Home | History | Annotate | Line # | Download | only in raidframe
      1 /* $NetBSD: rf_paritymap.c,v 1.11 2023/09/25 21:59:38 oster Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2009 Jed Davis.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 #include <sys/cdefs.h>
     30 __KERNEL_RCSID(0, "$NetBSD: rf_paritymap.c,v 1.11 2023/09/25 21:59:38 oster Exp $");
     31 
     32 #include <sys/param.h>
     33 #include <sys/callout.h>
     34 #include <sys/kmem.h>
     35 #include <sys/mutex.h>
     36 #include <sys/rwlock.h>
     37 #include <sys/systm.h>
     38 #include <sys/types.h>
     39 
     40 #include <dev/raidframe/rf_paritymap.h>
     41 #include <dev/raidframe/rf_stripelocks.h>
     42 #include <dev/raidframe/rf_layout.h>
     43 #include <dev/raidframe/rf_raid.h>
     44 #include <dev/raidframe/rf_parityscan.h>
     45 #include <dev/raidframe/rf_kintf.h>
     46 
     47 /* Important parameters: */
     48 #define REGION_MINSIZE (25ULL << 20)
     49 #define DFL_TICKMS      40000
     50 #define DFL_COOLDOWN    8     /* 7-8 intervals of 40s = 5min +/- 20s */
     51 
     52 /* Internal-use flag bits. */
     53 #define TICKING 1
     54 #define TICKED 2
     55 
     56 /* Prototypes! */
     57 static void rf_paritymap_write_locked(struct rf_paritymap *);
     58 static void rf_paritymap_tick(void *);
     59 static u_int rf_paritymap_nreg(RF_Raid_t *);
     60 
     61 /* Extract the current status of the parity map. */
     62 void
     63 rf_paritymap_status(struct rf_paritymap *pm, struct rf_pmstat *ps)
     64 {
     65 	memset(ps, 0, sizeof(*ps));
     66 	if (pm == NULL)
     67 		ps->enabled = 0;
     68 	else {
     69 		ps->enabled = 1;
     70 		ps->region_size = pm->region_size;
     71 		mutex_enter(&pm->lock);
     72 		memcpy(&ps->params, &pm->params, sizeof(ps->params));
     73 		memcpy(ps->dirty, pm->disk_now, sizeof(ps->dirty));
     74 		memcpy(&ps->ctrs, &pm->ctrs, sizeof(ps->ctrs));
     75 		mutex_exit(&pm->lock);
     76 	}
     77 }
     78 
     79 /*
     80  * Test whether parity in a given sector is suspected of being inconsistent
     81  * on disk (assuming that any pending I/O to it is allowed to complete).
     82  * This may be of interest to future work on parity scrubbing.
     83  */
     84 int
     85 rf_paritymap_test(struct rf_paritymap *pm, daddr_t sector)
     86 {
     87 	unsigned region = sector / pm->region_size;
     88 	int retval;
     89 
     90 	mutex_enter(&pm->lock);
     91 	retval = isset(pm->disk_boot->bits, region) ? 1 : 0;
     92 	mutex_exit(&pm->lock);
     93 	return retval;
     94 }
     95 
     96 /* To be called before a write to the RAID is submitted. */
     97 void
     98 rf_paritymap_begin(struct rf_paritymap *pm, daddr_t offset, daddr_t size)
     99 {
    100 	unsigned i, b, e;
    101 
    102 	b = offset / pm->region_size;
    103 	e = (offset + size - 1) / pm->region_size;
    104 
    105 	for (i = b; i <= e; i++)
    106 		rf_paritymap_begin_region(pm, i);
    107 }
    108 
    109 /* To be called after a write to the RAID completes. */
    110 void
    111 rf_paritymap_end(struct rf_paritymap *pm, daddr_t offset, daddr_t size)
    112 {
    113 	unsigned i, b, e;
    114 
    115 	b = offset / pm->region_size;
    116 	e = (offset + size - 1) / pm->region_size;
    117 
    118 	for (i = b; i <= e; i++)
    119 		rf_paritymap_end_region(pm, i);
    120 }
    121 
    122 void
    123 rf_paritymap_begin_region(struct rf_paritymap *pm, unsigned region)
    124 {
    125 	int needs_write;
    126 
    127 	KASSERT(region < RF_PARITYMAP_NREG);
    128 	pm->ctrs.nwrite++;
    129 
    130 	/* If it was being kept warm, deal with that. */
    131 	mutex_enter(&pm->lock);
    132 	if (pm->current->state[region] < 0)
    133 		pm->current->state[region] = 0;
    134 
    135 	/* This shouldn't happen unless RAIDOUTSTANDING is set too high. */
    136 	KASSERT(pm->current->state[region] < 127);
    137 	pm->current->state[region]++;
    138 
    139 	needs_write = isclr(pm->disk_now->bits, region);
    140 
    141 	if (needs_write) {
    142 		KASSERT(pm->current->state[region] == 1);
    143 		rf_paritymap_write_locked(pm);
    144 	}
    145 
    146 	mutex_exit(&pm->lock);
    147 }
    148 
    149 void
    150 rf_paritymap_end_region(struct rf_paritymap *pm, unsigned region)
    151 {
    152 	KASSERT(region < RF_PARITYMAP_NREG);
    153 
    154 	mutex_enter(&pm->lock);
    155 	KASSERT(pm->current->state[region] > 0);
    156 	--pm->current->state[region];
    157 
    158 	if (pm->current->state[region] <= 0) {
    159 		pm->current->state[region] = -pm->params.cooldown;
    160 		KASSERT(pm->current->state[region] <= 0);
    161 		mutex_enter(&pm->lk_flags);
    162 		if (!(pm->flags & TICKING)) {
    163 			pm->flags |= TICKING;
    164 			mutex_exit(&pm->lk_flags);
    165 			callout_schedule(&pm->ticker,
    166 			    mstohz(pm->params.tickms));
    167 		} else
    168 			mutex_exit(&pm->lk_flags);
    169 	}
    170 	mutex_exit(&pm->lock);
    171 }
    172 
    173 /*
    174  * Updates the parity map to account for any changes in current activity
    175  * and/or an ongoing parity scan, then writes it to disk with appropriate
    176  * synchronization.
    177  */
    178 void
    179 rf_paritymap_write(struct rf_paritymap *pm)
    180 {
    181 	mutex_enter(&pm->lock);
    182 	rf_paritymap_write_locked(pm);
    183 	mutex_exit(&pm->lock);
    184 }
    185 
    186 /* As above, but to be used when pm->lock is already held. */
    187 static void
    188 rf_paritymap_write_locked(struct rf_paritymap *pm)
    189 {
    190 	char w, w0;
    191 	int i, j, setting, clearing;
    192 
    193 	setting = clearing = 0;
    194 	for (i = 0; i < RF_PARITYMAP_NBYTE; i++) {
    195 		w0 = pm->disk_now->bits[i];
    196 		w = pm->disk_boot->bits[i];
    197 
    198 		for (j = 0; j < NBBY; j++)
    199 			if (pm->current->state[i * NBBY + j] != 0)
    200 				w |= 1 << j;
    201 
    202 		if (w & ~w0)
    203 			setting = 1;
    204 		if (w0 & ~w)
    205 			clearing = 1;
    206 
    207 		pm->disk_now->bits[i] = w;
    208 	}
    209 	pm->ctrs.ncachesync += setting + clearing;
    210 	pm->ctrs.nclearing += clearing;
    211 
    212 	/*
    213 	 * If bits are being set in the parity map, then a sync is
    214 	 * required afterwards, so that the regions are marked dirty
    215 	 * on disk before any writes to them take place.  If bits are
    216 	 * being cleared, then a sync is required before the write, so
    217 	 * that any writes to those regions are processed before the
    218 	 * region is marked clean.  (Synchronization is somewhat
    219 	 * overkill; a write ordering barrier would suffice, but we
    220 	 * currently have no way to express that directly.)
    221 	 */
    222 	if (clearing)
    223 		rf_sync_component_caches(pm->raid, 1);
    224 	rf_paritymap_kern_write(pm->raid, pm->disk_now);
    225 	if (setting)
    226 		rf_sync_component_caches(pm->raid, 1);
    227 }
    228 
    229 /* Mark all parity as being in need of rewrite. */
    230 void
    231 rf_paritymap_invalidate(struct rf_paritymap *pm)
    232 {
    233 	mutex_enter(&pm->lock);
    234 	memset(pm->disk_boot, (unsigned char)~0, sizeof(*pm->disk_boot));
    235 	mutex_exit(&pm->lock);
    236 }
    237 
    238 /* Mark all parity as being correct. */
    239 void
    240 rf_paritymap_forceclean(struct rf_paritymap *pm)
    241 {
    242 	mutex_enter(&pm->lock);
    243 	memset(pm->disk_boot, 0, sizeof(*pm->disk_boot));
    244 	mutex_exit(&pm->lock);
    245 }
    246 
    247 /*
    248  * The cooldown callout routine just defers its work to a thread; it can't do
    249  * the parity map write itself as it would block, and although mutex-induced
    250  * blocking is permitted it seems wise to avoid tying up the softint.
    251  */
    252 static void
    253 rf_paritymap_tick(void *arg)
    254 {
    255 	struct rf_paritymap *pm = arg;
    256 
    257 	mutex_enter(&pm->lk_flags);
    258 	pm->flags |= TICKED;
    259 	mutex_exit(&pm->lk_flags);
    260 
    261 	rf_lock_mutex2(pm->raid->iodone_lock);
    262 	rf_signal_cond2(pm->raid->iodone_cv); /* XXX */
    263 	rf_unlock_mutex2(pm->raid->iodone_lock);
    264 }
    265 
    266 /*
    267  * This is where the parity cooling work (and rearming the callout if needed)
    268  * is done; the raidio thread calls it when woken up, as by the above.
    269  */
    270 void
    271 rf_paritymap_checkwork(struct rf_paritymap *pm)
    272 {
    273 	int i, zerop, progressp;
    274 
    275 	mutex_enter(&pm->lk_flags);
    276 	if (pm->flags & TICKED) {
    277 		zerop = progressp = 0;
    278 
    279 		pm->flags &= ~TICKED;
    280 		mutex_exit(&pm->lk_flags);
    281 
    282 		mutex_enter(&pm->lock);
    283 		for (i = 0; i < RF_PARITYMAP_NREG; i++) {
    284 			if (pm->current->state[i] < 0) {
    285 				progressp = 1;
    286 				pm->current->state[i]++;
    287 				if (pm->current->state[i] == 0)
    288 					zerop = 1;
    289 			}
    290 		}
    291 
    292 		if (progressp)
    293 			callout_schedule(&pm->ticker,
    294 			    mstohz(pm->params.tickms));
    295 		else {
    296 			mutex_enter(&pm->lk_flags);
    297 			pm->flags &= ~TICKING;
    298 			mutex_exit(&pm->lk_flags);
    299 		}
    300 
    301 		if (zerop)
    302 			rf_paritymap_write_locked(pm);
    303 		mutex_exit(&pm->lock);
    304 	} else
    305 		mutex_exit(&pm->lk_flags);
    306 }
    307 
    308 /*
    309  * Set parity map parameters; used both to alter parameters on the fly and to
    310  * establish their initial values.  Note that setting a parameter to 0 means
    311  * to leave the previous setting unchanged, and that if this is done for the
    312  * initial setting of "regions", then a default value will be computed based
    313  * on the RAID component size.
    314  */
    315 int
    316 rf_paritymap_set_params(struct rf_paritymap *pm,
    317     const struct rf_pmparams *params, int todisk)
    318 {
    319 	int cooldown, tickms;
    320 	u_int regions;
    321 	RF_RowCol_t col;
    322 	RF_ComponentLabel_t *clabel;
    323 	RF_Raid_t *raidPtr;
    324 
    325 	cooldown = params->cooldown != 0
    326 	    ? params->cooldown : pm->params.cooldown;
    327 	tickms = params->tickms != 0
    328 	    ? params->tickms : pm->params.tickms;
    329 	regions = params->regions != 0
    330 	    ? params->regions : pm->params.regions;
    331 
    332 	if (cooldown < 1 || cooldown > 128) {
    333 		printf("raid%d: cooldown %d out of range\n", pm->raid->raidid,
    334 		    cooldown);
    335 		return (-1);
    336 	}
    337 	if (tickms < 10) {
    338 		printf("raid%d: tick time %dms out of range\n",
    339 		    pm->raid->raidid, tickms);
    340 		return (-1);
    341 	}
    342 	if (regions == 0) {
    343 		regions = rf_paritymap_nreg(pm->raid);
    344 	} else if (regions > RF_PARITYMAP_NREG) {
    345 		printf("raid%d: region count %u too large (more than %u)\n",
    346 		    pm->raid->raidid, regions, RF_PARITYMAP_NREG);
    347 		return (-1);
    348 	}
    349 
    350 	/* XXX any currently warm parity will be used with the new tickms! */
    351 	pm->params.cooldown = cooldown;
    352 	pm->params.tickms = tickms;
    353 	/* Apply the initial region count, but do not change it after that. */
    354 	if (pm->params.regions == 0)
    355 		pm->params.regions = regions;
    356 
    357 	/* So that the newly set parameters can be tested: */
    358 	pm->ctrs.nwrite = pm->ctrs.ncachesync = pm->ctrs.nclearing = 0;
    359 
    360 	if (todisk) {
    361 		raidPtr = pm->raid;
    362 		for (col = 0; col < raidPtr->numCol; col++) {
    363 			if (RF_DEAD_DISK(raidPtr->Disks[col].status))
    364 				continue;
    365 
    366 			clabel = raidget_component_label(raidPtr, col);
    367 			clabel->parity_map_ntick = cooldown;
    368 			clabel->parity_map_tickms = tickms;
    369 			clabel->parity_map_regions = regions;
    370 
    371 			/* Don't touch the disk if it's been spared */
    372 			if (clabel->status == rf_ds_spared)
    373 				continue;
    374 
    375 			raidflush_component_label(raidPtr, col);
    376 		}
    377 
    378 		/* handle the spares too... */
    379 		for (col = 0; col < raidPtr->numSpare; col++) {
    380 			if (raidPtr->Disks[raidPtr->numCol+col].status == rf_ds_used_spare) {
    381 				clabel = raidget_component_label(raidPtr, raidPtr->numCol+col);
    382 				clabel->parity_map_ntick = cooldown;
    383 				clabel->parity_map_tickms = tickms;
    384 				clabel->parity_map_regions = regions;
    385 				raidflush_component_label(raidPtr, raidPtr->numCol+col);
    386 			}
    387 		}
    388 	}
    389 	return 0;
    390 }
    391 
    392 /*
    393  * The number of regions may not be as many as can fit into the map, because
    394  * when regions are too small, the overhead of setting parity map bits
    395  * becomes significant in comparison to the actual I/O, while the
    396  * corresponding gains in parity verification time become negligible.  Thus,
    397  * a minimum region size (defined above) is imposed.
    398  *
    399  * Note that, if the number of regions is less than the maximum, then some of
    400  * the regions will be "fictional", corresponding to no actual disk; some
    401  * parts of the code may process them as normal, but they can not ever be
    402  * written to.
    403  */
    404 static u_int
    405 rf_paritymap_nreg(RF_Raid_t *raid)
    406 {
    407 	daddr_t bytes_per_disk, nreg;
    408 
    409 	bytes_per_disk = raid->sectorsPerDisk << raid->logBytesPerSector;
    410 	nreg = bytes_per_disk / REGION_MINSIZE;
    411 	if (nreg > RF_PARITYMAP_NREG)
    412 		nreg = RF_PARITYMAP_NREG;
    413 	if (nreg < 1)
    414 		nreg = 1;
    415 
    416 	return (u_int)nreg;
    417 }
    418 
    419 /*
    420  * Initialize a parity map given specific parameters.  This neither reads nor
    421  * writes the parity map config in the component labels; for that, see below.
    422  */
    423 int
    424 rf_paritymap_init(struct rf_paritymap *pm, RF_Raid_t *raid,
    425     const struct rf_pmparams *params)
    426 {
    427 	daddr_t rstripes;
    428 	struct rf_pmparams safe;
    429 
    430 	pm->raid = raid;
    431 	pm->params.regions = 0;
    432 	if (0 != rf_paritymap_set_params(pm, params, 0)) {
    433 		/*
    434 		 * If the parameters are out-of-range, then bring the
    435 		 * parity map up with something reasonable, so that
    436 		 * the admin can at least go and fix it (or ignore it
    437 		 * entirely).
    438 		 */
    439 		safe.cooldown = DFL_COOLDOWN;
    440 		safe.tickms = DFL_TICKMS;
    441 		safe.regions = 0;
    442 
    443 		if (0 != rf_paritymap_set_params(pm, &safe, 0))
    444 			return (-1);
    445 	}
    446 
    447 	rstripes = howmany(raid->Layout.numStripe, pm->params.regions);
    448 	pm->region_size = rstripes * raid->Layout.dataSectorsPerStripe;
    449 
    450 	callout_init(&pm->ticker, CALLOUT_MPSAFE);
    451 	callout_setfunc(&pm->ticker, rf_paritymap_tick, pm);
    452 	pm->flags = 0;
    453 
    454 	pm->disk_boot = kmem_alloc(sizeof(struct rf_paritymap_ondisk),
    455 	    KM_SLEEP);
    456 	pm->disk_now = kmem_alloc(sizeof(struct rf_paritymap_ondisk),
    457 	    KM_SLEEP);
    458 	pm->current = kmem_zalloc(sizeof(struct rf_paritymap_current),
    459 	    KM_SLEEP);
    460 
    461 	rf_paritymap_kern_read(pm->raid, pm->disk_boot);
    462 	memcpy(pm->disk_now, pm->disk_boot, sizeof(*pm->disk_now));
    463 
    464 	mutex_init(&pm->lock, MUTEX_DEFAULT, IPL_NONE);
    465 	mutex_init(&pm->lk_flags, MUTEX_DEFAULT, IPL_SOFTCLOCK);
    466 
    467 	return 0;
    468 }
    469 
    470 /*
    471  * Destroys a parity map; unless "force" is set, also cleans parity for any
    472  * regions which were still in cooldown (but are not dirty on disk).
    473  */
    474 void
    475 rf_paritymap_destroy(struct rf_paritymap *pm, int force)
    476 {
    477 	int i;
    478 
    479 	callout_halt(&pm->ticker, NULL); /* XXX stop? halt? */
    480 	callout_destroy(&pm->ticker);
    481 
    482 	if (!force) {
    483 		for (i = 0; i < RF_PARITYMAP_NREG; i++) {
    484 			/* XXX check for > 0 ? */
    485 			if (pm->current->state[i] < 0)
    486 				pm->current->state[i] = 0;
    487 		}
    488 
    489 		rf_paritymap_write_locked(pm);
    490 	}
    491 
    492 	mutex_destroy(&pm->lock);
    493 	mutex_destroy(&pm->lk_flags);
    494 
    495 	kmem_free(pm->disk_boot, sizeof(struct rf_paritymap_ondisk));
    496 	kmem_free(pm->disk_now, sizeof(struct rf_paritymap_ondisk));
    497 	kmem_free(pm->current, sizeof(struct rf_paritymap_current));
    498 }
    499 
    500 /*
    501  * Rewrite parity, taking parity map into account; this is the equivalent of
    502  * the old rf_RewriteParity, and is likewise to be called from a suitable
    503  * thread and shouldn't have multiple copies running in parallel and so on.
    504  *
    505  * Note that the fictional regions are "cleaned" in one shot, so that very
    506  * small RAIDs (useful for testing) will not experience potentially severe
    507  * regressions in rewrite time.
    508  */
    509 int
    510 rf_paritymap_rewrite(struct rf_paritymap *pm)
    511 {
    512 	int i, ret_val = 0;
    513 	daddr_t reg_b, reg_e;
    514 
    515 	/* Process only the actual regions. */
    516 	for (i = 0; i < pm->params.regions; i++) {
    517 		mutex_enter(&pm->lock);
    518 		if (isset(pm->disk_boot->bits, i)) {
    519 			mutex_exit(&pm->lock);
    520 
    521 			reg_b = i * pm->region_size;
    522 			reg_e = reg_b + pm->region_size;
    523 			if (reg_e > pm->raid->totalSectors)
    524 				reg_e = pm->raid->totalSectors;
    525 
    526 			if (rf_RewriteParityRange(pm->raid, reg_b,
    527 			    reg_e - reg_b)) {
    528 				ret_val = 1;
    529 				if (pm->raid->waitShutdown)
    530 					return ret_val;
    531 			} else {
    532 				mutex_enter(&pm->lock);
    533 				clrbit(pm->disk_boot->bits, i);
    534 				rf_paritymap_write_locked(pm);
    535 				mutex_exit(&pm->lock);
    536 			}
    537 		} else {
    538 			mutex_exit(&pm->lock);
    539 		}
    540 	}
    541 
    542 	/* Now, clear the fictional regions, if any. */
    543 	rf_paritymap_forceclean(pm);
    544 	rf_paritymap_write(pm);
    545 
    546 	return ret_val;
    547 }
    548 
    549 /*
    550  * How to merge the on-disk parity maps when reading them in from the
    551  * various components; returns whether they differ.  In the case that
    552  * they do differ, sets *dst to the union of *dst and *src.
    553  *
    554  * In theory, it should be safe to take the intersection (or just pick
    555  * a single component arbitrarily), but the paranoid approach costs
    556  * little.
    557  *
    558  * Appropriate locking, if any, is the responsibility of the caller.
    559  */
    560 int
    561 rf_paritymap_merge(struct rf_paritymap_ondisk *dst,
    562     struct rf_paritymap_ondisk *src)
    563 {
    564 	int i, discrep = 0;
    565 
    566 	for (i = 0; i < RF_PARITYMAP_NBYTE; i++) {
    567 		if (dst->bits[i] != src->bits[i])
    568 			discrep = 1;
    569 		dst->bits[i] |= src->bits[i];
    570 	}
    571 
    572 	return discrep;
    573 }
    574 
    575 /*
    576  * Detach a parity map from its RAID.  This is not meant to be applied except
    577  * when unconfiguring the RAID after all I/O has been resolved, as otherwise
    578  * an out-of-date parity map could be treated as current.
    579  */
    580 void
    581 rf_paritymap_detach(RF_Raid_t *raidPtr)
    582 {
    583 	if (raidPtr->parity_map == NULL)
    584 		return;
    585 
    586 	rf_lock_mutex2(raidPtr->iodone_lock);
    587 	struct rf_paritymap *pm = raidPtr->parity_map;
    588 	raidPtr->parity_map = NULL;
    589 	rf_unlock_mutex2(raidPtr->iodone_lock);
    590 	/* XXXjld is that enough locking?  Or too much? */
    591 	rf_paritymap_destroy(pm, 0);
    592 	kmem_free(pm, sizeof(*pm));
    593 }
    594 
    595 /*
    596  * Is this RAID set ineligible for parity-map use due to not actually
    597  * having any parity?  (If so, rf_paritymap_attach is a no-op, but
    598  * rf_paritymap_{get,set}_disable will still pointlessly act on the
    599  * component labels.)
    600  */
    601 int
    602 rf_paritymap_ineligible(RF_Raid_t *raidPtr)
    603 {
    604 	return raidPtr->Layout.map->faultsTolerated == 0;
    605 }
    606 
    607 /*
    608  * Attach a parity map to a RAID set if appropriate.  Includes
    609  * configure-time processing of parity-map fields of component label.
    610  */
    611 void
    612 rf_paritymap_attach(RF_Raid_t *raidPtr, int force)
    613 {
    614 	RF_RowCol_t col;
    615 	int pm_use, pm_zap;
    616 	int g_tickms, g_ntick, g_regions;
    617 	int good;
    618 	RF_ComponentLabel_t *clabel;
    619 	u_int flags, regions;
    620 	struct rf_pmparams params;
    621 
    622 	if (rf_paritymap_ineligible(raidPtr)) {
    623 		/* There isn't any parity. */
    624 		return;
    625 	}
    626 
    627 	pm_use = 1;
    628 	pm_zap = 0;
    629 	g_tickms = DFL_TICKMS;
    630 	g_ntick = DFL_COOLDOWN;
    631 	g_regions = 0;
    632 
    633 	/*
    634 	 * Collect opinions on the set config.  If this is the initial
    635 	 * config (raidctl -C), treat all labels as invalid, since
    636 	 * there may be random data present.
    637 	 */
    638 	if (!force) {
    639 		for (col = 0; col < raidPtr->numCol; col++) {
    640 			if (RF_DEAD_DISK(raidPtr->Disks[col].status))
    641 				continue;
    642 			clabel = raidget_component_label(raidPtr, col);
    643 			flags = clabel->parity_map_flags;
    644 			/* Check for use by non-parity-map kernel. */
    645 			if (clabel->parity_map_modcount
    646 			    != clabel->mod_counter) {
    647 				flags &= ~RF_PMLABEL_WASUSED;
    648 			}
    649 
    650 			if (flags & RF_PMLABEL_VALID) {
    651 				g_tickms = clabel->parity_map_tickms;
    652 				g_ntick = clabel->parity_map_ntick;
    653 				regions = clabel->parity_map_regions;
    654 				if (g_regions == 0)
    655 					g_regions = regions;
    656 				else if (g_regions != regions) {
    657 					pm_zap = 1; /* important! */
    658 				}
    659 
    660 				if (flags & RF_PMLABEL_DISABLE) {
    661 					pm_use = 0;
    662 				}
    663 				if (!(flags & RF_PMLABEL_WASUSED)) {
    664 					pm_zap = 1;
    665 				}
    666 			} else {
    667 				pm_zap = 1;
    668 			}
    669 		}
    670 	} else {
    671 		pm_zap = 1;
    672 	}
    673 
    674 	/* Finally, create and attach the parity map. */
    675 	if (pm_use) {
    676 		params.cooldown = g_ntick;
    677 		params.tickms = g_tickms;
    678 		params.regions = g_regions;
    679 
    680 		raidPtr->parity_map = kmem_alloc(sizeof(struct rf_paritymap),
    681 		    KM_SLEEP);
    682 		if (0 != rf_paritymap_init(raidPtr->parity_map, raidPtr,
    683 			&params)) {
    684 			/* It failed; do without. */
    685 			kmem_free(raidPtr->parity_map,
    686 			    sizeof(struct rf_paritymap));
    687 			raidPtr->parity_map = NULL;
    688 			return;
    689 		}
    690 
    691 		if (g_regions == 0)
    692 			/* Pick up the autoconfigured region count. */
    693 			g_regions = raidPtr->parity_map->params.regions;
    694 
    695 		if (pm_zap) {
    696 			good = raidPtr->parity_good && !force;
    697 
    698 			if (good)
    699 				rf_paritymap_forceclean(raidPtr->parity_map);
    700 			else
    701 				rf_paritymap_invalidate(raidPtr->parity_map);
    702 			/* This needs to be on disk before WASUSED is set. */
    703 			rf_paritymap_write(raidPtr->parity_map);
    704 		}
    705 	}
    706 
    707 	/* Alter labels in-core to reflect the current view of things. */
    708 	for (col = 0; col < raidPtr->numCol; col++) {
    709 		if (RF_DEAD_DISK(raidPtr->Disks[col].status))
    710 			continue;
    711 		clabel = raidget_component_label(raidPtr, col);
    712 
    713 		if (pm_use)
    714 			flags = RF_PMLABEL_VALID | RF_PMLABEL_WASUSED;
    715 		else
    716 			flags = RF_PMLABEL_VALID | RF_PMLABEL_DISABLE;
    717 
    718 		clabel->parity_map_flags = flags;
    719 		clabel->parity_map_tickms = g_tickms;
    720 		clabel->parity_map_ntick = g_ntick;
    721 		clabel->parity_map_regions = g_regions;
    722 		raidflush_component_label(raidPtr, col);
    723 	}
    724 	/* Note that we're just in 'attach' here, and there won't
    725 	   be any spare disks at this point. */
    726 }
    727 
    728 /*
    729  * For initializing the parity-map fields of a component label, both on
    730  * initial creation and on reconstruct.  */
    731 void
    732 rf_paritymap_init_label(struct rf_paritymap *pm, RF_ComponentLabel_t *clabel)
    733 {
    734 	if (pm != NULL) {
    735 		clabel->parity_map_flags =
    736 		    RF_PMLABEL_VALID | RF_PMLABEL_WASUSED;
    737 		clabel->parity_map_tickms = pm->params.tickms;
    738 		clabel->parity_map_ntick = pm->params.cooldown;
    739 		/*
    740 		 * XXXjld: If the number of regions is changed on disk, and
    741 		 * then a new component is labeled before the next configure,
    742 		 * then it will get the old value and they will conflict on
    743 		 * the next boot (and the default will be used instead).
    744 		 */
    745 		clabel->parity_map_regions = pm->params.regions;
    746 	} else {
    747 		/*
    748 		 * XXXjld: if the map is disabled, and all the components are
    749 		 * replaced without an intervening unconfigure/reconfigure,
    750 		 * then it will become enabled on the next unconfig/reconfig.
    751 		 */
    752 	}
    753 }
    754 
    755 
    756 /* Will the parity map be disabled next time? */
    757 int
    758 rf_paritymap_get_disable(RF_Raid_t *raidPtr)
    759 {
    760 	RF_ComponentLabel_t *clabel;
    761 	RF_RowCol_t col;
    762 	int dis;
    763 
    764 	dis = 0;
    765 	for (col = 0; col < raidPtr->numCol; col++) {
    766 		if (RF_DEAD_DISK(raidPtr->Disks[col].status))
    767 			continue;
    768 		clabel = raidget_component_label(raidPtr, col);
    769 		if (clabel->parity_map_flags & RF_PMLABEL_DISABLE)
    770 			dis = 1;
    771 	}
    772         for (col = 0; col < raidPtr->numSpare; col++) {
    773 		if (raidPtr->Disks[raidPtr->numCol+col].status != rf_ds_used_spare)
    774                         continue;
    775                 clabel = raidget_component_label(raidPtr, raidPtr->numCol+col);
    776                 if (clabel->parity_map_flags & RF_PMLABEL_DISABLE)
    777                         dis = 1;
    778         }
    779 
    780 	return dis;
    781 }
    782 
    783 /* Set whether the parity map will be disabled next time. */
    784 void
    785 rf_paritymap_set_disable(RF_Raid_t *raidPtr, int dis)
    786 {
    787 	RF_ComponentLabel_t *clabel;
    788 	RF_RowCol_t col;
    789 
    790 	for (col = 0; col < raidPtr->numCol; col++) {
    791 		if (RF_DEAD_DISK(raidPtr->Disks[col].status))
    792 			continue;
    793 		clabel = raidget_component_label(raidPtr, col);
    794 		if (dis)
    795 			clabel->parity_map_flags |= RF_PMLABEL_DISABLE;
    796 		else
    797 			clabel->parity_map_flags &= ~RF_PMLABEL_DISABLE;
    798 		raidflush_component_label(raidPtr, col);
    799 	}
    800 
    801 	/* update any used spares as well */
    802 	for (col = 0; col < raidPtr->numSpare; col++) {
    803 		if (raidPtr->Disks[raidPtr->numCol+col].status != rf_ds_used_spare)
    804 			continue;
    805 
    806 		clabel = raidget_component_label(raidPtr, raidPtr->numCol+col);
    807 		if (dis)
    808 			clabel->parity_map_flags |= RF_PMLABEL_DISABLE;
    809 		else
    810 			clabel->parity_map_flags &= ~RF_PMLABEL_DISABLE;
    811 		raidflush_component_label(raidPtr, raidPtr->numCol+col);
    812 	}
    813 }
    814