Home | History | Annotate | Line # | Download | only in dcn21
      1 /*	$NetBSD: amdgpu_rn_clk_mgr.c,v 1.3 2021/12/19 12:21:29 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright 2018 Advanced Micro Devices, Inc.
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the "Software"),
      8  * to deal in the Software without restriction, including without limitation
      9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     10  * and/or sell copies of the Software, and to permit persons to whom the
     11  * Software is furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice shall be included in
     14  * all copies or substantial portions of the Software.
     15  *
     16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
     20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
     21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
     22  * OTHER DEALINGS IN THE SOFTWARE.
     23  *
     24  * Authors: AMD
     25  *
     26  */
     27 
     28 #include <sys/cdefs.h>
     29 __KERNEL_RCSID(0, "$NetBSD: amdgpu_rn_clk_mgr.c,v 1.3 2021/12/19 12:21:29 riastradh Exp $");
     30 
     31 #include "dccg.h"
     32 #include "clk_mgr_internal.h"
     33 
     34 
     35 #include "dcn20/dcn20_clk_mgr.h"
     36 #include "rn_clk_mgr.h"
     37 
     38 
     39 #include "dce100/dce_clk_mgr.h"
     40 #include "rn_clk_mgr_vbios_smu.h"
     41 #include "reg_helper.h"
     42 #include "core_types.h"
     43 #include "dm_helpers.h"
     44 
     45 #include "atomfirmware.h"
     46 #include "clk/clk_10_0_2_offset.h"
     47 #include "clk/clk_10_0_2_sh_mask.h"
     48 #include "renoir_ip_offset.h"
     49 
     50 
     51 /* Constants */
     52 
     53 #define LPDDR_MEM_RETRAIN_LATENCY 4.977 /* Number obtained from LPDDR4 Training Counter Requirement doc */
     54 
     55 /* Macros */
     56 
     57 #define REG(reg_name) \
     58 	(CLK_BASE.instance[0].segment[mm ## reg_name ## _BASE_IDX] + mm ## reg_name)
     59 
     60 
     61 /* TODO: evaluate how to lower or disable all dcn clocks in screen off case */
     62 int rn_get_active_display_cnt_wa(
     63 		struct dc *dc,
     64 		struct dc_state *context)
     65 {
     66 	int i, display_count;
     67 	bool tmds_present = false;
     68 
     69 	display_count = 0;
     70 	for (i = 0; i < context->stream_count; i++) {
     71 		const struct dc_stream_state *stream = context->streams[i];
     72 
     73 		if (stream->signal == SIGNAL_TYPE_HDMI_TYPE_A ||
     74 				stream->signal == SIGNAL_TYPE_DVI_SINGLE_LINK ||
     75 				stream->signal == SIGNAL_TYPE_DVI_DUAL_LINK)
     76 			tmds_present = true;
     77 	}
     78 
     79 	for (i = 0; i < dc->link_count; i++) {
     80 		const struct dc_link *link = dc->links[i];
     81 
     82 		/*
     83 		 * Only notify active stream or virtual stream.
     84 		 * Need to notify virtual stream to work around
     85 		 * headless case. HPD does not fire when system is in
     86 		 * S0i2.
     87 		 */
     88 		/* abusing the fact that the dig and phy are coupled to see if the phy is enabled */
     89 		if (link->connector_signal == SIGNAL_TYPE_VIRTUAL ||
     90 				link->link_enc->funcs->is_dig_enabled(link->link_enc))
     91 			display_count++;
     92 	}
     93 
     94 	/* WA for hang on HDMI after display off back back on*/
     95 	if (display_count == 0 && tmds_present)
     96 		display_count = 1;
     97 
     98 	return display_count;
     99 }
    100 
    101 void rn_update_clocks(struct clk_mgr *clk_mgr_base,
    102 			struct dc_state *context,
    103 			bool safe_to_lower)
    104 {
    105 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
    106 	struct dc_clocks *new_clocks = &context->bw_ctx.bw.dcn.clk;
    107 	struct dc *dc = clk_mgr_base->ctx->dc;
    108 	int display_count;
    109 	bool update_dppclk = false;
    110 	bool update_dispclk = false;
    111 	bool dpp_clock_lowered = false;
    112 
    113 	struct dmcu *dmcu = clk_mgr_base->ctx->dc->res_pool->dmcu;
    114 
    115 	if (dc->work_arounds.skip_clock_update)
    116 		return;
    117 
    118 	/*
    119 	 * if it is safe to lower, but we are already in the lower state, we don't have to do anything
    120 	 * also if safe to lower is false, we just go in the higher state
    121 	 */
    122 	if (safe_to_lower) {
    123 		/* check that we're not already in lower */
    124 		if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_LOW_POWER) {
    125 
    126 			display_count = rn_get_active_display_cnt_wa(dc, context);
    127 			/* if we can go lower, go lower */
    128 			if (display_count == 0) {
    129 				rn_vbios_smu_set_dcn_low_power_state(clk_mgr, DCN_PWR_STATE_LOW_POWER);
    130 				/* update power state */
    131 				clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER;
    132 			}
    133 		}
    134 	} else {
    135 		/* check that we're not already in D0 */
    136 		if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_MISSION_MODE) {
    137 			rn_vbios_smu_set_dcn_low_power_state(clk_mgr, DCN_PWR_STATE_MISSION_MODE);
    138 			/* update power state */
    139 			clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_MISSION_MODE;
    140 		}
    141 	}
    142 
    143 	if (should_set_clock(safe_to_lower, new_clocks->phyclk_khz, clk_mgr_base->clks.phyclk_khz)) {
    144 		clk_mgr_base->clks.phyclk_khz = new_clocks->phyclk_khz;
    145 		rn_vbios_smu_set_phyclk(clk_mgr, clk_mgr_base->clks.phyclk_khz);
    146 	}
    147 
    148 	if (should_set_clock(safe_to_lower, new_clocks->dcfclk_khz, clk_mgr_base->clks.dcfclk_khz)) {
    149 		clk_mgr_base->clks.dcfclk_khz = new_clocks->dcfclk_khz;
    150 		rn_vbios_smu_set_hard_min_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_khz);
    151 	}
    152 
    153 	if (should_set_clock(safe_to_lower,
    154 			new_clocks->dcfclk_deep_sleep_khz, clk_mgr_base->clks.dcfclk_deep_sleep_khz)) {
    155 		clk_mgr_base->clks.dcfclk_deep_sleep_khz = new_clocks->dcfclk_deep_sleep_khz;
    156 		rn_vbios_smu_set_min_deep_sleep_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_deep_sleep_khz);
    157 	}
    158 
    159 	// workaround: Limit dppclk to 100Mhz to avoid lower eDP panel switch to plus 4K monitor underflow.
    160 	if (!IS_DIAG_DC(dc->ctx->dce_environment)) {
    161 		if (new_clocks->dppclk_khz < 100000)
    162 			new_clocks->dppclk_khz = 100000;
    163 	}
    164 
    165 	if (should_set_clock(safe_to_lower, new_clocks->dppclk_khz, clk_mgr->base.clks.dppclk_khz)) {
    166 		if (clk_mgr->base.clks.dppclk_khz > new_clocks->dppclk_khz)
    167 			dpp_clock_lowered = true;
    168 		clk_mgr_base->clks.dppclk_khz = new_clocks->dppclk_khz;
    169 		update_dppclk = true;
    170 	}
    171 
    172 	if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, clk_mgr_base->clks.dispclk_khz)) {
    173 		clk_mgr_base->clks.dispclk_khz = new_clocks->dispclk_khz;
    174 		rn_vbios_smu_set_dispclk(clk_mgr, clk_mgr_base->clks.dispclk_khz);
    175 
    176 		update_dispclk = true;
    177 	}
    178 
    179 	if (dpp_clock_lowered) {
    180 		// increase per DPP DTO before lowering global dppclk
    181 		dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
    182 		rn_vbios_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
    183 	} else {
    184 		// increase global DPPCLK before lowering per DPP DTO
    185 		if (update_dppclk || update_dispclk)
    186 			rn_vbios_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
    187 		// always update dtos unless clock is lowered and not safe to lower
    188 		if (new_clocks->dppclk_khz >= dc->current_state->bw_ctx.bw.dcn.clk.dppclk_khz)
    189 			dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
    190 	}
    191 
    192 	if (update_dispclk &&
    193 			dmcu && dmcu->funcs->is_dmcu_initialized(dmcu)) {
    194 		/*update dmcu for wait_loop count*/
    195 		dmcu->funcs->set_psr_wait_loop(dmcu,
    196 			clk_mgr_base->clks.dispclk_khz / 1000 / 7);
    197 	}
    198 }
    199 
    200 
    201 static int get_vco_frequency_from_reg(struct clk_mgr_internal *clk_mgr)
    202 {
    203 	/* get FbMult value */
    204 	struct fixed31_32 pll_req;
    205 	unsigned int fbmult_frac_val = 0;
    206 	unsigned int fbmult_int_val = 0;
    207 
    208 
    209 	/*
    210 	 * Register value of fbmult is in 8.16 format, we are converting to 31.32
    211 	 * to leverage the fix point operations available in driver
    212 	 */
    213 
    214 	REG_GET(CLK1_CLK_PLL_REQ, FbMult_frac, &fbmult_frac_val); /* 16 bit fractional part*/
    215 	REG_GET(CLK1_CLK_PLL_REQ, FbMult_int, &fbmult_int_val); /* 8 bit integer part */
    216 
    217 	pll_req = dc_fixpt_from_int(fbmult_int_val);
    218 
    219 	/*
    220 	 * since fractional part is only 16 bit in register definition but is 32 bit
    221 	 * in our fix point definiton, need to shift left by 16 to obtain correct value
    222 	 */
    223 	pll_req.value |= fbmult_frac_val << 16;
    224 
    225 	/* multiply by REFCLK period */
    226 	pll_req = dc_fixpt_mul_int(pll_req, clk_mgr->dfs_ref_freq_khz);
    227 
    228 	/* integer part is now VCO frequency in kHz */
    229 	return dc_fixpt_floor(pll_req);
    230 }
    231 
    232 static void rn_dump_clk_registers_internal(struct rn_clk_internal *internal, struct clk_mgr *clk_mgr_base)
    233 {
    234 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
    235 
    236 	internal->CLK1_CLK3_CURRENT_CNT = REG_READ(CLK1_CLK3_CURRENT_CNT);
    237 	internal->CLK1_CLK3_BYPASS_CNTL = REG_READ(CLK1_CLK3_BYPASS_CNTL);
    238 
    239 	internal->CLK1_CLK3_DS_CNTL = REG_READ(CLK1_CLK3_DS_CNTL);	//dcf deep sleep divider
    240 	internal->CLK1_CLK3_ALLOW_DS = REG_READ(CLK1_CLK3_ALLOW_DS);
    241 
    242 	internal->CLK1_CLK1_CURRENT_CNT = REG_READ(CLK1_CLK1_CURRENT_CNT);
    243 	internal->CLK1_CLK1_BYPASS_CNTL = REG_READ(CLK1_CLK1_BYPASS_CNTL);
    244 
    245 	internal->CLK1_CLK2_CURRENT_CNT = REG_READ(CLK1_CLK2_CURRENT_CNT);
    246 	internal->CLK1_CLK2_BYPASS_CNTL = REG_READ(CLK1_CLK2_BYPASS_CNTL);
    247 
    248 	internal->CLK1_CLK0_CURRENT_CNT = REG_READ(CLK1_CLK0_CURRENT_CNT);
    249 	internal->CLK1_CLK0_BYPASS_CNTL = REG_READ(CLK1_CLK0_BYPASS_CNTL);
    250 }
    251 
    252 /* This function collect raw clk register values */
    253 static void rn_dump_clk_registers(struct clk_state_registers_and_bypass *regs_and_bypass,
    254 		struct clk_mgr *clk_mgr_base, struct clk_log_info *log_info)
    255 {
    256 	struct rn_clk_internal internal = {0};
    257 	const char *bypass_clks[5] = {"0x0 DFS", "0x1 REFCLK", "0x2 ERROR", "0x3 400 FCH", "0x4 600 FCH"};
    258 	unsigned int chars_printed = 0;
    259 	unsigned int remaining_buffer = log_info->bufSize;
    260 
    261 	rn_dump_clk_registers_internal(&internal, clk_mgr_base);
    262 
    263 	regs_and_bypass->dcfclk = internal.CLK1_CLK3_CURRENT_CNT / 10;
    264 	regs_and_bypass->dcf_deep_sleep_divider = internal.CLK1_CLK3_DS_CNTL / 10;
    265 	regs_and_bypass->dcf_deep_sleep_allow = internal.CLK1_CLK3_ALLOW_DS;
    266 	regs_and_bypass->dprefclk = internal.CLK1_CLK2_CURRENT_CNT / 10;
    267 	regs_and_bypass->dispclk = internal.CLK1_CLK0_CURRENT_CNT / 10;
    268 	regs_and_bypass->dppclk = internal.CLK1_CLK1_CURRENT_CNT / 10;
    269 
    270 	regs_and_bypass->dppclk_bypass = internal.CLK1_CLK1_BYPASS_CNTL & 0x0007;
    271 	if (regs_and_bypass->dppclk_bypass < 0 || regs_and_bypass->dppclk_bypass > 4)
    272 		regs_and_bypass->dppclk_bypass = 0;
    273 	regs_and_bypass->dcfclk_bypass = internal.CLK1_CLK3_BYPASS_CNTL & 0x0007;
    274 	if (regs_and_bypass->dcfclk_bypass < 0 || regs_and_bypass->dcfclk_bypass > 4)
    275 		regs_and_bypass->dcfclk_bypass = 0;
    276 	regs_and_bypass->dispclk_bypass = internal.CLK1_CLK0_BYPASS_CNTL & 0x0007;
    277 	if (regs_and_bypass->dispclk_bypass < 0 || regs_and_bypass->dispclk_bypass > 4)
    278 		regs_and_bypass->dispclk_bypass = 0;
    279 	regs_and_bypass->dprefclk_bypass = internal.CLK1_CLK2_BYPASS_CNTL & 0x0007;
    280 	if (regs_and_bypass->dprefclk_bypass < 0 || regs_and_bypass->dprefclk_bypass > 4)
    281 		regs_and_bypass->dprefclk_bypass = 0;
    282 
    283 	if (log_info->enabled) {
    284 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "clk_type,clk_value,deepsleep_cntl,deepsleep_allow,bypass\n");
    285 		remaining_buffer -= chars_printed;
    286 		*log_info->sum_chars_printed += chars_printed;
    287 		log_info->pBuf += chars_printed;
    288 
    289 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dcfclk,%d,%d,%d,%s\n",
    290 			regs_and_bypass->dcfclk,
    291 			regs_and_bypass->dcf_deep_sleep_divider,
    292 			regs_and_bypass->dcf_deep_sleep_allow,
    293 			bypass_clks[(int) regs_and_bypass->dcfclk_bypass]);
    294 		remaining_buffer -= chars_printed;
    295 		*log_info->sum_chars_printed += chars_printed;
    296 		log_info->pBuf += chars_printed;
    297 
    298 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dprefclk,%d,N/A,N/A,%s\n",
    299 			regs_and_bypass->dprefclk,
    300 			bypass_clks[(int) regs_and_bypass->dprefclk_bypass]);
    301 		remaining_buffer -= chars_printed;
    302 		*log_info->sum_chars_printed += chars_printed;
    303 		log_info->pBuf += chars_printed;
    304 
    305 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dispclk,%d,N/A,N/A,%s\n",
    306 			regs_and_bypass->dispclk,
    307 			bypass_clks[(int) regs_and_bypass->dispclk_bypass]);
    308 		remaining_buffer -= chars_printed;
    309 		*log_info->sum_chars_printed += chars_printed;
    310 		log_info->pBuf += chars_printed;
    311 
    312 		//split
    313 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "SPLIT\n");
    314 		remaining_buffer -= chars_printed;
    315 		*log_info->sum_chars_printed += chars_printed;
    316 		log_info->pBuf += chars_printed;
    317 
    318 		// REGISTER VALUES
    319 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "reg_name,value,clk_type\n");
    320 		remaining_buffer -= chars_printed;
    321 		*log_info->sum_chars_printed += chars_printed;
    322 		log_info->pBuf += chars_printed;
    323 
    324 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_CURRENT_CNT,%d,dcfclk\n",
    325 				internal.CLK1_CLK3_CURRENT_CNT);
    326 		remaining_buffer -= chars_printed;
    327 		*log_info->sum_chars_printed += chars_printed;
    328 		log_info->pBuf += chars_printed;
    329 
    330 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_DS_CNTL,%d,dcf_deep_sleep_divider\n",
    331 					internal.CLK1_CLK3_DS_CNTL);
    332 		remaining_buffer -= chars_printed;
    333 		*log_info->sum_chars_printed += chars_printed;
    334 		log_info->pBuf += chars_printed;
    335 
    336 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_ALLOW_DS,%d,dcf_deep_sleep_allow\n",
    337 					internal.CLK1_CLK3_ALLOW_DS);
    338 		remaining_buffer -= chars_printed;
    339 		*log_info->sum_chars_printed += chars_printed;
    340 		log_info->pBuf += chars_printed;
    341 
    342 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_CURRENT_CNT,%d,dprefclk\n",
    343 					internal.CLK1_CLK2_CURRENT_CNT);
    344 		remaining_buffer -= chars_printed;
    345 		*log_info->sum_chars_printed += chars_printed;
    346 		log_info->pBuf += chars_printed;
    347 
    348 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_CURRENT_CNT,%d,dispclk\n",
    349 					internal.CLK1_CLK0_CURRENT_CNT);
    350 		remaining_buffer -= chars_printed;
    351 		*log_info->sum_chars_printed += chars_printed;
    352 		log_info->pBuf += chars_printed;
    353 
    354 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_CURRENT_CNT,%d,dppclk\n",
    355 					internal.CLK1_CLK1_CURRENT_CNT);
    356 		remaining_buffer -= chars_printed;
    357 		*log_info->sum_chars_printed += chars_printed;
    358 		log_info->pBuf += chars_printed;
    359 
    360 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_BYPASS_CNTL,%d,dcfclk_bypass\n",
    361 					internal.CLK1_CLK3_BYPASS_CNTL);
    362 		remaining_buffer -= chars_printed;
    363 		*log_info->sum_chars_printed += chars_printed;
    364 		log_info->pBuf += chars_printed;
    365 
    366 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_BYPASS_CNTL,%d,dprefclk_bypass\n",
    367 					internal.CLK1_CLK2_BYPASS_CNTL);
    368 		remaining_buffer -= chars_printed;
    369 		*log_info->sum_chars_printed += chars_printed;
    370 		log_info->pBuf += chars_printed;
    371 
    372 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_BYPASS_CNTL,%d,dispclk_bypass\n",
    373 					internal.CLK1_CLK0_BYPASS_CNTL);
    374 		remaining_buffer -= chars_printed;
    375 		*log_info->sum_chars_printed += chars_printed;
    376 		log_info->pBuf += chars_printed;
    377 
    378 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_BYPASS_CNTL,%d,dppclk_bypass\n",
    379 					internal.CLK1_CLK1_BYPASS_CNTL);
    380 		remaining_buffer -= chars_printed;
    381 		*log_info->sum_chars_printed += chars_printed;
    382 		log_info->pBuf += chars_printed;
    383 	}
    384 }
    385 
    386 /* This function produce translated logical clk state values*/
    387 void rn_get_clk_states(struct clk_mgr *clk_mgr_base, struct clk_states *s)
    388 {
    389 	struct clk_state_registers_and_bypass sb = { 0 };
    390 	struct clk_log_info log_info = { 0 };
    391 
    392 	rn_dump_clk_registers(&sb, clk_mgr_base, &log_info);
    393 
    394 	s->dprefclk_khz = sb.dprefclk * 1000;
    395 }
    396 
    397 void rn_enable_pme_wa(struct clk_mgr *clk_mgr_base)
    398 {
    399 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
    400 
    401 	rn_vbios_smu_enable_pme_wa(clk_mgr);
    402 }
    403 
    404 void rn_init_clocks(struct clk_mgr *clk_mgr)
    405 {
    406 	memset(&(clk_mgr->clks), 0, sizeof(struct dc_clocks));
    407 	// Assumption is that boot state always supports pstate
    408 	clk_mgr->clks.p_state_change_support = true;
    409 	clk_mgr->clks.prev_p_state_change_support = true;
    410 	clk_mgr->clks.pwr_state = DCN_PWR_STATE_UNKNOWN;
    411 }
    412 
    413 void build_watermark_ranges(struct clk_bw_params *bw_params, struct pp_smu_wm_range_sets *ranges)
    414 {
    415 	int i, num_valid_sets;
    416 
    417 	num_valid_sets = 0;
    418 
    419 	for (i = 0; i < WM_SET_COUNT; i++) {
    420 		/* skip empty entries, the smu array has no holes*/
    421 		if (!bw_params->wm_table.entries[i].valid)
    422 			continue;
    423 
    424 		ranges->reader_wm_sets[num_valid_sets].wm_inst = bw_params->wm_table.entries[i].wm_inst;
    425 		ranges->reader_wm_sets[num_valid_sets].wm_type = bw_params->wm_table.entries[i].wm_type;
    426 		/* We will not select WM based on fclk, so leave it as unconstrained */
    427 		ranges->reader_wm_sets[num_valid_sets].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
    428 		ranges->reader_wm_sets[num_valid_sets].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
    429 		/* dcfclk wil be used to select WM*/
    430 
    431 		if (ranges->reader_wm_sets[num_valid_sets].wm_type == WM_TYPE_PSTATE_CHG) {
    432 			if (i == 0)
    433 				ranges->reader_wm_sets[num_valid_sets].min_drain_clk_mhz = 0;
    434 			else {
    435 				/* add 1 to make it non-overlapping with next lvl */
    436 				ranges->reader_wm_sets[num_valid_sets].min_drain_clk_mhz = bw_params->clk_table.entries[i - 1].dcfclk_mhz + 1;
    437 			}
    438 			ranges->reader_wm_sets[num_valid_sets].max_drain_clk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
    439 
    440 		} else {
    441 			/* unconstrained for memory retraining */
    442 			ranges->reader_wm_sets[num_valid_sets].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
    443 			ranges->reader_wm_sets[num_valid_sets].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
    444 
    445 			/* Modify previous watermark range to cover up to max */
    446 			ranges->reader_wm_sets[num_valid_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
    447 		}
    448 		num_valid_sets++;
    449 	}
    450 
    451 	ASSERT(num_valid_sets != 0); /* Must have at least one set of valid watermarks */
    452 	ranges->num_reader_wm_sets = num_valid_sets;
    453 
    454 	/* modify the min and max to make sure we cover the whole range*/
    455 	ranges->reader_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
    456 	ranges->reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
    457 	ranges->reader_wm_sets[ranges->num_reader_wm_sets - 1].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
    458 	ranges->reader_wm_sets[ranges->num_reader_wm_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
    459 
    460 	/* This is for writeback only, does not matter currently as no writeback support*/
    461 	ranges->num_writer_wm_sets = 1;
    462 	ranges->writer_wm_sets[0].wm_inst = WM_A;
    463 	ranges->writer_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
    464 	ranges->writer_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
    465 	ranges->writer_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
    466 	ranges->writer_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
    467 
    468 }
    469 
    470 static void rn_notify_wm_ranges(struct clk_mgr *clk_mgr_base)
    471 {
    472 	struct dc_debug_options *debug = &clk_mgr_base->ctx->dc->debug;
    473 	struct pp_smu_wm_range_sets ranges = {0};
    474 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
    475 	struct pp_smu_funcs *pp_smu = clk_mgr->pp_smu;
    476 
    477 	if (!debug->disable_pplib_wm_range) {
    478 		build_watermark_ranges(clk_mgr_base->bw_params, &ranges);
    479 
    480 		/* Notify PP Lib/SMU which Watermarks to use for which clock ranges */
    481 		if (pp_smu && pp_smu->rn_funcs.set_wm_ranges)
    482 			pp_smu->rn_funcs.set_wm_ranges(&pp_smu->rn_funcs.pp_smu, &ranges);
    483 	}
    484 
    485 }
    486 
    487 static bool rn_are_clock_states_equal(struct dc_clocks *a,
    488 		struct dc_clocks *b)
    489 {
    490 	if (a->dispclk_khz != b->dispclk_khz)
    491 		return false;
    492 	else if (a->dppclk_khz != b->dppclk_khz)
    493 		return false;
    494 	else if (a->dcfclk_khz != b->dcfclk_khz)
    495 		return false;
    496 	else if (a->dcfclk_deep_sleep_khz != b->dcfclk_deep_sleep_khz)
    497 		return false;
    498 
    499 	return true;
    500 }
    501 
    502 
    503 static struct clk_mgr_funcs dcn21_funcs = {
    504 	.get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz,
    505 	.update_clocks = rn_update_clocks,
    506 	.init_clocks = rn_init_clocks,
    507 	.enable_pme_wa = rn_enable_pme_wa,
    508 	.are_clock_states_equal = rn_are_clock_states_equal,
    509 	.notify_wm_ranges = rn_notify_wm_ranges
    510 };
    511 
    512 struct clk_bw_params rn_bw_params = {
    513 	.vram_type = Ddr4MemType,
    514 	.num_channels = 1,
    515 	.clk_table = {
    516 		.entries = {
    517 			{
    518 				.voltage = 0,
    519 				.dcfclk_mhz = 400,
    520 				.fclk_mhz = 400,
    521 				.memclk_mhz = 800,
    522 				.socclk_mhz = 0,
    523 			},
    524 			{
    525 				.voltage = 0,
    526 				.dcfclk_mhz = 483,
    527 				.fclk_mhz = 800,
    528 				.memclk_mhz = 1600,
    529 				.socclk_mhz = 0,
    530 			},
    531 			{
    532 				.voltage = 0,
    533 				.dcfclk_mhz = 602,
    534 				.fclk_mhz = 1067,
    535 				.memclk_mhz = 1067,
    536 				.socclk_mhz = 0,
    537 			},
    538 			{
    539 				.voltage = 0,
    540 				.dcfclk_mhz = 738,
    541 				.fclk_mhz = 1333,
    542 				.memclk_mhz = 1600,
    543 				.socclk_mhz = 0,
    544 			},
    545 		},
    546 
    547 		.num_entries = 4,
    548 	},
    549 
    550 };
    551 
    552 struct wm_table ddr4_wm_table = {
    553 	.entries = {
    554 		{
    555 			.wm_inst = WM_A,
    556 			.wm_type = WM_TYPE_PSTATE_CHG,
    557 			.pstate_latency_us = 11.72,
    558 			.sr_exit_time_us = 6.09,
    559 			.sr_enter_plus_exit_time_us = 7.14,
    560 			.valid = true,
    561 		},
    562 		{
    563 			.wm_inst = WM_B,
    564 			.wm_type = WM_TYPE_PSTATE_CHG,
    565 			.pstate_latency_us = 11.72,
    566 			.sr_exit_time_us = 10.12,
    567 			.sr_enter_plus_exit_time_us = 11.48,
    568 			.valid = true,
    569 		},
    570 		{
    571 			.wm_inst = WM_C,
    572 			.wm_type = WM_TYPE_PSTATE_CHG,
    573 			.pstate_latency_us = 11.72,
    574 			.sr_exit_time_us = 10.12,
    575 			.sr_enter_plus_exit_time_us = 11.48,
    576 			.valid = true,
    577 		},
    578 		{
    579 			.wm_inst = WM_D,
    580 			.wm_type = WM_TYPE_PSTATE_CHG,
    581 			.pstate_latency_us = 11.72,
    582 			.sr_exit_time_us = 10.12,
    583 			.sr_enter_plus_exit_time_us = 11.48,
    584 			.valid = true,
    585 		},
    586 	}
    587 };
    588 
    589 struct wm_table lpddr4_wm_table = {
    590 	.entries = {
    591 		{
    592 			.wm_inst = WM_A,
    593 			.wm_type = WM_TYPE_PSTATE_CHG,
    594 			.pstate_latency_us = 11.65333,
    595 			.sr_exit_time_us = 5.32,
    596 			.sr_enter_plus_exit_time_us = 6.38,
    597 			.valid = true,
    598 		},
    599 		{
    600 			.wm_inst = WM_B,
    601 			.wm_type = WM_TYPE_PSTATE_CHG,
    602 			.pstate_latency_us = 11.65333,
    603 			.sr_exit_time_us = 9.82,
    604 			.sr_enter_plus_exit_time_us = 11.196,
    605 			.valid = true,
    606 		},
    607 		{
    608 			.wm_inst = WM_C,
    609 			.wm_type = WM_TYPE_PSTATE_CHG,
    610 			.pstate_latency_us = 11.65333,
    611 			.sr_exit_time_us = 9.89,
    612 			.sr_enter_plus_exit_time_us = 11.24,
    613 			.valid = true,
    614 		},
    615 		{
    616 			.wm_inst = WM_D,
    617 			.wm_type = WM_TYPE_PSTATE_CHG,
    618 			.pstate_latency_us = 11.65333,
    619 			.sr_exit_time_us = 9.748,
    620 			.sr_enter_plus_exit_time_us = 11.102,
    621 			.valid = true,
    622 		},
    623 	}
    624 };
    625 
    626 
    627 static unsigned int find_dcfclk_for_voltage(struct dpm_clocks *clock_table, unsigned int voltage)
    628 {
    629 	int i;
    630 
    631 	for (i = 0; i < PP_SMU_NUM_DCFCLK_DPM_LEVELS; i++) {
    632 		if (clock_table->DcfClocks[i].Vol == voltage)
    633 			return clock_table->DcfClocks[i].Freq;
    634 	}
    635 
    636 	ASSERT(0);
    637 	return 0;
    638 }
    639 
    640 static void rn_clk_mgr_helper_populate_bw_params(struct clk_bw_params *bw_params, struct dpm_clocks *clock_table, struct integrated_info *bios_info)
    641 {
    642 	int i, j = 0;
    643 
    644 	j = -1;
    645 
    646 	ASSERT(PP_SMU_NUM_FCLK_DPM_LEVELS <= MAX_NUM_DPM_LVL);
    647 
    648 	/* Find lowest DPM, FCLK is filled in reverse order*/
    649 
    650 	for (i = PP_SMU_NUM_FCLK_DPM_LEVELS - 1; i >= 0; i--) {
    651 		if (clock_table->FClocks[i].Freq != 0) {
    652 			j = i;
    653 			break;
    654 		}
    655 	}
    656 
    657 	if (j == -1) {
    658 		/* clock table is all 0s, just use our own hardcode */
    659 		ASSERT(0);
    660 		return;
    661 	}
    662 
    663 	bw_params->clk_table.num_entries = j + 1;
    664 
    665 	for (i = 0; i < bw_params->clk_table.num_entries; i++, j--) {
    666 		bw_params->clk_table.entries[i].fclk_mhz = clock_table->FClocks[j].Freq;
    667 		bw_params->clk_table.entries[i].memclk_mhz = clock_table->MemClocks[j].Freq;
    668 		bw_params->clk_table.entries[i].voltage = clock_table->FClocks[j].Vol;
    669 		bw_params->clk_table.entries[i].dcfclk_mhz = find_dcfclk_for_voltage(clock_table, clock_table->FClocks[j].Vol);
    670 	}
    671 
    672 	bw_params->vram_type = bios_info->memory_type;
    673 	bw_params->num_channels = bios_info->ma_channel_number;
    674 
    675 	for (i = 0; i < WM_SET_COUNT; i++) {
    676 		bw_params->wm_table.entries[i].wm_inst = i;
    677 
    678 		if (i >= bw_params->clk_table.num_entries) {
    679 			bw_params->wm_table.entries[i].valid = false;
    680 			continue;
    681 		}
    682 
    683 		bw_params->wm_table.entries[i].wm_type = WM_TYPE_PSTATE_CHG;
    684 		bw_params->wm_table.entries[i].valid = true;
    685 	}
    686 
    687 	if (bw_params->vram_type == LpDdr4MemType) {
    688 		/*
    689 		 * WM set D will be re-purposed for memory retraining
    690 		 */
    691 		bw_params->wm_table.entries[WM_D].pstate_latency_us = LPDDR_MEM_RETRAIN_LATENCY;
    692 		bw_params->wm_table.entries[WM_D].wm_inst = WM_D;
    693 		bw_params->wm_table.entries[WM_D].wm_type = WM_TYPE_RETRAINING;
    694 		bw_params->wm_table.entries[WM_D].valid = true;
    695 	}
    696 
    697 }
    698 
    699 void rn_clk_mgr_construct(
    700 		struct dc_context *ctx,
    701 		struct clk_mgr_internal *clk_mgr,
    702 		struct pp_smu_funcs *pp_smu,
    703 		struct dccg *dccg)
    704 {
    705 	struct dc_debug_options *debug = &ctx->dc->debug;
    706 	struct dpm_clocks clock_table = { 0 };
    707 
    708 	clk_mgr->base.ctx = ctx;
    709 	clk_mgr->base.funcs = &dcn21_funcs;
    710 
    711 	clk_mgr->pp_smu = pp_smu;
    712 
    713 	clk_mgr->dccg = dccg;
    714 	clk_mgr->dfs_bypass_disp_clk = 0;
    715 
    716 	clk_mgr->dprefclk_ss_percentage = 0;
    717 	clk_mgr->dprefclk_ss_divider = 1000;
    718 	clk_mgr->ss_on_dprefclk = false;
    719 	clk_mgr->dfs_ref_freq_khz = 48000;
    720 
    721 	clk_mgr->smu_ver = rn_vbios_smu_get_smu_version(clk_mgr);
    722 
    723 	if (IS_FPGA_MAXIMUS_DC(ctx->dce_environment)) {
    724 		dcn21_funcs.update_clocks = dcn2_update_clocks_fpga;
    725 		clk_mgr->base.dentist_vco_freq_khz = 3600000;
    726 	} else {
    727 		struct clk_log_info log_info = {0};
    728 
    729 		/* TODO: Check we get what we expect during bringup */
    730 		clk_mgr->base.dentist_vco_freq_khz = get_vco_frequency_from_reg(clk_mgr);
    731 
    732 		/* in case we don't get a value from the register, use default */
    733 		if (clk_mgr->base.dentist_vco_freq_khz == 0)
    734 			clk_mgr->base.dentist_vco_freq_khz = 3600000;
    735 
    736 		if (ctx->dc_bios->integrated_info->memory_type == LpDdr4MemType) {
    737 			rn_bw_params.wm_table = lpddr4_wm_table;
    738 		} else {
    739 			rn_bw_params.wm_table = ddr4_wm_table;
    740 		}
    741 		/* Saved clocks configured at boot for debug purposes */
    742 		rn_dump_clk_registers(&clk_mgr->base.boot_snapshot, &clk_mgr->base, &log_info);
    743 	}
    744 
    745 	clk_mgr->base.dprefclk_khz = 600000;
    746 	dce_clock_read_ss_info(clk_mgr);
    747 
    748 
    749 	clk_mgr->base.bw_params = &rn_bw_params;
    750 
    751 	if (pp_smu && pp_smu->rn_funcs.get_dpm_clock_table) {
    752 		pp_smu->rn_funcs.get_dpm_clock_table(&pp_smu->rn_funcs.pp_smu, &clock_table);
    753 		if (ctx->dc_bios && ctx->dc_bios->integrated_info) {
    754 			rn_clk_mgr_helper_populate_bw_params (clk_mgr->base.bw_params, &clock_table, ctx->dc_bios->integrated_info);
    755 		}
    756 	}
    757 
    758 	if (!IS_FPGA_MAXIMUS_DC(ctx->dce_environment) && clk_mgr->smu_ver >= 0x00371500) {
    759 		/* enable powerfeatures when displaycount goes to 0 */
    760 		rn_vbios_smu_enable_48mhz_tmdp_refclk_pwrdwn(clk_mgr, !debug->disable_48mhz_pwrdwn);
    761 	}
    762 }
    763 
    764