Home | History | Annotate | Line # | Download | only in gen
      1 /*	$NetBSD: radixtree.c,v 1.34 2024/05/04 17:58:24 chs Exp $	*/
      2 
      3 /*-
      4  * Copyright (c)2011,2012,2013 YAMAMOTO Takashi,
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * radixtree.c
     31  *
     32  * Overview:
     33  *
     34  * This is an implementation of radix tree, whose keys are uint64_t and leafs
     35  * are user provided pointers.
     36  *
     37  * Leaf nodes are just void * and this implementation doesn't care about
     38  * what they actually point to.  However, this implementation has an assumption
     39  * about their alignment.  Specifically, this implementation assumes that their
     40  * 2 LSBs are always zero and uses them for internal accounting.
     41  *
     42  * Intermediate nodes and memory allocation:
     43  *
     44  * Intermediate nodes are automatically allocated and freed internally and
     45  * basically users don't need to care about them.  The allocation is done via
     46  * kmem_zalloc(9) for _KERNEL, malloc(3) for userland, and alloc() for
     47  * _STANDALONE environment.  Only radix_tree_insert_node function can allocate
     48  * memory for intermediate nodes and thus can fail for ENOMEM.
     49  *
     50  * Memory Efficiency:
     51  *
     52  * It's designed to work efficiently with dense index distribution.
     53  * The memory consumption (number of necessary intermediate nodes) heavily
     54  * depends on the index distribution.  Basically, more dense index distribution
     55  * consumes less nodes per item.  Approximately,
     56  *
     57  *  - the best case: about RADIX_TREE_PTR_PER_NODE items per intermediate node.
     58  *    it would look like the following.
     59  *
     60  *     root (t_height=1)
     61  *      |
     62  *      v
     63  *      [ | | | ]   (intermediate node.  RADIX_TREE_PTR_PER_NODE=4 in this fig)
     64  *       | | | |
     65  *       v v v v
     66  *       p p p p    (items)
     67  *
     68  *  - the worst case: RADIX_TREE_MAX_HEIGHT intermediate nodes per item.
     69  *    it would look like the following if RADIX_TREE_MAX_HEIGHT=3.
     70  *
     71  *     root (t_height=3)
     72  *      |
     73  *      v
     74  *      [ | | | ]
     75  *           |
     76  *           v
     77  *           [ | | | ]
     78  *                |
     79  *                v
     80  *                [ | | | ]
     81  *                   |
     82  *                   v
     83  *                   p
     84  *
     85  * The height of tree (t_height) is dynamic.  It's smaller if only small
     86  * index values are used.  As an extreme case, if only index 0 is used,
     87  * the corresponding value is directly stored in the root of the tree
     88  * (struct radix_tree) without allocating any intermediate nodes.  In that
     89  * case, t_height=0.
     90  *
     91  * Gang lookup:
     92  *
     93  * This implementation provides a way to scan many nodes quickly via
     94  * radix_tree_gang_lookup_node function and its varients.
     95  *
     96  * Tags:
     97  *
     98  * This implementation provides tagging functionality, which allows quick
     99  * scanning of a subset of leaf nodes.  Leaf nodes are untagged when inserted
    100  * into the tree and can be tagged by radix_tree_set_tag function.
    101  * radix_tree_gang_lookup_tagged_node function and its variants returns only
    102  * leaf nodes with the given tag.  To reduce amount of nodes to visit for
    103  * these functions, this implementation keeps tagging information in internal
    104  * intermediate nodes and quickly skips uninterested parts of a tree.
    105  *
    106  * A tree has RADIX_TREE_TAG_ID_MAX independent tag spaces, each of which are
    107  * identified by a zero-origin numbers, tagid.  For the current implementation,
    108  * RADIX_TREE_TAG_ID_MAX is 2.  A set of tags is described as a bitmask tagmask,
    109  * which is a bitwise OR of (1 << tagid).
    110  */
    111 
    112 #include <sys/cdefs.h>
    113 
    114 #if defined(_KERNEL) || defined(_STANDALONE)
    115 __KERNEL_RCSID(0, "$NetBSD: radixtree.c,v 1.34 2024/05/04 17:58:24 chs Exp $");
    116 #include <sys/param.h>
    117 #include <sys/errno.h>
    118 #include <sys/kmem.h>
    119 #include <sys/radixtree.h>
    120 #include <lib/libkern/libkern.h>
    121 #if defined(_STANDALONE)
    122 #include <lib/libsa/stand.h>
    123 #endif /* defined(_STANDALONE) */
    124 #else /* defined(_KERNEL) || defined(_STANDALONE) */
    125 __RCSID("$NetBSD: radixtree.c,v 1.34 2024/05/04 17:58:24 chs Exp $");
    126 #include <assert.h>
    127 #include <errno.h>
    128 #include <stdbool.h>
    129 #include <stdlib.h>
    130 #include <string.h>
    131 #if 1
    132 #define KASSERT assert
    133 #else
    134 #define KASSERT(a)	/* nothing */
    135 #endif
    136 #endif /* defined(_KERNEL) || defined(_STANDALONE) */
    137 
    138 #include <sys/radixtree.h>
    139 
    140 #define	RADIX_TREE_BITS_PER_HEIGHT	4	/* XXX tune */
    141 #define	RADIX_TREE_PTR_PER_NODE		(1 << RADIX_TREE_BITS_PER_HEIGHT)
    142 #define	RADIX_TREE_MAX_HEIGHT		(64 / RADIX_TREE_BITS_PER_HEIGHT)
    143 #define	RADIX_TREE_INVALID_HEIGHT	(RADIX_TREE_MAX_HEIGHT + 1)
    144 __CTASSERT((64 % RADIX_TREE_BITS_PER_HEIGHT) == 0);
    145 
    146 __CTASSERT(((1 << RADIX_TREE_TAG_ID_MAX) & (sizeof(int) - 1)) == 0);
    147 #define	RADIX_TREE_TAG_MASK	((1 << RADIX_TREE_TAG_ID_MAX) - 1)
    148 
    149 static inline void *
    150 entry_ptr(void *p)
    151 {
    152 
    153 	return (void *)((uintptr_t)p & ~RADIX_TREE_TAG_MASK);
    154 }
    155 
    156 static inline unsigned int
    157 entry_tagmask(void *p)
    158 {
    159 
    160 	return (uintptr_t)p & RADIX_TREE_TAG_MASK;
    161 }
    162 
    163 static inline void *
    164 entry_compose(void *p, unsigned int tagmask)
    165 {
    166 
    167 	return (void *)((uintptr_t)p | tagmask);
    168 }
    169 
    170 static inline bool
    171 entry_match_p(void *p, unsigned int tagmask)
    172 {
    173 
    174 	KASSERT(entry_ptr(p) != NULL || entry_tagmask(p) == 0);
    175 	if (p == NULL) {
    176 		return false;
    177 	}
    178 	if (tagmask == 0) {
    179 		return true;
    180 	}
    181 	return (entry_tagmask(p) & tagmask) != 0;
    182 }
    183 
    184 /*
    185  * radix_tree_node: an intermediate node
    186  *
    187  * we don't care the type of leaf nodes.  they are just void *.
    188  *
    189  * we used to maintain a count of non-NULL nodes in this structure, but it
    190  * prevented it from being aligned to a cache line boundary; the performance
    191  * benefit from being cache friendly is greater than the benefit of having
    192  * a dedicated count value, especially in multi-processor situations where
    193  * we need to avoid intra-pool-page false sharing.
    194  */
    195 
    196 struct radix_tree_node {
    197 	void *n_ptrs[RADIX_TREE_PTR_PER_NODE];
    198 };
    199 
    200 /*
    201  * p_refs[0].pptr == &t->t_root
    202  *	:
    203  * p_refs[n].pptr == &(*p_refs[n-1])->n_ptrs[x]
    204  *	:
    205  *	:
    206  * p_refs[t->t_height].pptr == &leaf_pointer
    207  */
    208 
    209 struct radix_tree_path {
    210 	struct radix_tree_node_ref {
    211 		void **pptr;
    212 	} p_refs[RADIX_TREE_MAX_HEIGHT + 1]; /* +1 for the root ptr */
    213 	/*
    214 	 * p_lastidx is either the index of the last valid element of p_refs[]
    215 	 * or RADIX_TREE_INVALID_HEIGHT.
    216 	 * RADIX_TREE_INVALID_HEIGHT means that radix_tree_lookup_ptr found
    217 	 * that the height of the tree is not enough to cover the given index.
    218 	 */
    219 	unsigned int p_lastidx;
    220 };
    221 
    222 static inline void **
    223 path_pptr(const struct radix_tree *t, const struct radix_tree_path *p,
    224     unsigned int height)
    225 {
    226 
    227 	KASSERT(height <= t->t_height);
    228 	return p->p_refs[height].pptr;
    229 }
    230 
    231 static inline struct radix_tree_node *
    232 path_node(const struct radix_tree * t, const struct radix_tree_path *p,
    233     unsigned int height)
    234 {
    235 
    236 	KASSERT(height <= t->t_height);
    237 	return entry_ptr(*path_pptr(t, p, height));
    238 }
    239 
    240 /*
    241  * radix_tree_init_tree:
    242  *
    243  * Initialize a tree.
    244  */
    245 
    246 void
    247 radix_tree_init_tree(struct radix_tree *t)
    248 {
    249 
    250 	t->t_height = 0;
    251 	t->t_root = NULL;
    252 }
    253 
    254 /*
    255  * radix_tree_fini_tree:
    256  *
    257  * Finish using a tree.
    258  */
    259 
    260 void
    261 radix_tree_fini_tree(struct radix_tree *t)
    262 {
    263 
    264 	KASSERT(t->t_root == NULL);
    265 	KASSERT(t->t_height == 0);
    266 }
    267 
    268 /*
    269  * radix_tree_empty_tree_p:
    270  *
    271  * Return if the tree is empty.
    272  */
    273 
    274 bool
    275 radix_tree_empty_tree_p(struct radix_tree *t)
    276 {
    277 
    278 	return t->t_root == NULL;
    279 }
    280 
    281 /*
    282  * radix_tree_empty_tree_p:
    283  *
    284  * Return true if the tree has any nodes with the given tag.  Otherwise
    285  * return false.
    286  *
    287  * It's illegal to call this function with tagmask 0.
    288  */
    289 
    290 bool
    291 radix_tree_empty_tagged_tree_p(struct radix_tree *t, unsigned int tagmask)
    292 {
    293 
    294 	KASSERT(tagmask != 0);
    295 	return (entry_tagmask(t->t_root) & tagmask) == 0;
    296 }
    297 
    298 static void
    299 radix_tree_node_init(struct radix_tree_node *n)
    300 {
    301 
    302 	memset(n, 0, sizeof(*n));
    303 }
    304 
    305 #if defined(_KERNEL)
    306 /*
    307  * radix_tree_init:
    308  *
    309  * initialize the subsystem.
    310  */
    311 
    312 void
    313 radix_tree_init(void)
    314 {
    315 
    316 	/* nothing right now */
    317 }
    318 
    319 /*
    320  * radix_tree_await_memory:
    321  *
    322  * after an insert has failed with ENOMEM, wait for memory to become
    323  * available, so the caller can retry.  this needs to ensure that the
    324  * maximum possible required number of nodes is available.
    325  */
    326 
    327 void
    328 radix_tree_await_memory(void)
    329 {
    330 	struct radix_tree_node *nodes[RADIX_TREE_MAX_HEIGHT];
    331 	int i;
    332 
    333 	for (i = 0; i < __arraycount(nodes); i++) {
    334 		nodes[i] = kmem_intr_alloc(sizeof(struct radix_tree_node),
    335 		    KM_SLEEP);
    336 	}
    337 	while (--i >= 0) {
    338 		kmem_intr_free(nodes[i], sizeof(struct radix_tree_node));
    339 	}
    340 }
    341 
    342 #endif /* defined(_KERNEL) */
    343 
    344 /*
    345  * radix_tree_sum_node:
    346  *
    347  * return the logical sum of all entries in the given node.  used to quickly
    348  * check for tag masks or empty nodes.
    349  */
    350 
    351 static uintptr_t
    352 radix_tree_sum_node(const struct radix_tree_node *n)
    353 {
    354 #if RADIX_TREE_PTR_PER_NODE > 16
    355 	unsigned int i;
    356 	uintptr_t sum;
    357 
    358 	for (i = 0, sum = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
    359 		sum |= (uintptr_t)n->n_ptrs[i];
    360 	}
    361 	return sum;
    362 #else /* RADIX_TREE_PTR_PER_NODE > 16 */
    363 	uintptr_t sum;
    364 
    365 	/*
    366 	 * Unrolling the above is much better than a tight loop with two
    367 	 * test+branch pairs.  On x86 with gcc 5.5.0 this compiles into 19
    368 	 * deterministic instructions including the "return" and prologue &
    369 	 * epilogue.
    370 	 */
    371 	sum = (uintptr_t)n->n_ptrs[0];
    372 	sum |= (uintptr_t)n->n_ptrs[1];
    373 	sum |= (uintptr_t)n->n_ptrs[2];
    374 	sum |= (uintptr_t)n->n_ptrs[3];
    375 #if RADIX_TREE_PTR_PER_NODE > 4
    376 	sum |= (uintptr_t)n->n_ptrs[4];
    377 	sum |= (uintptr_t)n->n_ptrs[5];
    378 	sum |= (uintptr_t)n->n_ptrs[6];
    379 	sum |= (uintptr_t)n->n_ptrs[7];
    380 #endif
    381 #if RADIX_TREE_PTR_PER_NODE > 8
    382 	sum |= (uintptr_t)n->n_ptrs[8];
    383 	sum |= (uintptr_t)n->n_ptrs[9];
    384 	sum |= (uintptr_t)n->n_ptrs[10];
    385 	sum |= (uintptr_t)n->n_ptrs[11];
    386 	sum |= (uintptr_t)n->n_ptrs[12];
    387 	sum |= (uintptr_t)n->n_ptrs[13];
    388 	sum |= (uintptr_t)n->n_ptrs[14];
    389 	sum |= (uintptr_t)n->n_ptrs[15];
    390 #endif
    391 	return sum;
    392 #endif /* RADIX_TREE_PTR_PER_NODE > 16 */
    393 }
    394 
    395 static int __unused
    396 radix_tree_node_count_ptrs(const struct radix_tree_node *n)
    397 {
    398 	unsigned int i, c;
    399 
    400 	for (i = c = 0; i < RADIX_TREE_PTR_PER_NODE; i++) {
    401 		c += (n->n_ptrs[i] != NULL);
    402 	}
    403 	return c;
    404 }
    405 
    406 static struct radix_tree_node *
    407 radix_tree_alloc_node(void)
    408 {
    409 	struct radix_tree_node *n;
    410 
    411 #if defined(_KERNEL)
    412 	/*
    413 	 * We must not block waiting for memory because this function
    414 	 * can be called in contexts where waiting for memory is illegal.
    415 	 */
    416 	n = kmem_intr_alloc(sizeof(struct radix_tree_node), KM_NOSLEEP);
    417 #elif defined(_STANDALONE)
    418 	n = alloc(sizeof(*n));
    419 #else /* defined(_STANDALONE) */
    420 	n = malloc(sizeof(*n));
    421 #endif /* defined(_STANDALONE) */
    422 	if (n != NULL) {
    423 		radix_tree_node_init(n);
    424 	}
    425 	KASSERT(n == NULL || radix_tree_sum_node(n) == 0);
    426 	return n;
    427 }
    428 
    429 static void
    430 radix_tree_free_node(struct radix_tree_node *n)
    431 {
    432 
    433 	KASSERT(radix_tree_sum_node(n) == 0);
    434 #if defined(_KERNEL)
    435 	kmem_intr_free(n, sizeof(struct radix_tree_node));
    436 #elif defined(_STANDALONE)
    437 	dealloc(n, sizeof(*n));
    438 #else
    439 	free(n);
    440 #endif
    441 }
    442 
    443 /*
    444  * radix_tree_grow:
    445  *
    446  * increase the height of the tree.
    447  */
    448 
    449 static __noinline int
    450 radix_tree_grow(struct radix_tree *t, unsigned int newheight)
    451 {
    452 	const unsigned int tagmask = entry_tagmask(t->t_root);
    453 	struct radix_tree_node *newnodes[RADIX_TREE_MAX_HEIGHT];
    454 	void *root;
    455 	int h;
    456 
    457 	KASSERT(newheight <= RADIX_TREE_MAX_HEIGHT);
    458 	if ((root = t->t_root) == NULL) {
    459 		t->t_height = newheight;
    460 		return 0;
    461 	}
    462 	for (h = t->t_height; h < newheight; h++) {
    463 		newnodes[h] = radix_tree_alloc_node();
    464 		if (__predict_false(newnodes[h] == NULL)) {
    465 			while (--h >= (int)t->t_height) {
    466 				newnodes[h]->n_ptrs[0] = NULL;
    467 				radix_tree_free_node(newnodes[h]);
    468 			}
    469 			return ENOMEM;
    470 		}
    471 		newnodes[h]->n_ptrs[0] = root;
    472 		root = entry_compose(newnodes[h], tagmask);
    473 	}
    474 	t->t_root = root;
    475 	t->t_height = h;
    476 	return 0;
    477 }
    478 
    479 /*
    480  * radix_tree_lookup_ptr:
    481  *
    482  * an internal helper function used for various exported functions.
    483  *
    484  * return the pointer to store the node for the given index.
    485  *
    486  * if alloc is true, try to allocate the storage.  (note for _KERNEL:
    487  * in that case, this function can block.)  if the allocation failed or
    488  * alloc is false, return NULL.
    489  *
    490  * if path is not NULL, fill it for the caller's investigation.
    491  *
    492  * if tagmask is not zero, search only for nodes with the tag set.
    493  * note that, however, this function doesn't check the tagmask for the leaf
    494  * pointer.  it's a caller's responsibility to investigate the value which
    495  * is pointed by the returned pointer if necessary.
    496  *
    497  * while this function is a bit large, as it's called with some constant
    498  * arguments, inlining might have benefits.  anyway, a compiler will decide.
    499  */
    500 
    501 static inline void **
    502 radix_tree_lookup_ptr(struct radix_tree *t, uint64_t idx,
    503     struct radix_tree_path *path, bool alloc, const unsigned int tagmask)
    504 {
    505 	struct radix_tree_node *n;
    506 	int hshift = RADIX_TREE_BITS_PER_HEIGHT * t->t_height;
    507 	int shift;
    508 	void **vpp;
    509 	const uint64_t mask = (UINT64_C(1) << RADIX_TREE_BITS_PER_HEIGHT) - 1;
    510 	struct radix_tree_node_ref *refs = NULL;
    511 
    512 	/*
    513 	 * check unsupported combinations
    514 	 */
    515 	KASSERT(tagmask == 0 || !alloc);
    516 	KASSERT(path == NULL || !alloc);
    517 	vpp = &t->t_root;
    518 	if (path != NULL) {
    519 		refs = path->p_refs;
    520 		refs->pptr = vpp;
    521 	}
    522 	n = NULL;
    523 	for (shift = 64 - RADIX_TREE_BITS_PER_HEIGHT; shift >= 0;) {
    524 		struct radix_tree_node *c;
    525 		void *entry;
    526 		const uint64_t i = (idx >> shift) & mask;
    527 
    528 		if (shift >= hshift) {
    529 			unsigned int newheight;
    530 
    531 			KASSERT(vpp == &t->t_root);
    532 			if (i == 0) {
    533 				shift -= RADIX_TREE_BITS_PER_HEIGHT;
    534 				continue;
    535 			}
    536 			if (!alloc) {
    537 				if (path != NULL) {
    538 					KASSERT((refs - path->p_refs) == 0);
    539 					path->p_lastidx =
    540 					    RADIX_TREE_INVALID_HEIGHT;
    541 				}
    542 				return NULL;
    543 			}
    544 			newheight = shift / RADIX_TREE_BITS_PER_HEIGHT + 1;
    545 			if (radix_tree_grow(t, newheight)) {
    546 				return NULL;
    547 			}
    548 			hshift = RADIX_TREE_BITS_PER_HEIGHT * t->t_height;
    549 		}
    550 		entry = *vpp;
    551 		c = entry_ptr(entry);
    552 		if (c == NULL ||
    553 		    (tagmask != 0 &&
    554 		    (entry_tagmask(entry) & tagmask) == 0)) {
    555 			if (!alloc) {
    556 				if (path != NULL) {
    557 					path->p_lastidx = refs - path->p_refs;
    558 				}
    559 				return NULL;
    560 			}
    561 			c = radix_tree_alloc_node();
    562 			if (c == NULL) {
    563 				return NULL;
    564 			}
    565 			*vpp = c;
    566 		}
    567 		n = c;
    568 		vpp = &n->n_ptrs[i];
    569 		if (path != NULL) {
    570 			refs++;
    571 			refs->pptr = vpp;
    572 		}
    573 		shift -= RADIX_TREE_BITS_PER_HEIGHT;
    574 	}
    575 	if (alloc) {
    576 		KASSERT(*vpp == NULL);
    577 	}
    578 	if (path != NULL) {
    579 		path->p_lastidx = refs - path->p_refs;
    580 	}
    581 	return vpp;
    582 }
    583 
    584 /*
    585  * radix_tree_undo_insert_node:
    586  *
    587  * Undo the effects of a failed insert.  The conditions that led to the
    588  * insert may change and it may not be retried.  If the insert is not
    589  * retried, there will be no corresponding radix_tree_remove_node() for
    590  * this index in the future.  Therefore any adjustments made to the tree
    591  * before memory was exhausted must be reverted.
    592  */
    593 
    594 static __noinline void
    595 radix_tree_undo_insert_node(struct radix_tree *t, uint64_t idx)
    596 {
    597 	struct radix_tree_path path;
    598 	int i;
    599 
    600 	(void)radix_tree_lookup_ptr(t, idx, &path, false, 0);
    601 	if (path.p_lastidx == RADIX_TREE_INVALID_HEIGHT) {
    602 		/*
    603 		 * no nodes were inserted.
    604 		 */
    605 		return;
    606 	}
    607 	for (i = path.p_lastidx - 1; i >= 0; i--) {
    608 		struct radix_tree_node ** const pptr =
    609 		    (struct radix_tree_node **)path_pptr(t, &path, i);
    610 		struct radix_tree_node *n;
    611 
    612 		KASSERT(pptr != NULL);
    613 		n = entry_ptr(*pptr);
    614 		KASSERT(n != NULL);
    615 		if (radix_tree_sum_node(n) != 0) {
    616 			break;
    617 		}
    618 		radix_tree_free_node(n);
    619 		*pptr = NULL;
    620 	}
    621 	/*
    622 	 * fix up height
    623 	 */
    624 	if (i < 0) {
    625 		KASSERT(t->t_root == NULL);
    626 		t->t_height = 0;
    627 	}
    628 }
    629 
    630 /*
    631  * radix_tree_insert_node:
    632  *
    633  * Insert the node at the given index.
    634  *
    635  * It's illegal to insert NULL.  It's illegal to insert a non-aligned pointer.
    636  *
    637  * This function returns ENOMEM if necessary memory allocation failed.
    638  * Otherwise, this function returns 0.
    639  *
    640  * Note that inserting a node can involves memory allocation for intermediate
    641  * nodes.  If _KERNEL, it's done with no-sleep IPL_NONE memory allocation.
    642  *
    643  * For the newly inserted node, all tags are cleared.
    644  */
    645 
    646 int
    647 radix_tree_insert_node(struct radix_tree *t, uint64_t idx, void *p)
    648 {
    649 	void **vpp;
    650 
    651 	KASSERT(p != NULL);
    652 	KASSERT(entry_tagmask(entry_compose(p, 0)) == 0);
    653 	vpp = radix_tree_lookup_ptr(t, idx, NULL, true, 0);
    654 	if (__predict_false(vpp == NULL)) {
    655 		radix_tree_undo_insert_node(t, idx);
    656 		return ENOMEM;
    657 	}
    658 	KASSERT(*vpp == NULL);
    659 	*vpp = p;
    660 	return 0;
    661 }
    662 
    663 /*
    664  * radix_tree_replace_node:
    665  *
    666  * Replace a node at the given index with the given node and return the
    667  * replaced one.
    668  *
    669  * It's illegal to try to replace a node which has not been inserted.
    670  *
    671  * This function keeps tags intact.
    672  */
    673 
    674 void *
    675 radix_tree_replace_node(struct radix_tree *t, uint64_t idx, void *p)
    676 {
    677 	void **vpp;
    678 	void *oldp;
    679 
    680 	KASSERT(p != NULL);
    681 	KASSERT(entry_tagmask(entry_compose(p, 0)) == 0);
    682 	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
    683 	KASSERT(vpp != NULL);
    684 	oldp = *vpp;
    685 	KASSERT(oldp != NULL);
    686 	*vpp = entry_compose(p, entry_tagmask(*vpp));
    687 	return entry_ptr(oldp);
    688 }
    689 
    690 /*
    691  * radix_tree_remove_node:
    692  *
    693  * Remove the node at the given index.
    694  *
    695  * It's illegal to try to remove a node which has not been inserted.
    696  */
    697 
    698 void *
    699 radix_tree_remove_node(struct radix_tree *t, uint64_t idx)
    700 {
    701 	struct radix_tree_path path;
    702 	void **vpp;
    703 	void *oldp;
    704 	int i;
    705 
    706 	vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
    707 	KASSERT(vpp != NULL);
    708 	oldp = *vpp;
    709 	KASSERT(oldp != NULL);
    710 	KASSERT(path.p_lastidx == t->t_height);
    711 	KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
    712 	*vpp = NULL;
    713 	for (i = t->t_height - 1; i >= 0; i--) {
    714 		void *entry;
    715 		struct radix_tree_node ** const pptr =
    716 		    (struct radix_tree_node **)path_pptr(t, &path, i);
    717 		struct radix_tree_node *n;
    718 
    719 		KASSERT(pptr != NULL);
    720 		entry = *pptr;
    721 		n = entry_ptr(entry);
    722 		KASSERT(n != NULL);
    723 		if (radix_tree_sum_node(n) != 0) {
    724 			break;
    725 		}
    726 		radix_tree_free_node(n);
    727 		*pptr = NULL;
    728 	}
    729 	/*
    730 	 * fix up height
    731 	 */
    732 	if (i < 0) {
    733 		KASSERT(t->t_root == NULL);
    734 		t->t_height = 0;
    735 	}
    736 	/*
    737 	 * update tags
    738 	 */
    739 	for (; i >= 0; i--) {
    740 		void *entry;
    741 		struct radix_tree_node ** const pptr =
    742 		    (struct radix_tree_node **)path_pptr(t, &path, i);
    743 		struct radix_tree_node *n;
    744 		unsigned int newmask;
    745 
    746 		KASSERT(pptr != NULL);
    747 		entry = *pptr;
    748 		n = entry_ptr(entry);
    749 		KASSERT(n != NULL);
    750 		KASSERT(radix_tree_sum_node(n) != 0);
    751 		newmask = radix_tree_sum_node(n) & RADIX_TREE_TAG_MASK;
    752 		if (newmask == entry_tagmask(entry)) {
    753 			break;
    754 		}
    755 		*pptr = entry_compose(n, newmask);
    756 	}
    757 	/*
    758 	 * XXX is it worth to try to reduce height?
    759 	 * if we do that, make radix_tree_grow rollback its change as well.
    760 	 */
    761 	return entry_ptr(oldp);
    762 }
    763 
    764 /*
    765  * radix_tree_lookup_node:
    766  *
    767  * Returns the node at the given index.
    768  * Returns NULL if nothing is found at the given index.
    769  */
    770 
    771 void *
    772 radix_tree_lookup_node(struct radix_tree *t, uint64_t idx)
    773 {
    774 	void **vpp;
    775 
    776 	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
    777 	if (vpp == NULL) {
    778 		return NULL;
    779 	}
    780 	return entry_ptr(*vpp);
    781 }
    782 
    783 static inline void
    784 gang_lookup_init(struct radix_tree *t, uint64_t idx,
    785     struct radix_tree_path *path, const unsigned int tagmask)
    786 {
    787 	void **vpp __unused;
    788 
    789 	vpp = radix_tree_lookup_ptr(t, idx, path, false, tagmask);
    790 	KASSERT(vpp == NULL ||
    791 	    vpp == path_pptr(t, path, path->p_lastidx));
    792 	KASSERT(&t->t_root == path_pptr(t, path, 0));
    793 	KASSERT(path->p_lastidx == RADIX_TREE_INVALID_HEIGHT ||
    794 	   path->p_lastidx == t->t_height ||
    795 	   !entry_match_p(*path_pptr(t, path, path->p_lastidx), tagmask));
    796 }
    797 
    798 /*
    799  * gang_lookup_scan:
    800  *
    801  * a helper routine for radix_tree_gang_lookup_node and its variants.
    802  */
    803 
    804 static inline unsigned int
    805 __attribute__((__always_inline__))
    806 gang_lookup_scan(struct radix_tree *t, struct radix_tree_path *path,
    807     void **results, const unsigned int maxresults, const unsigned int tagmask,
    808     const bool reverse, const bool dense)
    809 {
    810 
    811 	/*
    812 	 * we keep the path updated only for lastidx-1.
    813 	 * vpp is what path_pptr(t, path, lastidx) would be.
    814 	 */
    815 	void **vpp;
    816 	unsigned int nfound;
    817 	unsigned int lastidx;
    818 	/*
    819 	 * set up scan direction dependant constants so that we can iterate
    820 	 * n_ptrs as the following.
    821 	 *
    822 	 *	for (i = first; i != guard; i += step)
    823 	 *		visit n->n_ptrs[i];
    824 	 */
    825 	const int step = reverse ? -1 : 1;
    826 	const unsigned int first = reverse ? RADIX_TREE_PTR_PER_NODE - 1 : 0;
    827 	const unsigned int last = reverse ? 0 : RADIX_TREE_PTR_PER_NODE - 1;
    828 	const unsigned int guard = last + step;
    829 
    830 	KASSERT(maxresults > 0);
    831 	KASSERT(&t->t_root == path_pptr(t, path, 0));
    832 	lastidx = path->p_lastidx;
    833 	KASSERT(lastidx == RADIX_TREE_INVALID_HEIGHT ||
    834 	   lastidx == t->t_height ||
    835 	   !entry_match_p(*path_pptr(t, path, lastidx), tagmask));
    836 	nfound = 0;
    837 	if (lastidx == RADIX_TREE_INVALID_HEIGHT) {
    838 		/*
    839 		 * requested idx is beyond the right-most node.
    840 		 */
    841 		if (reverse && !dense) {
    842 			lastidx = 0;
    843 			vpp = path_pptr(t, path, lastidx);
    844 			goto descend;
    845 		}
    846 		return 0;
    847 	}
    848 	vpp = path_pptr(t, path, lastidx);
    849 	while (/*CONSTCOND*/true) {
    850 		struct radix_tree_node *n;
    851 		unsigned int i;
    852 
    853 		if (entry_match_p(*vpp, tagmask)) {
    854 			KASSERT(lastidx == t->t_height);
    855 			/*
    856 			 * record the matching non-NULL leaf.
    857 			 */
    858 			results[nfound] = entry_ptr(*vpp);
    859 			nfound++;
    860 			if (nfound == maxresults) {
    861 				return nfound;
    862 			}
    863 		} else if (dense) {
    864 			return nfound;
    865 		}
    866 scan_siblings:
    867 		/*
    868 		 * try to find the next matching non-NULL sibling.
    869 		 */
    870 		if (lastidx == 0) {
    871 			/*
    872 			 * the root has no siblings.
    873 			 * we've done.
    874 			 */
    875 			KASSERT(vpp == &t->t_root);
    876 			break;
    877 		}
    878 		n = path_node(t, path, lastidx - 1);
    879 		for (i = vpp - n->n_ptrs + step; i != guard; i += step) {
    880 			KASSERT(i < RADIX_TREE_PTR_PER_NODE);
    881 			if (entry_match_p(n->n_ptrs[i], tagmask)) {
    882 				vpp = &n->n_ptrs[i];
    883 				break;
    884 			} else if (dense) {
    885 				return nfound;
    886 			}
    887 		}
    888 		if (i == guard) {
    889 			/*
    890 			 * not found.  go to parent.
    891 			 */
    892 			lastidx--;
    893 			vpp = path_pptr(t, path, lastidx);
    894 			goto scan_siblings;
    895 		}
    896 descend:
    897 		/*
    898 		 * following the left-most (or right-most in the case of
    899 		 * reverse scan) child node, descend until reaching the leaf or
    900 		 * a non-matching entry.
    901 		 */
    902 		while (entry_match_p(*vpp, tagmask) && lastidx < t->t_height) {
    903 			/*
    904 			 * save vpp in the path so that we can come back to this
    905 			 * node after finishing visiting children.
    906 			 */
    907 			path->p_refs[lastidx].pptr = vpp;
    908 			n = entry_ptr(*vpp);
    909 			vpp = &n->n_ptrs[first];
    910 			lastidx++;
    911 		}
    912 	}
    913 	return nfound;
    914 }
    915 
    916 /*
    917  * radix_tree_gang_lookup_node:
    918  *
    919  * Scan the tree starting from the given index in the ascending order and
    920  * return found nodes.
    921  *
    922  * results should be an array large enough to hold maxresults pointers.
    923  * This function returns the number of nodes found, up to maxresults.
    924  * Returning less than maxresults means there are no more nodes in the tree.
    925  *
    926  * If dense == true, this function stops scanning when it founds a hole of
    927  * indexes.  I.e. an index for which radix_tree_lookup_node would returns NULL.
    928  * If dense == false, this function skips holes and continue scanning until
    929  * maxresults nodes are found or it reaches the limit of the index range.
    930  *
    931  * The result of this function is semantically equivalent to what could be
    932  * obtained by repeated calls of radix_tree_lookup_node with increasing index.
    933  * but this function is expected to be computationally cheaper when looking up
    934  * multiple nodes at once.  Especially, it's expected to be much cheaper when
    935  * node indexes are distributed sparsely.
    936  *
    937  * Note that this function doesn't return index values of found nodes.
    938  * Thus, in the case of dense == false, if index values are important for
    939  * a caller, it's the caller's responsibility to check them, typically
    940  * by examining the returned nodes using some caller-specific knowledge
    941  * about them.
    942  * In the case of dense == true, a node returned via results[N] is always for
    943  * the index (idx + N).
    944  */
    945 
    946 unsigned int
    947 radix_tree_gang_lookup_node(struct radix_tree *t, uint64_t idx,
    948     void **results, unsigned int maxresults, bool dense)
    949 {
    950 	struct radix_tree_path path;
    951 
    952 	gang_lookup_init(t, idx, &path, 0);
    953 	return gang_lookup_scan(t, &path, results, maxresults, 0, false, dense);
    954 }
    955 
    956 /*
    957  * radix_tree_gang_lookup_node_reverse:
    958  *
    959  * Same as radix_tree_gang_lookup_node except that this one scans the
    960  * tree in the reverse order.  I.e. descending index values.
    961  */
    962 
    963 unsigned int
    964 radix_tree_gang_lookup_node_reverse(struct radix_tree *t, uint64_t idx,
    965     void **results, unsigned int maxresults, bool dense)
    966 {
    967 	struct radix_tree_path path;
    968 
    969 	gang_lookup_init(t, idx, &path, 0);
    970 	return gang_lookup_scan(t, &path, results, maxresults, 0, true, dense);
    971 }
    972 
    973 /*
    974  * radix_tree_gang_lookup_tagged_node:
    975  *
    976  * Same as radix_tree_gang_lookup_node except that this one only returns
    977  * nodes tagged with tagid.
    978  *
    979  * It's illegal to call this function with tagmask 0.
    980  */
    981 
    982 unsigned int
    983 radix_tree_gang_lookup_tagged_node(struct radix_tree *t, uint64_t idx,
    984     void **results, unsigned int maxresults, bool dense, unsigned int tagmask)
    985 {
    986 	struct radix_tree_path path;
    987 
    988 	KASSERT(tagmask != 0);
    989 	gang_lookup_init(t, idx, &path, tagmask);
    990 	return gang_lookup_scan(t, &path, results, maxresults, tagmask, false,
    991 	    dense);
    992 }
    993 
    994 /*
    995  * radix_tree_gang_lookup_tagged_node_reverse:
    996  *
    997  * Same as radix_tree_gang_lookup_tagged_node except that this one scans the
    998  * tree in the reverse order.  I.e. descending index values.
    999  */
   1000 
   1001 unsigned int
   1002 radix_tree_gang_lookup_tagged_node_reverse(struct radix_tree *t, uint64_t idx,
   1003     void **results, unsigned int maxresults, bool dense, unsigned int tagmask)
   1004 {
   1005 	struct radix_tree_path path;
   1006 
   1007 	KASSERT(tagmask != 0);
   1008 	gang_lookup_init(t, idx, &path, tagmask);
   1009 	return gang_lookup_scan(t, &path, results, maxresults, tagmask, true,
   1010 	    dense);
   1011 }
   1012 
   1013 /*
   1014  * radix_tree_get_tag:
   1015  *
   1016  * Return the tagmask for the node at the given index.
   1017  *
   1018  * It's illegal to call this function for a node which has not been inserted.
   1019  */
   1020 
   1021 unsigned int
   1022 radix_tree_get_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
   1023 {
   1024 	/*
   1025 	 * the following two implementations should behave same.
   1026 	 * the former one was chosen because it seems faster.
   1027 	 */
   1028 #if 1
   1029 	void **vpp;
   1030 
   1031 	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, tagmask);
   1032 	if (vpp == NULL) {
   1033 		return false;
   1034 	}
   1035 	KASSERT(*vpp != NULL);
   1036 	return (entry_tagmask(*vpp) & tagmask);
   1037 #else
   1038 	void **vpp;
   1039 
   1040 	vpp = radix_tree_lookup_ptr(t, idx, NULL, false, 0);
   1041 	KASSERT(vpp != NULL);
   1042 	return (entry_tagmask(*vpp) & tagmask);
   1043 #endif
   1044 }
   1045 
   1046 /*
   1047  * radix_tree_set_tag:
   1048  *
   1049  * Set the tag for the node at the given index.
   1050  *
   1051  * It's illegal to call this function for a node which has not been inserted.
   1052  * It's illegal to call this function with tagmask 0.
   1053  */
   1054 
   1055 void
   1056 radix_tree_set_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
   1057 {
   1058 	struct radix_tree_path path;
   1059 	void **vpp __unused;
   1060 	int i;
   1061 
   1062 	KASSERT(tagmask != 0);
   1063 	vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
   1064 	KASSERT(vpp != NULL);
   1065 	KASSERT(*vpp != NULL);
   1066 	KASSERT(path.p_lastidx == t->t_height);
   1067 	KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
   1068 	for (i = t->t_height; i >= 0; i--) {
   1069 		void ** const pptr = (void **)path_pptr(t, &path, i);
   1070 		void *entry;
   1071 
   1072 		KASSERT(pptr != NULL);
   1073 		entry = *pptr;
   1074 		if ((entry_tagmask(entry) & tagmask) != 0) {
   1075 			break;
   1076 		}
   1077 		*pptr = (void *)((uintptr_t)entry | tagmask);
   1078 	}
   1079 }
   1080 
   1081 /*
   1082  * radix_tree_clear_tag:
   1083  *
   1084  * Clear the tag for the node at the given index.
   1085  *
   1086  * It's illegal to call this function for a node which has not been inserted.
   1087  * It's illegal to call this function with tagmask 0.
   1088  */
   1089 
   1090 void
   1091 radix_tree_clear_tag(struct radix_tree *t, uint64_t idx, unsigned int tagmask)
   1092 {
   1093 	struct radix_tree_path path;
   1094 	void **vpp;
   1095 	int i;
   1096 
   1097 	KASSERT(tagmask != 0);
   1098 	vpp = radix_tree_lookup_ptr(t, idx, &path, false, 0);
   1099 	KASSERT(vpp != NULL);
   1100 	KASSERT(*vpp != NULL);
   1101 	KASSERT(path.p_lastidx == t->t_height);
   1102 	KASSERT(vpp == path_pptr(t, &path, path.p_lastidx));
   1103 	/*
   1104 	 * if already cleared, nothing to do
   1105 	 */
   1106 	if ((entry_tagmask(*vpp) & tagmask) == 0) {
   1107 		return;
   1108 	}
   1109 	/*
   1110 	 * clear the tag only if no children have the tag.
   1111 	 */
   1112 	for (i = t->t_height; i >= 0; i--) {
   1113 		void ** const pptr = (void **)path_pptr(t, &path, i);
   1114 		void *entry;
   1115 
   1116 		KASSERT(pptr != NULL);
   1117 		entry = *pptr;
   1118 		KASSERT((entry_tagmask(entry) & tagmask) != 0);
   1119 		*pptr = entry_compose(entry_ptr(entry),
   1120 		    entry_tagmask(entry) & ~tagmask);
   1121 		/*
   1122 		 * check if we should proceed to process the next level.
   1123 		 */
   1124 		if (0 < i) {
   1125 			struct radix_tree_node *n = path_node(t, &path, i - 1);
   1126 
   1127 			if ((radix_tree_sum_node(n) & tagmask) != 0) {
   1128 				break;
   1129 			}
   1130 		}
   1131 	}
   1132 }
   1133 
   1134 #if defined(UNITTEST)
   1135 
   1136 #include <inttypes.h>
   1137 #include <stdio.h>
   1138 
   1139 static void
   1140 radix_tree_dump_node(const struct radix_tree *t, void *vp,
   1141     uint64_t offset, unsigned int height)
   1142 {
   1143 	struct radix_tree_node *n;
   1144 	unsigned int i;
   1145 
   1146 	for (i = 0; i < t->t_height - height; i++) {
   1147 		printf(" ");
   1148 	}
   1149 	if (entry_tagmask(vp) == 0) {
   1150 		printf("[%" PRIu64 "] %p", offset, entry_ptr(vp));
   1151 	} else {
   1152 		printf("[%" PRIu64 "] %p (tagmask=0x%x)", offset, entry_ptr(vp),
   1153 		    entry_tagmask(vp));
   1154 	}
   1155 	if (height == 0) {
   1156 		printf(" (leaf)\n");
   1157 		return;
   1158 	}
   1159 	n = entry_ptr(vp);
   1160 	assert((radix_tree_sum_node(n) & RADIX_TREE_TAG_MASK) ==
   1161 	    entry_tagmask(vp));
   1162 	printf(" (%u children)\n", radix_tree_node_count_ptrs(n));
   1163 	for (i = 0; i < __arraycount(n->n_ptrs); i++) {
   1164 		void *c;
   1165 
   1166 		c = n->n_ptrs[i];
   1167 		if (c == NULL) {
   1168 			continue;
   1169 		}
   1170 		radix_tree_dump_node(t, c,
   1171 		    offset + i * (UINT64_C(1) <<
   1172 		    (RADIX_TREE_BITS_PER_HEIGHT * (height - 1))), height - 1);
   1173 	}
   1174 }
   1175 
   1176 void radix_tree_dump(const struct radix_tree *);
   1177 
   1178 void
   1179 radix_tree_dump(const struct radix_tree *t)
   1180 {
   1181 
   1182 	printf("tree %p height=%u\n", t, t->t_height);
   1183 	radix_tree_dump_node(t, t->t_root, 0, t->t_height);
   1184 }
   1185 
   1186 static void
   1187 test1(void)
   1188 {
   1189 	struct radix_tree s;
   1190 	struct radix_tree *t = &s;
   1191 	void *results[3];
   1192 
   1193 	radix_tree_init_tree(t);
   1194 	radix_tree_dump(t);
   1195 	assert(radix_tree_lookup_node(t, 0) == NULL);
   1196 	assert(radix_tree_lookup_node(t, 1000) == NULL);
   1197 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 0);
   1198 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 0);
   1199 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 0);
   1200 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 0);
   1201 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false) ==
   1202 	    0);
   1203 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true) ==
   1204 	    0);
   1205 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
   1206 	    == 0);
   1207 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
   1208 	    == 0);
   1209 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
   1210 	    == 0);
   1211 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
   1212 	    == 0);
   1213 	assert(radix_tree_gang_lookup_tagged_node(t, 1000, results, 3, false, 1)
   1214 	    == 0);
   1215 	assert(radix_tree_gang_lookup_tagged_node(t, 1000, results, 3, true, 1)
   1216 	    == 0);
   1217 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1218 	    false, 1) == 0);
   1219 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1220 	    true, 1) == 0);
   1221 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 1000, results, 3,
   1222 	    false, 1) == 0);
   1223 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 1000, results, 3,
   1224 	    true, 1) == 0);
   1225 	assert(radix_tree_empty_tree_p(t));
   1226 	assert(radix_tree_empty_tagged_tree_p(t, 1));
   1227 	assert(radix_tree_empty_tagged_tree_p(t, 2));
   1228 	assert(radix_tree_insert_node(t, 0, (void *)0xdeadbea0) == 0);
   1229 	assert(!radix_tree_empty_tree_p(t));
   1230 	assert(radix_tree_empty_tagged_tree_p(t, 1));
   1231 	assert(radix_tree_empty_tagged_tree_p(t, 2));
   1232 	assert(radix_tree_lookup_node(t, 0) == (void *)0xdeadbea0);
   1233 	assert(radix_tree_lookup_node(t, 1000) == NULL);
   1234 	memset(results, 0, sizeof(results));
   1235 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 1);
   1236 	assert(results[0] == (void *)0xdeadbea0);
   1237 	memset(results, 0, sizeof(results));
   1238 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 1);
   1239 	assert(results[0] == (void *)0xdeadbea0);
   1240 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 0);
   1241 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 0);
   1242 	memset(results, 0, sizeof(results));
   1243 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false) ==
   1244 	    1);
   1245 	assert(results[0] == (void *)0xdeadbea0);
   1246 	memset(results, 0, sizeof(results));
   1247 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true) ==
   1248 	    1);
   1249 	assert(results[0] == (void *)0xdeadbea0);
   1250 	memset(results, 0, sizeof(results));
   1251 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
   1252 	    == 1);
   1253 	assert(results[0] == (void *)0xdeadbea0);
   1254 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
   1255 	    == 0);
   1256 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
   1257 	    == 0);
   1258 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
   1259 	    == 0);
   1260 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1261 	    false, 1) == 0);
   1262 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1263 	    true, 1) == 0);
   1264 	assert(radix_tree_insert_node(t, 1000, (void *)0xdeadbea0) == 0);
   1265 	assert(radix_tree_remove_node(t, 0) == (void *)0xdeadbea0);
   1266 	assert(!radix_tree_empty_tree_p(t));
   1267 	radix_tree_dump(t);
   1268 	assert(radix_tree_lookup_node(t, 0) == NULL);
   1269 	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
   1270 	memset(results, 0, sizeof(results));
   1271 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 1);
   1272 	assert(results[0] == (void *)0xdeadbea0);
   1273 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 0);
   1274 	memset(results, 0, sizeof(results));
   1275 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, false) == 1);
   1276 	assert(results[0] == (void *)0xdeadbea0);
   1277 	memset(results, 0, sizeof(results));
   1278 	assert(radix_tree_gang_lookup_node(t, 1000, results, 3, true) == 1);
   1279 	assert(results[0] == (void *)0xdeadbea0);
   1280 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, false)
   1281 	    == 0);
   1282 	assert(radix_tree_gang_lookup_node_reverse(t, 0, results, 3, true)
   1283 	    == 0);
   1284 	memset(results, 0, sizeof(results));
   1285 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, false)
   1286 	    == 1);
   1287 	memset(results, 0, sizeof(results));
   1288 	assert(radix_tree_gang_lookup_node_reverse(t, 1000, results, 3, true)
   1289 	    == 1);
   1290 	assert(results[0] == (void *)0xdeadbea0);
   1291 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, false, 1)
   1292 	    == 0);
   1293 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 3, true, 1)
   1294 	    == 0);
   1295 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1296 	    false, 1) == 0);
   1297 	assert(radix_tree_gang_lookup_tagged_node_reverse(t, 0, results, 3,
   1298 	    true, 1) == 0);
   1299 	assert(!radix_tree_get_tag(t, 1000, 1));
   1300 	assert(!radix_tree_get_tag(t, 1000, 2));
   1301 	assert(radix_tree_get_tag(t, 1000, 2 | 1) == 0);
   1302 	assert(radix_tree_empty_tagged_tree_p(t, 1));
   1303 	assert(radix_tree_empty_tagged_tree_p(t, 2));
   1304 	radix_tree_set_tag(t, 1000, 2);
   1305 	assert(!radix_tree_get_tag(t, 1000, 1));
   1306 	assert(radix_tree_get_tag(t, 1000, 2));
   1307 	assert(radix_tree_get_tag(t, 1000, 2 | 1) == 2);
   1308 	assert(radix_tree_empty_tagged_tree_p(t, 1));
   1309 	assert(!radix_tree_empty_tagged_tree_p(t, 2));
   1310 	radix_tree_dump(t);
   1311 	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
   1312 	assert(radix_tree_insert_node(t, 0, (void *)0xbea0) == 0);
   1313 	radix_tree_dump(t);
   1314 	assert(radix_tree_lookup_node(t, 0) == (void *)0xbea0);
   1315 	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
   1316 	assert(radix_tree_insert_node(t, UINT64_C(10000000000), (void *)0xdea0)
   1317 	    == 0);
   1318 	radix_tree_dump(t);
   1319 	assert(radix_tree_lookup_node(t, 0) == (void *)0xbea0);
   1320 	assert(radix_tree_lookup_node(t, 1000) == (void *)0xdeadbea0);
   1321 	assert(radix_tree_lookup_node(t, UINT64_C(10000000000)) ==
   1322 	    (void *)0xdea0);
   1323 	radix_tree_dump(t);
   1324 	assert(!radix_tree_get_tag(t, 0, 2));
   1325 	assert(radix_tree_get_tag(t, 1000, 2));
   1326 	assert(!radix_tree_get_tag(t, UINT64_C(10000000000), 1));
   1327 	radix_tree_set_tag(t, 0, 2);
   1328 	radix_tree_set_tag(t, UINT64_C(10000000000), 2);
   1329 	radix_tree_dump(t);
   1330 	assert(radix_tree_get_tag(t, 0, 2));
   1331 	assert(radix_tree_get_tag(t, 1000, 2));
   1332 	assert(radix_tree_get_tag(t, UINT64_C(10000000000), 2));
   1333 	radix_tree_clear_tag(t, 0, 2);
   1334 	radix_tree_clear_tag(t, UINT64_C(10000000000), 2);
   1335 	radix_tree_dump(t);
   1336 	assert(!radix_tree_get_tag(t, 0, 2));
   1337 	assert(radix_tree_get_tag(t, 1000, 2));
   1338 	assert(!radix_tree_get_tag(t, UINT64_C(10000000000), 2));
   1339 	radix_tree_dump(t);
   1340 	assert(radix_tree_replace_node(t, 1000, (void *)0x12345678) ==
   1341 	    (void *)0xdeadbea0);
   1342 	assert(!radix_tree_get_tag(t, 1000, 1));
   1343 	assert(radix_tree_get_tag(t, 1000, 2));
   1344 	assert(radix_tree_get_tag(t, 1000, 2 | 1) == 2);
   1345 	memset(results, 0, sizeof(results));
   1346 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, false) == 3);
   1347 	assert(results[0] == (void *)0xbea0);
   1348 	assert(results[1] == (void *)0x12345678);
   1349 	assert(results[2] == (void *)0xdea0);
   1350 	memset(results, 0, sizeof(results));
   1351 	assert(radix_tree_gang_lookup_node(t, 0, results, 3, true) == 1);
   1352 	assert(results[0] == (void *)0xbea0);
   1353 	memset(results, 0, sizeof(results));
   1354 	assert(radix_tree_gang_lookup_node(t, 1, results, 3, false) == 2);
   1355 	assert(results[0] == (void *)0x12345678);
   1356 	assert(results[1] == (void *)0xdea0);
   1357 	assert(radix_tree_gang_lookup_node(t, 1, results, 3, true) == 0);
   1358 	memset(results, 0, sizeof(results));
   1359 	assert(radix_tree_gang_lookup_node(t, 1001, results, 3, false) == 1);
   1360 	assert(results[0] == (void *)0xdea0);
   1361 	assert(radix_tree_gang_lookup_node(t, 1001, results, 3, true) == 0);
   1362 	assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000001), results, 3,
   1363 	    false) == 0);
   1364 	assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000001), results, 3,
   1365 	    true) == 0);
   1366 	assert(radix_tree_gang_lookup_node(t, UINT64_C(1000000000000), results,
   1367 	    3, false) == 0);
   1368 	assert(radix_tree_gang_lookup_node(t, UINT64_C(1000000000000), results,
   1369 	    3, true) == 0);
   1370 	memset(results, 0, sizeof(results));
   1371 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 100, false, 2)
   1372 	    == 1);
   1373 	assert(results[0] == (void *)0x12345678);
   1374 	assert(radix_tree_gang_lookup_tagged_node(t, 0, results, 100, true, 2)
   1375 	    == 0);
   1376 	assert(entry_tagmask(t->t_root) != 0);
   1377 	assert(radix_tree_remove_node(t, 1000) == (void *)0x12345678);
   1378 	assert(entry_tagmask(t->t_root) == 0);
   1379 	radix_tree_dump(t);
   1380 	assert(radix_tree_insert_node(t, UINT64_C(10000000001), (void *)0xfff0)
   1381 	    == 0);
   1382 	memset(results, 0, sizeof(results));
   1383 	assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000000), results, 3,
   1384 	    false) == 2);
   1385 	assert(results[0] == (void *)0xdea0);
   1386 	assert(results[1] == (void *)0xfff0);
   1387 	memset(results, 0, sizeof(results));
   1388 	assert(radix_tree_gang_lookup_node(t, UINT64_C(10000000000), results, 3,
   1389 	    true) == 2);
   1390 	assert(results[0] == (void *)0xdea0);
   1391 	assert(results[1] == (void *)0xfff0);
   1392 	memset(results, 0, sizeof(results));
   1393 	assert(radix_tree_gang_lookup_node_reverse(t, UINT64_C(10000000001),
   1394 	    results, 3, false) == 3);
   1395 	assert(results[0] == (void *)0xfff0);
   1396 	assert(results[1] == (void *)0xdea0);
   1397 	assert(results[2] == (void *)0xbea0);
   1398 	memset(results, 0, sizeof(results));
   1399 	assert(radix_tree_gang_lookup_node_reverse(t, UINT64_C(10000000001),
   1400 	    results, 3, true) == 2);
   1401 	assert(results[0] == (void *)0xfff0);
   1402 	assert(results[1] == (void *)0xdea0);
   1403 	assert(radix_tree_remove_node(t, UINT64_C(10000000000)) ==
   1404 	    (void *)0xdea0);
   1405 	assert(radix_tree_remove_node(t, UINT64_C(10000000001)) ==
   1406 	    (void *)0xfff0);
   1407 	radix_tree_dump(t);
   1408 	assert(radix_tree_remove_node(t, 0) == (void *)0xbea0);
   1409 	radix_tree_dump(t);
   1410 	radix_tree_fini_tree(t);
   1411 }
   1412 
   1413 #include <sys/time.h>
   1414 
   1415 struct testnode {
   1416 	uint64_t idx;
   1417 	bool tagged[RADIX_TREE_TAG_ID_MAX];
   1418 };
   1419 
   1420 static void
   1421 printops(const char *title, const char *name, int tag, unsigned int n,
   1422     const struct timeval *stv, const struct timeval *etv)
   1423 {
   1424 	uint64_t s = stv->tv_sec * 1000000 + stv->tv_usec;
   1425 	uint64_t e = etv->tv_sec * 1000000 + etv->tv_usec;
   1426 
   1427 	printf("RESULT %s %s %d %lf op/s\n", title, name, tag,
   1428 	    (double)n / (e - s) * 1000000);
   1429 }
   1430 
   1431 #define	TEST2_GANG_LOOKUP_NODES	16
   1432 
   1433 static bool
   1434 test2_should_tag(unsigned int i, unsigned int tagid)
   1435 {
   1436 
   1437 	if (tagid == 0) {
   1438 		return (i % 4) == 0;	/* 25% */
   1439 	} else {
   1440 		return (i % 7) == 0;	/* 14% */
   1441 	}
   1442 	return 1;
   1443 }
   1444 
   1445 static void
   1446 check_tag_count(const unsigned int *ntagged, unsigned int tagmask,
   1447     unsigned int count)
   1448 {
   1449 	unsigned int tag;
   1450 
   1451 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1452 		if ((tagmask & (1 << tag)) == 0) {
   1453 			continue;
   1454 		}
   1455 		if (((tagmask - 1) & tagmask) == 0) {
   1456 			assert(count == ntagged[tag]);
   1457 		} else {
   1458 			assert(count >= ntagged[tag]);
   1459 		}
   1460 	}
   1461 }
   1462 
   1463 static void
   1464 test2(const char *title, bool dense)
   1465 {
   1466 	struct radix_tree s;
   1467 	struct radix_tree *t = &s;
   1468 	struct testnode *n;
   1469 	unsigned int i;
   1470 	unsigned int nnodes = 100000;
   1471 	unsigned int removed;
   1472 	unsigned int tag;
   1473 	unsigned int tagmask;
   1474 	unsigned int ntagged[RADIX_TREE_TAG_ID_MAX];
   1475 	struct testnode *nodes;
   1476 	struct timeval stv;
   1477 	struct timeval etv;
   1478 
   1479 	nodes = malloc(nnodes * sizeof(*nodes));
   1480 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1481 		ntagged[tag] = 0;
   1482 	}
   1483 	radix_tree_init_tree(t);
   1484 	for (i = 0; i < nnodes; i++) {
   1485 		n = &nodes[i];
   1486 		n->idx = random();
   1487 		if (sizeof(long) == 4) {
   1488 			n->idx <<= 32;
   1489 			n->idx |= (uint32_t)random();
   1490 		}
   1491 		if (dense) {
   1492 			n->idx %= nnodes * 2;
   1493 		}
   1494 		while (radix_tree_lookup_node(t, n->idx) != NULL) {
   1495 			n->idx++;
   1496 		}
   1497 		radix_tree_insert_node(t, n->idx, n);
   1498 		for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1499 			tagmask = 1 << tag;
   1500 
   1501 			n->tagged[tag] = test2_should_tag(i, tag);
   1502 			if (n->tagged[tag]) {
   1503 				radix_tree_set_tag(t, n->idx, tagmask);
   1504 				ntagged[tag]++;
   1505 			}
   1506 			assert((n->tagged[tag] ? tagmask : 0) ==
   1507 			    radix_tree_get_tag(t, n->idx, tagmask));
   1508 		}
   1509 	}
   1510 
   1511 	gettimeofday(&stv, NULL);
   1512 	for (i = 0; i < nnodes; i++) {
   1513 		n = &nodes[i];
   1514 		assert(radix_tree_lookup_node(t, n->idx) == n);
   1515 	}
   1516 	gettimeofday(&etv, NULL);
   1517 	printops(title, "lookup", 0, nnodes, &stv, &etv);
   1518 
   1519 	for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
   1520 		unsigned int count = 0;
   1521 
   1522 		gettimeofday(&stv, NULL);
   1523 		for (i = 0; i < nnodes; i++) {
   1524 			unsigned int tagged;
   1525 
   1526 			n = &nodes[i];
   1527 			tagged = radix_tree_get_tag(t, n->idx, tagmask);
   1528 			assert((tagged & ~tagmask) == 0);
   1529 			for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1530 				assert((tagmask & (1 << tag)) == 0 ||
   1531 				    n->tagged[tag] == !!(tagged & (1 << tag)));
   1532 			}
   1533 			if (tagged) {
   1534 				count++;
   1535 			}
   1536 		}
   1537 		gettimeofday(&etv, NULL);
   1538 		check_tag_count(ntagged, tagmask, count);
   1539 		printops(title, "get_tag", tagmask, nnodes, &stv, &etv);
   1540 	}
   1541 
   1542 	gettimeofday(&stv, NULL);
   1543 	for (i = 0; i < nnodes; i++) {
   1544 		n = &nodes[i];
   1545 		radix_tree_remove_node(t, n->idx);
   1546 	}
   1547 	gettimeofday(&etv, NULL);
   1548 	printops(title, "remove", 0, nnodes, &stv, &etv);
   1549 
   1550 	gettimeofday(&stv, NULL);
   1551 	for (i = 0; i < nnodes; i++) {
   1552 		n = &nodes[i];
   1553 		radix_tree_insert_node(t, n->idx, n);
   1554 	}
   1555 	gettimeofday(&etv, NULL);
   1556 	printops(title, "insert", 0, nnodes, &stv, &etv);
   1557 
   1558 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1559 		tagmask = 1 << tag;
   1560 
   1561 		ntagged[tag] = 0;
   1562 		gettimeofday(&stv, NULL);
   1563 		for (i = 0; i < nnodes; i++) {
   1564 			n = &nodes[i];
   1565 			if (n->tagged[tag]) {
   1566 				radix_tree_set_tag(t, n->idx, tagmask);
   1567 				ntagged[tag]++;
   1568 			}
   1569 		}
   1570 		gettimeofday(&etv, NULL);
   1571 		printops(title, "set_tag", tag, ntagged[tag], &stv, &etv);
   1572 	}
   1573 
   1574 	gettimeofday(&stv, NULL);
   1575 	{
   1576 		struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1577 		uint64_t nextidx;
   1578 		unsigned int nfound;
   1579 		unsigned int total;
   1580 
   1581 		nextidx = 0;
   1582 		total = 0;
   1583 		while ((nfound = radix_tree_gang_lookup_node(t, nextidx,
   1584 		    (void *)results, __arraycount(results), false)) > 0) {
   1585 			nextidx = results[nfound - 1]->idx + 1;
   1586 			total += nfound;
   1587 			if (nextidx == 0) {
   1588 				break;
   1589 			}
   1590 		}
   1591 		assert(total == nnodes);
   1592 	}
   1593 	gettimeofday(&etv, NULL);
   1594 	printops(title, "ganglookup", 0, nnodes, &stv, &etv);
   1595 
   1596 	gettimeofday(&stv, NULL);
   1597 	{
   1598 		struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1599 		uint64_t nextidx;
   1600 		unsigned int nfound;
   1601 		unsigned int total;
   1602 
   1603 		nextidx = UINT64_MAX;
   1604 		total = 0;
   1605 		while ((nfound = radix_tree_gang_lookup_node_reverse(t, nextidx,
   1606 		    (void *)results, __arraycount(results), false)) > 0) {
   1607 			nextidx = results[nfound - 1]->idx - 1;
   1608 			total += nfound;
   1609 			if (nextidx == UINT64_MAX) {
   1610 				break;
   1611 			}
   1612 		}
   1613 		assert(total == nnodes);
   1614 	}
   1615 	gettimeofday(&etv, NULL);
   1616 	printops(title, "ganglookup_reverse", 0, nnodes, &stv, &etv);
   1617 
   1618 	for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
   1619 		unsigned int total = 0;
   1620 
   1621 		gettimeofday(&stv, NULL);
   1622 		{
   1623 			struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1624 			uint64_t nextidx;
   1625 			unsigned int nfound;
   1626 
   1627 			nextidx = 0;
   1628 			while ((nfound = radix_tree_gang_lookup_tagged_node(t,
   1629 			    nextidx, (void *)results, __arraycount(results),
   1630 			    false, tagmask)) > 0) {
   1631 				nextidx = results[nfound - 1]->idx + 1;
   1632 				total += nfound;
   1633 			}
   1634 		}
   1635 		gettimeofday(&etv, NULL);
   1636 		check_tag_count(ntagged, tagmask, total);
   1637 		assert(tagmask != 0 || total == 0);
   1638 		printops(title, "ganglookup_tag", tagmask, total, &stv, &etv);
   1639 	}
   1640 
   1641 	for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
   1642 		unsigned int total = 0;
   1643 
   1644 		gettimeofday(&stv, NULL);
   1645 		{
   1646 			struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1647 			uint64_t nextidx;
   1648 			unsigned int nfound;
   1649 
   1650 			nextidx = UINT64_MAX;
   1651 			while ((nfound =
   1652 			    radix_tree_gang_lookup_tagged_node_reverse(t,
   1653 			    nextidx, (void *)results, __arraycount(results),
   1654 			    false, tagmask)) > 0) {
   1655 				nextidx = results[nfound - 1]->idx - 1;
   1656 				total += nfound;
   1657 				if (nextidx == UINT64_MAX) {
   1658 					break;
   1659 				}
   1660 			}
   1661 		}
   1662 		gettimeofday(&etv, NULL);
   1663 		check_tag_count(ntagged, tagmask, total);
   1664 		assert(tagmask != 0 || total == 0);
   1665 		printops(title, "ganglookup_tag_reverse", tagmask, total,
   1666 		    &stv, &etv);
   1667 	}
   1668 
   1669 	removed = 0;
   1670 	for (tag = 0; tag < RADIX_TREE_TAG_ID_MAX; tag++) {
   1671 		unsigned int total;
   1672 
   1673 		total = 0;
   1674 		tagmask = 1 << tag;
   1675 		gettimeofday(&stv, NULL);
   1676 		{
   1677 			struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1678 			uint64_t nextidx;
   1679 			unsigned int nfound;
   1680 
   1681 			nextidx = 0;
   1682 			while ((nfound = radix_tree_gang_lookup_tagged_node(t,
   1683 			    nextidx, (void *)results, __arraycount(results),
   1684 			    false, tagmask)) > 0) {
   1685 				for (i = 0; i < nfound; i++) {
   1686 					radix_tree_remove_node(t,
   1687 					    results[i]->idx);
   1688 				}
   1689 				nextidx = results[nfound - 1]->idx + 1;
   1690 				total += nfound;
   1691 				if (nextidx == 0) {
   1692 					break;
   1693 				}
   1694 			}
   1695 		}
   1696 		gettimeofday(&etv, NULL);
   1697 		if (tag == 0) {
   1698 			check_tag_count(ntagged, tagmask, total);
   1699 		} else {
   1700 			assert(total <= ntagged[tag]);
   1701 		}
   1702 		printops(title, "ganglookup_tag+remove", tagmask, total, &stv,
   1703 		    &etv);
   1704 		removed += total;
   1705 	}
   1706 
   1707 	gettimeofday(&stv, NULL);
   1708 	{
   1709 		struct testnode *results[TEST2_GANG_LOOKUP_NODES];
   1710 		uint64_t nextidx;
   1711 		unsigned int nfound;
   1712 		unsigned int total;
   1713 
   1714 		nextidx = 0;
   1715 		total = 0;
   1716 		while ((nfound = radix_tree_gang_lookup_node(t, nextidx,
   1717 		    (void *)results, __arraycount(results), false)) > 0) {
   1718 			for (i = 0; i < nfound; i++) {
   1719 				assert(results[i] == radix_tree_remove_node(t,
   1720 				    results[i]->idx));
   1721 			}
   1722 			nextidx = results[nfound - 1]->idx + 1;
   1723 			total += nfound;
   1724 			if (nextidx == 0) {
   1725 				break;
   1726 			}
   1727 		}
   1728 		assert(total == nnodes - removed);
   1729 	}
   1730 	gettimeofday(&etv, NULL);
   1731 	printops(title, "ganglookup+remove", 0, nnodes - removed, &stv, &etv);
   1732 
   1733 	assert(radix_tree_empty_tree_p(t));
   1734 	for (tagmask = 1; tagmask <= RADIX_TREE_TAG_MASK; tagmask ++) {
   1735 		assert(radix_tree_empty_tagged_tree_p(t, tagmask));
   1736 	}
   1737 	radix_tree_fini_tree(t);
   1738 	free(nodes);
   1739 }
   1740 
   1741 int
   1742 main(int argc, char *argv[])
   1743 {
   1744 
   1745 	test1();
   1746 	test2("dense", true);
   1747 	test2("sparse", false);
   1748 	return 0;
   1749 }
   1750 
   1751 #endif /* defined(UNITTEST) */
   1752