Home | History | Annotate | Line # | Download | only in raidframe
      1 /*	$NetBSD: rf_map.c,v 1.51 2021/07/23 00:54:45 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /**************************************************************************
     30  *
     31  * map.c -- main code for mapping RAID addresses to physical disk addresses
     32  *
     33  **************************************************************************/
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: rf_map.c,v 1.51 2021/07/23 00:54:45 oster Exp $");
     37 
     38 #include <dev/raidframe/raidframevar.h>
     39 
     40 #include "rf_threadstuff.h"
     41 #include "rf_raid.h"
     42 #include "rf_general.h"
     43 #include "rf_map.h"
     44 #include "rf_shutdown.h"
     45 
     46 static void rf_FreePDAList(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda_list);
     47 static void rf_FreeASMList(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asm_list);
     48 
     49 /***************************************************************************
     50  *
     51  * MapAccess -- main 1st order mapping routine.  Maps an access in the
     52  * RAID address space to the corresponding set of physical disk
     53  * addresses.  The result is returned as a list of AccessStripeMap
     54  * structures, one per stripe accessed.  Each ASM structure contains a
     55  * pointer to a list of PhysDiskAddr structures, which describe the
     56  * physical locations touched by the user access.  Note that this
     57  * routine returns only static mapping information, i.e. the list of
     58  * physical addresses returned does not necessarily identify the set
     59  * of physical locations that will actually be read or written.  The
     60  * routine also maps the parity.  The physical disk location returned
     61  * always indicates the entire parity unit, even when only a subset of
     62  * it is being accessed.  This is because an access that is not stripe
     63  * unit aligned but that spans a stripe unit boundary may require
     64  * access two distinct portions of the parity unit, and we can't yet
     65  * tell which portion(s) we'll actually need.  We leave it up to the
     66  * algorithm selection code to decide what subset of the parity unit
     67  * to access.  Note that addresses in the RAID address space must
     68  * always be maintained as longs, instead of ints.
     69  *
     70  * This routine returns NULL if numBlocks is 0
     71  *
     72  * raidAddress - starting address in RAID address space
     73  * numBlocks   - number of blocks in RAID address space to access
     74  * buffer      - buffer to supply/receive data
     75  * remap       - 1 => remap address to spare space
     76  ***************************************************************************/
     77 
     78 RF_AccessStripeMapHeader_t *
     79 rf_MapAccess(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddress,
     80 	     RF_SectorCount_t numBlocks, void *buffer, int remap)
     81 {
     82 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
     83 	RF_AccessStripeMapHeader_t *asm_hdr = NULL;
     84 	RF_AccessStripeMap_t *asm_list = NULL, *asm_p = NULL;
     85 	int     faultsTolerated = layoutPtr->map->faultsTolerated;
     86 	/* we'll change raidAddress along the way */
     87 	RF_RaidAddr_t startAddress = raidAddress;
     88 	RF_RaidAddr_t endAddress = raidAddress + numBlocks;
     89 	RF_RaidDisk_t *disks = raidPtr->Disks;
     90 	RF_PhysDiskAddr_t *pda_p;
     91 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
     92 	RF_PhysDiskAddr_t *pda_q;
     93 #endif
     94 	RF_StripeCount_t numStripes = 0;
     95 	RF_RaidAddr_t stripeRealEndAddress, stripeEndAddress,
     96 		nextStripeUnitAddress;
     97 	RF_RaidAddr_t startAddrWithinStripe, lastRaidAddr;
     98 	RF_StripeCount_t totStripes;
     99 	RF_StripeNum_t stripeID, lastSID, SUID, lastSUID;
    100 	RF_AccessStripeMap_t *asmList, *t_asm;
    101 	RF_PhysDiskAddr_t *pdaList, *t_pda;
    102 
    103 	/* allocate all the ASMs and PDAs up front */
    104 	lastRaidAddr = raidAddress + numBlocks - 1;
    105 	stripeID = rf_RaidAddressToStripeID(layoutPtr, raidAddress);
    106 	lastSID = rf_RaidAddressToStripeID(layoutPtr, lastRaidAddr);
    107 	totStripes = lastSID - stripeID + 1;
    108 	SUID = rf_RaidAddressToStripeUnitID(layoutPtr, raidAddress);
    109 	lastSUID = rf_RaidAddressToStripeUnitID(layoutPtr, lastRaidAddr);
    110 
    111 	asmList = rf_AllocASMList(raidPtr, totStripes);
    112 
    113 	/* may also need pda(s) per stripe for parity */
    114 	pdaList = rf_AllocPDAList(raidPtr, lastSUID - SUID + 1 +
    115 				  faultsTolerated * totStripes);
    116 
    117 
    118 	if (raidAddress + numBlocks > raidPtr->totalSectors) {
    119 		RF_ERRORMSG1("Unable to map access because offset (%d) was invalid\n",
    120 		    (int) raidAddress);
    121 		return (NULL);
    122 	}
    123 #if RF_DEBUG_MAP
    124 	if (rf_mapDebug)
    125 		rf_PrintRaidAddressInfo(raidPtr, raidAddress, numBlocks);
    126 #endif
    127 	for (; raidAddress < endAddress;) {
    128 		/* make the next stripe structure */
    129 		RF_ASSERT(asmList);
    130 		t_asm = asmList;
    131 		asmList = asmList->next;
    132 		memset(t_asm, 0, sizeof(*t_asm));
    133 		if (!asm_p)
    134 			asm_list = asm_p = t_asm;
    135 		else {
    136 			asm_p->next = t_asm;
    137 			asm_p = asm_p->next;
    138 		}
    139 		numStripes++;
    140 
    141 		/* map SUs from current location to the end of the stripe */
    142 		asm_p->stripeID =	/* rf_RaidAddressToStripeID(layoutPtr,
    143 		        raidAddress) */ stripeID++;
    144 		stripeRealEndAddress = rf_RaidAddressOfNextStripeBoundary(layoutPtr, raidAddress);
    145 		stripeEndAddress = RF_MIN(endAddress, stripeRealEndAddress);
    146 		asm_p->raidAddress = raidAddress;
    147 		asm_p->endRaidAddress = stripeEndAddress;
    148 
    149 		/* map each stripe unit in the stripe */
    150 		pda_p = NULL;
    151 
    152 		/* Raid addr of start of portion of access that is
    153                    within this stripe */
    154 		startAddrWithinStripe = raidAddress;
    155 
    156 		for (; raidAddress < stripeEndAddress;) {
    157 			RF_ASSERT(pdaList);
    158 			t_pda = pdaList;
    159 			pdaList = pdaList->next;
    160 			memset(t_pda, 0, sizeof(*t_pda));
    161 			if (!pda_p)
    162 				asm_p->physInfo = pda_p = t_pda;
    163 			else {
    164 				pda_p->next = t_pda;
    165 				pda_p = pda_p->next;
    166 			}
    167 
    168 			pda_p->type = RF_PDA_TYPE_DATA;
    169 			(layoutPtr->map->MapSector) (raidPtr, raidAddress,
    170 						     &(pda_p->col),
    171 						     &(pda_p->startSector),
    172 						     remap);
    173 
    174 			/* mark any failures we find.  failedPDA is
    175 			 * don't-care if there is more than one
    176 			 * failure */
    177 
    178 			/* the RAID address corresponding to this
    179                            physical diskaddress */
    180 			pda_p->raidAddress = raidAddress;
    181 			nextStripeUnitAddress = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, raidAddress);
    182 			pda_p->numSector = RF_MIN(endAddress, nextStripeUnitAddress) - raidAddress;
    183 			RF_ASSERT(pda_p->numSector != 0);
    184 			rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 0);
    185 			pda_p->bufPtr = (char *)buffer + rf_RaidAddressToByte(raidPtr, (raidAddress - startAddress));
    186 			asm_p->totalSectorsAccessed += pda_p->numSector;
    187 			asm_p->numStripeUnitsAccessed++;
    188 
    189 			raidAddress = RF_MIN(endAddress, nextStripeUnitAddress);
    190 		}
    191 
    192 		/* Map the parity. At this stage, the startSector and
    193 		 * numSector fields for the parity unit are always set
    194 		 * to indicate the entire parity unit. We may modify
    195 		 * this after mapping the data portion. */
    196 		switch (faultsTolerated) {
    197 		case 0:
    198 			break;
    199 		case 1:	/* single fault tolerant */
    200 			RF_ASSERT(pdaList);
    201 			t_pda = pdaList;
    202 			pdaList = pdaList->next;
    203 			memset(t_pda, 0, sizeof(*t_pda));
    204 			pda_p = asm_p->parityInfo = t_pda;
    205 			pda_p->type = RF_PDA_TYPE_PARITY;
    206 			(layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
    207 			    &(pda_p->col), &(pda_p->startSector), remap);
    208 			pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
    209 			/* raidAddr may be needed to find unit to redirect to */
    210 			pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
    211 			rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
    212 			rf_ASMParityAdjust(raidPtr, asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
    213 
    214 			break;
    215 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
    216 		case 2:	/* two fault tolerant */
    217 			RF_ASSERT(pdaList && pdaList->next);
    218 			t_pda = pdaList;
    219 			pdaList = pdaList->next;
    220 			memset(t_pda, 0, sizeof(*t_pda));
    221 			pda_p = asm_p->parityInfo = t_pda;
    222 			pda_p->type = RF_PDA_TYPE_PARITY;
    223 			t_pda = pdaList;
    224 			pdaList = pdaList->next;
    225 			memset(t_pda, 0, sizeof(*t_pda));
    226 			pda_q = asm_p->qInfo = t_pda;
    227 			pda_q->type = RF_PDA_TYPE_Q;
    228 			(layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
    229 			    &(pda_p->col), &(pda_p->startSector), remap);
    230 			(layoutPtr->map->MapQ) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe),
    231 			    &(pda_q->col), &(pda_q->startSector), remap);
    232 			pda_q->numSector = pda_p->numSector = layoutPtr->sectorsPerStripeUnit;
    233 			/* raidAddr may be needed to find unit to redirect to */
    234 			pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
    235 			pda_q->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe);
    236 			/* failure mode stuff */
    237 			rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1);
    238 			rf_ASMCheckStatus(raidPtr, pda_q, asm_p, disks, 1);
    239 			rf_ASMParityAdjust(raidPtr, asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
    240 			rf_ASMParityAdjust(raidPtr, asm_p->qInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p);
    241 			break;
    242 #endif
    243 		}
    244 	}
    245 	RF_ASSERT(asmList == NULL && pdaList == NULL);
    246 	/* make the header structure */
    247 	asm_hdr = rf_AllocAccessStripeMapHeader(raidPtr);
    248 	RF_ASSERT(numStripes == totStripes);
    249 	asm_hdr->numStripes = numStripes;
    250 	asm_hdr->stripeMap = asm_list;
    251 
    252 #if RF_DEBUG_MAP
    253 	if (rf_mapDebug)
    254 		rf_PrintAccessStripeMap(asm_hdr);
    255 #endif
    256 	return (asm_hdr);
    257 }
    258 
    259 /***************************************************************************
    260  * This routine walks through an ASM list and marks the PDAs that have
    261  * failed.  It's called only when a disk failure causes an in-flight
    262  * DAG to fail.  The parity may consist of two components, but we want
    263  * to use only one failedPDA pointer.  Thus we set failedPDA to point
    264  * to the first parity component, and rely on the rest of the code to
    265  * do the right thing with this.
    266  ***************************************************************************/
    267 
    268 void
    269 rf_MarkFailuresInASMList(RF_Raid_t *raidPtr,
    270 			 RF_AccessStripeMapHeader_t *asm_h)
    271 {
    272 	RF_RaidDisk_t *disks = raidPtr->Disks;
    273 	RF_AccessStripeMap_t *asmap;
    274 	RF_PhysDiskAddr_t *pda;
    275 
    276 	for (asmap = asm_h->stripeMap; asmap; asmap = asmap->next) {
    277 		asmap->numDataFailed = 0;
    278 		asmap->numParityFailed = 0;
    279 		asmap->numQFailed = 0;
    280 		asmap->numFailedPDAs = 0;
    281 		memset(asmap->failedPDAs, 0,
    282 		    RF_MAX_FAILED_PDA * sizeof(*asmap->failedPDAs));
    283 		for (pda = asmap->physInfo; pda; pda = pda->next) {
    284 			if (RF_DEAD_DISK(disks[pda->col].status)) {
    285 				asmap->numDataFailed++;
    286 				asmap->failedPDAs[asmap->numFailedPDAs] = pda;
    287 				asmap->numFailedPDAs++;
    288 			}
    289 		}
    290 		pda = asmap->parityInfo;
    291 		if (pda && RF_DEAD_DISK(disks[pda->col].status)) {
    292 			asmap->numParityFailed++;
    293 			asmap->failedPDAs[asmap->numFailedPDAs] = pda;
    294 			asmap->numFailedPDAs++;
    295 		}
    296 		pda = asmap->qInfo;
    297 		if (pda && RF_DEAD_DISK(disks[pda->col].status)) {
    298 			asmap->numQFailed++;
    299 			asmap->failedPDAs[asmap->numFailedPDAs] = pda;
    300 			asmap->numFailedPDAs++;
    301 		}
    302 	}
    303 }
    304 
    305 /***************************************************************************
    306  *
    307  * routines to allocate and free list elements.  All allocation
    308  * routines zero the structure before returning it.
    309  *
    310  * FreePhysDiskAddr is static.  It should never be called directly,
    311  * because FreeAccessStripeMap takes care of freeing the PhysDiskAddr
    312  * list.
    313  *
    314  ***************************************************************************/
    315 
    316 #define RF_MAX_FREE_ASMHDR 128
    317 #define RF_MIN_FREE_ASMHDR  32
    318 
    319 #define RF_MAX_FREE_ASM 192
    320 #define RF_MIN_FREE_ASM  64
    321 
    322 #define RF_MAX_FREE_PDA 192
    323 #define RF_MIN_FREE_PDA  64
    324 
    325 #define RF_MAX_FREE_ASMHLE 64
    326 #define RF_MIN_FREE_ASMHLE 16
    327 
    328 #define RF_MAX_FREE_FSS 128
    329 #define RF_MIN_FREE_FSS  32
    330 
    331 #define RF_MAX_FREE_VFPLE 128
    332 #define RF_MIN_FREE_VFPLE  32
    333 
    334 #define RF_MAX_FREE_VPLE 128
    335 #define RF_MIN_FREE_VPLE  32
    336 
    337 
    338 /* called at shutdown time.  So far, all that is necessary is to
    339    release all the free lists */
    340 static void rf_ShutdownMapModule(void *);
    341 static void
    342 rf_ShutdownMapModule(void *arg)
    343 {
    344 	RF_Raid_t *raidPtr;
    345 
    346 	raidPtr = (RF_Raid_t *) arg;
    347 
    348 	pool_destroy(&raidPtr->pools.asm_hdr);
    349 	pool_destroy(&raidPtr->pools.asmap);
    350 	pool_destroy(&raidPtr->pools.asmhle);
    351 	pool_destroy(&raidPtr->pools.pda);
    352 	pool_destroy(&raidPtr->pools.fss);
    353 	pool_destroy(&raidPtr->pools.vfple);
    354 	pool_destroy(&raidPtr->pools.vple);
    355 }
    356 
    357 int
    358 rf_ConfigureMapModule(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
    359 		      RF_Config_t *cfgPtr)
    360 {
    361 
    362 	rf_pool_init(raidPtr, raidPtr->poolNames.asm_hdr, &raidPtr->pools.asm_hdr, sizeof(RF_AccessStripeMapHeader_t),
    363 		     "asmhdr", RF_MIN_FREE_ASMHDR, RF_MAX_FREE_ASMHDR);
    364 	rf_pool_init(raidPtr, raidPtr->poolNames.asmap, &raidPtr->pools.asmap, sizeof(RF_AccessStripeMap_t),
    365 		     "asmap", RF_MIN_FREE_ASM, RF_MAX_FREE_ASM);
    366 	rf_pool_init(raidPtr, raidPtr->poolNames.asmhle, &raidPtr->pools.asmhle, sizeof(RF_ASMHeaderListElem_t),
    367 		     "asmhle", RF_MIN_FREE_ASMHLE, RF_MAX_FREE_ASMHLE);
    368 	rf_pool_init(raidPtr, raidPtr->poolNames.pda, &raidPtr->pools.pda, sizeof(RF_PhysDiskAddr_t),
    369 		     "pda", RF_MIN_FREE_PDA, RF_MAX_FREE_PDA);
    370 	rf_pool_init(raidPtr, raidPtr->poolNames.fss, &raidPtr->pools.fss, sizeof(RF_FailedStripe_t),
    371 		     "fss", RF_MIN_FREE_FSS, RF_MAX_FREE_FSS);
    372 	rf_pool_init(raidPtr, raidPtr->poolNames.vfple, &raidPtr->pools.vfple, sizeof(RF_VoidFunctionPointerListElem_t),
    373 		     "vfple", RF_MIN_FREE_VFPLE, RF_MAX_FREE_VFPLE);
    374 	rf_pool_init(raidPtr, raidPtr->poolNames.vple, &raidPtr->pools.vple, sizeof(RF_VoidPointerListElem_t),
    375 		     "vple", RF_MIN_FREE_VPLE, RF_MAX_FREE_VPLE);
    376 	rf_ShutdownCreate(listp, rf_ShutdownMapModule, raidPtr);
    377 
    378 	return (0);
    379 }
    380 
    381 RF_AccessStripeMapHeader_t *
    382 rf_AllocAccessStripeMapHeader(RF_Raid_t *raidPtr)
    383 {
    384 	return pool_get(&raidPtr->pools.asm_hdr, PR_WAITOK | PR_ZERO);
    385 }
    386 
    387 void
    388 rf_FreeAccessStripeMapHeader(RF_Raid_t *raidPtr, RF_AccessStripeMapHeader_t *p)
    389 {
    390 	pool_put(&raidPtr->pools.asm_hdr, p);
    391 }
    392 
    393 
    394 RF_VoidFunctionPointerListElem_t *
    395 rf_AllocVFPListElem(RF_Raid_t *raidPtr)
    396 {
    397 	return pool_get(&raidPtr->pools.vfple, PR_WAITOK | PR_ZERO);
    398 }
    399 
    400 void
    401 rf_FreeVFPListElem(RF_Raid_t *raidPtr, RF_VoidFunctionPointerListElem_t *p)
    402 {
    403 
    404 	pool_put(&raidPtr->pools.vfple, p);
    405 }
    406 
    407 
    408 RF_VoidPointerListElem_t *
    409 rf_AllocVPListElem(RF_Raid_t *raidPtr)
    410 {
    411 	return pool_get(&raidPtr->pools.vple, PR_WAITOK | PR_ZERO);
    412 }
    413 
    414 void
    415 rf_FreeVPListElem(RF_Raid_t *raidPtr, RF_VoidPointerListElem_t *p)
    416 {
    417 
    418 	pool_put(&raidPtr->pools.vple, p);
    419 }
    420 
    421 RF_ASMHeaderListElem_t *
    422 rf_AllocASMHeaderListElem(RF_Raid_t *raidPtr)
    423 {
    424 	return pool_get(&raidPtr->pools.asmhle, PR_WAITOK | PR_ZERO);
    425 }
    426 
    427 void
    428 rf_FreeASMHeaderListElem(RF_Raid_t *raidPtr, RF_ASMHeaderListElem_t *p)
    429 {
    430 
    431 	pool_put(&raidPtr->pools.asmhle, p);
    432 }
    433 
    434 RF_FailedStripe_t *
    435 rf_AllocFailedStripeStruct(RF_Raid_t *raidPtr)
    436 {
    437 	return pool_get(&raidPtr->pools.fss, PR_WAITOK | PR_ZERO);
    438 }
    439 
    440 void
    441 rf_FreeFailedStripeStruct(RF_Raid_t *raidPtr, RF_FailedStripe_t *p)
    442 {
    443 	pool_put(&raidPtr->pools.fss, p);
    444 }
    445 
    446 
    447 
    448 
    449 
    450 RF_PhysDiskAddr_t *
    451 rf_AllocPhysDiskAddr(RF_Raid_t *raidPtr)
    452 {
    453 	return pool_get(&raidPtr->pools.pda, PR_WAITOK | PR_ZERO);
    454 }
    455 /* allocates a list of PDAs, locking the free list only once when we
    456  * have to call calloc, we do it one component at a time to simplify
    457  * the process of freeing the list at program shutdown.  This should
    458  * not be much of a performance hit, because it should be very
    459  * infrequently executed.  */
    460 RF_PhysDiskAddr_t *
    461 rf_AllocPDAList(RF_Raid_t *raidPtr, int count)
    462 {
    463 	RF_PhysDiskAddr_t *p, *prev;
    464 	int i;
    465 
    466 	p = NULL;
    467 	prev = NULL;
    468 	for (i = 0; i < count; i++) {
    469 		p = pool_get(&raidPtr->pools.pda, PR_WAITOK);
    470 		p->next = prev;
    471 		prev = p;
    472 	}
    473 
    474 	return (p);
    475 }
    476 
    477 void
    478 rf_FreePhysDiskAddr(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *p)
    479 {
    480 	pool_put(&raidPtr->pools.pda, p);
    481 }
    482 
    483 static void
    484 rf_FreePDAList(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda_list)
    485 {
    486 	RF_PhysDiskAddr_t *p, *tmp;
    487 
    488 	p=pda_list;
    489 	while (p) {
    490 		tmp = p->next;
    491 		pool_put(&raidPtr->pools.pda, p);
    492 		p = tmp;
    493 	}
    494 }
    495 
    496 /* this is essentially identical to AllocPDAList.  I should combine
    497  * the two.  when we have to call calloc, we do it one component at a
    498  * time to simplify the process of freeing the list at program
    499  * shutdown.  This should not be much of a performance hit, because it
    500  * should be very infrequently executed.  */
    501 RF_AccessStripeMap_t *
    502 rf_AllocASMList(RF_Raid_t *raidPtr, int count)
    503 {
    504 	RF_AccessStripeMap_t *p, *prev;
    505 	int i;
    506 
    507 	p = NULL;
    508 	prev = NULL;
    509 	for (i = 0; i < count; i++) {
    510 		p = pool_get(&raidPtr->pools.asmap, PR_WAITOK);
    511 		p->next = prev;
    512 		prev = p;
    513 	}
    514 	return (p);
    515 }
    516 
    517 static void
    518 rf_FreeASMList(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asm_list)
    519 {
    520 	RF_AccessStripeMap_t *p, *tmp;
    521 
    522 	p=asm_list;
    523 	while (p) {
    524 		tmp = p->next;
    525 		pool_put(&raidPtr->pools.asmap, p);
    526 		p = tmp;
    527 	}
    528 }
    529 
    530 void
    531 rf_FreeAccessStripeMap(RF_Raid_t *raidPtr, RF_AccessStripeMapHeader_t *hdr)
    532 {
    533 	RF_AccessStripeMap_t *p;
    534 	RF_PhysDiskAddr_t *pdp, *trailer, *pdaList = NULL, *pdaEnd = NULL;
    535 	int     count = 0, t;
    536 
    537 	for (p = hdr->stripeMap; p; p = p->next) {
    538 
    539 		/* link the 3 pda lists into the accumulating pda list */
    540 
    541 		if (!pdaList)
    542 			pdaList = p->qInfo;
    543 		else
    544 			pdaEnd->next = p->qInfo;
    545 		for (trailer = NULL, pdp = p->qInfo; pdp;) {
    546 			trailer = pdp;
    547 			pdp = pdp->next;
    548 			count++;
    549 		}
    550 		if (trailer)
    551 			pdaEnd = trailer;
    552 
    553 		if (!pdaList)
    554 			pdaList = p->parityInfo;
    555 		else
    556 			pdaEnd->next = p->parityInfo;
    557 		for (trailer = NULL, pdp = p->parityInfo; pdp;) {
    558 			trailer = pdp;
    559 			pdp = pdp->next;
    560 			count++;
    561 		}
    562 		if (trailer)
    563 			pdaEnd = trailer;
    564 
    565 		if (!pdaList)
    566 			pdaList = p->physInfo;
    567 		else
    568 			pdaEnd->next = p->physInfo;
    569 		for (trailer = NULL, pdp = p->physInfo; pdp;) {
    570 			trailer = pdp;
    571 			pdp = pdp->next;
    572 			count++;
    573 		}
    574 		if (trailer)
    575 			pdaEnd = trailer;
    576 	}
    577 
    578 	/* debug only */
    579 	for (t = 0, pdp = pdaList; pdp; pdp = pdp->next)
    580 		t++;
    581 	RF_ASSERT(t == count);
    582 
    583 	if (pdaList)
    584 		rf_FreePDAList(raidPtr, pdaList);
    585 	rf_FreeASMList(raidPtr, hdr->stripeMap);
    586 	rf_FreeAccessStripeMapHeader(raidPtr, hdr);
    587 }
    588 /* We can't use the large write optimization if there are any failures
    589  * in the stripe.  In the declustered layout, there is no way to
    590  * immediately determine what disks constitute a stripe, so we
    591  * actually have to hunt through the stripe looking for failures.  The
    592  * reason we map the parity instead of just using asm->parityInfo->col
    593  * is because the latter may have been already redirected to a spare
    594  * drive, which would mess up the computation of the stripe offset.
    595  *
    596  * ASSUMES AT MOST ONE FAILURE IN THE STRIPE.  */
    597 int
    598 rf_CheckStripeForFailures(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
    599 {
    600 	RF_RowCol_t tcol, pcol, *diskids, i;
    601 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
    602 	RF_StripeCount_t stripeOffset;
    603 	int     numFailures;
    604 	RF_RaidAddr_t sosAddr;
    605 	RF_SectorNum_t diskOffset, poffset;
    606 
    607 	/* quick out in the fault-free case.  */
    608 	rf_lock_mutex2(raidPtr->mutex);
    609 	numFailures = raidPtr->numFailures;
    610 	rf_unlock_mutex2(raidPtr->mutex);
    611 	if (numFailures == 0)
    612 		return (0);
    613 
    614 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr,
    615 						     asmap->raidAddress);
    616 	(layoutPtr->map->IdentifyStripe) (raidPtr, asmap->raidAddress,
    617 					  &diskids);
    618 	(layoutPtr->map->MapParity) (raidPtr, asmap->raidAddress,
    619 				     &pcol, &poffset, 0);	/* get pcol */
    620 
    621 	/* this need not be true if we've redirected the access to a
    622 	 * spare in another row RF_ASSERT(row == testrow); */
    623 	stripeOffset = 0;
    624 	for (i = 0; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++) {
    625 		if (diskids[i] != pcol) {
    626 			if (RF_DEAD_DISK(raidPtr->Disks[diskids[i]].status)) {
    627 				if (raidPtr->status != rf_rs_reconstructing)
    628 					return (1);
    629 				RF_ASSERT(raidPtr->reconControl->fcol == diskids[i]);
    630 				layoutPtr->map->MapSector(raidPtr,
    631 				    sosAddr + stripeOffset * layoutPtr->sectorsPerStripeUnit,
    632 				    &tcol, &diskOffset, 0);
    633 				RF_ASSERT(tcol == diskids[i]);
    634 				if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, diskOffset))
    635 					return (1);
    636 				asmap->flags |= RF_ASM_REDIR_LARGE_WRITE;
    637 				return (0);
    638 			}
    639 			stripeOffset++;
    640 		}
    641 	}
    642 	return (0);
    643 }
    644 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD >0)
    645 /*
    646    return the number of failed data units in the stripe.
    647 */
    648 
    649 int
    650 rf_NumFailedDataUnitsInStripe(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
    651 {
    652 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
    653 	RF_RowCol_t tcol, i;
    654 	RF_SectorNum_t diskOffset;
    655 	RF_RaidAddr_t sosAddr;
    656 	int     numFailures;
    657 
    658 	/* quick out in the fault-free case.  */
    659 	rf_lock_mutex2(raidPtr->mutex);
    660 	numFailures = raidPtr->numFailures;
    661 	rf_unlock_mutex2(raidPtr->mutex);
    662 	if (numFailures == 0)
    663 		return (0);
    664 	numFailures = 0;
    665 
    666 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr,
    667 						     asmap->raidAddress);
    668 	for (i = 0; i < layoutPtr->numDataCol; i++) {
    669 		(layoutPtr->map->MapSector) (raidPtr, sosAddr + i * layoutPtr->sectorsPerStripeUnit,
    670 		    &tcol, &diskOffset, 0);
    671 		if (RF_DEAD_DISK(raidPtr->Disks[tcol].status))
    672 			numFailures++;
    673 	}
    674 
    675 	return numFailures;
    676 }
    677 #endif
    678 
    679 /****************************************************************************
    680  *
    681  * debug routines
    682  *
    683  ***************************************************************************/
    684 #if RF_DEBUG_MAP
    685 void
    686 rf_PrintAccessStripeMap(RF_AccessStripeMapHeader_t *asm_h)
    687 {
    688 	rf_PrintFullAccessStripeMap(asm_h, 0);
    689 }
    690 #endif
    691 
    692 /* prbuf - flag to print buffer pointers */
    693 void
    694 rf_PrintFullAccessStripeMap(RF_AccessStripeMapHeader_t *asm_h, int prbuf)
    695 {
    696 	int     i;
    697 	RF_AccessStripeMap_t *asmap = asm_h->stripeMap;
    698 	RF_PhysDiskAddr_t *p;
    699 	printf("%d stripes total\n", (int) asm_h->numStripes);
    700 	for (; asmap; asmap = asmap->next) {
    701 		/* printf("Num failures: %d\n",asmap->numDataFailed); */
    702 		/* printf("Num sectors:
    703 		 * %d\n",(int)asmap->totalSectorsAccessed); */
    704 		printf("Stripe %d (%d sectors), failures: %d data, %d parity: ",
    705 		    (int) asmap->stripeID,
    706 		    (int) asmap->totalSectorsAccessed,
    707 		    (int) asmap->numDataFailed,
    708 		    (int) asmap->numParityFailed);
    709 		if (asmap->parityInfo) {
    710 			printf("Parity [c%d s%d-%d", asmap->parityInfo->col,
    711 			    (int) asmap->parityInfo->startSector,
    712 			    (int) (asmap->parityInfo->startSector +
    713 				asmap->parityInfo->numSector - 1));
    714 			if (prbuf)
    715 				printf(" b0x%lx", (unsigned long) asmap->parityInfo->bufPtr);
    716 			if (asmap->parityInfo->next) {
    717 				printf(", c%d s%d-%d", asmap->parityInfo->next->col,
    718 				    (int) asmap->parityInfo->next->startSector,
    719 				    (int) (asmap->parityInfo->next->startSector +
    720 					asmap->parityInfo->next->numSector - 1));
    721 				if (prbuf)
    722 					printf(" b0x%lx", (unsigned long) asmap->parityInfo->next->bufPtr);
    723 				RF_ASSERT(asmap->parityInfo->next->next == NULL);
    724 			}
    725 			printf("]\n\t");
    726 		}
    727 		for (i = 0, p = asmap->physInfo; p; p = p->next, i++) {
    728 			printf("SU c%d s%d-%d ", p->col, (int) p->startSector,
    729 			    (int) (p->startSector + p->numSector - 1));
    730 			if (prbuf)
    731 				printf("b0x%lx ", (unsigned long) p->bufPtr);
    732 			if (i && !(i & 1))
    733 				printf("\n\t");
    734 		}
    735 		printf("\n");
    736 		p = asm_h->stripeMap->failedPDAs[0];
    737 		if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 1)
    738 			printf("[multiple failures]\n");
    739 		else
    740 			if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 0)
    741 				printf("\t[Failed PDA: c%d s%d-%d]\n", p->col,
    742 				    (int) p->startSector, (int) (p->startSector + p->numSector - 1));
    743 	}
    744 }
    745 
    746 #if RF_MAP_DEBUG
    747 void
    748 rf_PrintRaidAddressInfo(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddr,
    749 			RF_SectorCount_t numBlocks)
    750 {
    751 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
    752 	RF_RaidAddr_t ra, sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
    753 
    754 	printf("Raid addrs of SU boundaries from start of stripe to end of access:\n\t");
    755 	for (ra = sosAddr; ra <= raidAddr + numBlocks; ra += layoutPtr->sectorsPerStripeUnit) {
    756 		printf("%d (0x%x), ", (int) ra, (int) ra);
    757 	}
    758 	printf("\n");
    759 	printf("Offset into stripe unit: %d (0x%x)\n",
    760 	    (int) (raidAddr % layoutPtr->sectorsPerStripeUnit),
    761 	    (int) (raidAddr % layoutPtr->sectorsPerStripeUnit));
    762 }
    763 #endif
    764 /* given a parity descriptor and the starting address within a stripe,
    765  * range restrict the parity descriptor to touch only the correct
    766  * stuff.  */
    767 void
    768 rf_ASMParityAdjust(RF_Raid_t *raidPtr,
    769 		   RF_PhysDiskAddr_t *toAdjust,
    770 		   RF_StripeNum_t startAddrWithinStripe,
    771 		   RF_SectorNum_t endAddress,
    772 		   RF_RaidLayout_t *layoutPtr,
    773 		   RF_AccessStripeMap_t *asm_p)
    774 {
    775 	RF_PhysDiskAddr_t *new_pda;
    776 
    777 	/* when we're accessing only a portion of one stripe unit, we
    778 	 * want the parity descriptor to identify only the chunk of
    779 	 * parity associated with the data.  When the access spans
    780 	 * exactly one stripe unit boundary and is less than a stripe
    781 	 * unit in size, it uses two disjoint regions of the parity
    782 	 * unit.  When an access spans more than one stripe unit
    783 	 * boundary, it uses all of the parity unit.
    784 	 *
    785 	 * To better handle the case where stripe units are small, we
    786 	 * may eventually want to change the 2nd case so that if the
    787 	 * SU size is below some threshold, we just read/write the
    788 	 * whole thing instead of breaking it up into two accesses. */
    789 	if (asm_p->numStripeUnitsAccessed == 1) {
    790 		int     x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
    791 		toAdjust->startSector += x;
    792 		toAdjust->raidAddress += x;
    793 		toAdjust->numSector = asm_p->physInfo->numSector;
    794 		RF_ASSERT(toAdjust->numSector != 0);
    795 	} else
    796 		if (asm_p->numStripeUnitsAccessed == 2 && asm_p->totalSectorsAccessed < layoutPtr->sectorsPerStripeUnit) {
    797 			int     x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit);
    798 
    799 			/* create a second pda and copy the parity map info
    800 			 * into it */
    801 			RF_ASSERT(toAdjust->next == NULL);
    802 			/* the following will get freed in rf_FreeAccessStripeMap() via
    803 			   rf_FreePDAList() */
    804 			new_pda = toAdjust->next = rf_AllocPhysDiskAddr(raidPtr);
    805 			*new_pda = *toAdjust;	/* structure assignment */
    806 			new_pda->next = NULL;
    807 
    808 			/* adjust the start sector & number of blocks for the
    809 			 * first parity pda */
    810 			toAdjust->startSector += x;
    811 			toAdjust->raidAddress += x;
    812 			toAdjust->numSector = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, startAddrWithinStripe) - startAddrWithinStripe;
    813 			RF_ASSERT(toAdjust->numSector != 0);
    814 
    815 			/* adjust the second pda */
    816 			new_pda->numSector = endAddress - rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, endAddress);
    817 			/* new_pda->raidAddress =
    818 			 * rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr,
    819 			 * toAdjust->raidAddress); */
    820 			RF_ASSERT(new_pda->numSector != 0);
    821 		}
    822 }
    823 
    824 /* Check if a disk has been spared or failed. If spared, redirect the
    825  * I/O.  If it has been failed, record it in the asm pointer.  Fifth
    826  * arg is whether data or parity.  */
    827 void
    828 rf_ASMCheckStatus(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda_p,
    829 		  RF_AccessStripeMap_t *asm_p, RF_RaidDisk_t *disks,
    830 		  int parity)
    831 {
    832 	RF_DiskStatus_t dstatus;
    833 	RF_RowCol_t fcol;
    834 
    835 	dstatus = disks[pda_p->col].status;
    836 
    837 	if (dstatus == rf_ds_spared) {
    838 		/* if the disk has been spared, redirect access to the spare */
    839 		fcol = pda_p->col;
    840 		pda_p->col = disks[fcol].spareCol;
    841 	} else
    842 		if (dstatus == rf_ds_dist_spared) {
    843 			/* ditto if disk has been spared to dist spare space */
    844 #if RF_DEBUG_MAP
    845 			RF_RowCol_t oc = pda_p->col;
    846 			RF_SectorNum_t oo = pda_p->startSector;
    847 #endif
    848 			if (pda_p->type == RF_PDA_TYPE_DATA)
    849 				raidPtr->Layout.map->MapSector(raidPtr, pda_p->raidAddress, &pda_p->col, &pda_p->startSector, RF_REMAP);
    850 			else
    851 				raidPtr->Layout.map->MapParity(raidPtr, pda_p->raidAddress, &pda_p->col, &pda_p->startSector, RF_REMAP);
    852 
    853 #if RF_DEBUG_MAP
    854 			if (rf_mapDebug) {
    855 				printf("Redirected c %d o %d -> c %d o %d\n", oc, (int) oo,
    856 				    pda_p->col, (int) pda_p->startSector);
    857 			}
    858 #endif
    859 		} else
    860 			if (RF_DEAD_DISK(dstatus)) {
    861 				/* if the disk is inaccessible, mark the
    862 				 * failure */
    863 				if (parity)
    864 					asm_p->numParityFailed++;
    865 				else {
    866 					asm_p->numDataFailed++;
    867 				}
    868 				asm_p->failedPDAs[asm_p->numFailedPDAs] = pda_p;
    869 				asm_p->numFailedPDAs++;
    870 #if 0
    871 				switch (asm_p->numParityFailed + asm_p->numDataFailed) {
    872 				case 1:
    873 					asm_p->failedPDAs[0] = pda_p;
    874 					break;
    875 				case 2:
    876 					asm_p->failedPDAs[1] = pda_p;
    877 				default:
    878 					break;
    879 				}
    880 #endif
    881 			}
    882 	/* the redirected access should never span a stripe unit boundary */
    883 	RF_ASSERT(rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress) ==
    884 	    rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress + pda_p->numSector - 1));
    885 	RF_ASSERT(pda_p->col != -1);
    886 }
    887