1 /* $NetBSD: rpc_machdep.c,v 1.101 2022/05/15 20:37:50 andvar Exp $ */ 2 3 /* 4 * Copyright (c) 2000-2002 Reinoud Zandijk. 5 * Copyright (c) 1994-1998 Mark Brinicombe. 6 * Copyright (c) 1994 Brini. 7 * All rights reserved. 8 * 9 * This code is derived from software written for Brini by Mark Brinicombe 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by Brini. 22 * 4. The name of the company nor the name of the author may be used to 23 * endorse or promote products derived from this software without specific 24 * prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED 27 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 28 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 29 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, 30 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 31 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 32 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * RiscBSD kernel project 39 * 40 * machdep.c 41 * 42 * Machine dependent functions for kernel setup 43 * 44 * This file still needs a lot of work 45 * 46 * Created : 17/09/94 47 * Updated for yet another new bootloader 28/12/02 48 */ 49 50 #include "opt_ddb.h" 51 #include "opt_modular.h" 52 #include "vidcvideo.h" 53 #include "podulebus.h" 54 55 #include <sys/param.h> 56 57 __KERNEL_RCSID(0, "$NetBSD: rpc_machdep.c,v 1.101 2022/05/15 20:37:50 andvar Exp $"); 58 59 #include <sys/systm.h> 60 #include <sys/kernel.h> 61 #include <sys/reboot.h> 62 #include <sys/proc.h> 63 #include <sys/msgbuf.h> 64 #include <sys/exec.h> 65 #include <sys/exec_aout.h> 66 #include <sys/ksyms.h> 67 #include <sys/bus.h> 68 #include <sys/cpu.h> 69 #include <sys/intr.h> 70 #include <sys/device.h> 71 72 #include <dev/cons.h> 73 74 #include <dev/ic/pckbcvar.h> 75 76 #include <dev/i2c/i2cvar.h> 77 #include <dev/i2c/pcf8583var.h> 78 79 #include <machine/db_machdep.h> 80 #include <ddb/db_sym.h> 81 #include <ddb/db_extern.h> 82 83 #include <uvm/uvm.h> 84 85 #include <arm/locore.h> 86 #include <arm/undefined.h> 87 #include <arm/arm32/machdep.h> 88 #include <arm/arm32/pmap.h> 89 90 #include <machine/rtc.h> 91 #include <machine/signal.h> 92 #include <machine/bootconfig.h> 93 #include <machine/io.h> 94 95 #include <arm/iomd/vidc.h> 96 #include <arm/iomd/iomdreg.h> 97 #include <arm/iomd/iomdvar.h> 98 #include <arm/iomd/vidcvideo.h> 99 #include <arm/iomd/iomdiicvar.h> 100 101 static i2c_tag_t acorn32_i2c_tag; 102 103 #include "ksyms.h" 104 105 /* Kernel text starts at the base of the kernel address space. */ 106 #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00000000) 107 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000) 108 109 /* 110 * The range 0xf1000000 - 0xf5ffffff is available for kernel VM space 111 * Fixed mappings exist from 0xf6000000 - 0xffffffff 112 */ 113 #define KERNEL_VM_SIZE 0x05000000 114 115 struct bootconfig bootconfig; /* Boot config storage */ 116 videomemory_t videomemory; /* Video memory descriptor */ 117 118 char *boot_args = NULL; /* holds the pre-processed boot arguments */ 119 extern char *booted_kernel; /* used for ioctl to retrieve booted kernel */ 120 121 extern int *vidc_base; 122 extern uint32_t iomd_base; 123 extern struct bus_space iomd_bs_tag; 124 125 paddr_t physical_start; 126 paddr_t kernel_start; 127 paddr_t physical_freestart; 128 paddr_t physical_freeend; 129 paddr_t physical_end; 130 paddr_t dma_range_begin; 131 paddr_t dma_range_end; 132 133 u_int free_pages; 134 paddr_t memoryblock_end; 135 136 #ifndef PMAP_STATIC_L1S 137 int max_processes = 64; /* Default number */ 138 #endif /* !PMAP_STATIC_L1S */ 139 140 u_int videodram_size = 0; /* Amount of DRAM to reserve for video */ 141 142 paddr_t msgbufphys; 143 144 #define KERNEL_PT_VMEM 0 /* Page table for mapping video memory */ 145 #define KERNEL_PT_SYS 1 /* Page table for mapping proc0 zero page */ 146 #define KERNEL_PT_KERNEL 2 /* Page table for mapping kernel 0-4MB*/ 147 #define KERNEL_PT_KERNEL_4MB 3 /* Page table for mapping kernel 4-8MB*/ 148 #define KERNEL_PT_VMDATA 4 /* Page tables for mapping kernel VM */ 149 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */ 150 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM) 151 152 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS]; 153 154 #ifdef CPU_SA110 155 #define CPU_SA110_CACHE_CLEAN_SIZE (0x4000 * 2) 156 static vaddr_t sa110_cc_base; 157 #endif /* CPU_SA110 */ 158 159 /* Prototypes */ 160 void physcon_display_base(u_int); 161 extern void consinit(void); 162 163 void data_abort_handler(trapframe_t *); 164 void prefetch_abort_handler(trapframe_t *); 165 void undefinedinstruction_bounce(trapframe_t *frame); 166 167 static void canonicalise_bootconfig(struct bootconfig *, struct bootconfig *); 168 static void process_kernel_args(void); 169 170 extern void dump_spl_masks(void); 171 172 void rpc_sa110_cc_setup(void); 173 174 void parse_rpc_bootargs(char *args); 175 176 extern void dumpsys(void); 177 178 179 # define console_flush() /* empty */ 180 181 182 #define panic2(a) do { \ 183 memset((void *) (videomemory.vidm_vbase), 0x55, 50*1024); \ 184 consinit(); \ 185 panic a; \ 186 } while (/* CONSTCOND */ 0) 187 188 /* 189 * void cpu_reboot(int howto, char *bootstr) 190 * 191 * Reboots the system 192 * 193 * Deal with any syncing, unmounting, dumping and shutdown hooks, 194 * then reset the CPU. 195 */ 196 197 /* NOTE: These variables will be removed, well some of them */ 198 199 extern u_int current_mask; 200 201 void 202 cpu_reboot(int howto, char *bootstr) 203 { 204 205 #ifdef DIAGNOSTIC 206 printf("boot: howto=%08x curlwp=%p\n", howto, curlwp); 207 208 printf("ipl_bio=%08x ipl_net=%08x ipl_tty=%08x ipl_vm=%08x\n", 209 irqmasks[IPL_BIO], irqmasks[IPL_NET], irqmasks[IPL_TTY], 210 irqmasks[IPL_VM]); 211 printf("ipl_audio=%08x ipl_clock=%08x ipl_none=%08x\n", 212 irqmasks[IPL_AUDIO], irqmasks[IPL_CLOCK], irqmasks[IPL_NONE]); 213 214 dump_spl_masks(); 215 #endif /* DIAGNOSTIC */ 216 217 /* 218 * If we are still cold then hit the air brakes 219 * and crash to earth fast 220 */ 221 if (cold) { 222 doshutdownhooks(); 223 pmf_system_shutdown(boothowto); 224 printf("Halted while still in the ICE age.\n"); 225 printf("The operating system has halted.\n"); 226 printf("Please press any key to reboot.\n\n"); 227 cngetc(); 228 printf("rebooting...\n"); 229 cpu_reset(); 230 /*NOTREACHED*/ 231 } 232 233 /* Disable console buffering */ 234 cnpollc(1); 235 236 /* 237 * If RB_NOSYNC was not specified sync the discs. 238 * Note: Unless cold is set to 1 here, syslogd will die during 239 * the unmount. It looks like syslogd is getting woken up 240 * only to find that it cannot page part of the binary in as 241 * the filesystem has been unmounted. 242 */ 243 if (!(howto & RB_NOSYNC)) 244 bootsync(); 245 246 /* Say NO to interrupts */ 247 splhigh(); 248 249 /* Do a dump if requested. */ 250 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) 251 dumpsys(); 252 253 /* 254 * Auto reboot overload protection 255 * 256 * This code stops the kernel entering an endless loop of reboot 257 * - panic cycles. This will have the effect of stopping further 258 * reboots after it has rebooted 8 times after panics. A clean 259 * halt or reboot will reset the counter. 260 */ 261 262 /* 263 * Have we done 8 reboots in a row ? If so halt rather than reboot 264 * since 8 panics in a row without 1 clean halt means something is 265 * seriously wrong. 266 */ 267 if (cmos_read(RTC_ADDR_REBOOTCNT) > 8) 268 howto |= RB_HALT; 269 270 /* 271 * If we are rebooting on a panic then up the reboot count 272 * otherwise reset. 273 * This will thus be reset if the kernel changes the boot action from 274 * reboot to halt due to too any reboots. 275 */ 276 if (((howto & RB_HALT) == 0) && panicstr) 277 cmos_write(RTC_ADDR_REBOOTCNT, 278 cmos_read(RTC_ADDR_REBOOTCNT) + 1); 279 else 280 cmos_write(RTC_ADDR_REBOOTCNT, 0); 281 282 /* 283 * If we need a RiscBSD reboot, request it buy setting a bit in 284 * the CMOS RAM. This can be detected by the RiscBSD boot loader 285 * during a RISCOS boot. No other way to do this as RISCOS is in ROM. 286 */ 287 if ((howto & RB_HALT) == 0) 288 cmos_write(RTC_ADDR_BOOTOPTS, 289 cmos_read(RTC_ADDR_BOOTOPTS) | 0x02); 290 291 /* Run any shutdown hooks */ 292 doshutdownhooks(); 293 294 pmf_system_shutdown(boothowto); 295 296 /* Make sure IRQ's are disabled */ 297 IRQdisable; 298 299 if (howto & RB_HALT) { 300 printf("The operating system has halted.\n"); 301 printf("Please press any key to reboot.\n\n"); 302 cngetc(); 303 } 304 305 printf("rebooting...\n"); 306 cpu_reset(); 307 /*NOTREACHED*/ 308 } 309 310 311 /* 312 * u_int initarm(BootConfig *bootconf) 313 * 314 * Initial entry point on startup. This gets called before main() is 315 * entered. 316 * It should be responsible for setting up everything that must be 317 * in place when main is called. 318 * This includes 319 * Taking a copy of the boot configuration structure. 320 * Initialising the physical console so characters can be printed. 321 * Setting up page tables for the kernel 322 * Relocating the kernel to the bottom of physical memory 323 */ 324 325 /* 326 * this part is completely rewritten for the new bootloader ... It features 327 * a flat memory map with a mapping comparable to the EBSA arm32 machine 328 * to boost the portability and likeness of the code 329 */ 330 331 /* 332 * Mapping table for core kernel memory. This memory is mapped at init 333 * time with section mappings. 334 * 335 * XXX One big assumption in the current architecture seems that the kernel is 336 * XXX supposed to be mapped into bootconfig.dram[0]. 337 */ 338 339 #define ONE_MB 0x100000 340 341 struct l1_sec_map { 342 vaddr_t va; 343 paddr_t pa; 344 vsize_t size; 345 vm_prot_t prot; 346 int cache; 347 } l1_sec_table[] = { 348 /* Map 1Mb section for VIDC20 */ 349 { VIDC_BASE, VIDC_HW_BASE, 350 ONE_MB, VM_PROT_READ|VM_PROT_WRITE, 351 PTE_NOCACHE }, 352 353 /* Map 1Mb section from IOMD */ 354 { IOMD_BASE, IOMD_HW_BASE, 355 ONE_MB, VM_PROT_READ|VM_PROT_WRITE, 356 PTE_NOCACHE }, 357 358 /* Map 1Mb of COMBO (and module space) */ 359 { IO_BASE, IO_HW_BASE, 360 ONE_MB, VM_PROT_READ|VM_PROT_WRITE, 361 PTE_NOCACHE }, 362 #if NPODULEBUS > 0 /* XXXJRT */ 363 /* Map the Fast and Sync simple podule space */ 364 { SYNC_PODULE_BASE & 0xfff00000, SYNC_PODULE_HW_BASE & 0xfff00000, 365 L1_S_SIZE, VM_PROT_READ|VM_PROT_WRITE, 366 PTE_NOCACHE }, 367 /* Map the EASI podule space */ 368 { EASI_BASE, EASI_HW_BASE, 369 MAX_PODULES * EASI_SIZE, VM_PROT_READ|VM_PROT_WRITE, 370 PTE_NOCACHE }, 371 #endif 372 { 0, 0, 0, 0, 0 } 373 }; 374 375 376 static void 377 canonicalise_bootconfig(struct bootconfig *bootconf, struct bootconfig *raw_bootconf) 378 { 379 /* check for bootconfig v2+ structure */ 380 if (raw_bootconf->magic == BOOTCONFIG_MAGIC) { 381 /* v2+ cleaned up structure found */ 382 *bootconf = *raw_bootconf; 383 return; 384 } else { 385 panic2(("Internal error: no valid bootconfig block found")); 386 } 387 } 388 389 390 vaddr_t 391 initarm(void *cookie) 392 { 393 struct bootconfig *raw_bootconf = cookie; 394 int loop; 395 int loop1; 396 u_int logical; 397 u_int kerneldatasize; 398 u_int l1pagetable; 399 struct exec *kernexec = (struct exec *)KERNEL_TEXT_BASE; 400 bool hasKinetic = false; 401 paddr_t kinetic_physical_start; 402 403 /* 404 * Heads up ... Setup the CPU / MMU / TLB functions 405 */ 406 set_cpufuncs(); 407 408 /* canonicalise the boot configuration structure to allow versioning */ 409 canonicalise_bootconfig(&bootconfig, raw_bootconf); 410 booted_kernel = bootconfig.kernelname; 411 412 /* if the wscons interface is used, switch off VERBOSE booting :( */ 413 #if NVIDCVIDEO>0 414 # undef VERBOSE_INIT_ARM 415 #endif 416 417 /* 418 * Initialise the video memory descriptor 419 * 420 * Note: all references to the video memory virtual/physical address 421 * should go via this structure. 422 */ 423 424 /* Hardwire it on the place the bootloader tells us */ 425 videomemory.vidm_vbase = bootconfig.display_start; 426 videomemory.vidm_pbase = bootconfig.display_phys; 427 videomemory.vidm_size = bootconfig.display_size; 428 if (bootconfig.vram[0].pages) 429 videomemory.vidm_type = VIDEOMEM_TYPE_VRAM; 430 else 431 videomemory.vidm_type = VIDEOMEM_TYPE_DRAM; 432 vidc_base = (int *) VIDC_HW_BASE; 433 iomd_base = IOMD_HW_BASE; 434 435 /* 436 * Initialise the physical console 437 * This is done in main() but for the moment we do it here so that 438 * we can use printf in initarm() before main() has been called. 439 * only for `vidcconsole!' ... not wscons 440 */ 441 #if NVIDCVIDEO == 0 442 consinit(); 443 #endif 444 445 /* 446 * Initialise the diagnostic serial console 447 * This allows a means of generating output during initarm(). 448 * Once all the memory map changes are complete we can call consinit() 449 * and not have to worry about things moving. 450 */ 451 /* fcomcnattach(DC21285_ARMCSR_BASE, comcnspeed, comcnmode); */ 452 /* XXX snif .... i am still not able to this */ 453 454 /* 455 * We have the following memory map (derived from EBSA) 456 * 457 * virtual address == physical address apart from the areas: 458 * 0x00000000 -> 0x000fffff which is mapped to 459 * top 1MB of physical memory 460 * 0xf0000000 -> 0xf0ffffff which is mapped to 461 * physical address 0x10000000 -> 0x10ffffff 462 * or on a Kinetic: 463 * physical address 0x20400000 -> 0x20ffffff 464 * 465 * This means that the kernel is mapped suitably for continuing 466 * execution, all I/O is mapped 1:1 virtual to physical and 467 * physical memory is accessible. 468 * 469 * The initarm() has the responsibility for creating the kernel 470 * page tables. 471 * It must also set up various memory pointers that are used 472 * by pmap etc. 473 */ 474 475 #ifdef FORCE_VERBOSE_INIT_ARM 476 /* 477 * note that this will stop working after we switch to the new 478 * L1 Table 479 */ 480 memset((void *) (videomemory.vidm_vbase), 0x55, videomemory.vidm_size); 481 consinit(); 482 printf("\n\n\n\n\n\n\n"); 483 #define VERBOSE_INIT_ARM 484 #endif 485 /* START OF REAL NEW STUFF */ 486 487 /* Check to make sure the page size is correct */ 488 if (PAGE_SIZE != bootconfig.pagesize) 489 panic2(("Page size is %d bytes instead of %d !! (huh?)\n", 490 bootconfig.pagesize, PAGE_SIZE)); 491 492 /* process arguments */ 493 process_kernel_args(); 494 495 /* 496 * Now set up the page tables for the kernel ... this part is copied 497 * in a (modified?) way from the EBSA machine port.... 498 */ 499 500 #ifdef VERBOSE_INIT_ARM 501 printf("Allocating page tables\n"); 502 #endif 503 /* 504 * Set up the variables that define the availability of physical 505 * memory 506 */ 507 physical_start = 0xffffffff; 508 physical_end = 0; 509 kinetic_physical_start = 0xffffffff; 510 #ifdef VERBOSE_INIT_ARM 511 printf("memory blocks:\n"); 512 #endif 513 for (loop = 0, physmem = 0; loop < bootconfig.dramblocks; ++loop) { 514 #ifdef VERBOSE_INIT_ARM 515 printf("0x%x + 0x%0x, type = 0x%08x\n", bootconfig.dram[loop].address, 516 bootconfig.dram[loop].pages * PAGE_SIZE, 517 bootconfig.dram[loop].flags); 518 #endif 519 if (bootconfig.dram[loop].address < physical_start) 520 physical_start = bootconfig.dram[loop].address; 521 memoryblock_end = bootconfig.dram[loop].address + 522 bootconfig.dram[loop].pages * PAGE_SIZE; 523 if (memoryblock_end > physical_end) 524 physical_end = memoryblock_end; 525 physmem += bootconfig.dram[loop].pages; 526 if (bootconfig.dram[loop].flags & PHYSMEM_TYPE_PROCESSOR_ONLY) { 527 hasKinetic = true; 528 if (bootconfig.dram[loop].address < kinetic_physical_start) 529 kinetic_physical_start = bootconfig.dram[loop].address; 530 } 531 }; 532 533 if (hasKinetic) 534 { 535 /* Kinetics can only DMA from the Normal DRAM */ 536 dma_range_begin = 0xffffffff; 537 dma_range_end = 0; 538 for (loop = 0; loop < bootconfig.dramblocks; ++loop) { 539 if (bootconfig.dram[loop].flags == PHYSMEM_TYPE_GENERIC) { 540 if (bootconfig.dram[loop].address < dma_range_begin) 541 dma_range_begin = bootconfig.dram[loop].address; 542 memoryblock_end = bootconfig.dram[loop].address + 543 bootconfig.dram[loop].pages * PAGE_SIZE; 544 if (memoryblock_end > dma_range_end) 545 dma_range_end = memoryblock_end; 546 } 547 } 548 dma_range_end = (paddr_t) MIN(dma_range_end, 256*1024*1024); 549 } else { 550 /* everything else DMAs all the memory */ 551 dma_range_begin = (paddr_t) physical_start; 552 dma_range_end = (paddr_t) MIN(physical_end, 512*1024*1024); 553 } 554 555 /* set the location of the kernel in physical memory */ 556 if (hasKinetic) { 557 kernel_start = kinetic_physical_start; 558 } else { 559 kernel_start = physical_start; 560 } 561 physical_freestart = kernel_start; 562 free_pages = bootconfig.drampages; 563 physical_freeend = physical_end; 564 565 /* 566 * AHUM !! set this variable ... it was set up in the old 1st 567 * stage bootloader 568 */ 569 kerneldatasize = bootconfig.kernsize + bootconfig.MDFsize; 570 571 /* Update the address of the first free page of physical memory */ 572 physical_freestart += 573 bootconfig.kernsize + bootconfig.scratchsize; 574 free_pages -= (bootconfig.kernsize + bootconfig.scratchsize) / PAGE_SIZE; 575 576 /* Define a macro to simplify memory allocation */ 577 #define valloc_pages(var, np) \ 578 alloc_pages((var).pv_pa, (np)); \ 579 (var).pv_va = KERNEL_BASE + (var).pv_pa - kernel_start; 580 581 #define alloc_pages(var, np) \ 582 (var) = physical_freestart; \ 583 physical_freestart += ((np) * PAGE_SIZE); \ 584 free_pages -= (np); \ 585 memset((char *)(var), 0, ((np) * PAGE_SIZE)); 586 587 loop1 = 0; 588 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { 589 /* Are we 16KB aligned for an L1 ? */ 590 if ((physical_freestart & (L1_TABLE_SIZE - 1)) == 0 591 && kernel_l1pt.pv_pa == 0) { 592 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); 593 } else { 594 valloc_pages(kernel_pt_table[loop1], 595 L2_TABLE_SIZE / PAGE_SIZE); 596 ++loop1; 597 } 598 } 599 600 601 #ifdef DIAGNOSTIC 602 /* This should never be able to happen but better confirm that. */ 603 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0) 604 panic2(("initarm: Failed to align the kernel page " 605 "directory\n")); 606 #endif 607 608 /* 609 * Allocate a page for the system page mapped to V0x00000000 610 * This page will just contain the system vectors and can be 611 * shared by all processes. 612 */ 613 alloc_pages(systempage.pv_pa, 1); 614 615 /* Allocate stacks for all modes */ 616 valloc_pages(irqstack, IRQ_STACK_SIZE); 617 valloc_pages(abtstack, ABT_STACK_SIZE); 618 valloc_pages(undstack, UND_STACK_SIZE); 619 valloc_pages(kernelstack, UPAGES); 620 621 #ifdef VERBOSE_INIT_ARM 622 printf("Setting up stacks :\n"); 623 printf("IRQ stack: p0x%08lx v0x%08lx\n", 624 irqstack.pv_pa, irqstack.pv_va); 625 printf("ABT stack: p0x%08lx v0x%08lx\n", 626 abtstack.pv_pa, abtstack.pv_va); 627 printf("UND stack: p0x%08lx v0x%08lx\n", 628 undstack.pv_pa, undstack.pv_va); 629 printf("SVC stack: p0x%08lx v0x%08lx\n", 630 kernelstack.pv_pa, kernelstack.pv_va); 631 printf("\n"); 632 #endif 633 634 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE); 635 636 #ifdef CPU_SA110 637 /* 638 * XXX totally stuffed hack to work round problems introduced 639 * in recent versions of the pmap code. Due to the calls used there 640 * we cannot allocate virtual memory during bootstrap. 641 */ 642 sa110_cc_base = (KERNEL_BASE + (physical_freestart - kernel_start) 643 + (CPU_SA110_CACHE_CLEAN_SIZE - 1)) 644 & ~(CPU_SA110_CACHE_CLEAN_SIZE - 1); 645 #endif /* CPU_SA110 */ 646 647 /* 648 * Ok we have allocated physical pages for the primary kernel 649 * page tables 650 */ 651 652 #ifdef VERBOSE_INIT_ARM 653 printf("Creating L1 page table p@0x%08x\n", (uint32_t)kernel_l1pt.pv_pa); 654 #endif 655 656 /* 657 * Now we start construction of the L1 page table 658 * We start by mapping the L2 page tables into the L1. 659 * This means that we can replace L1 mappings later on if necessary 660 */ 661 l1pagetable = kernel_l1pt.pv_pa; 662 663 /* Map the L2 pages tables in the L1 page table */ 664 pmap_link_l2pt(l1pagetable, 0x00000000, 665 &kernel_pt_table[KERNEL_PT_SYS]); 666 pmap_link_l2pt(l1pagetable, KERNEL_BASE, 667 &kernel_pt_table[KERNEL_PT_KERNEL]); 668 pmap_link_l2pt(l1pagetable, KERNEL_BASE + 0x00400000, 669 &kernel_pt_table[KERNEL_PT_KERNEL_4MB]); 670 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; ++loop) 671 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000, 672 &kernel_pt_table[KERNEL_PT_VMDATA + loop]); 673 pmap_link_l2pt(l1pagetable, VMEM_VBASE, 674 &kernel_pt_table[KERNEL_PT_VMEM]); 675 676 /* update the top of the kernel VM */ 677 pmap_curmaxkvaddr = 678 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000); 679 680 #ifdef VERBOSE_INIT_ARM 681 printf("Mapping kernel\n"); 682 #endif 683 684 /* Now we fill in the L2 pagetable for the kernel code/data */ 685 /* XXX Kernel doesn't have to be on physical_start (!) use bootconfig XXX */ 686 /* 687 * The defines are a workaround for a recent problem that occurred 688 * with ARM 610 processors and some ARM 710 processors 689 * Other ARM 710 and StrongARM processors don't have a problem. 690 */ 691 if (N_GETMAGIC(kernexec[0]) == ZMAGIC) { 692 #if defined(CPU_ARM6) || defined(CPU_ARM7) 693 logical = pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE, 694 kernel_start, kernexec->a_text, 695 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 696 #else /* CPU_ARM6 || CPU_ARM7 */ 697 logical = pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE, 698 kernel_start, kernexec->a_text, 699 VM_PROT_READ, PTE_CACHE); 700 #endif /* CPU_ARM6 || CPU_ARM7 */ 701 logical += pmap_map_chunk(l1pagetable, 702 KERNEL_TEXT_BASE + logical, kernel_start + logical, 703 kerneldatasize - kernexec->a_text, 704 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 705 } else { /* !ZMAGIC */ 706 /* 707 * Most likely an ELF kernel ... 708 * XXX no distinction yet between read only and 709 * read/write area's ... 710 */ 711 pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE, 712 kernel_start, kerneldatasize, 713 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 714 }; 715 716 717 #ifdef VERBOSE_INIT_ARM 718 printf("Constructing L2 page tables\n"); 719 #endif 720 721 /* Map the stack pages */ 722 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, 723 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 724 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, 725 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 726 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, 727 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 728 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, 729 UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 730 731 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, 732 L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); 733 734 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { 735 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, 736 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, 737 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); 738 } 739 740 /* Now we fill in the L2 pagetable for the VRAM */ 741 /* 742 * Current architectures mean that the VRAM is always in 1 743 * continuous bank. This means that we can just map the 2 meg 744 * that the VRAM would occupy. In theory we don't need a page 745 * table for VRAM, we could section map it but we would need 746 * the page tables if DRAM was in use. 747 * XXX please map two adjacent virtual areas to ONE physical 748 * area 749 */ 750 pmap_map_chunk(l1pagetable, VMEM_VBASE, videomemory.vidm_pbase, 751 videomemory.vidm_size, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 752 pmap_map_chunk(l1pagetable, VMEM_VBASE + videomemory.vidm_size, 753 videomemory.vidm_pbase, videomemory.vidm_size, 754 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 755 756 /* Map the vector page. */ 757 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, 758 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 759 760 /* Map the core memory needed before autoconfig */ 761 loop = 0; 762 while (l1_sec_table[loop].size) { 763 vsize_t sz; 764 765 #ifdef VERBOSE_INIT_ARM 766 printf("%08lx -> %08lx @ %08lx\n", l1_sec_table[loop].pa, 767 l1_sec_table[loop].pa + l1_sec_table[loop].size - 1, 768 l1_sec_table[loop].va); 769 #endif 770 for (sz = 0; sz < l1_sec_table[loop].size; sz += L1_S_SIZE) 771 pmap_map_section(l1pagetable, 772 l1_sec_table[loop].va + sz, 773 l1_sec_table[loop].pa + sz, 774 l1_sec_table[loop].prot, 775 l1_sec_table[loop].cache); 776 ++loop; 777 } 778 779 /* 780 * Now we have the real page tables in place so we can switch 781 * to them. Once this is done we will be running with the 782 * REAL kernel page tables. 783 */ 784 785 /* be a client to all domains */ 786 cpu_domains(0x55555555); 787 788 /* Switch tables */ 789 #ifdef VERBOSE_INIT_ARM 790 printf("switching to new L1 page table\n"); 791 #endif 792 793 cpu_setttb(kernel_l1pt.pv_pa, true); 794 795 /* 796 * We must now clean the cache again.... 797 * Cleaning may be done by reading new data to displace any 798 * dirty data in the cache. This will have happened in cpu_setttb() 799 * but since we are boot strapping the addresses used for the read 800 * may have just been remapped and thus the cache could be out 801 * of sync. A re-clean after the switch will cure this. 802 * After booting there are no gross relocations of the kernel thus 803 * this problem will not occur after initarm(). 804 */ 805 cpu_idcache_wbinv_all(); 806 cpu_tlb_flushID(); 807 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); 808 809 /* 810 * Moved from cpu_startup() as data_abort_handler() references 811 * this during uvm init 812 */ 813 uvm_lwp_setuarea(&lwp0, kernelstack.pv_va); 814 815 /* 816 * if there is support for a serial console ...we should now 817 * reattach it 818 */ 819 /* fcomcndetach();*/ 820 821 /* 822 * Reflect videomemory relocation in the videomemory structure 823 * and reinit console 824 */ 825 if (bootconfig.vram[0].pages == 0) { 826 videomemory.vidm_vbase = VMEM_VBASE; 827 } else { 828 videomemory.vidm_vbase = VMEM_VBASE; 829 bootconfig.display_start = VMEM_VBASE; 830 }; 831 vidc_base = (int *) VIDC_BASE; 832 iomd_base = IOMD_BASE; 833 834 #ifdef FORCE_VERBOSE_INIT_ARM2 835 consinit(); 836 printf("\n\n\n\n\n\n\n"); 837 #define VERBOSE_INIT_ARM 838 #endif 839 840 #ifdef VERBOSE_INIT_ARM 841 printf("running on the new L1 page table!\n"); 842 printf("done.\n"); 843 #endif 844 845 arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL); 846 847 #ifdef VERBOSE_INIT_ARM 848 printf("\n"); 849 #endif 850 851 /* 852 * Pages were allocated during the secondary bootstrap for the 853 * stacks for different CPU modes. 854 * We must now set the r13 registers in the different CPU modes to 855 * point to these stacks. 856 * Since the ARM stacks use STMFD etc. we must set r13 to the top end 857 * of the stack memory. 858 */ 859 #ifdef VERBOSE_INIT_ARM 860 printf("init subsystems: stacks "); 861 console_flush(); 862 #endif 863 864 set_stackptr(PSR_IRQ32_MODE, 865 irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); 866 set_stackptr(PSR_ABT32_MODE, 867 abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); 868 set_stackptr(PSR_UND32_MODE, 869 undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); 870 #ifdef VERBOSE_INIT_ARM 871 printf("kstack V%08lx P%08lx\n", kernelstack.pv_va, 872 kernelstack.pv_pa); 873 #endif /* VERBOSE_INIT_ARM */ 874 875 /* 876 * Well we should set a data abort handler. 877 * Once things get going this will change as we will need a proper 878 * handler. Until then we will use a handler that just panics but 879 * tells us why. 880 * Initialisation of the vectors will just panic on a data abort. 881 * This just fills in a slightly better one. 882 */ 883 #ifdef VERBOSE_INIT_ARM 884 printf("vectors "); 885 #endif 886 data_abort_handler_address = (u_int)data_abort_handler; 887 prefetch_abort_handler_address = (u_int)prefetch_abort_handler; 888 undefined_handler_address = (u_int)undefinedinstruction_bounce; 889 console_flush(); 890 891 892 /* 893 * At last ! 894 * We now have the kernel in physical memory from the bottom upwards. 895 * Kernel page tables are physically above this. 896 * The kernel is mapped to 0xf0000000 897 * The kernel data PTs will handle the mapping of 898 * 0xf1000000-0xf5ffffff (80 Mb) 899 * 2Meg of VRAM is mapped to 0xf7000000 900 * The page tables are mapped to 0xefc00000 901 * The IOMD is mapped to 0xf6000000 902 * The VIDC is mapped to 0xf6100000 903 * The IOMD/VIDC could be pushed up higher but i havent got 904 * sufficient documentation to do so; the addresses are not 905 * parametized yet and hard to read... better fix this before; 906 * its pretty unforgiving. 907 */ 908 909 /* Initialise the undefined instruction handlers */ 910 #ifdef VERBOSE_INIT_ARM 911 printf("undefined "); 912 #endif 913 undefined_init(); 914 console_flush(); 915 916 /* Load memory into UVM. */ 917 #ifdef VERBOSE_INIT_ARM 918 printf("page "); 919 #endif 920 uvm_md_init(); 921 922 for (loop = 0; loop < bootconfig.dramblocks; loop++) { 923 paddr_t start = (paddr_t)bootconfig.dram[loop].address; 924 paddr_t end = start + (bootconfig.dram[loop].pages * PAGE_SIZE); 925 926 if (end > physical_freestart) 927 { 928 if (start < physical_freestart) 929 start = physical_freestart; 930 if (end > physical_freeend) 931 end = physical_freeend; 932 } 933 934 if (bootconfig.dram[loop].flags & PHYSMEM_TYPE_PROCESSOR_ONLY) { 935 uvm_page_physload(atop(start), atop(end), 936 atop(start), atop(end), VM_FREELIST_DEFAULT); 937 } else { 938 uvm_page_physload(atop(start), atop(end), 939 atop(start), atop(end), VM_FREELIST_RPCDMA); 940 } 941 } 942 943 /* Boot strap pmap telling it where managed kernel virtual memory is */ 944 #ifdef VERBOSE_INIT_ARM 945 printf("pmap "); 946 #endif 947 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE); 948 console_flush(); 949 950 /* Setup the IRQ system */ 951 #ifdef VERBOSE_INIT_ARM 952 printf("irq "); 953 #endif 954 console_flush(); 955 irq_init(); 956 #ifdef VERBOSE_INIT_ARM 957 printf("done.\n\n"); 958 #endif 959 960 #if NVIDCVIDEO>0 961 consinit(); /* necessary ? */ 962 #endif 963 964 /* Talk to the user */ 965 printf("NetBSD/acorn32 booting ... \n"); 966 967 /* Tell the user if his boot loader is too old */ 968 if ((bootconfig.magic < BOOTCONFIG_MAGIC) || 969 (bootconfig.version != BOOTCONFIG_VERSION)) { 970 printf("\nDETECTED AN OLD BOOTLOADER. PLEASE UPGRADE IT\n\n"); 971 delay(5000000); 972 } 973 974 printf("Kernel loaded from file %s\n", bootconfig.kernelname); 975 printf("Kernel arg string (@%p) %s\n", 976 bootconfig.args, bootconfig.args); 977 printf("\nBoot configuration structure reports the following " 978 "memory\n"); 979 980 printf(" DRAM block 0a at %08x size %08x " 981 "DRAM block 0b at %08x size %08x\n\r", 982 bootconfig.dram[0].address, 983 bootconfig.dram[0].pages * bootconfig.pagesize, 984 bootconfig.dram[1].address, 985 bootconfig.dram[1].pages * bootconfig.pagesize); 986 printf(" DRAM block 1a at %08x size %08x " 987 "DRAM block 1b at %08x size %08x\n\r", 988 bootconfig.dram[2].address, 989 bootconfig.dram[2].pages * bootconfig.pagesize, 990 bootconfig.dram[3].address, 991 bootconfig.dram[3].pages * bootconfig.pagesize); 992 printf(" VRAM block 0 at %08x size %08x\n\r", 993 bootconfig.vram[0].address, 994 bootconfig.vram[0].pages * bootconfig.pagesize); 995 if (hasKinetic) 996 printf("%s", " Kinetic memory was detected\n\r"); 997 998 /* 999 * Get a handle on the I2C interface so we can read 1000 * the NVRAM in the real-time clock chip. 1001 */ 1002 acorn32_i2c_tag = iomdiic_bootstrap_cookie(); 1003 1004 if (cmos_read(RTC_ADDR_REBOOTCNT) > 0) 1005 printf("Warning: REBOOTCNT = %d\n", 1006 cmos_read(RTC_ADDR_REBOOTCNT)); 1007 1008 #ifdef CPU_SA110 1009 if (cputype == CPU_ID_SA110) 1010 rpc_sa110_cc_setup(); 1011 #endif /* CPU_SA110 */ 1012 1013 #if NKSYMS || defined(DDB) || defined(MODULAR) 1014 ksyms_addsyms_elf(bootconfig.ksym_end - bootconfig.ksym_start, 1015 (void *) bootconfig.ksym_start, (void *) bootconfig.ksym_end); 1016 #endif 1017 1018 1019 #ifdef DDB 1020 db_machine_init(); 1021 if (boothowto & RB_KDB) 1022 Debugger(); 1023 #endif /* DDB */ 1024 1025 /* We return the new stack pointer address */ 1026 return(kernelstack.pv_va + USPACE_SVC_STACK_TOP); 1027 } 1028 1029 1030 static void 1031 process_kernel_args(void) 1032 { 1033 char *args; 1034 1035 /* Ok now we will check the arguments for interesting parameters. */ 1036 args = bootconfig.args; 1037 boothowto = 0; 1038 1039 /* Only arguments itself are passed from the new bootloader */ 1040 while (*args == ' ') 1041 ++args; 1042 1043 boot_args = args; 1044 parse_mi_bootargs(boot_args); 1045 parse_rpc_bootargs(boot_args); 1046 } 1047 1048 1049 void 1050 parse_rpc_bootargs(char *args) 1051 { 1052 int integer; 1053 1054 if (get_bootconf_option(args, "videodram", BOOTOPT_TYPE_INT, 1055 &integer)) { 1056 videodram_size = integer; 1057 /* Round to 4K page */ 1058 videodram_size *= 1024; 1059 videodram_size = round_page(videodram_size); 1060 if (videodram_size > 1024*1024) 1061 videodram_size = 1024*1024; 1062 } 1063 1064 #if 0 1065 /* XXX this I would rather have in the new bootconfig structure */ 1066 if (get_bootconf_option(args, "kinetic", BOOTOPT_TYPE_BOOLEAN, 1067 &integer)) { 1068 bootconfig.RPC_kinetic_card_support = 1; 1069 } 1070 #endif 1071 } 1072 1073 1074 #ifdef CPU_SA110 1075 1076 /* 1077 * For optimal cache cleaning we need two 16K banks of 1078 * virtual address space that NOTHING else will access 1079 * and then we alternate the cache cleaning between the 1080 * two banks. 1081 * The cache cleaning code requires 2 banks aligned 1082 * on total size boundary so the banks can be alternated by 1083 * xorring the size bit (assumes the bank size is a power of 2) 1084 */ 1085 extern unsigned int sa1_cache_clean_addr; 1086 extern unsigned int sa1_cache_clean_size; 1087 void 1088 rpc_sa110_cc_setup(void) 1089 { 1090 int loop; 1091 paddr_t kaddr; 1092 1093 (void) pmap_extract(pmap_kernel(), KERNEL_TEXT_BASE, &kaddr); 1094 const pt_entry_t npte = L2_S_PROTO | kaddr | 1095 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode; 1096 for (loop = 0; loop < CPU_SA110_CACHE_CLEAN_SIZE; loop += PAGE_SIZE) { 1097 pt_entry_t * const ptep = vtopte(sa110_cc_base + loop); 1098 l2pte_set(ptep, npte, 0); 1099 PTE_SYNC(ptep); 1100 } 1101 sa1_cache_clean_addr = sa110_cc_base; 1102 sa1_cache_clean_size = CPU_SA110_CACHE_CLEAN_SIZE / 2; 1103 } 1104 #endif /* CPU_SA110 */ 1105 1106 /* 1107 * To convert from RISC OS addresses to real CMOS addresses, do this: 1108 * 1109 * if (riscosaddr < 0xc0) 1110 * realaddr = riscosaddr + 0x40; 1111 * else 1112 * realaddr = riscosaddr - 0xb0; 1113 */ 1114 1115 /* Read a byte from CMOS RAM. */ 1116 int 1117 cmos_read(int location) 1118 { 1119 uint8_t val; 1120 1121 if (pcfrtc_bootstrap_read(acorn32_i2c_tag, 0x50, 1122 location, &val, 1) != 0) 1123 return (-1); 1124 return (val); 1125 } 1126 1127 /* Write a byte to CMOS RAM. */ 1128 int 1129 cmos_write(int location, int value) 1130 { 1131 uint8_t val = value; 1132 int oldvalue, oldsum; 1133 1134 /* Get the old value and checksum. */ 1135 if ((oldvalue = cmos_read(location)) < 0) 1136 return (-1); 1137 if ((oldsum = cmos_read(RTC_ADDR_CHECKSUM)) < 0) 1138 return (-1); 1139 1140 if (pcfrtc_bootstrap_write(acorn32_i2c_tag, 0x50, 1141 location, &val, 1) != 0) 1142 return (-1); 1143 1144 /* Now update the checksum. */ 1145 val = (uint8_t)oldsum - (uint8_t)oldvalue + val; 1146 return (pcfrtc_bootstrap_write(acorn32_i2c_tag, 0x50, 1147 RTC_ADDR_CHECKSUM, &val, 1)); 1148 } 1149 1150 /* End of machdep.c */ 1151