Home | History | Annotate | Line # | Download | only in raidframe
      1 /*	$NetBSD: rf_dagffrd.c,v 1.22 2021/07/23 00:54:45 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /*
     30  * rf_dagffrd.c
     31  *
     32  * code for creating fault-free read DAGs
     33  *
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: rf_dagffrd.c,v 1.22 2021/07/23 00:54:45 oster Exp $");
     38 
     39 #include <dev/raidframe/raidframevar.h>
     40 
     41 #include "rf_raid.h"
     42 #include "rf_dag.h"
     43 #include "rf_dagutils.h"
     44 #include "rf_dagfuncs.h"
     45 #include "rf_debugMem.h"
     46 #include "rf_general.h"
     47 #include "rf_dagffrd.h"
     48 
     49 /******************************************************************************
     50  *
     51  * General comments on DAG creation:
     52  *
     53  * All DAGs in this file use roll-away error recovery.  Each DAG has a single
     54  * commit node, usually called "Cmt."  If an error occurs before the Cmt node
     55  * is reached, the execution engine will halt forward execution and work
     56  * backward through the graph, executing the undo functions.  Assuming that
     57  * each node in the graph prior to the Cmt node are undoable and atomic - or -
     58  * does not make changes to permanent state, the graph will fail atomically.
     59  * If an error occurs after the Cmt node executes, the engine will roll-forward
     60  * through the graph, blindly executing nodes until it reaches the end.
     61  * If a graph reaches the end, it is assumed to have completed successfully.
     62  *
     63  * A graph has only 1 Cmt node.
     64  *
     65  */
     66 
     67 
     68 /******************************************************************************
     69  *
     70  * The following wrappers map the standard DAG creation interface to the
     71  * DAG creation routines.  Additionally, these wrappers enable experimentation
     72  * with new DAG structures by providing an extra level of indirection, allowing
     73  * the DAG creation routines to be replaced at this single point.
     74  */
     75 
     76 void
     77 rf_CreateFaultFreeReadDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
     78 			  RF_DagHeader_t *dag_h, void *bp,
     79 			  RF_RaidAccessFlags_t flags,
     80 			  RF_AllocListElem_t *allocList)
     81 {
     82 	rf_CreateNonredundantDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
     83 	    RF_IO_TYPE_READ);
     84 }
     85 
     86 
     87 /******************************************************************************
     88  *
     89  * DAG creation code begins here
     90  */
     91 
     92 /******************************************************************************
     93  *
     94  * creates a DAG to perform a nonredundant read or write of data within one
     95  * stripe.
     96  * For reads, this DAG is as follows:
     97  *
     98  *                   /---- read ----\
     99  *    Header -- Block ---- read ---- Commit -- Terminate
    100  *                   \---- read ----/
    101  *
    102  * For writes, this DAG is as follows:
    103  *
    104  *                    /---- write ----\
    105  *    Header -- Commit ---- write ---- Block -- Terminate
    106  *                    \---- write ----/
    107  *
    108  * There is one disk node per stripe unit accessed, and all disk nodes are in
    109  * parallel.
    110  *
    111  * Tricky point here:  The first disk node (read or write) is created
    112  * normally.  Subsequent disk nodes are created by copying the first one,
    113  * and modifying a few params.  The "succedents" and "antecedents" fields are
    114  * _not_ re-created in each node, but rather left pointing to the same array
    115  * that was malloc'd when the first node was created.  Thus, it's essential
    116  * that when this DAG is freed, the succedents and antecedents fields be freed
    117  * in ONLY ONE of the read nodes.  This does not apply to the "params" field
    118  * because it is recreated for each READ node.
    119  *
    120  * Note that normal-priority accesses do not need to be tagged with their
    121  * parity stripe ID, because they will never be promoted.  Hence, I've
    122  * commented-out the code to do this, and marked it with UNNEEDED.
    123  *
    124  *****************************************************************************/
    125 
    126 void
    127 rf_CreateNonredundantDAG(RF_Raid_t *raidPtr,
    128     RF_AccessStripeMap_t *asmap, RF_DagHeader_t *dag_h, void *bp,
    129     RF_RaidAccessFlags_t flags, RF_AllocListElem_t *allocList,
    130     RF_IoType_t type)
    131 {
    132 	RF_DagNode_t *diskNodes, *blockNode, *commitNode, *termNode;
    133 	RF_DagNode_t *tmpNode, *tmpdiskNode;
    134 	RF_PhysDiskAddr_t *pda = asmap->physInfo;
    135 	void     (*doFunc) (RF_DagNode_t *), (*undoFunc) (RF_DagNode_t *);
    136 	int     i, n;
    137 	const char   *name;
    138 
    139 	n = asmap->numStripeUnitsAccessed;
    140 	dag_h->creator = "NonredundantDAG";
    141 
    142 	doFunc = rf_NullNodeFunc;
    143 	undoFunc = rf_NullNodeUndoFunc;
    144 	name = NULL;
    145 
    146 	RF_ASSERT(RF_IO_IS_R_OR_W(type));
    147 	switch (type) {
    148 	case RF_IO_TYPE_READ:
    149 		doFunc = rf_DiskReadFunc;
    150 		undoFunc = rf_DiskReadUndoFunc;
    151 		name = "R  ";
    152 #if RF_DEBUG_DAG
    153 		if (rf_dagDebug)
    154 			printf("[Creating non-redundant read DAG]\n");
    155 #endif
    156 		break;
    157 	case RF_IO_TYPE_WRITE:
    158 		doFunc = rf_DiskWriteFunc;
    159 		undoFunc = rf_DiskWriteUndoFunc;
    160 		name = "W  ";
    161 #if RF_DEBUG_DAG
    162 		if (rf_dagDebug)
    163 			printf("[Creating non-redundant write DAG]\n");
    164 #endif
    165 		break;
    166 	default:
    167 		RF_PANIC();
    168 	}
    169 
    170 	/*
    171          * For reads, the dag can not commit until the block node is reached.
    172          * for writes, the dag commits immediately.
    173          */
    174 	dag_h->numCommitNodes = 1;
    175 	dag_h->numCommits = 0;
    176 	dag_h->numSuccedents = 1;
    177 
    178 	/*
    179          * Node count:
    180          * 1 block node
    181          * n data reads (or writes)
    182          * 1 commit node
    183          * 1 terminator node
    184          */
    185 	RF_ASSERT(n > 0);
    186 
    187 	for (i = 0; i < n; i++) {
    188 		tmpNode = rf_AllocDAGNode(raidPtr);
    189 		tmpNode->list_next = dag_h->nodes;
    190 		dag_h->nodes = tmpNode;
    191 	}
    192 	diskNodes = dag_h->nodes;
    193 
    194 	blockNode = rf_AllocDAGNode(raidPtr);
    195 	blockNode->list_next = dag_h->nodes;
    196 	dag_h->nodes = blockNode;
    197 
    198 	commitNode = rf_AllocDAGNode(raidPtr);
    199 	commitNode->list_next = dag_h->nodes;
    200 	dag_h->nodes = commitNode;
    201 
    202 	termNode = rf_AllocDAGNode(raidPtr);
    203 	termNode->list_next = dag_h->nodes;
    204 	dag_h->nodes = termNode;
    205 
    206 	/* initialize nodes */
    207 	switch (type) {
    208 	case RF_IO_TYPE_READ:
    209 		rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    210 		    NULL, n, 0, 0, 0, dag_h, "Nil", allocList);
    211 		rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    212 		    NULL, 1, n, 0, 0, dag_h, "Cmt", allocList);
    213 		rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
    214 		    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    215 		break;
    216 	case RF_IO_TYPE_WRITE:
    217 		rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    218 		    NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
    219 		rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    220 		    NULL, n, 1, 0, 0, dag_h, "Cmt", allocList);
    221 		rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
    222 		    NULL, 0, n, 0, 0, dag_h, "Trm", allocList);
    223 		break;
    224 	default:
    225 		RF_PANIC();
    226 	}
    227 
    228 	tmpdiskNode = diskNodes;
    229 	for (i = 0; i < n; i++) {
    230 		RF_ASSERT(pda != NULL);
    231 		rf_InitNode(tmpdiskNode, rf_wait, RF_FALSE, doFunc, undoFunc, rf_GenericWakeupFunc,
    232 		    1, 1, 4, 0, dag_h, name, allocList);
    233 		tmpdiskNode->params[0].p = pda;
    234 		tmpdiskNode->params[1].p = pda->bufPtr;
    235 		/* parity stripe id is not necessary */
    236 		tmpdiskNode->params[2].v = 0;
    237 		tmpdiskNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0);
    238 		pda = pda->next;
    239 		tmpdiskNode = tmpdiskNode->list_next;
    240 	}
    241 
    242 	/*
    243          * Connect nodes.
    244          */
    245 
    246 	/* connect hdr to block node */
    247 	RF_ASSERT(blockNode->numAntecedents == 0);
    248 	dag_h->succedents[0] = blockNode;
    249 
    250 	if (type == RF_IO_TYPE_READ) {
    251 		/* connecting a nonredundant read DAG */
    252 		RF_ASSERT(blockNode->numSuccedents == n);
    253 		RF_ASSERT(commitNode->numAntecedents == n);
    254 		tmpdiskNode = diskNodes;
    255 		for (i = 0; i < n; i++) {
    256 			/* connect block node to each read node */
    257 			RF_ASSERT(tmpdiskNode->numAntecedents == 1);
    258 			blockNode->succedents[i] = tmpdiskNode;
    259 			tmpdiskNode->antecedents[0] = blockNode;
    260 			tmpdiskNode->antType[0] = rf_control;
    261 
    262 			/* connect each read node to the commit node */
    263 			RF_ASSERT(tmpdiskNode->numSuccedents == 1);
    264 			tmpdiskNode->succedents[0] = commitNode;
    265 			commitNode->antecedents[i] = tmpdiskNode;
    266 			commitNode->antType[i] = rf_control;
    267 			tmpdiskNode = tmpdiskNode->list_next;
    268 		}
    269 		/* connect the commit node to the term node */
    270 		RF_ASSERT(commitNode->numSuccedents == 1);
    271 		RF_ASSERT(termNode->numAntecedents == 1);
    272 		RF_ASSERT(termNode->numSuccedents == 0);
    273 		commitNode->succedents[0] = termNode;
    274 		termNode->antecedents[0] = commitNode;
    275 		termNode->antType[0] = rf_control;
    276 	} else {
    277 		/* connecting a nonredundant write DAG */
    278 		/* connect the block node to the commit node */
    279 		RF_ASSERT(blockNode->numSuccedents == 1);
    280 		RF_ASSERT(commitNode->numAntecedents == 1);
    281 		blockNode->succedents[0] = commitNode;
    282 		commitNode->antecedents[0] = blockNode;
    283 		commitNode->antType[0] = rf_control;
    284 
    285 		RF_ASSERT(commitNode->numSuccedents == n);
    286 		RF_ASSERT(termNode->numAntecedents == n);
    287 		RF_ASSERT(termNode->numSuccedents == 0);
    288 		tmpdiskNode = diskNodes;
    289 		for (i = 0; i < n; i++) {
    290 			/* connect the commit node to each write node */
    291 			RF_ASSERT(tmpdiskNode->numAntecedents == 1);
    292 			commitNode->succedents[i] = tmpdiskNode;
    293 			tmpdiskNode->antecedents[0] = commitNode;
    294 			tmpdiskNode->antType[0] = rf_control;
    295 
    296 			/* connect each write node to the term node */
    297 			RF_ASSERT(tmpdiskNode->numSuccedents == 1);
    298 			tmpdiskNode->succedents[0] = termNode;
    299 			termNode->antecedents[i] = tmpdiskNode;
    300 			termNode->antType[i] = rf_control;
    301 			tmpdiskNode = tmpdiskNode->list_next;
    302 		}
    303 	}
    304 }
    305 /******************************************************************************
    306  * Create a fault-free read DAG for RAID level 1
    307  *
    308  * Hdr -> Nil -> Rmir -> Cmt -> Trm
    309  *
    310  * The "Rmir" node schedules a read from the disk in the mirror pair with the
    311  * shortest disk queue.  the proper queue is selected at Rmir execution.  this
    312  * deferred mapping is unlike other archs in RAIDframe which generally fix
    313  * mapping at DAG creation time.
    314  *
    315  * Parameters:  raidPtr   - description of the physical array
    316  *              asmap     - logical & physical addresses for this access
    317  *              bp        - buffer ptr (for holding read data)
    318  *              flags     - general flags (e.g. disk locking)
    319  *              allocList - list of memory allocated in DAG creation
    320  *****************************************************************************/
    321 
    322 static void
    323 CreateMirrorReadDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
    324     RF_DagHeader_t *dag_h, void *bp,
    325     RF_RaidAccessFlags_t flags, RF_AllocListElem_t *allocList,
    326     void (*readfunc) (RF_DagNode_t * node))
    327 {
    328 	RF_DagNode_t *readNodes, *blockNode, *commitNode, *termNode;
    329 	RF_DagNode_t *tmpNode, *tmpreadNode;
    330 	RF_PhysDiskAddr_t *data_pda = asmap->physInfo;
    331 	RF_PhysDiskAddr_t *parity_pda = asmap->parityInfo;
    332 	int     i, n;
    333 
    334 	n = asmap->numStripeUnitsAccessed;
    335 	dag_h->creator = "RaidOneReadDAG";
    336 #if RF_DEBUG_DAG
    337 	if (rf_dagDebug) {
    338 		printf("[Creating RAID level 1 read DAG]\n");
    339 	}
    340 #endif
    341 	/*
    342          * This dag can not commit until the commit node is reached
    343          * errors prior to the commit point imply the dag has failed.
    344          */
    345 	dag_h->numCommitNodes = 1;
    346 	dag_h->numCommits = 0;
    347 	dag_h->numSuccedents = 1;
    348 
    349 	/*
    350          * Node count:
    351          * n data reads
    352          * 1 block node
    353          * 1 commit node
    354          * 1 terminator node
    355          */
    356 	RF_ASSERT(n > 0);
    357 
    358 	for (i = 0; i < n; i++) {
    359 		tmpNode = rf_AllocDAGNode(raidPtr);
    360 		tmpNode->list_next = dag_h->nodes;
    361 		dag_h->nodes = tmpNode;
    362 	}
    363 	readNodes = dag_h->nodes;
    364 
    365 	blockNode = rf_AllocDAGNode(raidPtr);
    366 	blockNode->list_next = dag_h->nodes;
    367 	dag_h->nodes = blockNode;
    368 
    369 	commitNode = rf_AllocDAGNode(raidPtr);
    370 	commitNode->list_next = dag_h->nodes;
    371 	dag_h->nodes = commitNode;
    372 
    373 	termNode = rf_AllocDAGNode(raidPtr);
    374 	termNode->list_next = dag_h->nodes;
    375 	dag_h->nodes = termNode;
    376 
    377 	/* initialize nodes */
    378 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc,
    379 	    rf_NullNodeUndoFunc, NULL, n, 0, 0, 0, dag_h, "Nil", allocList);
    380 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc,
    381 	    rf_NullNodeUndoFunc, NULL, 1, n, 0, 0, dag_h, "Cmt", allocList);
    382 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc,
    383 	    rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    384 
    385 	tmpreadNode = readNodes;
    386 	for (i = 0; i < n; i++) {
    387 		RF_ASSERT(data_pda != NULL);
    388 		RF_ASSERT(parity_pda != NULL);
    389 		rf_InitNode(tmpreadNode, rf_wait, RF_FALSE, readfunc,
    390 		    rf_DiskReadMirrorUndoFunc, rf_GenericWakeupFunc, 1, 1, 5, 0, dag_h,
    391 		    "Rmir", allocList);
    392 		tmpreadNode->params[0].p = data_pda;
    393 		tmpreadNode->params[1].p = data_pda->bufPtr;
    394 		/* parity stripe id is not necessary */
    395 		tmpreadNode->params[2].p = 0;
    396 		tmpreadNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0);
    397 		tmpreadNode->params[4].p = parity_pda;
    398 		data_pda = data_pda->next;
    399 		parity_pda = parity_pda->next;
    400 		tmpreadNode = tmpreadNode->list_next;
    401 	}
    402 
    403 	/*
    404          * Connect nodes
    405          */
    406 
    407 	/* connect hdr to block node */
    408 	RF_ASSERT(blockNode->numAntecedents == 0);
    409 	dag_h->succedents[0] = blockNode;
    410 
    411 	/* connect block node to read nodes */
    412 	RF_ASSERT(blockNode->numSuccedents == n);
    413 	tmpreadNode = readNodes;
    414 	for (i = 0; i < n; i++) {
    415 		RF_ASSERT(tmpreadNode->numAntecedents == 1);
    416 		blockNode->succedents[i] = tmpreadNode;
    417 		tmpreadNode->antecedents[0] = blockNode;
    418 		tmpreadNode->antType[0] = rf_control;
    419 		tmpreadNode = tmpreadNode->list_next;
    420 	}
    421 
    422 	/* connect read nodes to commit node */
    423 	RF_ASSERT(commitNode->numAntecedents == n);
    424 	tmpreadNode = readNodes;
    425 	for (i = 0; i < n; i++) {
    426 		RF_ASSERT(tmpreadNode->numSuccedents == 1);
    427 		tmpreadNode->succedents[0] = commitNode;
    428 		commitNode->antecedents[i] = tmpreadNode;
    429 		commitNode->antType[i] = rf_control;
    430 		tmpreadNode = tmpreadNode->list_next;
    431 	}
    432 
    433 	/* connect commit node to term node */
    434 	RF_ASSERT(commitNode->numSuccedents == 1);
    435 	RF_ASSERT(termNode->numAntecedents == 1);
    436 	RF_ASSERT(termNode->numSuccedents == 0);
    437 	commitNode->succedents[0] = termNode;
    438 	termNode->antecedents[0] = commitNode;
    439 	termNode->antType[0] = rf_control;
    440 }
    441 
    442 void
    443 rf_CreateMirrorIdleReadDAG(
    444     RF_Raid_t * raidPtr,
    445     RF_AccessStripeMap_t * asmap,
    446     RF_DagHeader_t * dag_h,
    447     void *bp,
    448     RF_RaidAccessFlags_t flags,
    449     RF_AllocListElem_t * allocList)
    450 {
    451 	CreateMirrorReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
    452 	    rf_DiskReadMirrorIdleFunc);
    453 }
    454 
    455 #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0)
    456 
    457 void
    458 rf_CreateMirrorPartitionReadDAG(RF_Raid_t *raidPtr,
    459 				RF_AccessStripeMap_t *asmap,
    460 				RF_DagHeader_t *dag_h, void *bp,
    461 				RF_RaidAccessFlags_t flags,
    462 				RF_AllocListElem_t *allocList)
    463 {
    464 	CreateMirrorReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
    465 	    rf_DiskReadMirrorPartitionFunc);
    466 }
    467 #endif
    468