Home | History | Annotate | Line # | Download | only in raidframe
      1 /*	$NetBSD: rf_raid1.c,v 1.39 2021/07/23 22:34:12 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: William V. Courtright II
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /*****************************************************************************
     30  *
     31  * rf_raid1.c -- implements RAID Level 1
     32  *
     33  *****************************************************************************/
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: rf_raid1.c,v 1.39 2021/07/23 22:34:12 oster Exp $");
     37 
     38 #include "rf_raid.h"
     39 #include "rf_raid1.h"
     40 #include "rf_dag.h"
     41 #include "rf_dagffrd.h"
     42 #include "rf_dagffwr.h"
     43 #include "rf_dagdegrd.h"
     44 #include "rf_dagutils.h"
     45 #include "rf_dagfuncs.h"
     46 #include "rf_diskqueue.h"
     47 #include "rf_general.h"
     48 #include "rf_utils.h"
     49 #include "rf_parityscan.h"
     50 #include "rf_mcpair.h"
     51 #include "rf_layout.h"
     52 #include "rf_map.h"
     53 #include "rf_engine.h"
     54 #include "rf_reconbuffer.h"
     55 
     56 typedef struct RF_Raid1ConfigInfo_s {
     57 	RF_RowCol_t **stripeIdentifier;
     58 }       RF_Raid1ConfigInfo_t;
     59 /* start of day code specific to RAID level 1 */
     60 int
     61 rf_ConfigureRAID1(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
     62 		  RF_Config_t *cfgPtr)
     63 {
     64 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
     65 	RF_Raid1ConfigInfo_t *info;
     66 	RF_RowCol_t i;
     67 
     68 	/* Sanity check the number of columns... */
     69 	if (raidPtr->numCol < 2 || raidPtr->numCol % 2 != 0) {
     70 		return (EINVAL);
     71 	}
     72 
     73 	/* create a RAID level 1 configuration structure */
     74 	info = RF_MallocAndAdd(sizeof(*info), raidPtr->cleanupList);
     75 	if (info == NULL)
     76 		return (ENOMEM);
     77 	layoutPtr->layoutSpecificInfo = (void *) info;
     78 
     79 	/* ... and fill it in. */
     80 	info->stripeIdentifier = rf_make_2d_array(raidPtr->numCol / 2, 2, raidPtr->cleanupList);
     81 	if (info->stripeIdentifier == NULL)
     82 		return (ENOMEM);
     83 	for (i = 0; i < (raidPtr->numCol / 2); i++) {
     84 		info->stripeIdentifier[i][0] = (2 * i);
     85 		info->stripeIdentifier[i][1] = (2 * i) + 1;
     86 	}
     87 
     88 	/* this implementation of RAID level 1 uses one row of numCol disks
     89 	 * and allows multiple (numCol / 2) stripes per row.  A stripe
     90 	 * consists of a single data unit and a single parity (mirror) unit.
     91 	 * stripe id = raidAddr / stripeUnitSize */
     92 	raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2) * layoutPtr->sectorsPerStripeUnit;
     93 	layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2);
     94 	layoutPtr->dataSectorsPerStripe = layoutPtr->sectorsPerStripeUnit;
     95 	layoutPtr->numDataCol = 1;
     96 	layoutPtr->numParityCol = 1;
     97 	return (0);
     98 }
     99 
    100 
    101 /* returns the physical disk location of the primary copy in the mirror pair */
    102 void
    103 rf_MapSectorRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t raidSector,
    104 		  RF_RowCol_t *col, RF_SectorNum_t *diskSector,
    105 		  int remap)
    106 {
    107 	RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
    108 	RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2);
    109 
    110 	*col = 2 * mirrorPair;
    111 	*diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
    112 }
    113 
    114 
    115 /* Map Parity
    116  *
    117  * returns the physical disk location of the secondary copy in the mirror
    118  * pair
    119  */
    120 void
    121 rf_MapParityRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t raidSector,
    122 		  RF_RowCol_t *col, RF_SectorNum_t *diskSector,
    123 		  int remap)
    124 {
    125 	RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit;
    126 	RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2);
    127 
    128 	*col = (2 * mirrorPair) + 1;
    129 
    130 	*diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
    131 }
    132 
    133 
    134 /* IdentifyStripeRAID1
    135  *
    136  * returns a list of disks for a given redundancy group
    137  */
    138 void
    139 rf_IdentifyStripeRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t addr,
    140 		       RF_RowCol_t **diskids)
    141 {
    142 	RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout, addr);
    143 	RF_Raid1ConfigInfo_t *info = raidPtr->Layout.layoutSpecificInfo;
    144 	RF_ASSERT(stripeID >= 0);
    145 	RF_ASSERT(addr >= 0);
    146 	*diskids = info->stripeIdentifier[stripeID % (raidPtr->numCol / 2)];
    147 	RF_ASSERT(*diskids);
    148 }
    149 
    150 
    151 /* MapSIDToPSIDRAID1
    152  *
    153  * maps a logical stripe to a stripe in the redundant array
    154  */
    155 void
    156 rf_MapSIDToPSIDRAID1(RF_RaidLayout_t *layoutPtr,
    157 		     RF_StripeNum_t stripeID,
    158 		     RF_StripeNum_t *psID, RF_ReconUnitNum_t *which_ru)
    159 {
    160 	*which_ru = 0;
    161 	*psID = stripeID;
    162 }
    163 
    164 
    165 
    166 /******************************************************************************
    167  * select a graph to perform a single-stripe access
    168  *
    169  * Parameters:  raidPtr    - description of the physical array
    170  *              type       - type of operation (read or write) requested
    171  *              asmap      - logical & physical addresses for this access
    172  *              createFunc - name of function to use to create the graph
    173  *****************************************************************************/
    174 
    175 void
    176 rf_RAID1DagSelect(RF_Raid_t *raidPtr, RF_IoType_t type,
    177 		  RF_AccessStripeMap_t *asmap, RF_VoidFuncPtr *createFunc)
    178 {
    179 	RF_RowCol_t fcol, oc __unused;
    180 	RF_PhysDiskAddr_t *failedPDA;
    181 	int     prior_recon;
    182 	RF_RowStatus_t rstat;
    183 	RF_SectorNum_t oo __unused;
    184 
    185 
    186 	RF_ASSERT(RF_IO_IS_R_OR_W(type));
    187 
    188 	if (asmap->numDataFailed + asmap->numParityFailed > 1) {
    189 #if RF_DEBUG_DAG
    190 		if (rf_dagDebug)
    191 			RF_ERRORMSG("Multiple disks failed in a single group!  Aborting I/O operation.\n");
    192 #endif
    193 		*createFunc = NULL;
    194 		return;
    195 	}
    196 	if (asmap->numDataFailed + asmap->numParityFailed) {
    197 		/*
    198 	         * We've got a fault. Re-map to spare space, iff applicable.
    199 	         * Shouldn't the arch-independent code do this for us?
    200 	         * Anyway, it turns out if we don't do this here, then when
    201 	         * we're reconstructing, writes go only to the surviving
    202 	         * original disk, and aren't reflected on the reconstructed
    203 	         * spare. Oops. --jimz
    204 	         */
    205 		failedPDA = asmap->failedPDAs[0];
    206 		fcol = failedPDA->col;
    207 		rstat = raidPtr->status;
    208 		prior_recon = (rstat == rf_rs_reconfigured) || (
    209 		    (rstat == rf_rs_reconstructing) ?
    210 		    rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, failedPDA->startSector) : 0
    211 		    );
    212 		if (prior_recon) {
    213 			oc = fcol;
    214 			oo = failedPDA->startSector;
    215 			/*
    216 		         * If we did distributed sparing, we'd monkey with that here.
    217 		         * But we don't, so we'll
    218 		         */
    219 			failedPDA->col = raidPtr->Disks[fcol].spareCol;
    220 			/*
    221 		         * Redirect other components, iff necessary. This looks
    222 		         * pretty suspicious to me, but it's what the raid5
    223 		         * DAG select does.
    224 		         */
    225 			if (asmap->parityInfo->next) {
    226 				if (failedPDA == asmap->parityInfo) {
    227 					failedPDA->next->col = failedPDA->col;
    228 				} else {
    229 					if (failedPDA == asmap->parityInfo->next) {
    230 						asmap->parityInfo->col = failedPDA->col;
    231 					}
    232 				}
    233 			}
    234 #if RF_DEBUG_DAG > 0 || RF_DEBUG_MAP > 0
    235 			if (rf_dagDebug || rf_mapDebug) {
    236 				printf("raid%d: Redirected type '%c' c %d o %ld -> c %d o %ld\n",
    237 				       raidPtr->raidid, type, oc,
    238 				       (long) oo,
    239 				       failedPDA->col,
    240 				       (long) failedPDA->startSector);
    241 			}
    242 #endif
    243 			asmap->numDataFailed = asmap->numParityFailed = 0;
    244 		}
    245 	}
    246 	if (type == RF_IO_TYPE_READ) {
    247 		if (asmap->numDataFailed == 0)
    248 			*createFunc = (RF_VoidFuncPtr) rf_CreateMirrorIdleReadDAG;
    249 		else
    250 			*createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneDegradedReadDAG;
    251 	} else {
    252 		*createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneWriteDAG;
    253 	}
    254 }
    255 
    256 int
    257 rf_VerifyParityRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddr,
    258 		     RF_PhysDiskAddr_t *parityPDA, int correct_it,
    259 		     RF_RaidAccessFlags_t flags)
    260 {
    261 	int     nbytes, bcount, stripeWidth, ret, i, j, nbad, *bbufs;
    262 	RF_DagNode_t *blockNode, *wrBlock;
    263 	RF_DagHeader_t *rd_dag_h, *wr_dag_h;
    264 	RF_AccessStripeMapHeader_t *asm_h;
    265 	RF_AllocListElem_t *allocList;
    266 #if RF_ACC_TRACE > 0
    267 	RF_AccTraceEntry_t tracerec;
    268 #endif
    269 	RF_ReconUnitNum_t which_ru;
    270 	RF_RaidLayout_t *layoutPtr;
    271 	RF_AccessStripeMap_t *aasm;
    272 	RF_SectorCount_t nsector;
    273 	RF_RaidAddr_t startAddr;
    274 	char   *bf, *buf1, *buf2;
    275 	RF_PhysDiskAddr_t *pda;
    276 	RF_StripeNum_t psID;
    277 	RF_MCPair_t *mcpair;
    278 
    279 	layoutPtr = &raidPtr->Layout;
    280 	startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr);
    281 	nsector = parityPDA->numSector;
    282 	nbytes = rf_RaidAddressToByte(raidPtr, nsector);
    283 	psID = rf_RaidAddressToParityStripeID(layoutPtr, raidAddr, &which_ru);
    284 
    285 	asm_h = NULL;
    286 	rd_dag_h = wr_dag_h = NULL;
    287 	mcpair = NULL;
    288 
    289 	ret = RF_PARITY_COULD_NOT_VERIFY;
    290 
    291 	rf_MakeAllocList(allocList);
    292 	if (allocList == NULL)
    293 		return (RF_PARITY_COULD_NOT_VERIFY);
    294 	mcpair = rf_AllocMCPair(raidPtr);
    295 	if (mcpair == NULL)
    296 		goto done;
    297 	RF_ASSERT(layoutPtr->numDataCol == layoutPtr->numParityCol);
    298 	stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
    299 	bcount = nbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol);
    300 	bf = RF_MallocAndAdd(bcount, allocList);
    301 	if (bf == NULL)
    302 		goto done;
    303 #if RF_DEBUG_VERIFYPARITY
    304 	if (rf_verifyParityDebug) {
    305 		printf("raid%d: RAID1 parity verify: buf=%lx bcount=%d (%lx - %lx)\n",
    306 		       raidPtr->raidid, (long) bf, bcount, (long) bf,
    307 		       (long) bf + bcount);
    308 	}
    309 #endif
    310 	/*
    311          * Generate a DAG which will read the entire stripe- then we can
    312          * just compare data chunks versus "parity" chunks.
    313          */
    314 
    315 	rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, nbytes, bf,
    316 	    rf_DiskReadFunc, rf_DiskReadUndoFunc, "Rod", allocList, flags,
    317 	    RF_IO_NORMAL_PRIORITY);
    318 	if (rd_dag_h == NULL)
    319 		goto done;
    320 	blockNode = rd_dag_h->succedents[0];
    321 
    322 	/*
    323          * Map the access to physical disk addresses (PDAs)- this will
    324          * get us both a list of data addresses, and "parity" addresses
    325          * (which are really mirror copies).
    326          */
    327 	asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe,
    328 	    bf, RF_DONT_REMAP);
    329 	aasm = asm_h->stripeMap;
    330 
    331 	buf1 = bf;
    332 	/*
    333          * Loop through the data blocks, setting up read nodes for each.
    334          */
    335 	for (pda = aasm->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) {
    336 		RF_ASSERT(pda);
    337 
    338 		rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
    339 
    340 		RF_ASSERT(pda->numSector != 0);
    341 		if (rf_TryToRedirectPDA(raidPtr, pda, 0)) {
    342 			/* cannot verify parity with dead disk */
    343 			goto done;
    344 		}
    345 		pda->bufPtr = buf1;
    346 		blockNode->succedents[i]->params[0].p = pda;
    347 		blockNode->succedents[i]->params[1].p = buf1;
    348 		blockNode->succedents[i]->params[2].v = psID;
    349 		blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    350 		buf1 += nbytes;
    351 	}
    352 	RF_ASSERT(pda == NULL);
    353 	/*
    354          * keep i, buf1 running
    355          *
    356          * Loop through parity blocks, setting up read nodes for each.
    357          */
    358 	for (pda = aasm->parityInfo; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++, pda = pda->next) {
    359 		RF_ASSERT(pda);
    360 		rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1);
    361 		RF_ASSERT(pda->numSector != 0);
    362 		if (rf_TryToRedirectPDA(raidPtr, pda, 0)) {
    363 			/* cannot verify parity with dead disk */
    364 			goto done;
    365 		}
    366 		pda->bufPtr = buf1;
    367 		blockNode->succedents[i]->params[0].p = pda;
    368 		blockNode->succedents[i]->params[1].p = buf1;
    369 		blockNode->succedents[i]->params[2].v = psID;
    370 		blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    371 		buf1 += nbytes;
    372 	}
    373 	RF_ASSERT(pda == NULL);
    374 
    375 #if RF_ACC_TRACE > 0
    376 	memset(&tracerec, 0, sizeof(tracerec));
    377 	rd_dag_h->tracerec = &tracerec;
    378 #endif
    379 #if 0
    380 	if (rf_verifyParityDebug > 1) {
    381 		printf("raid%d: RAID1 parity verify read dag:\n",
    382 		       raidPtr->raidid);
    383 		rf_PrintDAGList(rd_dag_h);
    384 	}
    385 #endif
    386 	RF_LOCK_MCPAIR(mcpair);
    387 	mcpair->flag = 0;
    388 	RF_UNLOCK_MCPAIR(mcpair);
    389 
    390 	rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
    391 	    (void *) mcpair);
    392 
    393 	RF_LOCK_MCPAIR(mcpair);
    394 	while (mcpair->flag == 0) {
    395 		RF_WAIT_MCPAIR(mcpair);
    396 	}
    397 	RF_UNLOCK_MCPAIR(mcpair);
    398 
    399 	if (rd_dag_h->status != rf_enable) {
    400 		RF_ERRORMSG("Unable to verify raid1 parity: can't read stripe\n");
    401 		ret = RF_PARITY_COULD_NOT_VERIFY;
    402 		goto done;
    403 	}
    404 	/*
    405          * buf1 is the beginning of the data blocks chunk
    406          * buf2 is the beginning of the parity blocks chunk
    407          */
    408 	buf1 = bf;
    409 	buf2 = bf + (nbytes * layoutPtr->numDataCol);
    410 	ret = RF_PARITY_OKAY;
    411 	/*
    412          * bbufs is "bad bufs"- an array whose entries are the data
    413          * column numbers where we had miscompares. (That is, column 0
    414          * and column 1 of the array are mirror copies, and are considered
    415          * "data column 0" for this purpose).
    416          */
    417 	bbufs = RF_MallocAndAdd(layoutPtr->numParityCol * sizeof(*bbufs),
    418 	    allocList);
    419 	nbad = 0;
    420 	/*
    421          * Check data vs "parity" (mirror copy).
    422          */
    423 	for (i = 0; i < layoutPtr->numDataCol; i++) {
    424 #if RF_DEBUG_VERIFYPARITY
    425 		if (rf_verifyParityDebug) {
    426 			printf("raid%d: RAID1 parity verify %d bytes: i=%d buf1=%lx buf2=%lx buf=%lx\n",
    427 			       raidPtr->raidid, nbytes, i, (long) buf1,
    428 			       (long) buf2, (long) bf);
    429 		}
    430 #endif
    431 		ret = memcmp(buf1, buf2, nbytes);
    432 		if (ret) {
    433 #if RF_DEBUG_VERIFYPARITY
    434 			if (rf_verifyParityDebug > 1) {
    435 				for (j = 0; j < nbytes; j++) {
    436 					if (buf1[j] != buf2[j])
    437 						break;
    438 				}
    439 				printf("psid=%ld j=%d\n", (long) psID, j);
    440 				printf("buf1 %02x %02x %02x %02x %02x\n", buf1[0] & 0xff,
    441 				    buf1[1] & 0xff, buf1[2] & 0xff, buf1[3] & 0xff, buf1[4] & 0xff);
    442 				printf("buf2 %02x %02x %02x %02x %02x\n", buf2[0] & 0xff,
    443 				    buf2[1] & 0xff, buf2[2] & 0xff, buf2[3] & 0xff, buf2[4] & 0xff);
    444 			}
    445 			if (rf_verifyParityDebug) {
    446 				printf("raid%d: RAID1: found bad parity, i=%d\n", raidPtr->raidid, i);
    447 			}
    448 #endif
    449 			/*
    450 		         * Parity is bad. Keep track of which columns were bad.
    451 		         */
    452 			if (bbufs)
    453 				bbufs[nbad] = i;
    454 			nbad++;
    455 			ret = RF_PARITY_BAD;
    456 		}
    457 		buf1 += nbytes;
    458 		buf2 += nbytes;
    459 	}
    460 
    461 	if ((ret != RF_PARITY_OKAY) && correct_it) {
    462 		ret = RF_PARITY_COULD_NOT_CORRECT;
    463 #if RF_DEBUG_VERIFYPARITY
    464 		if (rf_verifyParityDebug) {
    465 			printf("raid%d: RAID1 parity verify: parity not correct\n", raidPtr->raidid);
    466 		}
    467 #endif
    468 		if (bbufs == NULL)
    469 			goto done;
    470 		/*
    471 	         * Make a DAG with one write node for each bad unit. We'll simply
    472 	         * write the contents of the data unit onto the parity unit for
    473 	         * correction. (It's possible that the mirror copy was the correct
    474 	         * copy, and that we're spooging good data by writing bad over it,
    475 	         * but there's no way we can know that.
    476 	         */
    477 		wr_dag_h = rf_MakeSimpleDAG(raidPtr, nbad, nbytes, bf,
    478 		    rf_DiskWriteFunc, rf_DiskWriteUndoFunc, "Wnp", allocList, flags,
    479 		    RF_IO_NORMAL_PRIORITY);
    480 		if (wr_dag_h == NULL)
    481 			goto done;
    482 		wrBlock = wr_dag_h->succedents[0];
    483 		/*
    484 	         * Fill in a write node for each bad compare.
    485 	         */
    486 		for (i = 0; i < nbad; i++) {
    487 			j = i + layoutPtr->numDataCol;
    488 			pda = blockNode->succedents[j]->params[0].p;
    489 			pda->bufPtr = blockNode->succedents[i]->params[1].p;
    490 			wrBlock->succedents[i]->params[0].p = pda;
    491 			wrBlock->succedents[i]->params[1].p = pda->bufPtr;
    492 			wrBlock->succedents[i]->params[2].v = psID;
    493 			wrBlock->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    494 		}
    495 #if RF_ACC_TRACE > 0
    496 		memset(&tracerec, 0, sizeof(tracerec));
    497 		wr_dag_h->tracerec = &tracerec;
    498 #endif
    499 #if 0
    500 		if (rf_verifyParityDebug > 1) {
    501 			printf("Parity verify write dag:\n");
    502 			rf_PrintDAGList(wr_dag_h);
    503 		}
    504 #endif
    505 		RF_LOCK_MCPAIR(mcpair);
    506 		mcpair->flag = 0;
    507 		RF_UNLOCK_MCPAIR(mcpair);
    508 
    509 		/* fire off the write DAG */
    510 		rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
    511 		    (void *) mcpair);
    512 
    513 		RF_LOCK_MCPAIR(mcpair);
    514 		while (!mcpair->flag) {
    515 			RF_WAIT_MCPAIR(mcpair);
    516 		}
    517 		RF_UNLOCK_MCPAIR(mcpair);
    518 		if (wr_dag_h->status != rf_enable) {
    519 			RF_ERRORMSG("Unable to correct RAID1 parity in VerifyParity\n");
    520 			goto done;
    521 		}
    522 		ret = RF_PARITY_CORRECTED;
    523 	}
    524 done:
    525 	/*
    526          * All done. We might've gotten here without doing part of the function,
    527          * so cleanup what we have to and return our running status.
    528          */
    529 	if (asm_h)
    530 		rf_FreeAccessStripeMap(raidPtr, asm_h);
    531 	if (rd_dag_h)
    532 		rf_FreeDAG(rd_dag_h);
    533 	if (wr_dag_h)
    534 		rf_FreeDAG(wr_dag_h);
    535 	if (mcpair)
    536 		rf_FreeMCPair(raidPtr, mcpair);
    537 	rf_FreeAllocList(allocList);
    538 #if RF_DEBUG_VERIFYPARITY
    539 	if (rf_verifyParityDebug) {
    540 		printf("raid%d: RAID1 parity verify, returning %d\n",
    541 		       raidPtr->raidid, ret);
    542 	}
    543 #endif
    544 	return (ret);
    545 }
    546 
    547 /* rbuf          - the recon buffer to submit
    548  * keep_it       - whether we can keep this buffer or we have to return it
    549  * use_committed - whether to use a committed or an available recon buffer
    550  */
    551 
    552 int
    553 rf_SubmitReconBufferRAID1(RF_ReconBuffer_t *rbuf, int keep_it,
    554 			  int use_committed)
    555 {
    556 	RF_ReconParityStripeStatus_t *pssPtr;
    557 	RF_ReconCtrl_t *reconCtrlPtr;
    558 	int     retcode;
    559 	RF_CallbackValueDesc_t *cb, *p;
    560 	RF_ReconBuffer_t *t;
    561 	RF_Raid_t *raidPtr;
    562 	void *ta;
    563 
    564 	retcode = 0;
    565 
    566 	raidPtr = rbuf->raidPtr;
    567 	reconCtrlPtr = raidPtr->reconControl;
    568 
    569 	RF_ASSERT(rbuf);
    570 	RF_ASSERT(rbuf->col != reconCtrlPtr->fcol);
    571 
    572 #if RF_DEBUG_RECON
    573 	if (rf_reconbufferDebug) {
    574 		printf("raid%d: RAID1 reconbuffer submission c%d psid %ld ru%d (failed offset %ld)\n",
    575 		       raidPtr->raidid, rbuf->col,
    576 		       (long) rbuf->parityStripeID, rbuf->which_ru,
    577 		       (long) rbuf->failedDiskSectorOffset);
    578 	}
    579 #endif
    580 	if (rf_reconDebug) {
    581 		unsigned char *b = rbuf->buffer;
    582 		printf("RAID1 reconbuffer submit psid %ld buf %lx\n",
    583 		    (long) rbuf->parityStripeID, (long) rbuf->buffer);
    584 		printf("RAID1 psid %ld   %02x %02x %02x %02x %02x\n",
    585 		    (long)rbuf->parityStripeID, b[0], b[1], b[2], b[3], b[4]);
    586 	}
    587 	RF_LOCK_PSS_MUTEX(raidPtr, rbuf->parityStripeID);
    588 
    589 	rf_lock_mutex2(reconCtrlPtr->rb_mutex);
    590 	while(reconCtrlPtr->rb_lock) {
    591 		rf_wait_cond2(reconCtrlPtr->rb_cv, reconCtrlPtr->rb_mutex);
    592 	}
    593 	reconCtrlPtr->rb_lock = 1;
    594 	rf_unlock_mutex2(reconCtrlPtr->rb_mutex);
    595 
    596 	pssPtr = rf_LookupRUStatus(raidPtr, reconCtrlPtr->pssTable,
    597 	    rbuf->parityStripeID, rbuf->which_ru, RF_PSS_NONE, NULL);
    598 	RF_ASSERT(pssPtr);	/* if it didn't exist, we wouldn't have gotten
    599 				 * an rbuf for it */
    600 
    601 	/*
    602          * Since this is simple mirroring, the first submission for a stripe is also
    603          * treated as the last.
    604          */
    605 
    606 	t = NULL;
    607 	if (keep_it) {
    608 #if RF_DEBUG_RECON
    609 		if (rf_reconbufferDebug) {
    610 			printf("raid%d: RAID1 rbuf submission: keeping rbuf\n",
    611 			       raidPtr->raidid);
    612 		}
    613 #endif
    614 		t = rbuf;
    615 	} else {
    616 		if (use_committed) {
    617 #if RF_DEBUG_RECON
    618 			if (rf_reconbufferDebug) {
    619 				printf("raid%d: RAID1 rbuf submission: using committed rbuf\n", raidPtr->raidid);
    620 			}
    621 #endif
    622 			t = reconCtrlPtr->committedRbufs;
    623 			RF_ASSERT(t);
    624 			reconCtrlPtr->committedRbufs = t->next;
    625 			t->next = NULL;
    626 		} else
    627 			if (reconCtrlPtr->floatingRbufs) {
    628 #if RF_DEBUG_RECON
    629 				if (rf_reconbufferDebug) {
    630 					printf("raid%d: RAID1 rbuf submission: using floating rbuf\n", raidPtr->raidid);
    631 				}
    632 #endif
    633 				t = reconCtrlPtr->floatingRbufs;
    634 				reconCtrlPtr->floatingRbufs = t->next;
    635 				t->next = NULL;
    636 			}
    637 	}
    638 	if (t == NULL) {
    639 #if RF_DEBUG_RECON
    640 		if (rf_reconbufferDebug) {
    641 			printf("raid%d: RAID1 rbuf submission: waiting for rbuf\n", raidPtr->raidid);
    642 		}
    643 #endif
    644 		RF_ASSERT((keep_it == 0) && (use_committed == 0));
    645 		raidPtr->procsInBufWait++;
    646 		if ((raidPtr->procsInBufWait == (raidPtr->numCol - 1))
    647 		    && (raidPtr->numFullReconBuffers == 0)) {
    648 			/* ruh-ro */
    649 			RF_ERRORMSG("Buffer wait deadlock\n");
    650 			rf_PrintPSStatusTable(raidPtr);
    651 			RF_PANIC();
    652 		}
    653 		pssPtr->flags |= RF_PSS_BUFFERWAIT;
    654 		cb = rf_AllocCallbackValueDesc(raidPtr);
    655 		cb->col = rbuf->col;
    656 		cb->v = rbuf->parityStripeID;
    657 		cb->next = NULL;
    658 		if (reconCtrlPtr->bufferWaitList == NULL) {
    659 			/* we are the wait list- lucky us */
    660 			reconCtrlPtr->bufferWaitList = cb;
    661 		} else {
    662 			/* append to wait list */
    663 			for (p = reconCtrlPtr->bufferWaitList; p->next; p = p->next);
    664 			p->next = cb;
    665 		}
    666 		retcode = 1;
    667 		goto out;
    668 	}
    669 	if (t != rbuf) {
    670 		t->col = reconCtrlPtr->fcol;
    671 		t->parityStripeID = rbuf->parityStripeID;
    672 		t->which_ru = rbuf->which_ru;
    673 		t->failedDiskSectorOffset = rbuf->failedDiskSectorOffset;
    674 		t->spCol = rbuf->spCol;
    675 		t->spOffset = rbuf->spOffset;
    676 		/* Swap buffers. DANCE! */
    677 		ta = t->buffer;
    678 		t->buffer = rbuf->buffer;
    679 		rbuf->buffer = ta;
    680 	}
    681 	/*
    682          * Use the rbuf we've been given as the target.
    683          */
    684 	RF_ASSERT(pssPtr->rbuf == NULL);
    685 	pssPtr->rbuf = t;
    686 
    687 	t->count = 1;
    688 	/*
    689          * Below, we use 1 for numDataCol (which is equal to the count in the
    690          * previous line), so we'll always be done.
    691          */
    692 	rf_CheckForFullRbuf(raidPtr, reconCtrlPtr, pssPtr, 1);
    693 
    694 out:
    695 	RF_UNLOCK_PSS_MUTEX(raidPtr, rbuf->parityStripeID);
    696 	rf_lock_mutex2(reconCtrlPtr->rb_mutex);
    697 	reconCtrlPtr->rb_lock = 0;
    698 	rf_broadcast_cond2(reconCtrlPtr->rb_cv);
    699 	rf_unlock_mutex2(reconCtrlPtr->rb_mutex);
    700 #if RF_DEBUG_RECON
    701 	if (rf_reconbufferDebug) {
    702 		printf("raid%d: RAID1 rbuf submission: returning %d\n",
    703 		       raidPtr->raidid, retcode);
    704 	}
    705 #endif
    706 	return (retcode);
    707 }
    708 
    709 RF_HeadSepLimit_t
    710 rf_GetDefaultHeadSepLimitRAID1(RF_Raid_t *raidPtr)
    711 {
    712 	return (10);
    713 }
    714 
    715