    167 	case PTHREAD_PRIO_PROTECT:
    168 		val = (uintptr_t)ptm->ptm_owner;
    169 		val |= MUTEX_PROTECT_BIT;
    170 		ptm->ptm_owner = (void *)val;
    171 		break;
    172 
    173 	}
    174 	ptm->ptm_magic = _PT_MUTEX_MAGIC;
    175 	ptm->ptm_waiters = NULL;
    176 	ptm->ptm_recursed = 0;
    177 	ptm->ptm_ceiling = (unsigned char)ceil;
    178 
    179 	return 0;
    180 }
    181 
    182 int
    183 pthread_mutex_destroy(pthread_mutex_t *ptm)
    184 {
    185 
    186 	if (__predict_false(__uselibcstub))
    187 		return __libc_mutex_destroy_stub(ptm);
    188 
    189 	pthread__error(EINVAL, "Invalid mutex",
    190 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    191 	pthread__error(EBUSY, "Destroying locked mutex",
    192 	    MUTEX_OWNER(ptm->ptm_owner) == 0);
    193 
    194 	ptm->ptm_magic = _PT_MUTEX_DEAD;
    195 	return 0;
    196 }
    197 
    198 int
    199 pthread_mutex_lock(pthread_mutex_t *ptm)
    200 {
    201 	pthread_t self;
    202 	void *val;
    203 
    204 	if (__predict_false(__uselibcstub))
    205 		return __libc_mutex_lock_stub(ptm);
    206 
    207 	pthread__error(EINVAL, "Invalid mutex",
    208 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    209 
    210 	self = pthread__self();
    211 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
    212 	if (__predict_true(val == NULL)) {
    213 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    214 		membar_enter();
    215 #endif
    216 		return 0;
    217 	}
    218 	return pthread__mutex_lock_slow(ptm, NULL);
    219 }
    220 
    221 int
    222 pthread_mutex_timedlock(pthread_mutex_t* ptm, const struct timespec *ts)
    223 {
    224 	pthread_t self;
    225 	void *val;
    226 
    227 	pthread__error(EINVAL, "Invalid mutex",
    228 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    229 
    230 	self = pthread__self();
    231 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
    232 	if (__predict_true(val == NULL)) {
    233 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    234 		membar_enter();
    235 #endif
    236 		return 0;
    237 	}
    238 	return pthread__mutex_lock_slow(ptm, ts);
    239 }
    240 
    241 /* We want function call overhead. */
    242 NOINLINE static void
    243 pthread__mutex_pause(void)
    244 {
    245 
    246 	pthread__smt_pause();
    247 }
    248 
    249 /*
    250  * Spin while the holder is running.  'lwpctl' gives us the true
    251  * status of the thread.
    252  */
    253 NOINLINE static void *
    254 pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
    255 {
    256 	pthread_t thread;
    257 	unsigned int count, i;
    258 
    259 	for (count = 2;; owner = ptm->ptm_owner) {
    260 		thread = (pthread_t)MUTEX_OWNER(owner);
    261 		if (thread == NULL)
    262 			break;
    263 		if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE)
    264 			break;
    265 		if (count < 128)
    266 			count += count;
    267 		for (i = count; i != 0; i--)
    268 			pthread__mutex_pause();
    269 	}
    270 
    271 	return owner;
    272 }
    273 
    274 NOINLINE static int
    275 pthread__mutex_lock_slow(pthread_mutex_t *ptm, const struct timespec *ts)
    276 {
    277 	void *newval, *owner, *next;
    278 	struct waiter waiter;
    279 	pthread_t self;
    280 	int serrno;
    281 	int error;
    282 
    283 	owner = ptm->ptm_owner;
    284 	self = pthread__self();
    285 	serrno = errno;
    286 
    287 	pthread__assert(self->pt_lid != 0);
    288 
    289 	/* Recursive or errorcheck? */
    290 	if (MUTEX_OWNER(owner) == (uintptr_t)self) {
    291 		if (MUTEX_RECURSIVE(owner)) {
    292 			if (ptm->ptm_recursed == INT_MAX)
    293 				return EAGAIN;
    294 			ptm->ptm_recursed++;
    295 			return 0;
    296 		}
    297 		if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck))
    298 			return EDEADLK;
    299 	}
    300 
    301 	/* priority protect */
    302 	if (MUTEX_PROTECT(owner) && _sched_protect(ptm->ptm_ceiling) == -1) {
    303 		error = errno;
    304 		errno = serrno;
    305 		return error;
    306 	}
    307 
    308 	for (;;) {
    309 		/* If it has become free, try to acquire it again. */
    310 		if (MUTEX_OWNER(owner) == 0) {
    311 			newval = (void *)((uintptr_t)self | (uintptr_t)owner);
    312 			next = atomic_cas_ptr(&ptm->ptm_owner, owner, newval);
    313 			if (__predict_false(next != owner)) {
    314 				owner = next;
    315 				continue;
    316 			}
    317 			errno = serrno;
    318 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    319 			membar_enter();
    320 #endif
    321 			return 0;
    322 		} else if (MUTEX_OWNER(owner) != (uintptr_t)self) {
    323 			/* Spin while the owner is running. */
    324 			owner = pthread__mutex_spin(ptm, owner);
    325 			if (MUTEX_OWNER(owner) == 0) {
    326 				continue;
    327 			}
    328 		}
    329 
    330 		/*
    331 		 * Nope, still held.  Add thread to the list of waiters.
    332 		 * Issue a memory barrier to ensure stores to 'waiter'
    333 		 * are visible before we enter the list.
    334 		 */
    335 		waiter.next = ptm->ptm_waiters;
    336 		waiter.lid = self->pt_lid;
    337 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    338 		membar_producer();
    339 #endif
    340 		next = atomic_cas_ptr(&ptm->ptm_waiters, waiter.next, &waiter);
    341 		if (next != waiter.next) {
    342 			owner = ptm->ptm_owner;
    343 			continue;
    344 		}
    345 
    346 		/*
    347 		 * If the mutex has become free since entering self onto the
    348 		 * waiters list, need to wake everybody up (including self)
    349 		 * and retry.  It's possible to race with an unlocking
    350 		 * thread, so self may have already been awoken.
    351 		 */
    352 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    353 		membar_enter();
    354 #endif
    355 		if (MUTEX_OWNER(ptm->ptm_owner) == 0) {
    356 			pthread__mutex_wakeup(self,
    357 			    atomic_swap_ptr(&ptm->ptm_waiters, NULL));
    358 		}
    359 
    360 		/*
    361 		 * We must not proceed until told that we are no longer
    362 		 * waiting (via waiter.lid being set to zero).  Otherwise
    363 		 * it's unsafe to re-enter "waiter" onto the waiters list.
    364 		 */
    365 		while (waiter.lid != 0) {
    366 			error = _lwp_park(CLOCK_REALTIME, TIMER_ABSTIME,
    367 			    __UNCONST(ts), 0, NULL, NULL);
    368 			if (error < 0 && errno == ETIMEDOUT) {
    369 				/* Remove self from waiters list */
    370 				pthread__mutex_wakeup(self,
    371 				    atomic_swap_ptr(&ptm->ptm_waiters, NULL));
    372 
    373 				/*
    374 				 * Might have raced with another thread to
    375 				 * do the wakeup.  In any case there will be
    376 				 * a wakeup for sure.  Eat it and wait for
    377 				 * waiter.lid to clear.
    378 				 */
    379 				while (waiter.lid != 0) {
    380 					(void)_lwp_park(CLOCK_MONOTONIC, 0,
    381 					    NULL, 0, NULL, NULL);
    382 				}
    383 
    384 				/* Priority protect */
    385 				if (MUTEX_PROTECT(owner))
    386 					(void)_sched_protect(-1);
    387 				errno = serrno;
    388 				return ETIMEDOUT;
    389 			}
    390 		}
    391 		owner = ptm->ptm_owner;
    392 	}
    393 }
    394 
    395 int
    396 pthread_mutex_trylock(pthread_mutex_t *ptm)
    397 {
    398 	pthread_t self;
    399 	void *val, *new, *next;
    400 
    401 	if (__predict_false(__uselibcstub))
    402 		return __libc_mutex_trylock_stub(ptm);
    403 
    404 	pthread__error(EINVAL, "Invalid mutex",
    405 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    406 
    407 	self = pthread__self();
    408 	val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
    409 	if (__predict_true(val == NULL)) {
    410 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    411 		membar_enter();
    412 #endif
    413 		return 0;
    414 	}
    415 
    416 	if (MUTEX_RECURSIVE(val)) {
    417 		if (MUTEX_OWNER(val) == 0) {
    418 			new = (void *)((uintptr_t)self | (uintptr_t)val);
    419 			next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
    420 			if (__predict_true(next == val)) {
    421 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    422 				membar_enter();
    423 #endif
    424 				return 0;
    425 			}
    426 		}
    427 		if (MUTEX_OWNER(val) == (uintptr_t)self) {
    428 			if (ptm->ptm_recursed == INT_MAX)
    429 				return EAGAIN;
    430 			ptm->ptm_recursed++;
    431 			return 0;
    432 		}
    433 	}
    434 
    435 	return EBUSY;
    436 }
    437 
    438 int
    439 pthread_mutex_unlock(pthread_mutex_t *ptm)
    440 {
    441 	pthread_t self;
    442 	void *val, *newval;
    443 	int error;
    444 
    445 	if (__predict_false(__uselibcstub))
    446 		return __libc_mutex_unlock_stub(ptm);
    447 
    448 	pthread__error(EINVAL, "Invalid mutex",
    449 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    450 
    451 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    452 	membar_exit();
    453 #endif
    454 	error = 0;
    455 	self = pthread__self();
    456 	newval = NULL;
    457 
    458 	val = atomic_cas_ptr(&ptm->ptm_owner, self, newval);
    459 	if (__predict_false(val != self)) {
    460 		bool weown = (MUTEX_OWNER(val) == (uintptr_t)self);
    461 		if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck)) {
    462 			if (!weown) {
    463 				error = EPERM;
    464 				newval = val;
    465 			} else {
    466 				newval = NULL;
    467 			}
    468 		} else if (MUTEX_RECURSIVE(val)) {
    469 			if (!weown) {
    470 				error = EPERM;
    471 				newval = val;
    472 			} else if (ptm->ptm_recursed) {
    473 				ptm->ptm_recursed--;
    474 				newval = val;
    475 			} else {
    476 				newval = (pthread_t)MUTEX_RECURSIVE_BIT;
    477 			}
    478 		} else {
    479 			pthread__error(EPERM,
    480 			    "Unlocking unlocked mutex", (val != NULL));
    481 			pthread__error(EPERM,
    482 			    "Unlocking mutex owned by another thread", weown);
    483 			newval = NULL;
    484 		}
    485 
    486 		/*
    487 		 * Release the mutex.  If there appear to be waiters, then
    488 		 * wake them up.
    489 		 */
    490 		if (newval != val) {
    491 			val = atomic_swap_ptr(&ptm->ptm_owner, newval);
    492 			if (__predict_false(MUTEX_PROTECT(val))) {
    493 				/* restore elevated priority */
    494 				(void)_sched_protect(-1);
    495 			}
    496 		}
    497 	}
    498 
    499 	/*
    500 	 * Finally, wake any waiters and return.
    501 	 */
    502 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    503 	membar_enter();
    504 #endif
    505 	if (MUTEX_OWNER(newval) == 0 && ptm->ptm_waiters != NULL) {
    506 		pthread__mutex_wakeup(self,
    507 		    atomic_swap_ptr(&ptm->ptm_waiters, NULL));
    508 	}
    509 	return error;
    510 }
    511 
    512 /*
    513  * pthread__mutex_wakeup: unpark threads waiting for us
    514  */
    515 
    516 static void
    517 pthread__mutex_wakeup(pthread_t self, struct pthread__waiter *cur)
    518 {
    519 	lwpid_t lids[PTHREAD__UNPARK_MAX];
    520 	const size_t mlid = pthread__unpark_max;
    521 	struct pthread__waiter *next;
    522 	size_t nlid;
    523 
    524 	/*
    525 	 * Pull waiters from the queue and add to our list.  Use a memory
    526 	 * barrier to ensure that we safely read the value of waiter->next
    527 	 * before the awoken thread sees waiter->lid being cleared.
    528 	 */
    529 	membar_datadep_consumer(); /* for alpha */
    530 	for (nlid = 0; cur != NULL; cur = next) {
    531 		if (nlid == mlid) {
    532 			(void)_lwp_unpark_all(lids, nlid, NULL);
    533 			nlid = 0;
    534 		}
    535 		next = cur->next;
    536 		pthread__assert(cur->lid != 0);
    537 		lids[nlid++] = cur->lid;
    538 		membar_exit();
    539 		cur->lid = 0;
    540 		/* No longer safe to touch 'cur' */
    541 	}
    542 	if (nlid == 1) {
    543 		(void)_lwp_unpark(lids[0], NULL);
    544 	} else if (nlid > 1) {
    545 		(void)_lwp_unpark_all(lids, nlid, NULL);
    546 	}
    547 }
    548 
    549 int
    550 pthread_mutexattr_init(pthread_mutexattr_t *attr)
    551 {
    552 #if 0
    553 	if (__predict_false(__uselibcstub))
    554 		return __libc_mutexattr_init_stub(attr);
    555 #endif
    556 
    557 	attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
    558 	attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
    559 	return 0;
    560 }
    561 
    562 int
    563 pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
    564 {
    565 	if (__predict_false(__uselibcstub))
    566 		return __libc_mutexattr_destroy_stub(attr);
    567 
    568 	pthread__error(EINVAL, "Invalid mutex attribute",
    569 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    570 
    571 	attr->ptma_magic = _PT_MUTEXATTR_DEAD;
    572 
    573 	return 0;
    574 }
    575 
    576 int
    577 pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
    578 {
    579 
    580 	pthread__error(EINVAL, "Invalid mutex attribute",
    581 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    582 
    583 	*typep = MUTEX_GET_TYPE(attr->ptma_private);
    584 	return 0;
    585 }
    586 
    587 int
    588 pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
    589 {
    590 
    591 	if (__predict_false(__uselibcstub))
    592 		return __libc_mutexattr_settype_stub(attr, type);
    593 
    594 	pthread__error(EINVAL, "Invalid mutex attribute",
    595 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    596 
    597 	switch (type) {
    598 	case PTHREAD_MUTEX_NORMAL:
    599 	case PTHREAD_MUTEX_ERRORCHECK:
    600 	case PTHREAD_MUTEX_RECURSIVE:
    601 		MUTEX_SET_TYPE(attr->ptma_private, type);
    602 		return 0;
    603 	default:
    604 		return EINVAL;
    605 	}
    606 }
    607 
    608 int
    609 pthread_mutexattr_getprotocol(const pthread_mutexattr_t *attr, int*proto)
    610 {
    611 
    612 	pthread__error(EINVAL, "Invalid mutex attribute",
    613 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    614 
    615 	*proto = MUTEX_GET_PROTOCOL(attr->ptma_private);
    616 	return 0;
    617 }
    618 
    619 int
    620 pthread_mutexattr_setprotocol(pthread_mutexattr_t* attr, int proto)
    621 {
    622 
    623 	pthread__error(EINVAL, "Invalid mutex attribute",
    624 	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    625 
    626 	switch (proto) {
    627 	case PTHREAD_PRIO_NONE:
    628 	case PTHREAD_PRIO_PROTECT:
    629 		MUTEX_SET_PROTOCOL(attr->ptma_private, proto);
    630 		return 0;
    631 	case PTHREAD_PRIO_INHERIT:
    632 		return ENOTSUP;
    633 	default:
    634 		return EINVAL;
    635 	}
    636 }
    637 
    638 int
    639 pthread_mutexattr_getprioceiling(const pthread_mutexattr_t *attr, int *ceil)
    640 {
    641 
    642 	pthread__error(EINVAL, "Invalid mutex attribute",
    643 		attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    644 
    645 	*ceil = MUTEX_GET_CEILING(attr->ptma_private);
    646 	return 0;
    647 }
    648 
    649 int
    650 pthread_mutexattr_setprioceiling(pthread_mutexattr_t *attr, int ceil)
    651 {
    652 
    653 	pthread__error(EINVAL, "Invalid mutex attribute",
    654 		attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    655 
    656 	if (ceil & ~0xff)
    657 		return EINVAL;
    658 
    659 	MUTEX_SET_CEILING(attr->ptma_private, ceil);
    660 	return 0;
    661 }
    662 
    663 #ifdef _PTHREAD_PSHARED
    664 int
    665 pthread_mutexattr_getpshared(const pthread_mutexattr_t * __restrict attr,
    666     int * __restrict pshared)
    667 {
    668 
    669 	pthread__error(EINVAL, "Invalid mutex attribute",
    670 		attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    671 
    672 	*pshared = PTHREAD_PROCESS_PRIVATE;
    673 	return 0;
    674 }
    675 
    676 int
    677 pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int pshared)
    678 {
    679 
    680 	pthread__error(EINVAL, "Invalid mutex attribute",
    681 		attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
    682 
    683 	switch(pshared) {
    684 	case PTHREAD_PROCESS_PRIVATE:
    685 		return 0;
    686 	case PTHREAD_PROCESS_SHARED:
    687 		return ENOSYS;
    688 	}
    689 	return EINVAL;
    690 }
    691 #endif
    692 
    693 /*
    694  * In order to avoid unnecessary contention on interlocking mutexes, we try
    695  * to defer waking up threads until we unlock the mutex.  The threads will
    696  * be woken up when the calling thread (self) releases the mutex.
    697  */
    698 void
    699 pthread__mutex_deferwake(pthread_t self, pthread_mutex_t *ptm,
    700     struct pthread__waiter *head)
    701 {
    702 	struct pthread__waiter *tail, *n, *o;
    703 
    704 	pthread__assert(head != NULL);
    705 
    706 	if (__predict_false(ptm == NULL ||
    707 	    MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)self)) {
    708 	    	pthread__mutex_wakeup(self, head);
    709 	    	return;
    710 	}
    711 
    712 	/* This is easy if no existing waiters on mutex. */
    713 	if (atomic_cas_ptr(&ptm->ptm_waiters, NULL, head) == NULL) {
    714 		return;
    715 	}
    716 
    717 	/* Oops need to append.  Find the tail of the new queue. */
    718 	for (tail = head; tail->next != NULL; tail = tail->next) {
    719 		/* nothing */
    720 	}
    721 
    722 	/* Append atomically. */
    723 	for (o = ptm->ptm_waiters;; o = n) {
    724 		tail->next = o;
    725 #ifndef PTHREAD__ATOMIC_IS_MEMBAR
    726 		membar_producer();
    727 #endif
    728 		n = atomic_cas_ptr(&ptm->ptm_waiters, o, head);
    729 		if (__predict_true(n == o)) {
    730 			break;
    731 		}
    732 	}
    733 }
    734 
    735 int
    736 pthread_mutex_getprioceiling(const pthread_mutex_t *ptm, int *ceil)
    737 {
    738 
    739 	pthread__error(EINVAL, "Invalid mutex",
    740 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    741 
    742 	*ceil = ptm->ptm_ceiling;
    743 	return 0;
    744 }
    745 
    746 int
    747 pthread_mutex_setprioceiling(pthread_mutex_t *ptm, int ceil, int *old_ceil)
    748 {
    749 	int error;
    750 
    751 	pthread__error(EINVAL, "Invalid mutex",
    752 	    ptm->ptm_magic == _PT_MUTEX_MAGIC);
    753 
    754 	error = pthread_mutex_lock(ptm);
    755 	if (error == 0) {
    756 		*old_ceil = ptm->ptm_ceiling;
    757 		/*check range*/
    758 		ptm->ptm_ceiling = ceil;
    759 		pthread_mutex_unlock(ptm);
    760 	}
    761 	return error;
    762 }
    763 
    764 int
    765 _pthread_mutex_held_np(pthread_mutex_t *ptm)
    766 {
    767 
    768 	return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
    769 }
    770 
    771 pthread_t
    772 _pthread_mutex_owner_np(pthread_mutex_t *ptm)
    773 {
    774 
    775 	return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
    776 }
    777