Home | History | Annotate | Line # | Download | only in ic
      1 /*	$NetBSD: rtl8169.c,v 1.179 2024/08/12 21:27:34 christos Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997, 1998-2003
      5  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by Bill Paul.
     18  * 4. Neither the name of the author nor the names of any co-contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     32  * THE POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: rtl8169.c,v 1.179 2024/08/12 21:27:34 christos Exp $");
     37 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
     38 
     39 /*
     40  * RealTek 8139C+/8169/8169S/8168/8110S PCI NIC driver
     41  *
     42  * Written by Bill Paul <wpaul (at) windriver.com>
     43  * Senior Networking Software Engineer
     44  * Wind River Systems
     45  */
     46 
     47 /*
     48  * This driver is designed to support RealTek's next generation of
     49  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
     50  * six devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
     51  * RTL8110S, the RTL8168 and the RTL8111.
     52  *
     53  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
     54  * with the older 8139 family, however it also supports a special
     55  * C+ mode of operation that provides several new performance enhancing
     56  * features. These include:
     57  *
     58  *	o Descriptor based DMA mechanism. Each descriptor represents
     59  *	  a single packet fragment. Data buffers may be aligned on
     60  *	  any byte boundary.
     61  *
     62  *	o 64-bit DMA
     63  *
     64  *	o TCP/IP checksum offload for both RX and TX
     65  *
     66  *	o High and normal priority transmit DMA rings
     67  *
     68  *	o VLAN tag insertion and extraction
     69  *
     70  *	o TCP large send (segmentation offload)
     71  *
     72  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
     73  * programming API is fairly straightforward. The RX filtering, EEPROM
     74  * access and PHY access is the same as it is on the older 8139 series
     75  * chips.
     76  *
     77  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
     78  * same programming API and feature set as the 8139C+ with the following
     79  * differences and additions:
     80  *
     81  *	o 1000Mbps mode
     82  *
     83  *	o Jumbo frames
     84  *
     85  *	o GMII and TBI ports/registers for interfacing with copper
     86  *	  or fiber PHYs
     87  *
     88  *      o RX and TX DMA rings can have up to 1024 descriptors
     89  *        (the 8139C+ allows a maximum of 64)
     90  *
     91  *	o Slight differences in register layout from the 8139C+
     92  *
     93  * The TX start and timer interrupt registers are at different locations
     94  * on the 8169 than they are on the 8139C+. Also, the status word in the
     95  * RX descriptor has a slightly different bit layout. The 8169 does not
     96  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
     97  * copper gigE PHY.
     98  *
     99  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
    100  * (the 'S' stands for 'single-chip'). These devices have the same
    101  * programming API as the older 8169, but also have some vendor-specific
    102  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
    103  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
    104  *
    105  * This driver takes advantage of the RX and TX checksum offload and
    106  * VLAN tag insertion/extraction features. It also implements TX
    107  * interrupt moderation using the timer interrupt registers, which
    108  * significantly reduces TX interrupt load. There is also support
    109  * for jumbo frames, however the 8169/8169S/8110S can not transmit
    110  * jumbo frames larger than 7.5K, so the max MTU possible with this
    111  * driver is 7500 bytes.
    112  */
    113 
    114 
    115 #include <sys/param.h>
    116 #include <sys/endian.h>
    117 #include <sys/systm.h>
    118 #include <sys/sockio.h>
    119 #include <sys/mbuf.h>
    120 #include <sys/kernel.h>
    121 #include <sys/socket.h>
    122 #include <sys/device.h>
    123 
    124 #include <net/if.h>
    125 #include <net/if_arp.h>
    126 #include <net/if_dl.h>
    127 #include <net/if_ether.h>
    128 #include <net/if_media.h>
    129 #include <net/if_vlanvar.h>
    130 
    131 #include <netinet/in_systm.h>	/* XXX for IP_MAXPACKET */
    132 #include <netinet/in.h>		/* XXX for IP_MAXPACKET */
    133 #include <netinet/ip.h>		/* XXX for IP_MAXPACKET */
    134 
    135 #include <net/bpf.h>
    136 #include <sys/rndsource.h>
    137 
    138 #include <sys/bus.h>
    139 
    140 #include <dev/mii/mii.h>
    141 #include <dev/mii/miivar.h>
    142 
    143 #include <dev/ic/rtl81x9reg.h>
    144 #include <dev/ic/rtl81x9var.h>
    145 
    146 #include <dev/ic/rtl8169var.h>
    147 
    148 static inline void re_set_bufaddr(struct re_desc *, bus_addr_t);
    149 
    150 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
    151 static int re_rx_list_init(struct rtk_softc *);
    152 static int re_tx_list_init(struct rtk_softc *);
    153 static void re_rxeof(struct rtk_softc *);
    154 static void re_txeof(struct rtk_softc *);
    155 static void re_tick(void *);
    156 static void re_start(struct ifnet *);
    157 static int re_ioctl(struct ifnet *, u_long, void *);
    158 static int re_init(struct ifnet *);
    159 static void re_stop(struct ifnet *, int);
    160 static void re_watchdog(struct ifnet *);
    161 
    162 static int re_enable(struct rtk_softc *);
    163 static void re_disable(struct rtk_softc *);
    164 
    165 static int re_gmii_readreg(device_t, int, int, uint16_t *);
    166 static int re_gmii_writereg(device_t, int, int, uint16_t);
    167 
    168 static int re_miibus_readreg(device_t, int, int, uint16_t *);
    169 static int re_miibus_writereg(device_t, int, int, uint16_t);
    170 static void re_miibus_statchg(struct ifnet *);
    171 
    172 static void re_reset(struct rtk_softc *);
    173 
    174 static const struct re_revision {
    175 	uint32_t		re_chipid;
    176 	const char		*re_name;
    177 } re_revisions[] = {
    178 	{ RTK_HWREV_8100,	"RTL8100" },
    179 	{ RTK_HWREV_8100E,	"RTL8100E" },
    180 	{ RTK_HWREV_8100E_SPIN2, "RTL8100E 2" },
    181 	{ RTK_HWREV_8101,	"RTL8101" },
    182 	{ RTK_HWREV_8101E,	"RTL8101E" },
    183 	{ RTK_HWREV_8102E,	"RTL8102E" },
    184 	{ RTK_HWREV_8106E,	"RTL8106E" },
    185 	{ RTK_HWREV_8401E,	"RTL8401E" },
    186 	{ RTK_HWREV_8402,	"RTL8402" },
    187 	{ RTK_HWREV_8411,	"RTL8411" },
    188 	{ RTK_HWREV_8411B,	"RTL8411B" },
    189 	{ RTK_HWREV_8102EL,	"RTL8102EL" },
    190 	{ RTK_HWREV_8102EL_SPIN1, "RTL8102EL 1" },
    191 	{ RTK_HWREV_8103E,       "RTL8103E" },
    192 	{ RTK_HWREV_8110S,	"RTL8110S" },
    193 	{ RTK_HWREV_8139CPLUS,	"RTL8139C+" },
    194 	{ RTK_HWREV_8168B_SPIN1, "RTL8168 1" },
    195 	{ RTK_HWREV_8168B_SPIN2, "RTL8168 2" },
    196 	{ RTK_HWREV_8168B_SPIN3, "RTL8168 3" },
    197 	{ RTK_HWREV_8168C,	"RTL8168C/8111C" },
    198 	{ RTK_HWREV_8168C_SPIN2, "RTL8168C/8111C" },
    199 	{ RTK_HWREV_8168CP,	"RTL8168CP/8111CP" },
    200 	{ RTK_HWREV_8168F,	"RTL8168F/8111F" },
    201 	{ RTK_HWREV_8168G,	"RTL8168G/8111G" },
    202 	{ RTK_HWREV_8168GU,	"RTL8168GU/8111GU" },
    203 	{ RTK_HWREV_8168H,	"RTL8168H/8111H" },
    204 	{ RTK_HWREV_8105E,	"RTL8105E" },
    205 	{ RTK_HWREV_8105E_SPIN1, "RTL8105E" },
    206 	{ RTK_HWREV_8168D,	"RTL8168D/8111D" },
    207 	{ RTK_HWREV_8168DP,	"RTL8168DP/8111DP" },
    208 	{ RTK_HWREV_8168E,	"RTL8168E/8111E" },
    209 	{ RTK_HWREV_8168E_VL,	"RTL8168E/8111E-VL" },
    210 	{ RTK_HWREV_8168EP,	"RTL8168EP/8111EP" },
    211 	{ RTK_HWREV_8168FP,	"RTL8168FP/8117" },
    212 	{ RTK_HWREV_8169,	"RTL8169" },
    213 	{ RTK_HWREV_8169_8110SB, "RTL8169/8110SB" },
    214 	{ RTK_HWREV_8169_8110SBL, "RTL8169SBL" },
    215 	{ RTK_HWREV_8169_8110SC, "RTL8169/8110SCd" },
    216 	{ RTK_HWREV_8169_8110SCE, "RTL8169/8110SCe" },
    217 	{ RTK_HWREV_8169S,	"RTL8169S" },
    218 
    219 	{ 0, NULL }
    220 };
    221 
    222 static inline void
    223 re_set_bufaddr(struct re_desc *d, bus_addr_t addr)
    224 {
    225 
    226 	d->re_bufaddr_lo = htole32(RE_ADDR_LO(addr));
    227 	d->re_bufaddr_hi = htole32(RE_ADDR_HI(addr));
    228 }
    229 
    230 static int
    231 re_gmii_readreg(device_t dev, int phy, int reg, uint16_t *val)
    232 {
    233 	struct rtk_softc *sc = device_private(dev);
    234 	uint32_t data;
    235 	int i;
    236 
    237 	if (phy != 7)
    238 		return -1;
    239 
    240 	/* Let the rgephy driver read the GMEDIASTAT register */
    241 
    242 	if (reg == RTK_GMEDIASTAT) {
    243 		*val = CSR_READ_1(sc, RTK_GMEDIASTAT);
    244 		return 0;
    245 	}
    246 
    247 	CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
    248 	DELAY(1000);
    249 
    250 	for (i = 0; i < RTK_TIMEOUT; i++) {
    251 		data = CSR_READ_4(sc, RTK_PHYAR);
    252 		if (data & RTK_PHYAR_BUSY)
    253 			break;
    254 		DELAY(100);
    255 	}
    256 
    257 	if (i == RTK_TIMEOUT) {
    258 		printf("%s: PHY read failed\n", device_xname(sc->sc_dev));
    259 		return ETIMEDOUT;
    260 	}
    261 
    262 	*val = data & RTK_PHYAR_PHYDATA;
    263 	return 0;
    264 }
    265 
    266 static int
    267 re_gmii_writereg(device_t dev, int phy, int reg, uint16_t val)
    268 {
    269 	struct rtk_softc *sc = device_private(dev);
    270 	uint32_t data;
    271 	int i;
    272 
    273 	CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
    274 	    (val & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
    275 	DELAY(1000);
    276 
    277 	for (i = 0; i < RTK_TIMEOUT; i++) {
    278 		data = CSR_READ_4(sc, RTK_PHYAR);
    279 		if (!(data & RTK_PHYAR_BUSY))
    280 			break;
    281 		DELAY(100);
    282 	}
    283 
    284 	if (i == RTK_TIMEOUT) {
    285 		printf("%s: PHY write reg %x <- %hx failed\n",
    286 		    device_xname(sc->sc_dev), reg, val);
    287 		return ETIMEDOUT;
    288 	}
    289 
    290 	return 0;
    291 }
    292 
    293 static int
    294 re_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
    295 {
    296 	struct rtk_softc *sc = device_private(dev);
    297 	uint16_t re8139_reg = 0;
    298 	int s, rv = 0;
    299 
    300 	s = splnet();
    301 
    302 	if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
    303 		rv = re_gmii_readreg(dev, phy, reg, val);
    304 		splx(s);
    305 		return rv;
    306 	}
    307 
    308 	/* Pretend the internal PHY is only at address 0 */
    309 	if (phy) {
    310 		splx(s);
    311 		return -1;
    312 	}
    313 	switch (reg) {
    314 	case MII_BMCR:
    315 		re8139_reg = RTK_BMCR;
    316 		break;
    317 	case MII_BMSR:
    318 		re8139_reg = RTK_BMSR;
    319 		break;
    320 	case MII_ANAR:
    321 		re8139_reg = RTK_ANAR;
    322 		break;
    323 	case MII_ANER:
    324 		re8139_reg = RTK_ANER;
    325 		break;
    326 	case MII_ANLPAR:
    327 		re8139_reg = RTK_LPAR;
    328 		break;
    329 	case MII_PHYIDR1:
    330 	case MII_PHYIDR2:
    331 		*val = 0;
    332 		splx(s);
    333 		return 0;
    334 	/*
    335 	 * Allow the rlphy driver to read the media status
    336 	 * register. If we have a link partner which does not
    337 	 * support NWAY, this is the register which will tell
    338 	 * us the results of parallel detection.
    339 	 */
    340 	case RTK_MEDIASTAT:
    341 		*val = CSR_READ_1(sc, RTK_MEDIASTAT);
    342 		splx(s);
    343 		return 0;
    344 	default:
    345 		printf("%s: bad phy register\n", device_xname(sc->sc_dev));
    346 		splx(s);
    347 		return -1;
    348 	}
    349 	*val = CSR_READ_2(sc, re8139_reg);
    350 	if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0 && re8139_reg == RTK_BMCR) {
    351 		/* 8139C+ has different bit layout. */
    352 		*val &= ~(BMCR_LOOP | BMCR_ISO);
    353 	}
    354 	splx(s);
    355 	return 0;
    356 }
    357 
    358 static int
    359 re_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
    360 {
    361 	struct rtk_softc *sc = device_private(dev);
    362 	uint16_t re8139_reg = 0;
    363 	int s, rv;
    364 
    365 	s = splnet();
    366 
    367 	if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
    368 		rv = re_gmii_writereg(dev, phy, reg, val);
    369 		splx(s);
    370 		return rv;
    371 	}
    372 
    373 	/* Pretend the internal PHY is only at address 0 */
    374 	if (phy) {
    375 		splx(s);
    376 		return -1;
    377 	}
    378 	switch (reg) {
    379 	case MII_BMCR:
    380 		re8139_reg = RTK_BMCR;
    381 		if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0) {
    382 			/* 8139C+ has different bit layout. */
    383 			val &= ~(BMCR_LOOP | BMCR_ISO);
    384 		}
    385 		break;
    386 	case MII_BMSR:
    387 		re8139_reg = RTK_BMSR;
    388 		break;
    389 	case MII_ANAR:
    390 		re8139_reg = RTK_ANAR;
    391 		break;
    392 	case MII_ANER:
    393 		re8139_reg = RTK_ANER;
    394 		break;
    395 	case MII_ANLPAR:
    396 		re8139_reg = RTK_LPAR;
    397 		break;
    398 	case MII_PHYIDR1:
    399 	case MII_PHYIDR2:
    400 		splx(s);
    401 		return 0;
    402 		break;
    403 	default:
    404 		printf("%s: bad phy register\n", device_xname(sc->sc_dev));
    405 		splx(s);
    406 		return -1;
    407 	}
    408 	CSR_WRITE_2(sc, re8139_reg, val);
    409 	splx(s);
    410 	return 0;
    411 }
    412 
    413 static void
    414 re_miibus_statchg(struct ifnet *ifp)
    415 {
    416 
    417 	return;
    418 }
    419 
    420 static void
    421 re_reset(struct rtk_softc *sc)
    422 {
    423 	int i;
    424 
    425 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
    426 
    427 	for (i = 0; i < RTK_TIMEOUT; i++) {
    428 		DELAY(10);
    429 		if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
    430 			break;
    431 	}
    432 	if (i == RTK_TIMEOUT)
    433 		printf("%s: reset never completed!\n",
    434 		    device_xname(sc->sc_dev));
    435 
    436 	/*
    437 	 * NB: Realtek-supplied FreeBSD driver does this only for MACFG_3,
    438 	 *     but also says "Rtl8169s sigle chip detected".
    439 	 */
    440 	if ((sc->sc_quirk & RTKQ_MACLDPS) != 0)
    441 		CSR_WRITE_1(sc, RTK_LDPS, 1);
    442 
    443 }
    444 
    445 /*
    446  * The following routine is designed to test for a defect on some
    447  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
    448  * lines connected to the bus, however for a 32-bit only card, they
    449  * should be pulled high. The result of this defect is that the
    450  * NIC will not work right if you plug it into a 64-bit slot: DMA
    451  * operations will be done with 64-bit transfers, which will fail
    452  * because the 64-bit data lines aren't connected.
    453  *
    454  * There's no way to work around this (short of talking a soldering
    455  * iron to the board), however we can detect it. The method we use
    456  * here is to put the NIC into digital loopback mode, set the receiver
    457  * to promiscuous mode, and then try to send a frame. We then compare
    458  * the frame data we sent to what was received. If the data matches,
    459  * then the NIC is working correctly, otherwise we know the user has
    460  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
    461  * slot. In the latter case, there's no way the NIC can work correctly,
    462  * so we print out a message on the console and abort the device attach.
    463  */
    464 
    465 int
    466 re_diag(struct rtk_softc *sc)
    467 {
    468 	struct ifnet *ifp = &sc->ethercom.ec_if;
    469 	struct mbuf *m0;
    470 	struct ether_header *eh;
    471 	struct re_rxsoft *rxs;
    472 	struct re_desc *cur_rx;
    473 	bus_dmamap_t dmamap;
    474 	uint16_t status;
    475 	uint32_t rxstat;
    476 	int total_len, i, s, error = 0;
    477 	static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
    478 	static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
    479 
    480 	/* Allocate a single mbuf */
    481 
    482 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
    483 	if (m0 == NULL)
    484 		return ENOBUFS;
    485 
    486 	/*
    487 	 * Initialize the NIC in test mode. This sets the chip up
    488 	 * so that it can send and receive frames, but performs the
    489 	 * following special functions:
    490 	 * - Puts receiver in promiscuous mode
    491 	 * - Enables digital loopback mode
    492 	 * - Leaves interrupts turned off
    493 	 */
    494 
    495 	ifp->if_flags |= IFF_PROMISC;
    496 	sc->re_testmode = 1;
    497 	re_init(ifp);
    498 	re_stop(ifp, 0);
    499 	DELAY(100000);
    500 	re_init(ifp);
    501 
    502 	/* Put some data in the mbuf */
    503 
    504 	eh = mtod(m0, struct ether_header *);
    505 	memcpy(eh->ether_dhost, &dst, ETHER_ADDR_LEN);
    506 	memcpy(eh->ether_shost, &src, ETHER_ADDR_LEN);
    507 	eh->ether_type = htons(ETHERTYPE_IP);
    508 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
    509 
    510 	/*
    511 	 * Queue the packet, start transmission.
    512 	 */
    513 
    514 	CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
    515 	s = splnet();
    516 	IF_ENQUEUE(&ifp->if_snd, m0);
    517 	re_start(ifp);
    518 	splx(s);
    519 	m0 = NULL;
    520 
    521 	/* Wait for it to propagate through the chip */
    522 
    523 	DELAY(100000);
    524 	for (i = 0; i < RTK_TIMEOUT; i++) {
    525 		status = CSR_READ_2(sc, RTK_ISR);
    526 		if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
    527 		    (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
    528 			break;
    529 		DELAY(10);
    530 	}
    531 	if (i == RTK_TIMEOUT) {
    532 		aprint_error_dev(sc->sc_dev,
    533 		    "diagnostic failed, failed to receive packet "
    534 		    "in loopback mode\n");
    535 		error = EIO;
    536 		goto done;
    537 	}
    538 
    539 	/*
    540 	 * The packet should have been dumped into the first
    541 	 * entry in the RX DMA ring. Grab it from there.
    542 	 */
    543 
    544 	rxs = &sc->re_ldata.re_rxsoft[0];
    545 	dmamap = rxs->rxs_dmamap;
    546 	bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    547 	    BUS_DMASYNC_POSTREAD);
    548 	bus_dmamap_unload(sc->sc_dmat, dmamap);
    549 
    550 	m0 = rxs->rxs_mbuf;
    551 	rxs->rxs_mbuf = NULL;
    552 	eh = mtod(m0, struct ether_header *);
    553 
    554 	RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    555 	cur_rx = &sc->re_ldata.re_rx_list[0];
    556 	rxstat = le32toh(cur_rx->re_cmdstat);
    557 	total_len = rxstat & sc->re_rxlenmask;
    558 
    559 	if (total_len != ETHER_MIN_LEN) {
    560 		aprint_error_dev(sc->sc_dev,
    561 		    "diagnostic failed, received short packet\n");
    562 		error = EIO;
    563 		goto done;
    564 	}
    565 
    566 	/* Test that the received packet data matches what we sent. */
    567 
    568 	if (memcmp(&eh->ether_dhost, &dst, ETHER_ADDR_LEN) ||
    569 	    memcmp(&eh->ether_shost, &src, ETHER_ADDR_LEN) ||
    570 	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
    571 		aprint_error_dev(sc->sc_dev, "WARNING, DMA FAILURE!\n"
    572 		    "expected TX data: %s/%s/0x%x\n"
    573 		    "received RX data: %s/%s/0x%x\n"
    574 		    "You may have a defective 32-bit NIC plugged "
    575 		    "into a 64-bit PCI slot.\n"
    576 		    "Please re-install the NIC in a 32-bit slot "
    577 		    "for proper operation.\n"
    578 		    "Read the re(4) man page for more details.\n" ,
    579 		    ether_sprintf(dst),  ether_sprintf(src), ETHERTYPE_IP,
    580 		    ether_sprintf(eh->ether_dhost),
    581 		    ether_sprintf(eh->ether_shost), ntohs(eh->ether_type));
    582 		error = EIO;
    583 	}
    584 
    585  done:
    586 	/* Turn interface off, release resources */
    587 
    588 	sc->re_testmode = 0;
    589 	ifp->if_flags &= ~IFF_PROMISC;
    590 	re_stop(ifp, 0);
    591 	m_freem(m0);
    592 
    593 	return error;
    594 }
    595 
    596 
    597 /*
    598  * Attach the interface. Allocate softc structures, do ifmedia
    599  * setup and ethernet/BPF attach.
    600  */
    601 void
    602 re_attach(struct rtk_softc *sc)
    603 {
    604 	uint8_t eaddr[ETHER_ADDR_LEN];
    605 	struct ifnet *ifp;
    606 	struct mii_data *mii = &sc->mii;
    607 	int error = 0, i;
    608 	const struct re_revision *rr;
    609 	const char *re_name = NULL;
    610 
    611 	if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
    612 		/* Revision of 8169/8169S/8110s in bits 30..26, 23 */
    613 		sc->sc_hwrev = CSR_READ_4(sc, RTK_TXCFG) & RTK_TXCFG_HWREV;
    614 
    615 		for (rr = re_revisions; rr->re_name != NULL; rr++) {
    616 			if (rr->re_chipid == sc->sc_hwrev)
    617 				re_name = rr->re_name;
    618 		}
    619 
    620 		if (re_name == NULL)
    621 			aprint_normal_dev(sc->sc_dev,
    622 			    "unknown ASIC (0x%04x)\n", sc->sc_hwrev >> 16);
    623 		else
    624 			aprint_normal_dev(sc->sc_dev,
    625 			    "%s (0x%04x)\n", re_name, sc->sc_hwrev >> 16);
    626 
    627 		switch (sc->sc_hwrev) {
    628 		case RTK_HWREV_8169:
    629 			sc->sc_quirk |= RTKQ_8169NONS;
    630 			break;
    631 		case RTK_HWREV_8169S:
    632 		case RTK_HWREV_8110S:
    633 		case RTK_HWREV_8169_8110SB:
    634 		case RTK_HWREV_8169_8110SBL:
    635 		case RTK_HWREV_8169_8110SC:
    636 			sc->sc_quirk |= RTKQ_MACLDPS;
    637 			break;
    638 		case RTK_HWREV_8168B_SPIN1:
    639 		case RTK_HWREV_8168B_SPIN2:
    640 		case RTK_HWREV_8168B_SPIN3:
    641 			sc->sc_quirk |= RTKQ_MACSTAT;
    642 			break;
    643 		case RTK_HWREV_8168C:
    644 		case RTK_HWREV_8168C_SPIN2:
    645 		case RTK_HWREV_8168CP:
    646 		case RTK_HWREV_8168D:
    647 		case RTK_HWREV_8168DP:
    648 			sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
    649 			    RTKQ_MACSTAT | RTKQ_CMDSTOP;
    650 			/*
    651 			 * From FreeBSD driver:
    652 			 *
    653 			 * These (8168/8111) controllers support jumbo frame
    654 			 * but it seems that enabling it requires touching
    655 			 * additional magic registers. Depending on MAC
    656 			 * revisions some controllers need to disable
    657 			 * checksum offload. So disable jumbo frame until
    658 			 * I have better idea what it really requires to
    659 			 * make it support.
    660 			 * RTL8168C/CP : supports up to 6KB jumbo frame.
    661 			 * RTL8111C/CP : supports up to 9KB jumbo frame.
    662 			 */
    663 			sc->sc_quirk |= RTKQ_NOJUMBO;
    664 			break;
    665 		case RTK_HWREV_8168E:
    666 			sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
    667 			    RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_PHYWAKE_PM |
    668 			    RTKQ_NOJUMBO;
    669 			break;
    670 		case RTK_HWREV_8168E_VL:
    671 		case RTK_HWREV_8168F:
    672 			sc->sc_quirk |= RTKQ_EARLYOFF;
    673 			/*FALLTHROUGH*/
    674 		case RTK_HWREV_8411:
    675 			sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
    676 			    RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO;
    677 			break;
    678 		case RTK_HWREV_8168EP:
    679 		case RTK_HWREV_8168FP:
    680 		case RTK_HWREV_8168G:
    681 		case RTK_HWREV_8168GU:
    682 		case RTK_HWREV_8168H:
    683 		case RTK_HWREV_8411B:
    684 			sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
    685 			    RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO |
    686 			    RTKQ_RXDV_GATED | RTKQ_TXRXEN_LATER;
    687 			break;
    688 		case RTK_HWREV_8100E:
    689 		case RTK_HWREV_8100E_SPIN2:
    690 		case RTK_HWREV_8101E:
    691 			sc->sc_quirk |= RTKQ_NOJUMBO;
    692 			break;
    693 		case RTK_HWREV_8102E:
    694 		case RTK_HWREV_8102EL:
    695 		case RTK_HWREV_8102EL_SPIN1:
    696 			sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
    697 			    RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO;
    698 			break;
    699 		case RTK_HWREV_8103E:
    700 			sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
    701 			    RTKQ_MACSTAT | RTKQ_CMDSTOP;
    702 			break;
    703 		case RTK_HWREV_8401E:
    704 		case RTK_HWREV_8105E:
    705 		case RTK_HWREV_8105E_SPIN1: /* XXX */
    706 		case RTK_HWREV_8106E:
    707 			sc->sc_quirk |= RTKQ_PHYWAKE_PM |
    708 			    RTKQ_DESCV2 | RTKQ_NOEECMD | RTKQ_MACSTAT |
    709 			    RTKQ_CMDSTOP;
    710 			break;
    711 		case RTK_HWREV_8402:
    712 			sc->sc_quirk |= RTKQ_PHYWAKE_PM |
    713 			    RTKQ_DESCV2 | RTKQ_NOEECMD | RTKQ_MACSTAT |
    714 			    RTKQ_CMDSTOP; /* CMDSTOP_WAIT_TXQ */
    715 			break;
    716 		default:
    717 			/* assume the latest features */
    718 			sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD;
    719 			sc->sc_quirk |= RTKQ_NOJUMBO;
    720 		}
    721 
    722 		/* Set RX length mask */
    723 		sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
    724 		sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
    725 	} else {
    726 		sc->sc_quirk |= RTKQ_NOJUMBO;
    727 
    728 		/* Set RX length mask */
    729 		sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
    730 		sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
    731 	}
    732 
    733 	/* Reset the adapter. */
    734 	re_reset(sc);
    735 
    736 	/*
    737 	 * RTL81x9 chips automatically read EEPROM to init MAC address,
    738 	 * and some NAS override its MAC address per own configuration,
    739 	 * so no need to explicitly read EEPROM and set ID registers.
    740 	 */
    741 #ifdef RE_USE_EECMD
    742 	if ((sc->sc_quirk & RTKQ_NOEECMD) != 0) {
    743 		/*
    744 		 * Get station address from ID registers.
    745 		 */
    746 		for (i = 0; i < ETHER_ADDR_LEN; i++)
    747 			eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
    748 	} else {
    749 		uint16_t val;
    750 		int addr_len;
    751 
    752 		/*
    753 		 * Get station address from the EEPROM.
    754 		 */
    755 		if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
    756 			addr_len = RTK_EEADDR_LEN1;
    757 		else
    758 			addr_len = RTK_EEADDR_LEN0;
    759 
    760 		/*
    761 		 * Get station address from the EEPROM.
    762 		 */
    763 		for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
    764 			val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
    765 			eaddr[(i * 2) + 0] = val & 0xff;
    766 			eaddr[(i * 2) + 1] = val >> 8;
    767 		}
    768 	}
    769 #else
    770 	/*
    771 	 * Get station address from ID registers.
    772 	 */
    773 	for (i = 0; i < ETHER_ADDR_LEN; i++)
    774 		eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
    775 #endif
    776 
    777 	/* Take PHY out of power down mode. */
    778 	if ((sc->sc_quirk & RTKQ_PHYWAKE_PM) != 0)
    779 		CSR_WRITE_1(sc, RTK_PMCH, CSR_READ_1(sc, RTK_PMCH) | 0x80);
    780 
    781 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
    782 	    ether_sprintf(eaddr));
    783 
    784 	if (sc->re_ldata.re_tx_desc_cnt >
    785 	    PAGE_SIZE / sizeof(struct re_desc)) {
    786 		sc->re_ldata.re_tx_desc_cnt =
    787 		    PAGE_SIZE / sizeof(struct re_desc);
    788 	}
    789 
    790 	aprint_verbose_dev(sc->sc_dev, "using %d tx descriptors\n",
    791 	    sc->re_ldata.re_tx_desc_cnt);
    792 	KASSERT(RE_NEXT_TX_DESC(sc, RE_TX_DESC_CNT(sc) - 1) == 0);
    793 
    794 	/* Allocate DMA'able memory for the TX ring */
    795 	if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
    796 	    RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
    797 	    &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
    798 		aprint_error_dev(sc->sc_dev,
    799 		    "can't allocate tx listseg, error = %d\n", error);
    800 		goto fail_0;
    801 	}
    802 
    803 	/* Load the map for the TX ring. */
    804 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
    805 	    sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
    806 	    (void **)&sc->re_ldata.re_tx_list,
    807 	    BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
    808 		aprint_error_dev(sc->sc_dev,
    809 		    "can't map tx list, error = %d\n", error);
    810 		goto fail_1;
    811 	}
    812 	memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
    813 
    814 	if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
    815 	    RE_TX_LIST_SZ(sc), 0, 0,
    816 	    &sc->re_ldata.re_tx_list_map)) != 0) {
    817 		aprint_error_dev(sc->sc_dev,
    818 		    "can't create tx list map, error = %d\n", error);
    819 		goto fail_2;
    820 	}
    821 
    822 
    823 	if ((error = bus_dmamap_load(sc->sc_dmat,
    824 	    sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
    825 	    RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
    826 		aprint_error_dev(sc->sc_dev,
    827 		    "can't load tx list, error = %d\n", error);
    828 		goto fail_3;
    829 	}
    830 
    831 	/* Create DMA maps for TX buffers */
    832 	for (i = 0; i < RE_TX_QLEN; i++) {
    833 		error = bus_dmamap_create(sc->sc_dmat,
    834 		    round_page(IP_MAXPACKET),
    835 		    RE_TX_DESC_CNT(sc), RE_TDESC_CMD_FRAGLEN,
    836 		    0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
    837 		if (error) {
    838 			aprint_error_dev(sc->sc_dev,
    839 			    "can't create DMA map for TX\n");
    840 			goto fail_4;
    841 		}
    842 	}
    843 
    844 	/* Allocate DMA'able memory for the RX ring */
    845 	/* XXX see also a comment about RE_RX_DMAMEM_SZ in rtl81x9var.h */
    846 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    847 	    RE_RX_DMAMEM_SZ, RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
    848 	    &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
    849 		aprint_error_dev(sc->sc_dev,
    850 		    "can't allocate rx listseg, error = %d\n", error);
    851 		goto fail_4;
    852 	}
    853 
    854 	/* Load the map for the RX ring. */
    855 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
    856 	    sc->re_ldata.re_rx_listnseg, RE_RX_DMAMEM_SZ,
    857 	    (void **)&sc->re_ldata.re_rx_list,
    858 	    BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
    859 		aprint_error_dev(sc->sc_dev,
    860 		    "can't map rx list, error = %d\n", error);
    861 		goto fail_5;
    862 	}
    863 	memset(sc->re_ldata.re_rx_list, 0, RE_RX_DMAMEM_SZ);
    864 
    865 	if ((error = bus_dmamap_create(sc->sc_dmat,
    866 	    RE_RX_DMAMEM_SZ, 1, RE_RX_DMAMEM_SZ, 0, 0,
    867 	    &sc->re_ldata.re_rx_list_map)) != 0) {
    868 		aprint_error_dev(sc->sc_dev,
    869 		    "can't create rx list map, error = %d\n", error);
    870 		goto fail_6;
    871 	}
    872 
    873 	if ((error = bus_dmamap_load(sc->sc_dmat,
    874 	    sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
    875 	    RE_RX_DMAMEM_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
    876 		aprint_error_dev(sc->sc_dev,
    877 		    "can't load rx list, error = %d\n", error);
    878 		goto fail_7;
    879 	}
    880 
    881 	/* Create DMA maps for RX buffers */
    882 	for (i = 0; i < RE_RX_DESC_CNT; i++) {
    883 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
    884 		    0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
    885 		if (error) {
    886 			aprint_error_dev(sc->sc_dev,
    887 			    "can't create DMA map for RX\n");
    888 			goto fail_8;
    889 		}
    890 	}
    891 
    892 	/*
    893 	 * Record interface as attached. From here, we should not fail.
    894 	 */
    895 	sc->sc_flags |= RTK_ATTACHED;
    896 
    897 	ifp = &sc->ethercom.ec_if;
    898 	ifp->if_softc = sc;
    899 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    900 	ifp->if_mtu = ETHERMTU;
    901 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    902 	ifp->if_ioctl = re_ioctl;
    903 	sc->ethercom.ec_capabilities |=
    904 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
    905 	ifp->if_start = re_start;
    906 	ifp->if_stop = re_stop;
    907 
    908 	/*
    909 	 * IFCAP_CSUM_IPv4_Tx on re(4) is broken for small packets,
    910 	 * so we have a workaround to handle the bug by padding
    911 	 * such packets manually.
    912 	 */
    913 	ifp->if_capabilities |=
    914 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    915 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    916 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
    917 	    IFCAP_TSOv4;
    918 
    919 	ifp->if_watchdog = re_watchdog;
    920 	ifp->if_init = re_init;
    921 	ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
    922 	ifp->if_capenable = ifp->if_capabilities;
    923 	IFQ_SET_READY(&ifp->if_snd);
    924 
    925 	callout_init(&sc->rtk_tick_ch, 0);
    926 	callout_setfunc(&sc->rtk_tick_ch, re_tick, sc);
    927 
    928 	/* Do MII setup */
    929 	mii->mii_ifp = ifp;
    930 	mii->mii_readreg = re_miibus_readreg;
    931 	mii->mii_writereg = re_miibus_writereg;
    932 	mii->mii_statchg = re_miibus_statchg;
    933 	sc->ethercom.ec_mii = mii;
    934 	ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
    935 	    ether_mediastatus);
    936 	mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
    937 	    MII_OFFSET_ANY, 0);
    938 	ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
    939 
    940 	/*
    941 	 * Call MI attach routine.
    942 	 */
    943 	if_attach(ifp);
    944 	if_deferred_start_init(ifp, NULL);
    945 	ether_ifattach(ifp, eaddr);
    946 
    947 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
    948 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
    949 
    950 	if (pmf_device_register(sc->sc_dev, NULL, NULL))
    951 		pmf_class_network_register(sc->sc_dev, ifp);
    952 	else
    953 		aprint_error_dev(sc->sc_dev,
    954 		    "couldn't establish power handler\n");
    955 
    956 	return;
    957 
    958  fail_8:
    959 	/* Destroy DMA maps for RX buffers. */
    960 	for (i = 0; i < RE_RX_DESC_CNT; i++)
    961 		if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
    962 			bus_dmamap_destroy(sc->sc_dmat,
    963 			    sc->re_ldata.re_rxsoft[i].rxs_dmamap);
    964 
    965 	/* Free DMA'able memory for the RX ring. */
    966 	bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
    967  fail_7:
    968 	bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
    969  fail_6:
    970 	bus_dmamem_unmap(sc->sc_dmat,
    971 	    (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
    972  fail_5:
    973 	bus_dmamem_free(sc->sc_dmat,
    974 	    &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
    975 
    976  fail_4:
    977 	/* Destroy DMA maps for TX buffers. */
    978 	for (i = 0; i < RE_TX_QLEN; i++)
    979 		if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
    980 			bus_dmamap_destroy(sc->sc_dmat,
    981 			    sc->re_ldata.re_txq[i].txq_dmamap);
    982 
    983 	/* Free DMA'able memory for the TX ring. */
    984 	bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
    985  fail_3:
    986 	bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
    987  fail_2:
    988 	bus_dmamem_unmap(sc->sc_dmat,
    989 	    (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
    990  fail_1:
    991 	bus_dmamem_free(sc->sc_dmat,
    992 	    &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
    993  fail_0:
    994 	return;
    995 }
    996 
    997 
    998 /*
    999  * re_activate:
   1000  *     Handle device activation/deactivation requests.
   1001  */
   1002 int
   1003 re_activate(device_t self, enum devact act)
   1004 {
   1005 	struct rtk_softc *sc = device_private(self);
   1006 
   1007 	switch (act) {
   1008 	case DVACT_DEACTIVATE:
   1009 		if_deactivate(&sc->ethercom.ec_if);
   1010 		return 0;
   1011 	default:
   1012 		return EOPNOTSUPP;
   1013 	}
   1014 }
   1015 
   1016 /*
   1017  * re_detach:
   1018  *     Detach a rtk interface.
   1019  */
   1020 int
   1021 re_detach(struct rtk_softc *sc)
   1022 {
   1023 	struct ifnet *ifp = &sc->ethercom.ec_if;
   1024 	int i;
   1025 
   1026 	/*
   1027 	 * Succeed now if there isn't any work to do.
   1028 	 */
   1029 	if ((sc->sc_flags & RTK_ATTACHED) == 0)
   1030 		return 0;
   1031 
   1032 	/* Unhook our tick handler. */
   1033 	callout_stop(&sc->rtk_tick_ch);
   1034 
   1035 	/* Detach all PHYs. */
   1036 	mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
   1037 
   1038 	rnd_detach_source(&sc->rnd_source);
   1039 	ether_ifdetach(ifp);
   1040 	if_detach(ifp);
   1041 
   1042 	/* Delete all remaining media. */
   1043 	ifmedia_fini(&sc->mii.mii_media);
   1044 
   1045 	/* Destroy DMA maps for RX buffers. */
   1046 	for (i = 0; i < RE_RX_DESC_CNT; i++)
   1047 		if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
   1048 			bus_dmamap_destroy(sc->sc_dmat,
   1049 			    sc->re_ldata.re_rxsoft[i].rxs_dmamap);
   1050 
   1051 	/* Free DMA'able memory for the RX ring. */
   1052 	bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
   1053 	bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
   1054 	bus_dmamem_unmap(sc->sc_dmat,
   1055 	    (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
   1056 	bus_dmamem_free(sc->sc_dmat,
   1057 	    &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
   1058 
   1059 	/* Destroy DMA maps for TX buffers. */
   1060 	for (i = 0; i < RE_TX_QLEN; i++)
   1061 		if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
   1062 			bus_dmamap_destroy(sc->sc_dmat,
   1063 			    sc->re_ldata.re_txq[i].txq_dmamap);
   1064 
   1065 	/* Free DMA'able memory for the TX ring. */
   1066 	bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
   1067 	bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
   1068 	bus_dmamem_unmap(sc->sc_dmat,
   1069 	    (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
   1070 	bus_dmamem_free(sc->sc_dmat,
   1071 	    &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
   1072 
   1073 	pmf_device_deregister(sc->sc_dev);
   1074 
   1075 	/* we don't want to run again */
   1076 	sc->sc_flags &= ~RTK_ATTACHED;
   1077 
   1078 	return 0;
   1079 }
   1080 
   1081 /*
   1082  * re_enable:
   1083  *     Enable the RTL81X9 chip.
   1084  */
   1085 static int
   1086 re_enable(struct rtk_softc *sc)
   1087 {
   1088 
   1089 	if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
   1090 		if ((*sc->sc_enable)(sc) != 0) {
   1091 			printf("%s: device enable failed\n",
   1092 			    device_xname(sc->sc_dev));
   1093 			return EIO;
   1094 		}
   1095 		sc->sc_flags |= RTK_ENABLED;
   1096 	}
   1097 	return 0;
   1098 }
   1099 
   1100 /*
   1101  * re_disable:
   1102  *     Disable the RTL81X9 chip.
   1103  */
   1104 static void
   1105 re_disable(struct rtk_softc *sc)
   1106 {
   1107 
   1108 	if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
   1109 		(*sc->sc_disable)(sc);
   1110 		sc->sc_flags &= ~RTK_ENABLED;
   1111 	}
   1112 }
   1113 
   1114 static int
   1115 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
   1116 {
   1117 	struct mbuf *n = NULL;
   1118 	bus_dmamap_t map;
   1119 	struct re_desc *d;
   1120 	struct re_rxsoft *rxs;
   1121 	uint32_t cmdstat;
   1122 	int error;
   1123 
   1124 	if (m == NULL) {
   1125 		MGETHDR(n, M_DONTWAIT, MT_DATA);
   1126 		if (n == NULL)
   1127 			return ENOBUFS;
   1128 
   1129 		MCLAIM(n, &sc->ethercom.ec_rx_mowner);
   1130 		MCLGET(n, M_DONTWAIT);
   1131 		if ((n->m_flags & M_EXT) == 0) {
   1132 			m_freem(n);
   1133 			return ENOBUFS;
   1134 		}
   1135 		m = n;
   1136 	} else
   1137 		m->m_data = m->m_ext.ext_buf;
   1138 
   1139 	/*
   1140 	 * Initialize mbuf length fields and fixup
   1141 	 * alignment so that the frame payload is
   1142 	 * longword aligned.
   1143 	 */
   1144 	m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
   1145 	m->m_data += RE_ETHER_ALIGN;
   1146 
   1147 	rxs = &sc->re_ldata.re_rxsoft[idx];
   1148 	map = rxs->rxs_dmamap;
   1149 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
   1150 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   1151 
   1152 	if (error)
   1153 		goto out;
   1154 
   1155 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1156 	    BUS_DMASYNC_PREREAD);
   1157 
   1158 	d = &sc->re_ldata.re_rx_list[idx];
   1159 #ifdef DIAGNOSTIC
   1160 	RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1161 	cmdstat = le32toh(d->re_cmdstat);
   1162 	RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
   1163 	if (cmdstat & RE_RDESC_STAT_OWN) {
   1164 		panic("%s: tried to map busy RX descriptor",
   1165 		    device_xname(sc->sc_dev));
   1166 	}
   1167 #endif
   1168 
   1169 	rxs->rxs_mbuf = m;
   1170 
   1171 	d->re_vlanctl = 0;
   1172 	cmdstat = map->dm_segs[0].ds_len;
   1173 	if (idx == (RE_RX_DESC_CNT - 1))
   1174 		cmdstat |= RE_RDESC_CMD_EOR;
   1175 	re_set_bufaddr(d, map->dm_segs[0].ds_addr);
   1176 	d->re_cmdstat = htole32(cmdstat);
   1177 	RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1178 	cmdstat |= RE_RDESC_CMD_OWN;
   1179 	d->re_cmdstat = htole32(cmdstat);
   1180 	RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1181 
   1182 	return 0;
   1183  out:
   1184 	m_freem(n);
   1185 	return ENOMEM;
   1186 }
   1187 
   1188 static int
   1189 re_tx_list_init(struct rtk_softc *sc)
   1190 {
   1191 	int i;
   1192 
   1193 	memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
   1194 	for (i = 0; i < RE_TX_QLEN; i++) {
   1195 		sc->re_ldata.re_txq[i].txq_mbuf = NULL;
   1196 	}
   1197 
   1198 	bus_dmamap_sync(sc->sc_dmat,
   1199 	    sc->re_ldata.re_tx_list_map, 0,
   1200 	    sc->re_ldata.re_tx_list_map->dm_mapsize,
   1201 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1202 	sc->re_ldata.re_txq_prodidx = 0;
   1203 	sc->re_ldata.re_txq_considx = 0;
   1204 	sc->re_ldata.re_txq_free = RE_TX_QLEN;
   1205 	sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
   1206 	sc->re_ldata.re_tx_nextfree = 0;
   1207 
   1208 	return 0;
   1209 }
   1210 
   1211 static int
   1212 re_rx_list_init(struct rtk_softc *sc)
   1213 {
   1214 	int i;
   1215 
   1216 	memset(sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
   1217 
   1218 	for (i = 0; i < RE_RX_DESC_CNT; i++) {
   1219 		if (re_newbuf(sc, i, NULL) == ENOBUFS)
   1220 			return ENOBUFS;
   1221 	}
   1222 
   1223 	sc->re_ldata.re_rx_prodidx = 0;
   1224 	sc->re_head = sc->re_tail = NULL;
   1225 
   1226 	return 0;
   1227 }
   1228 
   1229 /*
   1230  * RX handler for C+ and 8169. For the gigE chips, we support
   1231  * the reception of jumbo frames that have been fragmented
   1232  * across multiple 2K mbuf cluster buffers.
   1233  */
   1234 static void
   1235 re_rxeof(struct rtk_softc *sc)
   1236 {
   1237 	struct mbuf *m;
   1238 	struct ifnet *ifp;
   1239 	int i, total_len;
   1240 	struct re_desc *cur_rx;
   1241 	struct re_rxsoft *rxs;
   1242 	uint32_t rxstat, rxvlan;
   1243 
   1244 	ifp = &sc->ethercom.ec_if;
   1245 
   1246 	for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
   1247 		cur_rx = &sc->re_ldata.re_rx_list[i];
   1248 		RE_RXDESCSYNC(sc, i,
   1249 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1250 		rxstat = le32toh(cur_rx->re_cmdstat);
   1251 		rxvlan = le32toh(cur_rx->re_vlanctl);
   1252 		RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
   1253 		if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
   1254 			break;
   1255 		}
   1256 		total_len = rxstat & sc->re_rxlenmask;
   1257 		rxs = &sc->re_ldata.re_rxsoft[i];
   1258 		m = rxs->rxs_mbuf;
   1259 
   1260 		/* Invalidate the RX mbuf and unload its map */
   1261 
   1262 		bus_dmamap_sync(sc->sc_dmat,
   1263 		    rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
   1264 		    BUS_DMASYNC_POSTREAD);
   1265 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1266 
   1267 		if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
   1268 			m->m_len = MCLBYTES - RE_ETHER_ALIGN;
   1269 			if (sc->re_head == NULL)
   1270 				sc->re_head = sc->re_tail = m;
   1271 			else {
   1272 				m_remove_pkthdr(m);
   1273 				sc->re_tail->m_next = m;
   1274 				sc->re_tail = m;
   1275 			}
   1276 			re_newbuf(sc, i, NULL);
   1277 			continue;
   1278 		}
   1279 
   1280 		/*
   1281 		 * NOTE: for the 8139C+, the frame length field
   1282 		 * is always 12 bits in size, but for the gigE chips,
   1283 		 * it is 13 bits (since the max RX frame length is 16K).
   1284 		 * Unfortunately, all 32 bits in the status word
   1285 		 * were already used, so to make room for the extra
   1286 		 * length bit, RealTek took out the 'frame alignment
   1287 		 * error' bit and shifted the other status bits
   1288 		 * over one slot. The OWN, EOR, FS and LS bits are
   1289 		 * still in the same places. We have already extracted
   1290 		 * the frame length and checked the OWN bit, so rather
   1291 		 * than using an alternate bit mapping, we shift the
   1292 		 * status bits one space to the right so we can evaluate
   1293 		 * them using the 8169 status as though it was in the
   1294 		 * same format as that of the 8139C+.
   1295 		 */
   1296 		if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
   1297 			rxstat >>= 1;
   1298 
   1299 		if (__predict_false((rxstat & RE_RDESC_STAT_RXERRSUM) != 0)) {
   1300 #ifdef RE_DEBUG
   1301 			printf("%s: RX error (rxstat = 0x%08x)",
   1302 			    device_xname(sc->sc_dev), rxstat);
   1303 			if (rxstat & RE_RDESC_STAT_FRALIGN)
   1304 				printf(", frame alignment error");
   1305 			if (rxstat & RE_RDESC_STAT_BUFOFLOW)
   1306 				printf(", out of buffer space");
   1307 			if (rxstat & RE_RDESC_STAT_FIFOOFLOW)
   1308 				printf(", FIFO overrun");
   1309 			if (rxstat & RE_RDESC_STAT_GIANT)
   1310 				printf(", giant packet");
   1311 			if (rxstat & RE_RDESC_STAT_RUNT)
   1312 				printf(", runt packet");
   1313 			if (rxstat & RE_RDESC_STAT_CRCERR)
   1314 				printf(", CRC error");
   1315 			printf("\n");
   1316 #endif
   1317 			if_statinc(ifp, if_ierrors);
   1318 			/*
   1319 			 * If this is part of a multi-fragment packet,
   1320 			 * discard all the pieces.
   1321 			 */
   1322 			if (sc->re_head != NULL) {
   1323 				m_freem(sc->re_head);
   1324 				sc->re_head = sc->re_tail = NULL;
   1325 			}
   1326 			re_newbuf(sc, i, m);
   1327 			continue;
   1328 		}
   1329 
   1330 		/*
   1331 		 * If allocating a replacement mbuf fails,
   1332 		 * reload the current one.
   1333 		 */
   1334 
   1335 		if (__predict_false(re_newbuf(sc, i, NULL) != 0)) {
   1336 			if_statinc(ifp, if_ierrors);
   1337 			if (sc->re_head != NULL) {
   1338 				m_freem(sc->re_head);
   1339 				sc->re_head = sc->re_tail = NULL;
   1340 			}
   1341 			re_newbuf(sc, i, m);
   1342 			continue;
   1343 		}
   1344 
   1345 		if (sc->re_head != NULL) {
   1346 			m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
   1347 			/*
   1348 			 * Special case: if there's 4 bytes or less
   1349 			 * in this buffer, the mbuf can be discarded:
   1350 			 * the last 4 bytes is the CRC, which we don't
   1351 			 * care about anyway.
   1352 			 */
   1353 			if (m->m_len <= ETHER_CRC_LEN) {
   1354 				sc->re_tail->m_len -=
   1355 				    (ETHER_CRC_LEN - m->m_len);
   1356 				m_freem(m);
   1357 			} else {
   1358 				m->m_len -= ETHER_CRC_LEN;
   1359 				m_remove_pkthdr(m);
   1360 				sc->re_tail->m_next = m;
   1361 			}
   1362 			m = sc->re_head;
   1363 			sc->re_head = sc->re_tail = NULL;
   1364 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
   1365 		} else
   1366 			m->m_pkthdr.len = m->m_len =
   1367 			    (total_len - ETHER_CRC_LEN);
   1368 
   1369 		m_set_rcvif(m, ifp);
   1370 
   1371 		/* Do RX checksumming */
   1372 		if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
   1373 			/* Check IP header checksum */
   1374 			if ((rxstat & RE_RDESC_STAT_PROTOID) != 0) {
   1375 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1376 				if (rxstat & RE_RDESC_STAT_IPSUMBAD)
   1377 					m->m_pkthdr.csum_flags |=
   1378 					    M_CSUM_IPv4_BAD;
   1379 
   1380 				/* Check TCP/UDP checksum */
   1381 				if (RE_TCPPKT(rxstat)) {
   1382 					m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1383 					if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
   1384 						m->m_pkthdr.csum_flags |=
   1385 						    M_CSUM_TCP_UDP_BAD;
   1386 				} else if (RE_UDPPKT(rxstat)) {
   1387 					m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1388 					if (rxstat & RE_RDESC_STAT_UDPSUMBAD) {
   1389 						/*
   1390 						 * XXX: 8139C+ thinks UDP csum
   1391 						 * 0xFFFF is bad, force software
   1392 						 * calculation.
   1393 						 */
   1394 						if (sc->sc_quirk & RTKQ_8139CPLUS)
   1395 							m->m_pkthdr.csum_flags
   1396 							    &= ~M_CSUM_UDPv4;
   1397 						else
   1398 							m->m_pkthdr.csum_flags
   1399 							    |= M_CSUM_TCP_UDP_BAD;
   1400 					}
   1401 				}
   1402 			}
   1403 		} else {
   1404 			/* Check IPv4 header checksum */
   1405 			if ((rxvlan & RE_RDESC_VLANCTL_IPV4) != 0) {
   1406 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1407 				if (rxstat & RE_RDESC_STAT_IPSUMBAD)
   1408 					m->m_pkthdr.csum_flags |=
   1409 					    M_CSUM_IPv4_BAD;
   1410 
   1411 				/* Check TCPv4/UDPv4 checksum */
   1412 				if (RE_TCPPKT(rxstat)) {
   1413 					m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1414 					if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
   1415 						m->m_pkthdr.csum_flags |=
   1416 						    M_CSUM_TCP_UDP_BAD;
   1417 				} else if (RE_UDPPKT(rxstat)) {
   1418 					m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1419 					if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
   1420 						m->m_pkthdr.csum_flags |=
   1421 						    M_CSUM_TCP_UDP_BAD;
   1422 				}
   1423 			}
   1424 			/* XXX Check TCPv6/UDPv6 checksum? */
   1425 		}
   1426 
   1427 		if (rxvlan & RE_RDESC_VLANCTL_TAG) {
   1428 			vlan_set_tag(m,
   1429 			     bswap16(rxvlan & RE_RDESC_VLANCTL_DATA));
   1430 		}
   1431 		if_percpuq_enqueue(ifp->if_percpuq, m);
   1432 	}
   1433 
   1434 	sc->re_ldata.re_rx_prodidx = i;
   1435 }
   1436 
   1437 static void
   1438 re_txeof(struct rtk_softc *sc)
   1439 {
   1440 	struct ifnet *ifp;
   1441 	struct re_txq *txq;
   1442 	uint32_t txstat;
   1443 	int idx, descidx;
   1444 
   1445 	ifp = &sc->ethercom.ec_if;
   1446 
   1447 	for (idx = sc->re_ldata.re_txq_considx;
   1448 	    sc->re_ldata.re_txq_free < RE_TX_QLEN;
   1449 	    idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
   1450 		txq = &sc->re_ldata.re_txq[idx];
   1451 		KASSERT(txq->txq_mbuf != NULL);
   1452 
   1453 		descidx = txq->txq_descidx;
   1454 		RE_TXDESCSYNC(sc, descidx,
   1455 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1456 		txstat =
   1457 		    le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
   1458 		RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
   1459 		KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
   1460 		if (txstat & RE_TDESC_CMD_OWN) {
   1461 			break;
   1462 		}
   1463 
   1464 		sc->re_ldata.re_tx_free += txq->txq_nsegs;
   1465 		KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
   1466 		bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
   1467 		    0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1468 		bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
   1469 		m_freem(txq->txq_mbuf);
   1470 		txq->txq_mbuf = NULL;
   1471 
   1472 		net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
   1473 		if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
   1474 			if_statinc_ref(ifp, nsr, if_collisions);
   1475 		if (txstat & RE_TDESC_STAT_TXERRSUM)
   1476 			if_statinc_ref(ifp, nsr, if_oerrors);
   1477 		else
   1478 			if_statinc_ref(ifp, nsr, if_opackets);
   1479 		IF_STAT_PUTREF(ifp);
   1480 	}
   1481 
   1482 	sc->re_ldata.re_txq_considx = idx;
   1483 
   1484 	if (sc->re_ldata.re_txq_free > RE_NTXDESC_RSVD)
   1485 		ifp->if_flags &= ~IFF_OACTIVE;
   1486 
   1487 	/*
   1488 	 * If not all descriptors have been released reaped yet,
   1489 	 * reload the timer so that we will eventually get another
   1490 	 * interrupt that will cause us to re-enter this routine.
   1491 	 * This is done in case the transmitter has gone idle.
   1492 	 */
   1493 	if (sc->re_ldata.re_txq_free < RE_TX_QLEN) {
   1494 		if ((sc->sc_quirk & RTKQ_IM_HW) == 0)
   1495 			CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
   1496 		if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
   1497 			/*
   1498 			 * Some chips will ignore a second TX request
   1499 			 * issued while an existing transmission is in
   1500 			 * progress. If the transmitter goes idle but
   1501 			 * there are still packets waiting to be sent,
   1502 			 * we need to restart the channel here to flush
   1503 			 * them out. This only seems to be required with
   1504 			 * the PCIe devices.
   1505 			 */
   1506 			CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
   1507 		}
   1508 	} else
   1509 		ifp->if_timer = 0;
   1510 }
   1511 
   1512 static void
   1513 re_tick(void *arg)
   1514 {
   1515 	struct rtk_softc *sc = arg;
   1516 	int s;
   1517 
   1518 	/* XXX: just return for 8169S/8110S with rev 2 or newer phy */
   1519 	s = splnet();
   1520 
   1521 	mii_tick(&sc->mii);
   1522 	splx(s);
   1523 
   1524 	callout_schedule(&sc->rtk_tick_ch, hz);
   1525 }
   1526 
   1527 int
   1528 re_intr(void *arg)
   1529 {
   1530 	struct rtk_softc *sc = arg;
   1531 	struct ifnet *ifp;
   1532 	uint16_t status, rndstatus = 0;
   1533 	int handled = 0;
   1534 
   1535 	if (!device_has_power(sc->sc_dev))
   1536 		return 0;
   1537 
   1538 	ifp = &sc->ethercom.ec_if;
   1539 
   1540 	if ((ifp->if_flags & IFF_UP) == 0)
   1541 		return 0;
   1542 
   1543 	const uint16_t status_mask = (sc->sc_quirk & RTKQ_IM_HW) ?
   1544 	    RTK_INTRS_IM_HW : RTK_INTRS_CPLUS;
   1545 
   1546 	for (;;) {
   1547 
   1548 		status = CSR_READ_2(sc, RTK_ISR);
   1549 		/* If the card has gone away the read returns 0xffff. */
   1550 		if (status == 0xffff)
   1551 			break;
   1552 		if (status != 0) {
   1553 			handled = 1;
   1554 			CSR_WRITE_2(sc, RTK_ISR, status);
   1555 			rndstatus = status;
   1556 		}
   1557 
   1558 		if ((status & status_mask) == 0)
   1559 			break;
   1560 
   1561 		if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
   1562 			re_rxeof(sc);
   1563 
   1564 		if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
   1565 		    RTK_ISR_TX_DESC_UNAVAIL | RTK_ISR_TX_OK))
   1566 			re_txeof(sc);
   1567 
   1568 		if (status & RTK_ISR_SYSTEM_ERR) {
   1569 			re_init(ifp);
   1570 		}
   1571 
   1572 		if (status & RTK_ISR_LINKCHG) {
   1573 			callout_stop(&sc->rtk_tick_ch);
   1574 			re_tick(sc);
   1575 		}
   1576 	}
   1577 
   1578 	if (handled)
   1579 		if_schedule_deferred_start(ifp);
   1580 
   1581 	rnd_add_uint32(&sc->rnd_source, rndstatus);
   1582 
   1583 	return handled;
   1584 }
   1585 
   1586 
   1587 
   1588 /*
   1589  * Main transmit routine for C+ and gigE NICs.
   1590  */
   1591 
   1592 static void
   1593 re_start(struct ifnet *ifp)
   1594 {
   1595 	struct rtk_softc *sc;
   1596 	struct mbuf *m;
   1597 	bus_dmamap_t map;
   1598 	struct re_txq *txq;
   1599 	struct re_desc *d;
   1600 	uint32_t cmdstat, re_flags, vlanctl;
   1601 	int ofree, idx, error, nsegs, seg;
   1602 	int startdesc, curdesc, lastdesc;
   1603 	bool pad;
   1604 
   1605 	sc = ifp->if_softc;
   1606 	ofree = sc->re_ldata.re_txq_free;
   1607 
   1608 	for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
   1609 
   1610 		IFQ_POLL(&ifp->if_snd, m);
   1611 		if (m == NULL)
   1612 			break;
   1613 
   1614 		if (sc->re_ldata.re_txq_free == 0 ||
   1615 		    sc->re_ldata.re_tx_free == 0) {
   1616 			/* no more free slots left */
   1617 			ifp->if_flags |= IFF_OACTIVE;
   1618 			break;
   1619 		}
   1620 
   1621 		/*
   1622 		 * Set up checksum offload. Note: checksum offload bits must
   1623 		 * appear in all descriptors of a multi-descriptor transmit
   1624 		 * attempt. (This is according to testing done with an 8169
   1625 		 * chip. I'm not sure if this is a requirement or a bug.)
   1626 		 */
   1627 
   1628 		vlanctl = 0;
   1629 		if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
   1630 			uint32_t segsz = m->m_pkthdr.segsz;
   1631 
   1632 			if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
   1633 				re_flags = RE_TDESC_CMD_LGSEND |
   1634 				    (segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
   1635 			} else {
   1636 				re_flags = RE_TDESC_CMD_LGSEND_V4;
   1637 				vlanctl |=
   1638 				    (segsz << RE_TDESC_VLANCTL_MSSVAL_SHIFT);
   1639 			}
   1640 		} else {
   1641 			/*
   1642 			 * set RE_TDESC_CMD_IPCSUM if any checksum offloading
   1643 			 * is requested.  otherwise, RE_TDESC_CMD_TCPCSUM/
   1644 			 * RE_TDESC_CMD_UDPCSUM doesn't make effects.
   1645 			 */
   1646 			re_flags = 0;
   1647 			if ((m->m_pkthdr.csum_flags &
   1648 			    (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
   1649 			    != 0) {
   1650 				if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
   1651 					re_flags |= RE_TDESC_CMD_IPCSUM;
   1652 					if (m->m_pkthdr.csum_flags &
   1653 					    M_CSUM_TCPv4) {
   1654 						re_flags |=
   1655 						    RE_TDESC_CMD_TCPCSUM;
   1656 					} else if (m->m_pkthdr.csum_flags &
   1657 					    M_CSUM_UDPv4) {
   1658 						re_flags |=
   1659 						    RE_TDESC_CMD_UDPCSUM;
   1660 					}
   1661 				} else {
   1662 					vlanctl |= RE_TDESC_VLANCTL_IPCSUM;
   1663 					if (m->m_pkthdr.csum_flags &
   1664 					    M_CSUM_TCPv4) {
   1665 						vlanctl |=
   1666 						    RE_TDESC_VLANCTL_TCPCSUM;
   1667 					} else if (m->m_pkthdr.csum_flags &
   1668 					    M_CSUM_UDPv4) {
   1669 						vlanctl |=
   1670 						    RE_TDESC_VLANCTL_UDPCSUM;
   1671 					}
   1672 				}
   1673 			}
   1674 		}
   1675 
   1676 		txq = &sc->re_ldata.re_txq[idx];
   1677 		map = txq->txq_dmamap;
   1678 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
   1679 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1680 
   1681 		if (__predict_false(error)) {
   1682 			/* XXX try to defrag if EFBIG? */
   1683 			printf("%s: can't map mbuf (error %d)\n",
   1684 			    device_xname(sc->sc_dev), error);
   1685 
   1686 			IFQ_DEQUEUE(&ifp->if_snd, m);
   1687 			m_freem(m);
   1688 			if_statinc(ifp, if_oerrors);
   1689 			continue;
   1690 		}
   1691 
   1692 		nsegs = map->dm_nsegs;
   1693 		pad = false;
   1694 		if (__predict_false(m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN &&
   1695 		    (re_flags & RE_TDESC_CMD_IPCSUM) != 0 &&
   1696 		    (sc->sc_quirk & RTKQ_DESCV2) == 0)) {
   1697 			pad = true;
   1698 			nsegs++;
   1699 		}
   1700 
   1701 		if (nsegs > sc->re_ldata.re_tx_free) {
   1702 			/*
   1703 			 * Not enough free descriptors to transmit this packet.
   1704 			 */
   1705 			ifp->if_flags |= IFF_OACTIVE;
   1706 			bus_dmamap_unload(sc->sc_dmat, map);
   1707 			break;
   1708 		}
   1709 
   1710 		IFQ_DEQUEUE(&ifp->if_snd, m);
   1711 
   1712 		/*
   1713 		 * Make sure that the caches are synchronized before we
   1714 		 * ask the chip to start DMA for the packet data.
   1715 		 */
   1716 		bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1717 		    BUS_DMASYNC_PREWRITE);
   1718 
   1719 		/*
   1720 		 * Set up hardware VLAN tagging. Note: vlan tag info must
   1721 		 * appear in all descriptors of a multi-descriptor
   1722 		 * transmission attempt.
   1723 		 */
   1724 		if (vlan_has_tag(m))
   1725 			vlanctl |= bswap16(vlan_get_tag(m)) |
   1726 			    RE_TDESC_VLANCTL_TAG;
   1727 
   1728 		/*
   1729 		 * Map the segment array into descriptors.
   1730 		 * Note that we set the start-of-frame and
   1731 		 * end-of-frame markers for either TX or RX,
   1732 		 * but they really only have meaning in the TX case.
   1733 		 * (In the RX case, it's the chip that tells us
   1734 		 *  where packets begin and end.)
   1735 		 * We also keep track of the end of the ring
   1736 		 * and set the end-of-ring bits as needed,
   1737 		 * and we set the ownership bits in all except
   1738 		 * the very first descriptor. (The caller will
   1739 		 * set this descriptor later when it start
   1740 		 * transmission or reception.)
   1741 		 */
   1742 		curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
   1743 		lastdesc = -1;
   1744 		for (seg = 0; seg < map->dm_nsegs;
   1745 		    seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
   1746 			d = &sc->re_ldata.re_tx_list[curdesc];
   1747 #ifdef DIAGNOSTIC
   1748 			RE_TXDESCSYNC(sc, curdesc,
   1749 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1750 			cmdstat = le32toh(d->re_cmdstat);
   1751 			RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
   1752 			if (cmdstat & RE_TDESC_STAT_OWN) {
   1753 				panic("%s: tried to map busy TX descriptor",
   1754 				    device_xname(sc->sc_dev));
   1755 			}
   1756 #endif
   1757 
   1758 			d->re_vlanctl = htole32(vlanctl);
   1759 			re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
   1760 			cmdstat = re_flags | map->dm_segs[seg].ds_len;
   1761 			if (seg == 0)
   1762 				cmdstat |= RE_TDESC_CMD_SOF;
   1763 			else
   1764 				cmdstat |= RE_TDESC_CMD_OWN;
   1765 			if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
   1766 				cmdstat |= RE_TDESC_CMD_EOR;
   1767 			if (seg == nsegs - 1) {
   1768 				cmdstat |= RE_TDESC_CMD_EOF;
   1769 				lastdesc = curdesc;
   1770 			}
   1771 			d->re_cmdstat = htole32(cmdstat);
   1772 			RE_TXDESCSYNC(sc, curdesc,
   1773 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1774 		}
   1775 		if (__predict_false(pad)) {
   1776 			d = &sc->re_ldata.re_tx_list[curdesc];
   1777 			d->re_vlanctl = htole32(vlanctl);
   1778 			re_set_bufaddr(d, RE_TXPADDADDR(sc));
   1779 			cmdstat = re_flags |
   1780 			    RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF |
   1781 			    (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
   1782 			if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
   1783 				cmdstat |= RE_TDESC_CMD_EOR;
   1784 			d->re_cmdstat = htole32(cmdstat);
   1785 			RE_TXDESCSYNC(sc, curdesc,
   1786 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1787 			lastdesc = curdesc;
   1788 			curdesc = RE_NEXT_TX_DESC(sc, curdesc);
   1789 		}
   1790 		KASSERT(lastdesc != -1);
   1791 
   1792 		/* Transfer ownership of packet to the chip. */
   1793 
   1794 		sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
   1795 		    htole32(RE_TDESC_CMD_OWN);
   1796 		RE_TXDESCSYNC(sc, startdesc,
   1797 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1798 
   1799 		/* update info of TX queue and descriptors */
   1800 		txq->txq_mbuf = m;
   1801 		txq->txq_descidx = lastdesc;
   1802 		txq->txq_nsegs = nsegs;
   1803 
   1804 		sc->re_ldata.re_txq_free--;
   1805 		sc->re_ldata.re_tx_free -= nsegs;
   1806 		sc->re_ldata.re_tx_nextfree = curdesc;
   1807 
   1808 		/*
   1809 		 * If there's a BPF listener, bounce a copy of this frame
   1810 		 * to him.
   1811 		 */
   1812 		bpf_mtap(ifp, m, BPF_D_OUT);
   1813 	}
   1814 
   1815 	if (sc->re_ldata.re_txq_free < ofree) {
   1816 		/*
   1817 		 * TX packets are enqueued.
   1818 		 */
   1819 		sc->re_ldata.re_txq_prodidx = idx;
   1820 
   1821 		/*
   1822 		 * Start the transmitter to poll.
   1823 		 *
   1824 		 * RealTek put the TX poll request register in a different
   1825 		 * location on the 8169 gigE chip. I don't know why.
   1826 		 */
   1827 		if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
   1828 			CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
   1829 		else
   1830 			CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
   1831 
   1832 		if ((sc->sc_quirk & RTKQ_IM_HW) == 0) {
   1833 			/*
   1834 			 * Use the countdown timer for interrupt moderation.
   1835 			 * 'TX done' interrupts are disabled. Instead, we reset
   1836 			 * the countdown timer, which will begin counting until
   1837 			 * it hits the value in the TIMERINT register, and then
   1838 			 * trigger an interrupt. Each time we write to the
   1839 			 * TIMERCNT register, the timer count is reset to 0.
   1840 			 */
   1841 			CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
   1842 		}
   1843 
   1844 		/*
   1845 		 * Set a timeout in case the chip goes out to lunch.
   1846 		 */
   1847 		ifp->if_timer = 5;
   1848 	}
   1849 }
   1850 
   1851 static int
   1852 re_init(struct ifnet *ifp)
   1853 {
   1854 	struct rtk_softc *sc = ifp->if_softc;
   1855 	uint32_t rxcfg = 0;
   1856 	uint16_t cfg;
   1857 	int error;
   1858 #ifdef RE_USE_EECMD
   1859 	const uint8_t *enaddr;
   1860 	uint32_t reg;
   1861 #endif
   1862 
   1863 	if ((error = re_enable(sc)) != 0)
   1864 		goto out;
   1865 
   1866 	/*
   1867 	 * Cancel pending I/O and free all RX/TX buffers.
   1868 	 */
   1869 	re_stop(ifp, 0);
   1870 
   1871 	re_reset(sc);
   1872 
   1873 	/*
   1874 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
   1875 	 * RX checksum offload. We must configure the C+ register
   1876 	 * before all others.
   1877 	 */
   1878 	cfg = RE_CPLUSCMD_PCI_MRW;
   1879 
   1880 	/*
   1881 	 * XXX: For old 8169 set bit 14.
   1882 	 *      For 8169S/8110S and above, do not set bit 14.
   1883 	 */
   1884 	if ((sc->sc_quirk & RTKQ_8169NONS) != 0)
   1885 		cfg |= (0x1 << 14);
   1886 
   1887 	if ((sc->ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) != 0)
   1888 		cfg |= RE_CPLUSCMD_VLANSTRIP;
   1889 	if ((ifp->if_capenable & (IFCAP_CSUM_IPv4_Rx |
   1890 	     IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx)) != 0)
   1891 		cfg |= RE_CPLUSCMD_RXCSUM_ENB;
   1892 	if ((sc->sc_quirk & RTKQ_MACSTAT) != 0) {
   1893 		cfg |= RE_CPLUSCMD_MACSTAT_DIS;
   1894 		cfg |= RE_CPLUSCMD_TXENB;
   1895 	} else
   1896 		cfg |= RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB;
   1897 
   1898 	CSR_WRITE_2(sc, RTK_CPLUS_CMD, cfg);
   1899 
   1900 	/* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
   1901 	if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
   1902 		if ((sc->sc_quirk & RTKQ_IM_HW) == 0) {
   1903 			CSR_WRITE_2(sc, RTK_IM, 0x0000);
   1904 		} else {
   1905 			CSR_WRITE_2(sc, RTK_IM, 0x5151);
   1906 		}
   1907 	}
   1908 
   1909 	DELAY(10000);
   1910 
   1911 #ifdef RE_USE_EECMD
   1912 	/*
   1913 	 * Init our MAC address.  Even though the chipset
   1914 	 * documentation doesn't mention it, we need to enter "Config
   1915 	 * register write enable" mode to modify the ID registers.
   1916 	 */
   1917 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
   1918 	enaddr = CLLADDR(ifp->if_sadl);
   1919 	reg = enaddr[0] | (enaddr[1] << 8) |
   1920 	    (enaddr[2] << 16) | (enaddr[3] << 24);
   1921 	CSR_WRITE_4(sc, RTK_IDR0, reg);
   1922 	reg = enaddr[4] | (enaddr[5] << 8);
   1923 	CSR_WRITE_4(sc, RTK_IDR4, reg);
   1924 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
   1925 #endif
   1926 
   1927 	/*
   1928 	 * For C+ mode, initialize the RX descriptors and mbufs.
   1929 	 */
   1930 	re_rx_list_init(sc);
   1931 	re_tx_list_init(sc);
   1932 
   1933 	/*
   1934 	 * Load the addresses of the RX and TX lists into the chip.
   1935 	 */
   1936 	CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
   1937 	    RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
   1938 	CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
   1939 	    RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
   1940 
   1941 	CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
   1942 	    RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
   1943 	CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
   1944 	    RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
   1945 
   1946 	if (sc->sc_quirk & RTKQ_RXDV_GATED) {
   1947 		CSR_WRITE_4(sc, RTK_MISC,
   1948 		    CSR_READ_4(sc, RTK_MISC) & ~RTK_MISC_RXDV_GATED_EN);
   1949 	}
   1950 
   1951 	/*
   1952 	 * Enable transmit and receive.
   1953 	 */
   1954 	if ((sc->sc_quirk & RTKQ_TXRXEN_LATER) == 0)
   1955 		CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
   1956 
   1957 	/*
   1958 	 * Set the initial TX and RX configuration.
   1959 	 */
   1960 	if (sc->re_testmode && (sc->sc_quirk & RTKQ_8169NONS) != 0) {
   1961 		/* test mode is needed only for old 8169 */
   1962 		CSR_WRITE_4(sc, RTK_TXCFG,
   1963 		    RE_TXCFG_CONFIG | RTK_LOOPTEST_ON);
   1964 	} else
   1965 		CSR_WRITE_4(sc, RTK_TXCFG, RE_TXCFG_CONFIG);
   1966 
   1967 	CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
   1968 
   1969 	CSR_WRITE_4(sc, RTK_RXCFG, RE_RXCFG_CONFIG);
   1970 
   1971 	/* Set the individual bit to receive frames for this host only. */
   1972 	rxcfg = CSR_READ_4(sc, RTK_RXCFG);
   1973 	rxcfg |= RTK_RXCFG_RX_INDIV;
   1974 	if (sc->sc_quirk & RTKQ_EARLYOFF)
   1975 		rxcfg |= RTK_RXCFG_EARLYOFF;
   1976 	else if (sc->sc_quirk & RTKQ_RXDV_GATED)
   1977 		rxcfg |= RTK_RXCFG_EARLYOFFV2;
   1978 
   1979 	/* If we want promiscuous mode, set the allframes bit. */
   1980 	if (ifp->if_flags & IFF_PROMISC)
   1981 		rxcfg |= RTK_RXCFG_RX_ALLPHYS;
   1982 	else
   1983 		rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
   1984 	CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
   1985 
   1986 	/*
   1987 	 * Set capture broadcast bit to capture broadcast frames.
   1988 	 */
   1989 	if (ifp->if_flags & IFF_BROADCAST)
   1990 		rxcfg |= RTK_RXCFG_RX_BROAD;
   1991 	else
   1992 		rxcfg &= ~RTK_RXCFG_RX_BROAD;
   1993 	CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
   1994 
   1995 	/*
   1996 	 * Program the multicast filter, if necessary.
   1997 	 */
   1998 	rtk_setmulti(sc);
   1999 
   2000 	/*
   2001 	 * some chips require to enable TX/RX *AFTER* TX/RX configuration
   2002 	 */
   2003 	if ((sc->sc_quirk & RTKQ_TXRXEN_LATER) != 0)
   2004 		CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
   2005 
   2006 	/*
   2007 	 * Enable interrupts.
   2008 	 */
   2009 	if (sc->re_testmode)
   2010 		CSR_WRITE_2(sc, RTK_IMR, 0);
   2011 	else if ((sc->sc_quirk & RTKQ_IM_HW) != 0)
   2012 		CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_IM_HW);
   2013 	else
   2014 		CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
   2015 
   2016 	/* Start RX/TX process. */
   2017 	CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
   2018 #ifdef notdef
   2019 	/* Enable receiver and transmitter. */
   2020 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
   2021 #endif
   2022 
   2023 	/*
   2024 	 * Initialize the timer interrupt register so that
   2025 	 * a timer interrupt will be generated once the timer
   2026 	 * reaches a certain number of ticks. The timer is
   2027 	 * reloaded on each transmit. This gives us TX interrupt
   2028 	 * moderation, which dramatically improves TX frame rate.
   2029 	 */
   2030 
   2031 	unsigned defer;		/* timer interval / ns */
   2032 	unsigned period;	/* busclock period / ns */
   2033 
   2034 	/*
   2035 	 * Maximum frame rate
   2036 	 * 1500 byte PDU -> 81274 Hz
   2037 	 *   46 byte PDU -> 1488096 Hz
   2038 	 *
   2039 	 * Deferring interrupts by up to 128us needs descriptors for
   2040 	 * 1500 byte PDU -> 10.4 frames
   2041 	 *   46 byte PDU -> 190.4 frames
   2042 	 *
   2043 	 */
   2044 	defer = 128000;
   2045 
   2046 	if ((sc->sc_quirk & RTKQ_IM_HW) != 0) {
   2047 		period = 1;
   2048 		defer = 0;
   2049 	} else if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
   2050 		period = 8;
   2051 	} else {
   2052 		switch (CSR_READ_1(sc, RTK_CFG2_BUSFREQ) & 0x7) {
   2053 		case RTK_BUSFREQ_33MHZ:
   2054 			period = 30;
   2055 			break;
   2056 		case RTK_BUSFREQ_66MHZ:
   2057 			period = 15;
   2058 			break;
   2059 		default:
   2060 			/* lowest possible clock */
   2061 			period = 60;
   2062 			break;
   2063 		}
   2064 	}
   2065 
   2066 	/* Timer Interrupt register address varies */
   2067 	uint16_t re8139_reg;
   2068 	if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
   2069 		re8139_reg = RTK_TIMERINT;
   2070 	else
   2071 		re8139_reg = RTK_TIMERINT_8169;
   2072 	CSR_WRITE_4(sc, re8139_reg, defer / period);
   2073 
   2074 	if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
   2075 		/*
   2076 		 * For 8169 gigE NICs, set the max allowed RX packet
   2077 		 * size so we can receive jumbo frames.
   2078 		 */
   2079 		CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
   2080 	}
   2081 
   2082 	if (sc->re_testmode)
   2083 		return 0;
   2084 
   2085 	CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD);
   2086 
   2087 	ifp->if_flags |= IFF_RUNNING;
   2088 	ifp->if_flags &= ~IFF_OACTIVE;
   2089 
   2090 	callout_schedule(&sc->rtk_tick_ch, hz);
   2091 
   2092  out:
   2093 	if (error) {
   2094 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2095 		ifp->if_timer = 0;
   2096 		printf("%s: interface not running\n",
   2097 		    device_xname(sc->sc_dev));
   2098 	}
   2099 
   2100 	return error;
   2101 }
   2102 
   2103 static int
   2104 re_ioctl(struct ifnet *ifp, u_long command, void *data)
   2105 {
   2106 	struct rtk_softc *sc = ifp->if_softc;
   2107 	struct ifreq *ifr = data;
   2108 	int s, error = 0;
   2109 
   2110 	s = splnet();
   2111 
   2112 	switch (command) {
   2113 	case SIOCSIFMTU:
   2114 		/*
   2115 		 * Disable jumbo frames if it's not supported.
   2116 		 */
   2117 		if ((sc->sc_quirk & RTKQ_NOJUMBO) != 0 &&
   2118 		    ifr->ifr_mtu > ETHERMTU) {
   2119 			error = EINVAL;
   2120 			break;
   2121 		}
   2122 
   2123 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU_JUMBO)
   2124 			error = EINVAL;
   2125 		else if ((error = ifioctl_common(ifp, command, data)) ==
   2126 		    ENETRESET)
   2127 			error = 0;
   2128 		break;
   2129 	default:
   2130 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   2131 			break;
   2132 
   2133 		error = 0;
   2134 
   2135 		if (command == SIOCSIFCAP)
   2136 			error = if_init(ifp);
   2137 		else if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   2138 			;
   2139 		else if (ifp->if_flags & IFF_RUNNING)
   2140 			rtk_setmulti(sc);
   2141 		break;
   2142 	}
   2143 
   2144 	splx(s);
   2145 
   2146 	return error;
   2147 }
   2148 
   2149 static void
   2150 re_watchdog(struct ifnet *ifp)
   2151 {
   2152 	struct rtk_softc *sc;
   2153 	int s;
   2154 
   2155 	sc = ifp->if_softc;
   2156 	s = splnet();
   2157 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
   2158 	if_statinc(ifp, if_oerrors);
   2159 
   2160 	re_txeof(sc);
   2161 	re_rxeof(sc);
   2162 
   2163 	re_init(ifp);
   2164 
   2165 	splx(s);
   2166 }
   2167 
   2168 /*
   2169  * Stop the adapter and free any mbufs allocated to the
   2170  * RX and TX lists.
   2171  */
   2172 static void
   2173 re_stop(struct ifnet *ifp, int disable)
   2174 {
   2175 	int i;
   2176 	struct rtk_softc *sc = ifp->if_softc;
   2177 
   2178 	callout_stop(&sc->rtk_tick_ch);
   2179 
   2180 	mii_down(&sc->mii);
   2181 
   2182 	/*
   2183 	 * Disable accepting frames to put RX MAC into idle state.
   2184 	 * Otherwise it's possible to get frames while stop command
   2185 	 * execution is in progress and controller can DMA the frame
   2186 	 * to already freed RX buffer during that period.
   2187 	 */
   2188 	CSR_WRITE_4(sc, RTK_RXCFG, CSR_READ_4(sc, RTK_RXCFG) &
   2189 	    ~(RTK_RXCFG_RX_ALLPHYS | RTK_RXCFG_RX_INDIV | RTK_RXCFG_RX_MULTI |
   2190 	    RTK_RXCFG_RX_BROAD));
   2191 
   2192 	if (sc->sc_quirk & RTKQ_RXDV_GATED) {
   2193 		CSR_WRITE_4(sc, RTK_MISC,
   2194 		    CSR_READ_4(sc, RTK_MISC) | RTK_MISC_RXDV_GATED_EN);
   2195 	}
   2196 
   2197 	if ((sc->sc_quirk & RTKQ_CMDSTOP) != 0)
   2198 		CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_STOPREQ | RTK_CMD_TX_ENB |
   2199 		    RTK_CMD_RX_ENB);
   2200 	else
   2201 		CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
   2202 	DELAY(1000);
   2203 	CSR_WRITE_2(sc, RTK_IMR, 0x0000);
   2204 	CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
   2205 
   2206 	if (sc->re_head != NULL) {
   2207 		m_freem(sc->re_head);
   2208 		sc->re_head = sc->re_tail = NULL;
   2209 	}
   2210 
   2211 	/* Free the TX list buffers. */
   2212 	for (i = 0; i < RE_TX_QLEN; i++) {
   2213 		if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
   2214 			bus_dmamap_unload(sc->sc_dmat,
   2215 			    sc->re_ldata.re_txq[i].txq_dmamap);
   2216 			m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
   2217 			sc->re_ldata.re_txq[i].txq_mbuf = NULL;
   2218 		}
   2219 	}
   2220 
   2221 	/* Free the RX list buffers. */
   2222 	for (i = 0; i < RE_RX_DESC_CNT; i++) {
   2223 		if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
   2224 			bus_dmamap_unload(sc->sc_dmat,
   2225 			    sc->re_ldata.re_rxsoft[i].rxs_dmamap);
   2226 			m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
   2227 			sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
   2228 		}
   2229 	}
   2230 
   2231 	if (disable)
   2232 		re_disable(sc);
   2233 
   2234 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2235 	ifp->if_timer = 0;
   2236 }
   2237