Home | History | Annotate | Line # | Download | only in raidframe
      1 /*	$NetBSD: rf_dagfuncs.c,v 1.35 2021/08/07 16:19:15 thorpej Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland, William V. Courtright II
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /*
     30  * dagfuncs.c -- DAG node execution routines
     31  *
     32  * Rules:
     33  * 1. Every DAG execution function must eventually cause node->status to
     34  *    get set to "good" or "bad", and "FinishNode" to be called. In the
     35  *    case of nodes that complete immediately (xor, NullNodeFunc, etc),
     36  *    the node execution function can do these two things directly. In
     37  *    the case of nodes that have to wait for some event (a disk read to
     38  *    complete, a lock to be released, etc) to occur before they can
     39  *    complete, this is typically achieved by having whatever module
     40  *    is doing the operation call GenericWakeupFunc upon completion.
     41  * 2. DAG execution functions should check the status in the DAG header
     42  *    and NOP out their operations if the status is not "enable". However,
     43  *    execution functions that release resources must be sure to release
     44  *    them even when they NOP out the function that would use them.
     45  *    Functions that acquire resources should go ahead and acquire them
     46  *    even when they NOP, so that a downstream release node will not have
     47  *    to check to find out whether or not the acquire was suppressed.
     48  */
     49 
     50 #include <sys/cdefs.h>
     51 __KERNEL_RCSID(0, "$NetBSD: rf_dagfuncs.c,v 1.35 2021/08/07 16:19:15 thorpej Exp $");
     52 
     53 #include <sys/param.h>
     54 #include <sys/ioctl.h>
     55 
     56 #include "rf_archs.h"
     57 #include "rf_raid.h"
     58 #include "rf_dag.h"
     59 #include "rf_layout.h"
     60 #include "rf_etimer.h"
     61 #include "rf_acctrace.h"
     62 #include "rf_diskqueue.h"
     63 #include "rf_dagfuncs.h"
     64 #include "rf_general.h"
     65 #include "rf_engine.h"
     66 #include "rf_dagutils.h"
     67 
     68 #include "rf_kintf.h"
     69 
     70 #if RF_INCLUDE_PARITYLOGGING > 0
     71 #include "rf_paritylog.h"
     72 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
     73 
     74 void     (*rf_DiskReadFunc) (RF_DagNode_t *);
     75 void     (*rf_DiskWriteFunc) (RF_DagNode_t *);
     76 void     (*rf_DiskReadUndoFunc) (RF_DagNode_t *);
     77 void     (*rf_DiskWriteUndoFunc) (RF_DagNode_t *);
     78 void     (*rf_RegularXorUndoFunc) (RF_DagNode_t *);
     79 void     (*rf_SimpleXorUndoFunc) (RF_DagNode_t *);
     80 void     (*rf_RecoveryXorUndoFunc) (RF_DagNode_t *);
     81 
     82 /*****************************************************************************
     83  * main (only) configuration routine for this module
     84  ****************************************************************************/
     85 int
     86 rf_ConfigureDAGFuncs(RF_ShutdownList_t **listp)
     87 {
     88 	RF_ASSERT(((sizeof(long) == 8) && RF_LONGSHIFT == 3) ||
     89 		  ((sizeof(long) == 4) && RF_LONGSHIFT == 2));
     90 	rf_DiskReadFunc = rf_DiskReadFuncForThreads;
     91 	rf_DiskReadUndoFunc = rf_DiskUndoFunc;
     92 	rf_DiskWriteFunc = rf_DiskWriteFuncForThreads;
     93 	rf_DiskWriteUndoFunc = rf_DiskUndoFunc;
     94 	rf_RegularXorUndoFunc = rf_NullNodeUndoFunc;
     95 	rf_SimpleXorUndoFunc = rf_NullNodeUndoFunc;
     96 	rf_RecoveryXorUndoFunc = rf_NullNodeUndoFunc;
     97 	return (0);
     98 }
     99 
    100 
    101 
    102 /*****************************************************************************
    103  * the execution function associated with a terminate node
    104  ****************************************************************************/
    105 void
    106 rf_TerminateFunc(RF_DagNode_t *node)
    107 {
    108 	RF_ASSERT(node->dagHdr->numCommits == node->dagHdr->numCommitNodes);
    109 	node->status = rf_good;
    110 	rf_FinishNode(node, RF_THREAD_CONTEXT);
    111 }
    112 
    113 void
    114 rf_TerminateUndoFunc(RF_DagNode_t *node)
    115 {
    116 }
    117 
    118 
    119 /*****************************************************************************
    120  * execution functions associated with a mirror node
    121  *
    122  * parameters:
    123  *
    124  * 0 - physical disk address of data
    125  * 1 - buffer for holding read data
    126  * 2 - parity stripe ID
    127  * 3 - flags
    128  * 4 - physical disk address of mirror (parity)
    129  *
    130  ****************************************************************************/
    131 
    132 void
    133 rf_DiskReadMirrorIdleFunc(RF_DagNode_t *node)
    134 {
    135 	/* select the mirror copy with the shortest queue and fill in node
    136 	 * parameters with physical disk address */
    137 
    138 	rf_SelectMirrorDiskIdle(node);
    139 	rf_DiskReadFunc(node);
    140 }
    141 
    142 #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
    143 void
    144 rf_DiskReadMirrorPartitionFunc(RF_DagNode_t *node)
    145 {
    146 	/* select the mirror copy with the shortest queue and fill in node
    147 	 * parameters with physical disk address */
    148 
    149 	rf_SelectMirrorDiskPartition(node);
    150 	rf_DiskReadFunc(node);
    151 }
    152 #endif
    153 
    154 void
    155 rf_DiskReadMirrorUndoFunc(RF_DagNode_t *node)
    156 {
    157 }
    158 
    159 
    160 
    161 #if RF_INCLUDE_PARITYLOGGING > 0
    162 /*****************************************************************************
    163  * the execution function associated with a parity log update node
    164  ****************************************************************************/
    165 void
    166 rf_ParityLogUpdateFunc(RF_DagNode_t *node)
    167 {
    168 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    169 	void *bf = (void *) node->params[1].p;
    170 	RF_ParityLogData_t *logData;
    171 #if RF_ACC_TRACE > 0
    172 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    173 	RF_Etimer_t timer;
    174 #endif
    175 
    176 	if (node->dagHdr->status == rf_enable) {
    177 #if RF_ACC_TRACE > 0
    178 		RF_ETIMER_START(timer);
    179 #endif
    180 		logData = rf_CreateParityLogData(RF_UPDATE, pda, bf,
    181 		    (RF_Raid_t *) (node->dagHdr->raidPtr),
    182 		    node->wakeFunc, node,
    183 		    node->dagHdr->tracerec, timer);
    184 		if (logData)
    185 			rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
    186 		else {
    187 #if RF_ACC_TRACE > 0
    188 			RF_ETIMER_STOP(timer);
    189 			RF_ETIMER_EVAL(timer);
    190 			tracerec->plog_us += RF_ETIMER_VAL_US(timer);
    191 #endif
    192 			(node->wakeFunc) (node, ENOMEM);
    193 		}
    194 	}
    195 }
    196 
    197 
    198 /*****************************************************************************
    199  * the execution function associated with a parity log overwrite node
    200  ****************************************************************************/
    201 void
    202 rf_ParityLogOverwriteFunc(RF_DagNode_t *node)
    203 {
    204 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    205 	void *bf = (void *) node->params[1].p;
    206 	RF_ParityLogData_t *logData;
    207 #if RF_ACC_TRACE > 0
    208 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    209 	RF_Etimer_t timer;
    210 #endif
    211 
    212 	if (node->dagHdr->status == rf_enable) {
    213 #if RF_ACC_TRACE > 0
    214 		RF_ETIMER_START(timer);
    215 #endif
    216 		logData = rf_CreateParityLogData(RF_OVERWRITE, pda, bf,
    217 (RF_Raid_t *) (node->dagHdr->raidPtr),
    218 		    node->wakeFunc, node, node->dagHdr->tracerec, timer);
    219 		if (logData)
    220 			rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
    221 		else {
    222 #if RF_ACC_TRACE > 0
    223 			RF_ETIMER_STOP(timer);
    224 			RF_ETIMER_EVAL(timer);
    225 			tracerec->plog_us += RF_ETIMER_VAL_US(timer);
    226 #endif
    227 			(node->wakeFunc) (node, ENOMEM);
    228 		}
    229 	}
    230 }
    231 
    232 void
    233 rf_ParityLogUpdateUndoFunc(RF_DagNode_t *node)
    234 {
    235 }
    236 
    237 void
    238 rf_ParityLogOverwriteUndoFunc(RF_DagNode_t *node)
    239 {
    240 }
    241 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
    242 
    243 /*****************************************************************************
    244  * the execution function associated with a NOP node
    245  ****************************************************************************/
    246 void
    247 rf_NullNodeFunc(RF_DagNode_t *node)
    248 {
    249 	node->status = rf_good;
    250 	rf_FinishNode(node, RF_THREAD_CONTEXT);
    251 }
    252 
    253 void
    254 rf_NullNodeUndoFunc(RF_DagNode_t *node)
    255 {
    256 	node->status = rf_undone;
    257 	rf_FinishNode(node, RF_THREAD_CONTEXT);
    258 }
    259 
    260 
    261 /*****************************************************************************
    262  * the execution function associated with a disk-read node
    263  ****************************************************************************/
    264 void
    265 rf_DiskReadFuncForThreads(RF_DagNode_t *node)
    266 {
    267 	RF_DiskQueueData_t *req;
    268 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    269 	void *bf = (void *) node->params[1].p;
    270 	RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
    271 	unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
    272 	unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
    273 	RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_READ : RF_IO_TYPE_NOP;
    274 	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    275 
    276 	req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
    277 	    bf, parityStripeID, which_ru, node->wakeFunc, node,
    278 #if RF_ACC_TRACE > 0
    279 	     node->dagHdr->tracerec,
    280 #else
    281              NULL,
    282 #endif
    283 	    (void *) (node->dagHdr->raidPtr), 0, node->dagHdr->bp);
    284 
    285 	node->dagFuncData = (void *) req;
    286 	rf_DiskIOEnqueue(&(dqs[pda->col]), req, priority);
    287 }
    288 
    289 
    290 /*****************************************************************************
    291  * the execution function associated with a disk-write node
    292  ****************************************************************************/
    293 void
    294 rf_DiskWriteFuncForThreads(RF_DagNode_t *node)
    295 {
    296 	RF_DiskQueueData_t *req;
    297 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    298 	void *bf = (void *) node->params[1].p;
    299 	RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
    300 	unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
    301 	unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
    302 	RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_WRITE : RF_IO_TYPE_NOP;
    303 	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    304 
    305 	/* normal processing (rollaway or forward recovery) begins here */
    306 	req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
    307 	    bf, parityStripeID, which_ru, node->wakeFunc, node,
    308 #if RF_ACC_TRACE > 0
    309 	    node->dagHdr->tracerec,
    310 #else
    311 	    NULL,
    312 #endif
    313 	    (void *) (node->dagHdr->raidPtr),
    314 	    0, node->dagHdr->bp);
    315 
    316 	node->dagFuncData = (void *) req;
    317 	rf_DiskIOEnqueue(&(dqs[pda->col]), req, priority);
    318 }
    319 /*****************************************************************************
    320  * the undo function for disk nodes
    321  * Note:  this is not a proper undo of a write node, only locks are released.
    322  *        old data is not restored to disk!
    323  ****************************************************************************/
    324 void
    325 rf_DiskUndoFunc(RF_DagNode_t *node)
    326 {
    327 	RF_DiskQueueData_t *req;
    328 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    329 	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    330 
    331 	req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
    332 	    0L, 0, NULL, 0L, 0, node->wakeFunc, node,
    333 #if RF_ACC_TRACE > 0
    334 	     node->dagHdr->tracerec,
    335 #else
    336 	     NULL,
    337 #endif
    338 	    (void *) (node->dagHdr->raidPtr),
    339 	    0, NULL);
    340 
    341 	node->dagFuncData = (void *) req;
    342 	rf_DiskIOEnqueue(&(dqs[pda->col]), req, RF_IO_NORMAL_PRIORITY);
    343 }
    344 
    345 /*****************************************************************************
    346  * Callback routine for DiskRead and DiskWrite nodes.  When the disk
    347  * op completes, the routine is called to set the node status and
    348  * inform the execution engine that the node has fired.
    349  ****************************************************************************/
    350 void
    351 rf_GenericWakeupFunc(void *v, int status)
    352 {
    353 	RF_DagNode_t *node = v;
    354 
    355 	switch (node->status) {
    356 	case rf_fired:
    357 		if (status)
    358 			node->status = rf_bad;
    359 		else
    360 			node->status = rf_good;
    361 		break;
    362 	case rf_recover:
    363 		/* probably should never reach this case */
    364 		if (status)
    365 			node->status = rf_panic;
    366 		else
    367 			node->status = rf_undone;
    368 		break;
    369 	default:
    370 		printf("rf_GenericWakeupFunc:");
    371 		printf("node->status is %d,", node->status);
    372 		printf("status is %d \n", status);
    373 		RF_PANIC();
    374 		break;
    375 	}
    376 	if (node->dagFuncData)
    377 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
    378 	rf_FinishNode(node, RF_INTR_CONTEXT);
    379 }
    380 
    381 
    382 /*****************************************************************************
    383  * there are three distinct types of xor nodes:
    384 
    385  * A "regular xor" is used in the fault-free case where the access
    386  * spans a complete stripe unit.  It assumes that the result buffer is
    387  * one full stripe unit in size, and uses the stripe-unit-offset
    388  * values that it computes from the PDAs to determine where within the
    389  * stripe unit to XOR each argument buffer.
    390  *
    391  * A "simple xor" is used in the fault-free case where the access
    392  * touches only a portion of one (or two, in some cases) stripe
    393  * unit(s).  It assumes that all the argument buffers are of the same
    394  * size and have the same stripe unit offset.
    395  *
    396  * A "recovery xor" is used in the degraded-mode case.  It's similar
    397  * to the regular xor function except that it takes the failed PDA as
    398  * an additional parameter, and uses it to determine what portions of
    399  * the argument buffers need to be xor'd into the result buffer, and
    400  * where in the result buffer they should go.
    401  ****************************************************************************/
    402 
    403 /* xor the params together and store the result in the result field.
    404  * assume the result field points to a buffer that is the size of one
    405  * SU, and use the pda params to determine where within the buffer to
    406  * XOR the input buffers.  */
    407 void
    408 rf_RegularXorFunc(RF_DagNode_t *node)
    409 {
    410 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    411 #if RF_ACC_TRACE > 0
    412 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    413 	RF_Etimer_t timer;
    414 #endif
    415 	int     i, retcode;
    416 
    417 	retcode = 0;
    418 	if (node->dagHdr->status == rf_enable) {
    419 		/* don't do the XOR if the input is the same as the output */
    420 #if RF_ACC_TRACE > 0
    421 		RF_ETIMER_START(timer);
    422 #endif
    423 		for (i = 0; i < node->numParams - 1; i += 2)
    424 			if (node->params[i + 1].p != node->results[0]) {
    425 				retcode = rf_XorIntoBuffer(raidPtr, (RF_PhysDiskAddr_t *) node->params[i].p,
    426 							   (char *) node->params[i + 1].p, (char *) node->results[0]);
    427 			}
    428 #if RF_ACC_TRACE > 0
    429 		RF_ETIMER_STOP(timer);
    430 		RF_ETIMER_EVAL(timer);
    431 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    432 #endif
    433 	}
    434 	rf_GenericWakeupFunc(node, retcode);	/* call wake func
    435 						 * explicitly since no
    436 						 * I/O in this node */
    437 }
    438 /* xor the inputs into the result buffer, ignoring placement issues */
    439 void
    440 rf_SimpleXorFunc(RF_DagNode_t *node)
    441 {
    442 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    443 	int     i, retcode = 0;
    444 #if RF_ACC_TRACE > 0
    445 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    446 	RF_Etimer_t timer;
    447 #endif
    448 
    449 	if (node->dagHdr->status == rf_enable) {
    450 #if RF_ACC_TRACE > 0
    451 		RF_ETIMER_START(timer);
    452 #endif
    453 		/* don't do the XOR if the input is the same as the output */
    454 		for (i = 0; i < node->numParams - 1; i += 2)
    455 			if (node->params[i + 1].p != node->results[0]) {
    456 				retcode = rf_bxor((char *) node->params[i + 1].p, (char *) node->results[0],
    457 				    rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[i].p)->numSector));
    458 			}
    459 #if RF_ACC_TRACE > 0
    460 		RF_ETIMER_STOP(timer);
    461 		RF_ETIMER_EVAL(timer);
    462 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    463 #endif
    464 	}
    465 	rf_GenericWakeupFunc(node, retcode);	/* call wake func
    466 						 * explicitly since no
    467 						 * I/O in this node */
    468 }
    469 /* this xor is used by the degraded-mode dag functions to recover lost
    470  * data.  the second-to-last parameter is the PDA for the failed
    471  * portion of the access.  the code here looks at this PDA and assumes
    472  * that the xor target buffer is equal in size to the number of
    473  * sectors in the failed PDA.  It then uses the other PDAs in the
    474  * parameter list to determine where within the target buffer the
    475  * corresponding data should be xored.  */
    476 void
    477 rf_RecoveryXorFunc(RF_DagNode_t *node)
    478 {
    479 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    480 	RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
    481 	RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
    482 	int     i, retcode = 0;
    483 	RF_PhysDiskAddr_t *pda;
    484 	int     suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
    485 	char   *srcbuf, *destbuf;
    486 #if RF_ACC_TRACE > 0
    487 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    488 	RF_Etimer_t timer;
    489 #endif
    490 
    491 	if (node->dagHdr->status == rf_enable) {
    492 #if RF_ACC_TRACE > 0
    493 		RF_ETIMER_START(timer);
    494 #endif
    495 		for (i = 0; i < node->numParams - 2; i += 2)
    496 			if (node->params[i + 1].p != node->results[0]) {
    497 				pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    498 				srcbuf = (char *) node->params[i + 1].p;
    499 				suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
    500 				destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
    501 				retcode = rf_bxor(srcbuf, destbuf, rf_RaidAddressToByte(raidPtr, pda->numSector));
    502 			}
    503 #if RF_ACC_TRACE > 0
    504 		RF_ETIMER_STOP(timer);
    505 		RF_ETIMER_EVAL(timer);
    506 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    507 #endif
    508 	}
    509 	rf_GenericWakeupFunc(node, retcode);
    510 }
    511 /*****************************************************************************
    512  * The next three functions are utilities used by the above
    513  * xor-execution functions.
    514  ****************************************************************************/
    515 
    516 
    517 /*
    518  * this is just a glorified buffer xor.  targbuf points to a buffer
    519  * that is one full stripe unit in size.  srcbuf points to a buffer
    520  * that may be less than 1 SU, but never more.  When the access
    521  * described by pda is one SU in size (which by implication means it's
    522  * SU-aligned), all that happens is (targbuf) <- (srcbuf ^ targbuf).
    523  * When the access is less than one SU in size the XOR occurs on only
    524  * the portion of targbuf identified in the pda.  */
    525 
    526 int
    527 rf_XorIntoBuffer(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda,
    528 		 char *srcbuf, char *targbuf)
    529 {
    530 	char   *targptr;
    531 	int     sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
    532 	int     SUOffset = pda->startSector % sectPerSU;
    533 	int     length, retcode = 0;
    534 
    535 	RF_ASSERT(pda->numSector <= sectPerSU);
    536 
    537 	targptr = targbuf + rf_RaidAddressToByte(raidPtr, SUOffset);
    538 	length = rf_RaidAddressToByte(raidPtr, pda->numSector);
    539 	retcode = rf_bxor(srcbuf, targptr, length);
    540 	return (retcode);
    541 }
    542 /* it really should be the case that the buffer pointers (returned by
    543  * malloc) are aligned to the natural word size of the machine, so
    544  * this is the only case we optimize for.  The length should always be
    545  * a multiple of the sector size, so there should be no problem with
    546  * leftover bytes at the end.  */
    547 int
    548 rf_bxor(char *src, char *dest, int len)
    549 {
    550 	unsigned mask = sizeof(long) - 1, retcode = 0;
    551 
    552 	if (!(((unsigned long) src) & mask) &&
    553 	    !(((unsigned long) dest) & mask) && !(len & mask)) {
    554 		retcode = rf_longword_bxor((unsigned long *) src,
    555 					   (unsigned long *) dest,
    556 					   len >> RF_LONGSHIFT);
    557 	} else {
    558 		RF_ASSERT(0);
    559 	}
    560 	return (retcode);
    561 }
    562 
    563 /* When XORing in kernel mode, we need to map each user page to kernel
    564  * space before we can access it.  We don't want to assume anything
    565  * about which input buffers are in kernel/user space, nor about their
    566  * alignment, so in each loop we compute the maximum number of bytes
    567  * that we can xor without crossing any page boundaries, and do only
    568  * this many bytes before the next remap.
    569  *
    570  * len - is in longwords
    571  */
    572 int
    573 rf_longword_bxor(unsigned long *src, unsigned long *dest, int len)
    574 {
    575 	unsigned long *end = src + len;
    576 	unsigned long d0, d1, d2, d3, s0, s1, s2, s3;	/* temps */
    577 	unsigned long *pg_src, *pg_dest;   /* per-page source/dest pointers */
    578 	int     longs_this_time;/* # longwords to xor in the current iteration */
    579 
    580 	pg_src = src;
    581 	pg_dest = dest;
    582 	if (!pg_src || !pg_dest)
    583 		return (EFAULT);
    584 
    585 	while (len >= 4) {
    586 		longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(pg_src), RF_BLIP(pg_dest)) >> RF_LONGSHIFT);	/* note len in longwords */
    587 		src += longs_this_time;
    588 		dest += longs_this_time;
    589 		len -= longs_this_time;
    590 		while (longs_this_time >= 4) {
    591 			d0 = pg_dest[0];
    592 			d1 = pg_dest[1];
    593 			d2 = pg_dest[2];
    594 			d3 = pg_dest[3];
    595 			s0 = pg_src[0];
    596 			s1 = pg_src[1];
    597 			s2 = pg_src[2];
    598 			s3 = pg_src[3];
    599 			pg_dest[0] = d0 ^ s0;
    600 			pg_dest[1] = d1 ^ s1;
    601 			pg_dest[2] = d2 ^ s2;
    602 			pg_dest[3] = d3 ^ s3;
    603 			pg_src += 4;
    604 			pg_dest += 4;
    605 			longs_this_time -= 4;
    606 		}
    607 		while (longs_this_time > 0) {	/* cannot cross any page
    608 						 * boundaries here */
    609 			*pg_dest++ ^= *pg_src++;
    610 			longs_this_time--;
    611 		}
    612 
    613 		/* either we're done, or we've reached a page boundary on one
    614 		 * (or possibly both) of the pointers */
    615 		if (len) {
    616 			if (RF_PAGE_ALIGNED(src))
    617 				pg_src = src;
    618 			if (RF_PAGE_ALIGNED(dest))
    619 				pg_dest = dest;
    620 			if (!pg_src || !pg_dest)
    621 				return (EFAULT);
    622 		}
    623 	}
    624 	while (src < end) {
    625 		*pg_dest++ ^= *pg_src++;
    626 		src++;
    627 		dest++;
    628 		len--;
    629 		if (RF_PAGE_ALIGNED(src))
    630 			pg_src = src;
    631 		if (RF_PAGE_ALIGNED(dest))
    632 			pg_dest = dest;
    633 	}
    634 	RF_ASSERT(len == 0);
    635 	return (0);
    636 }
    637 
    638 #if 0
    639 /*
    640    dst = a ^ b ^ c;
    641    a may equal dst
    642    see comment above longword_bxor
    643    len is length in longwords
    644 */
    645 int
    646 rf_longword_bxor3(unsigned long *dst, unsigned long *a, unsigned long *b,
    647 		  unsigned long *c, int len, void *bp)
    648 {
    649 	unsigned long a0, a1, a2, a3, b0, b1, b2, b3;
    650 	unsigned long *pg_a, *pg_b, *pg_c, *pg_dst;	/* per-page source/dest
    651 								 * pointers */
    652 	int     longs_this_time;/* # longs to xor in the current iteration */
    653 	char    dst_is_a = 0;
    654 
    655 	pg_a = a;
    656 	pg_b = b;
    657 	pg_c = c;
    658 	if (a == dst) {
    659 		pg_dst = pg_a;
    660 		dst_is_a = 1;
    661 	} else {
    662 		pg_dst = dst;
    663 	}
    664 
    665 	/* align dest to cache line.  Can't cross a pg boundary on dst here. */
    666 	while ((((unsigned long) pg_dst) & 0x1f)) {
    667 		*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    668 		dst++;
    669 		a++;
    670 		b++;
    671 		c++;
    672 		if (RF_PAGE_ALIGNED(a)) {
    673 			pg_a = a;
    674 			if (!pg_a)
    675 				return (EFAULT);
    676 		}
    677 		if (RF_PAGE_ALIGNED(b)) {
    678 			pg_b = a;
    679 			if (!pg_b)
    680 				return (EFAULT);
    681 		}
    682 		if (RF_PAGE_ALIGNED(c)) {
    683 			pg_c = a;
    684 			if (!pg_c)
    685 				return (EFAULT);
    686 		}
    687 		len--;
    688 	}
    689 
    690 	while (len > 4) {
    691 		longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(a), RF_MIN(RF_BLIP(b), RF_MIN(RF_BLIP(c), RF_BLIP(dst)))) >> RF_LONGSHIFT);
    692 		a += longs_this_time;
    693 		b += longs_this_time;
    694 		c += longs_this_time;
    695 		dst += longs_this_time;
    696 		len -= longs_this_time;
    697 		while (longs_this_time >= 4) {
    698 			a0 = pg_a[0];
    699 			longs_this_time -= 4;
    700 
    701 			a1 = pg_a[1];
    702 			a2 = pg_a[2];
    703 
    704 			a3 = pg_a[3];
    705 			pg_a += 4;
    706 
    707 			b0 = pg_b[0];
    708 			b1 = pg_b[1];
    709 
    710 			b2 = pg_b[2];
    711 			b3 = pg_b[3];
    712 			/* start dual issue */
    713 			a0 ^= b0;
    714 			b0 = pg_c[0];
    715 
    716 			pg_b += 4;
    717 			a1 ^= b1;
    718 
    719 			a2 ^= b2;
    720 			a3 ^= b3;
    721 
    722 			b1 = pg_c[1];
    723 			a0 ^= b0;
    724 
    725 			b2 = pg_c[2];
    726 			a1 ^= b1;
    727 
    728 			b3 = pg_c[3];
    729 			a2 ^= b2;
    730 
    731 			pg_dst[0] = a0;
    732 			a3 ^= b3;
    733 			pg_dst[1] = a1;
    734 			pg_c += 4;
    735 			pg_dst[2] = a2;
    736 			pg_dst[3] = a3;
    737 			pg_dst += 4;
    738 		}
    739 		while (longs_this_time > 0) {	/* cannot cross any page
    740 						 * boundaries here */
    741 			*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    742 			longs_this_time--;
    743 		}
    744 
    745 		if (len) {
    746 			if (RF_PAGE_ALIGNED(a)) {
    747 				pg_a = a;
    748 				if (!pg_a)
    749 					return (EFAULT);
    750 				if (dst_is_a)
    751 					pg_dst = pg_a;
    752 			}
    753 			if (RF_PAGE_ALIGNED(b)) {
    754 				pg_b = b;
    755 				if (!pg_b)
    756 					return (EFAULT);
    757 			}
    758 			if (RF_PAGE_ALIGNED(c)) {
    759 				pg_c = c;
    760 				if (!pg_c)
    761 					return (EFAULT);
    762 			}
    763 			if (!dst_is_a)
    764 				if (RF_PAGE_ALIGNED(dst)) {
    765 					pg_dst = dst;
    766 					if (!pg_dst)
    767 						return (EFAULT);
    768 				}
    769 		}
    770 	}
    771 	while (len) {
    772 		*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    773 		dst++;
    774 		a++;
    775 		b++;
    776 		c++;
    777 		if (RF_PAGE_ALIGNED(a)) {
    778 			pg_a = a;
    779 			if (!pg_a)
    780 				return (EFAULT);
    781 			if (dst_is_a)
    782 				pg_dst = pg_a;
    783 		}
    784 		if (RF_PAGE_ALIGNED(b)) {
    785 			pg_b = b;
    786 			if (!pg_b)
    787 				return (EFAULT);
    788 		}
    789 		if (RF_PAGE_ALIGNED(c)) {
    790 			pg_c = c;
    791 			if (!pg_c)
    792 				return (EFAULT);
    793 		}
    794 		if (!dst_is_a)
    795 			if (RF_PAGE_ALIGNED(dst)) {
    796 				pg_dst = dst;
    797 				if (!pg_dst)
    798 					return (EFAULT);
    799 			}
    800 		len--;
    801 	}
    802 	return (0);
    803 }
    804 
    805 int
    806 rf_bxor3(unsigned char *dst, unsigned char *a, unsigned char *b,
    807 	 unsigned char *c, unsigned long len, void *bp)
    808 {
    809 	RF_ASSERT(((RF_UL(dst) | RF_UL(a) | RF_UL(b) | RF_UL(c) | len) & 0x7) == 0);
    810 
    811 	return (rf_longword_bxor3((unsigned long *) dst, (unsigned long *) a,
    812 		(unsigned long *) b, (unsigned long *) c, len >> RF_LONGSHIFT, bp));
    813 }
    814 #endif
    815